1
|
Wu J, Zhang Y, Zhang F, Mi S, Yu W, Sang Y, Wang X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem 2025; 463:141442. [PMID: 39342685 DOI: 10.1016/j.foodchem.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
This study incorporated purple sweet potato anthocyanin (PSPA) and silver-nanoparticles (AgNPs) into the chitosan/polyvinyl alcohol film matrix (PVA/CS) to successfully prepare a composite film, which effectively inhibited bacterial growth and indicated product freshness. The addition of AgNPs and PSPA led to a dense structure of the film, which effectively enhanced its physical properties, barrier properties and functional properties. The incorporation of PSPA made the composite film highly pH-sensitive, which exhibited distinct color changes in varying pH solutions. The PVA/CS-AgNPs-PSPA10 composite film with PSPA and AgNPs resulted the shelf life of strawberries to 13 days at 4 °C, which effectively reduced strawberry breathing during storage. Additionally, such composite film changed color from purple to yellow-purple, indicating the deterioration of strawberries. It also showed an antibacterial indication through its excellent antibacterial property and freshness indication performance, which demonstrated its significance in developing antibacterial indicator composite packaging materials for fruits and vegetables preservation.
Collapse
Affiliation(s)
- Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Qin Y, Wang Y, Tang Z, Chen K, Wang Z, Cheng G, Chi H, Soteyome T. A pH-sensitive film based on chitosan/gelatin and anthocyanin from Zingiber striolatum Diels for monitoring fish freshness. Food Chem X 2024; 23:101639. [PMID: 39113745 PMCID: PMC11304880 DOI: 10.1016/j.fochx.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
As a new type of packaging method, the anthocyanin-based pH-sensitive indicator film has gained much attention owing to low cost, small size, and visually informative property. In this study, an intelligent film based on chitosan/gelatin (CG) matrix with Zingiber striolatum Diels (ZSD) anthocyanin for fish freshness monitoring was developed. The film properties, including thickness, moisture content, color, mechanical properties, UV-vis light barrier property, as well as pH and ammonia sensitivity, were evaluated. The CG-ZSD films exhibited a more compact structure when compared with the CG film. The CG-ZSD20 film showed the highest elongation at break (6.33 ± 0.62%) and lowest tensile strength (20.0 ± 0.58 MPa). FTIR spectra revealed the strong hydrogen bond interactions between ZSD and polymer matrix. Film incorporated with 15% anthocyanin extract has increased melting temperature at 118.9 °C, and a lower weight loss (13.8%) at melting temperature. In pH 1-14 buffer, the color of CG-ZSD films underwent a significant change from red to yellow-green. The CG-ZSD15 film was utilized for monitoring fish freshness and showed visible color changes from deep purple to brown. The total volatile basic nitrogen content and pH value changes of fish were closely related to the visual color changes in film. This demonstrated that the film was a highly pH-sensitive film for quantifying fish freshness in real-time.
Collapse
Affiliation(s)
- Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhenya Tang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650550, China
| | - Kejun Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
3
|
Kor H, Karimian H, Khalaji AD. Experimental and computational study of removal of methyl green and eosin yellow from aqueous solutions using novel sulfamic and sulfanilic acid grafted chitosan-epichlorohydrin -Fe 2O 3 nanocomposites. Int J Biol Macromol 2024; 282:137036. [PMID: 39476911 DOI: 10.1016/j.ijbiomac.2024.137036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Two novel chitosan-based adsorbents, sulfamic acid-chitosan-epichlorohydrin-Fe2O3 (HK-1) and sulfanilic acid-chitosan-epichlorohydrin-Fe2O3 (HK-2), were successfully synthesized and characterized by XRD, TGA, DSC, BET, and SEM techniques. The ability of the synthesized adsorbents for removing cationic Methyl Green (MG) and anionic Eosin Yellow (EY) from aqueous solutions was investigated at different solution pHs, adsorbent dosages, and contact times. The results showed a removal efficiency of 93.5 % and 96.8 % for adsorbing cationic MG respectively by HK-1 and HK-2 at pH = 8. The removal efficiency for adsorbing anionic EY by HK-1 and HK-2 was respectively 90.8 % and 94.6 % at pH = 3. The results also showed that >50 % of MG was adsorbed within the first 30 min of contact with HK-1 and HK-2, but it took about 75 and 45 min to adsorb 50 % of EY respectively by HK-1 and HK-2. DFT calculations confirmed the spontaneous adsorption of EY and MG on the surface of HK-1 and HK-2. These promising results suggest that HK-1 and HK-2 can be used to remove other cationic and anionic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Hossein Kor
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran.
| | | |
Collapse
|
4
|
Ben Amor I, Hemmami H, Grara N, Aidat O, Ben Amor A, Zeghoud S, Bellucci S. Chitosan: A Green Approach to Metallic Nanoparticle/Nanocomposite Synthesis and Applications. Polymers (Basel) 2024; 16:2662. [PMID: 39339126 PMCID: PMC11436026 DOI: 10.3390/polym16182662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan, a naturally occurring biopolymer derived from chitin, has emerged as a highly promising instrument for the production and application of metal nanoparticles. The present review delves into the several functions of chitosan in the development and operation of metal nanoparticles, emphasizing its aptitudes as a green reducing agent, shape-directing agent, size-controlling agent, and stabilizer. Chitosan's special qualities make it easier to manufacture metal nanoparticles and nanocomposites with desired characteristics. Furthermore, there is a lot of promise for chitosan-based nanocomposites in a number of fields, such as metal removal, water purification, and photoacoustic, photothermal, antibacterial, and photodynamic therapies. This thorough analysis highlights the potential application of chitosan in the advancement of nanotechnology and the development of medicinal and environmental solutions.
Collapse
Affiliation(s)
- Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Nedjoud Grara
- Department of Biology, Faculty of Nature, Life Sciences, Earth and Universe Sciences, University 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Omaima Aidat
- Laboratoire de Technologie Alimentaire et de Nutrition, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria;
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Stefano Bellucci
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
- INFN—Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
5
|
Can A, Kızılbey K. Green Synthesis of ZnO Nanoparticles via Ganoderma Lucidum Extract: Structural and Functional Analysis in Polymer Composites. Gels 2024; 10:576. [PMID: 39330178 PMCID: PMC11431147 DOI: 10.3390/gels10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Metallic nanoparticles are of growing interest due to their broad applications. This study presents the green synthesis of zinc oxide (ZnO) nanoparticles (ZnNPs) using Ganoderma Lucidum mushroom extract, characterized by DLS, SEM, XRD, and FTIR spectroscopy analyses. The synthesis parameters, including extract/salt ratio and mixing time, significantly influenced nanoparticle yield, size, and polydispersity, with longer mixing times leading to larger, more varied particles. Specifically, the sizes of ZnNPs synthesized at a 1:1 extract/ZnCl2 ratio after 3 h and 24 h were 90.0 nm and 243.3 nm, with PDI values of 48.69% and 51.91%, respectively. At a 1:2 ratio, the sizes were 242.3 nm at 3 h (PDI: 43.19%) and a mixture of 1.5 nm, 117.4 nm, and 647.9 nm at 24 h (PDI: 2.72%, 10.97%, and 12.43%). Polymer films incorporating PVA, chitosan, and ZnNPs were analyzed for their morphological, spectroscopic, and mechanical properties. Chitosan reduced tensile strength and elongation due to its brittleness, while ZnNPs further increased film brittleness and structural degradation. A comparison of the tensile strength of films A and C revealed that the addition of chitosan to the PVA film resulted in an approximately 10.71% decrease in tensile strength. Similarly, the analysis of films B1 and B2 showed that the tensile strength of the B2 film decreased by 10.53%. Swelling tests showed that ZnNPs initially enhanced swelling, but excessive amounts led to reduced capacity due to aggregation. This pioneering study demonstrates the potential of Ganoderma Lucidum extract in nanoparticle synthesis and provides foundational insights for future research, especially in wound dressing applications.
Collapse
Affiliation(s)
- Ayça Can
- Biomedical Engineering Department, Graduate School of Natural and Applied Sciences, Acıbadem University, İstanbul 34752, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, İstanbul 34752, Türkiye
| |
Collapse
|
6
|
Korany AM, Abdel-Atty NS, Zeinhom MMA, Hassan AHA. Application of gelatin-based zinc oxide nanoparticles bionanocomposite coatings to control Listeria monocytogenes in Talaga cheese and camel meat during refrigerated storage. Food Microbiol 2024; 122:104559. [PMID: 38839223 DOI: 10.1016/j.fm.2024.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.
Collapse
Affiliation(s)
- Ahmed M Korany
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nasser S Abdel-Atty
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed M A Zeinhom
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amal H A Hassan
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
7
|
Li J, Zhang Q, Chen B, Li F, Pang C. Cellulose-citric acid-chitosan@metal sulfide nanocomposites: Methyl orange dye removal and antibacterial activity. Int J Biol Macromol 2024; 276:133795. [PMID: 38992532 DOI: 10.1016/j.ijbiomac.2024.133795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
In this study, to develop efficient adsorbents in removing water pollution, new cellulose-citric acid-chitosan@metal sulfide nanocomposites (CL-CA-CS@NiS and CL-CA-CS@CuS) were synthesized by one-pot reaction at mild conditions and characterized using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) isotherm. The results of characterization techniques confirm that the desired compounds have been successfully synthesized. The as-prepared composites were applied for the removal of methyl orange (MO) dye from aqueous solutions using a batch technique, and the effect of key factors such as initial pH, shaking time, MO concentration, temperature and adsorbent dose were investigated and discussed. Adsorption results exhibited positive impact of temperature, shaking time and adsorbent dose on the MO removal percent. The MO removal percent has been increased over a wide range of pH from 2 (27.6 %) to 6 (98.8 %). Also, almost being constant over a wide range of MO concentration (10-70 mg/L). The results demonstrated that the maximum removal percentage of MO dye (98.9 % and 93.4 % using CL-CA-CS@NiS and CL-CA-CS@CuS, respectively) was achieved under the conditions of pH 6, shaking time of 120 min, adsorbent dose of 0.02 g, MO concentration of 70 mg/L and temperature of 35 °C. The pseudo-second-order (PSO) and Langmuir models demonstrated the best fit to the kinetic and equilibrium data. Also, the thermodynamic results showed that the MO removal process is endothermic and spontaneous in nature. The MO adsorption can be happened by different electrostatic attraction, n-π and π-π stacking and also hydrogen bonding interaction. In addition, antibacterial activity of CL-CA-CS@NiS and CL-CA-CS@CuS nanocomposites exhibited a superior efficiency against S. aureus.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Qian Zhang
- School of Chemistry& Chemical Engineering, China West Normal University, Nanchong 637001, China.
| | - Bowen Chen
- School of Chemistry& Chemical Engineering, China West Normal University, Nanchong 637001, China
| | - Fei Li
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Chunxia Pang
- College of Biological Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
8
|
Wang Y, Du B, Zheng Q, Chen X. A demethylated lignin improved PVA-based supramolecular plastic with tough, degradable, and water-resistant performances. Int J Biol Macromol 2024; 276:133610. [PMID: 38960268 DOI: 10.1016/j.ijbiomac.2024.133610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Poly (vinyl alcohol) (PVA), as an excellent degradable plastic feedstock, is limited by its diminishing stability in wet environment, low strength, thermal instability and nonopaque properties. In response to these concerns, a PVA/demethylated lignin-based supramolecular plastic (DPVA-HA-Fe-5) was designed and produced from PVA, demethylated lignin (DL), humic acid (HA) and Fe3+ ions via a simple casting method. As compared with pure PVA plastic, the tensile strength of DPVA-HA-Fe-5 were increased by 411 % to 410.61 MPa, and the breaking strain was increased by 149 % to 239.47 %. Notably, the hydrophobicity of DPVA-HA-Fe-5 was also significantly improved. Although in highly humid environment (stored in RH = 100 % for 10 days) or in alkaline organic solvent (stored in pyridine for 3 h), DPVA-HA-Fe-5 also showed excellent mechanical strengths of 302.9 and 222.99 MPa, respectively, which are equivalent or even superior to the most of commercial petroleum-based plastics. Moreover, the prepared plastics showed an outstanding UV resistance and shading performance, and about 98.3 % protection against ultraviolet radiation B rays and 90.7 % protection against visible light were obtained. In short, the introduction of lignin to improve the performance of PVA-based plastic is a feasible method, and it could facilitate the development of high-value utilization of lignin.
Collapse
Affiliation(s)
- Yumeng Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qian Zheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohong Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
9
|
Zhang Z, Yang W, Wang W, Duan X, Zhao R, Yu S, Chen J, Sun H. Electrospun O-quaternary ammonium chitosan/polyvinyl alcohol nanofibrous film by application of Box-Behnken design response surface method for eliminating pathogenic bacteria. Int J Biol Macromol 2024; 276:133750. [PMID: 39019375 DOI: 10.1016/j.ijbiomac.2024.133750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
In this study, O-quaternary ammonium chitosan (O-HTCC) containing bicationic antibacterial active groups was synthesized to develop an O-HTCC/PVA porous nanofibrous film to enhance antibacterial activity, leveraging surface modification and nano-porous structure design. Uniform and smooth nanofibrous structures (average diameter: 72-294 nm) were successfully obtained using a simple and feasible electrospinning method. A response surface model via Box-Behnken design (BBD) was used to clarify the interaction relationship between O-HTCC fiber diameter and three critical electrospinning parameters (O-HTCC concentration, applied voltage, feed flow rate), predicting that the minimum O-HTCC fiber diameter (174 nm) could be achieved with 7 wt% of O-HTCC concentration, 14 kV of voltage, and 0.11 mL/h of feed flow rate. Linear regression (R2 = 0.9736, Radj2 = 0.9716) and the Anderson Darling test demonstrated the excellent fit of the RSM-BBD model. Compared to N-HTCC/PVA nanofibrous film, the O-HTCC/PVA version showed increased growth inhibition and more effective antibacterial efficacies against Escherichia coli (E. coli) (~;86.34 %) and Staphylococcus aureus (S. aureus) (~;99.99 %). DSC revealed improved thermal stability with an increased melting temperature (238 °C) and endothermic enthalpy (157.7 J/g). This study holds potential for further development of antibacterial packaging to extend food shelf-life to reduce bacterial infection.
Collapse
Affiliation(s)
- Zhihang Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Weiqiao Yang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wenjuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ruxia Zhao
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shangke Yu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Food Science College, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
10
|
Hong SJ, Ha SY, Shin GH, Kim JT. Cellulose nanofiber-based multifunctional composite films integrated with zinc doped-grapefruit peel-based carbon quantum dots. Int J Biol Macromol 2024; 267:131397. [PMID: 38582479 DOI: 10.1016/j.ijbiomac.2024.131397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to develop a multifunctional active composite film to extend the shelf life of minced pork. The composite film was prepared by incorporating zinc-doped grapefruit peel-derived carbon quantum dots (Zn-GFP-CD) into a cellulose nanofiber (CNF) matrix. The resulting film significantly improved UV-blocking properties from 39.0 % to 85.7 % while maintaining the film transparency. Additionally, the CNF/Zn-GFP-CD5% composite film exhibits strong antioxidant activity with ABTS and DPPH radical scavenging activities of 99.8 % and 77.4 %, respectively. The composite film also showed excellent antibacterial activity against both Gram-negative and Gram-positive bacteria. When used in minced pork packaging, the composite films effectively inhibit bacterial growth, maintaining bacterial levels below 7 Log CFU/g after 15 days and sustaining a red color over a 21-day storage period. Additionally, a significant reduction in the lipid oxidation of the minced pork was observed. These CNF/Zn-GFP-CD composite films have a great potential for active food packaging applications to extend shelf life and maintain the visual quality of packaged meat.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong Yong Ha
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
12
|
Xie D, Liang Y, Zheng X, Zhu M, Huang G, Lin B. High-strength, antifogging and antibacterial ZnO/carboxymethyl starch/chitosan film with unique "Steel Wire Mesh" structure for strawberry preservation. Int J Biol Macromol 2024; 259:129090. [PMID: 38161019 DOI: 10.1016/j.ijbiomac.2023.129090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this work, a multifunctional preservative film of ZnO/carboxymethyl starch/chitosan (ZnO/CMS/CS) with the unique "Steel Wire Mesh" structure is fabricated by the chemical crosslinked of ZnO NPs, CMS and CS. Unlike traditional nano-filled polymer film, the formation of the "Steel Wire Mesh" structure of ZnO/CMS/CS film is based on the synergistic effect of ZnO NPs filled CMS/CS and the coordination crosslinked between CMS/CS and Zn2+ derived from ZnO NPs. Thanks to the "Steel Wire Mesh" structure, the tensile strength and water vapor barrier of 2.5ZnO/10CMS/CS film are 2.47 and 1.73 times than that of CS film, respectively. Furthermore, the transmittance of 2.5ZnO/10CMS/CS film during antifogging test is close to 89 %, confirming its excellent antifogging effects. And the 2.5ZnO/10CMS/CS film also exhibits excellent long-acting antibacterial activity (up to 202 h), so it can maintain the freshness and appearance of strawberries at least 5 days. More importantly, the 2.5ZnO/10CMS/CS film is sensitive to humidity changes, which achieves real-time humidity monitoring of the fruit storage environment. Note that the preparation method of the film is safe, simple and environmentally friendly, and its excellent degradation performance will not bring any problems of food safety and environmental pollution.
Collapse
Affiliation(s)
- Donghong Xie
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, PR China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaogang Zheng
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, PR China
| | - Mingguang Zhu
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, PR China
| | - Guohuan Huang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China.
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
13
|
Chen Y, Wang S, Yang C, Zhang L, Li Z, Jiang S, Bai R, Ye X, Ding W. Chitosan/konjac glucomannan bilayer films: Physical, structural, and thermal properties. Int J Biol Macromol 2024; 257:128660. [PMID: 38065457 DOI: 10.1016/j.ijbiomac.2023.128660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
To overcome the limitations of chitosan (CS) and konjac glucomannan (KGM), the bilayer films of CS and KGM were prepared by layer-by-layer (LBL) casting method, and the effects of different mass ratios (i.e., C5: K0, C4:K1, C3:K2, C1:K1, C2:K3, C1:K4, and C0:K5) on the microstructures and physicochemical properties of bilayer films were examined to evaluate their applicability in food packaging. The results revealed that the bilayer films had uniform microstructures. When compared with pure films, the bilayer films displayed lower swelling degrees and water vapor permeability. However, the tensile tests revealed a reduction in the mechanical properties of the bilayer films, which was nonetheless superior to that of the pure KGM film. In addition, the intermolecular interactions between the CS and KGM layers were observed through FTIR and XRD analyses. Finally, TGA and DSC analyses demonstrated a decrease in the thermal stability of the bilayer films. Our cumulative results verified that CS-KGM bilayer films may be a promising material for use in food packaging and further properties of the bilayer films can be supplemented in the future through layer-by-layer modification and the addition of active ingredients.
Collapse
Affiliation(s)
- Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Guler E, Yekeler HB, Parviz G, Aydin S, Asghar A, Dogan M, Ikram F, Kalaskar DM, Cam ME. Vitamin B 12-loaded chitosan-based nanoparticle-embedded polymeric nanofibers for sublingual and transdermal applications: Two alternative application routes for vitamin B 12. Int J Biol Macromol 2024; 258:128635. [PMID: 38065445 DOI: 10.1016/j.ijbiomac.2023.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
Alzheimer's disease (AD) is a neurodegeneration type that is biologically recognizable via β-amyloid plaques and tau neurofibril tangles. Global estimation for the total count of individuals enduring AD will rise up to 131 million by 2050. Investigations suggested the existence of a direct proportion between the likelihood of AD occurrence and vitamin B12 (VB12) hypovitaminosis. Approved VB12 administrations, intramuscular and oral, each has serious defects broaching the demand for alternative routes. This work developed VB12-loaded chitosan/tripolyphosphate/polyvinyl alcohol (CS/TPP/PVA) nanoparticles (NPs) embedded in polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone/polycaprolactone (PVP/PCL) nanofibrous (NFs) produced by pressurized gyration (PG) for sublingual and transdermal routes, respectively. Biomaterials were investigated morphologically, chemically, and thermally. Moreover, degradation, disintegration, release behavior, and release kinetics were analyzed. The effectiveness and safety of nanomaterials were assessed and proven with the alamarBlue test on the Aβ1-42-induced SH-SY5Y model. The final evaluation suggested the feasibility, safety, and effectiveness of produced systems. Consequently, two alternative VB12 application routes were developed with high effectivity and low toxicity with the power of nanotechnology.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, İstanbul Kent University, İstanbul 34406, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Gita Parviz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Saliha Aydin
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Murat Dogan
- Sivas Cumhuriyet University, Pharmacy Faculty, Pharmaceutical Biotechnology Department, Sivas, Türkiye
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, İstanbul Kent University, İstanbul 34406, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye; Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, İstanbul 34854, Türkiye; SFA R&D Laboratories, Teknopark İstanbul, İstanbul 34906, Türkiye; ATA BIO Technology, Teknopol İstanbul, İstanbul 34930, Türkiye.
| |
Collapse
|
15
|
Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, Wilson LD, Algburi S. Development of a chitosan/nanosilica biocomposite with arene functionalization via hydrothermal synthesis for acid red 88 dye removal. Int J Biol Macromol 2023; 252:126342. [PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
Collapse
Affiliation(s)
- Ruihong Wu
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Soon Kong Yong
- Soil Assessment and Remediation Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - He Li
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N5C9, Canada
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
16
|
Shahid-Ul-Islam, Jaiswal V, Butola BS, Majumdar A. Production of PVA-chitosan films using green synthesized ZnO NPs enriched with dragon fruit extract envisaging food packaging applications. Int J Biol Macromol 2023; 252:126457. [PMID: 37611684 DOI: 10.1016/j.ijbiomac.2023.126457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In this work, the PVA-chitosan composite packaging films doped with biomass-fabricated zinc oxide nanoparticles (ZnO NPs) and dragon fruit waste extract (DFE) were developed for potential use in food packaging applications. ZnO NPs were synthesized using a sustainable method employing C. sinensis waste extract as a reducing agent. Chitosan and PVA were blended in a specific ratio (1: 1 w/w) to obtain a film-forming solution, into which the ZnO NPs and dragon fruit waste extract were incorporated. The resulting solution was cast into films, which were characterized using various analytical techniques. Mechanical properties, water solubility, and thermal stability of the films were also evaluated. The results demonstrated that the incorporation of green ZnO NPs and dragon fruit waste extract enhanced the mechanical strength and thermal stability of the films while reducing water vapor permeability. Moreover, the films exhibited biocidal and excellent 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging properties, indicating their use in the food packaging sector. The production of these films offers a practical approach to produce bioactive food packaging materials. The use of plant extract and waste material as reducing agents can reduce the overall cost of production while providing added benefits, such as antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Shahid-Ul-Islam
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Jaiswal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - B S Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Abhijit Majumdar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
17
|
Abdelfattah EM, Elzanaty H, Elsharkawy WB, Azzam MA, Elqahtani ZM, Alotibi S, Alyami M, Fahmy T. Enhancement of the Structure, Thermal, Linear/Nonlinear Optical Properties, and Antibacterial Activity of Poly (vinyl alcohol)/Chitosan/ZnO Nanocomposites for Eco-Friendly Applications. Polymers (Basel) 2023; 15:4282. [PMID: 37959962 PMCID: PMC10648650 DOI: 10.3390/polym15214282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
The preparation of poly (vinyl alcohol)/chitosan/ZnO (PVA/Cs/ZnO) nanocomposite films as bioactive nanocomposites was implemented through an environmentally friendly approach that included mixing, solution pouring, and solvent evaporation. The nanocomposite films were characterized using various techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and UV-Vis spectroscopy. The XRD study revealed the encapsulation of nanoparticles by the PVA/Cs blend matrix. The DSC results showed that the addition of ZnO NPs increased glass transition and melting temperature values of the PVA/Cs blend. ATR-FTIR spectra detected an irregular shift (either red or blue) in some of the characteristic bands of the PVA/Cs nanocomposite, indicating the existence of intra/intermolecular hydrogen bonding creating an interaction between the OH groups of PVA/Cs and ZnO nanoparticles. A thermogravimetric (TGA) analysis demonstrated that the nanocomposites achieved better thermal resistance than a pure PVA/Cs blend and its thermal stability was enhanced with increasing concentration of ZnO nanoparticles. UV analysis showed that with an increase in the content of ZnO NPs, the optical bandgap of PVA/Cs was decreased from 4.43 eV to 3.55 eV and linear and nonlinear parameters were enhanced. Our optical results suggest the use of PVA/Cs/ZnO nanocomposite films for various optoelectronics applications. PVA/Cs/ZnO nanocomposites exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria. It was found that nanocomposite samples were more effective against Gram-positive compared to Gram-negative bacteria.
Collapse
Affiliation(s)
- E. M. Abdelfattah
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - H. Elzanaty
- Department of Basic Science, Faculty of Engineering, Delta University, Mansoura 11152, Egypt;
| | - W. B. Elsharkawy
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - M. A. Azzam
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Z. M. Elqahtani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - S. Alotibi
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - M. Alyami
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - T. Fahmy
- Polymer Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
18
|
Annu, Bhat ZI, Imtiyaz K, Rizvi MMA, Ikram S, Shin DK. Comparative Study of ZnO-and-TiO 2-Nanoparticles-Functionalized Polyvinyl Alcohol/Chitosan Bionanocomposites for Multifunctional Biomedical Applications. Polymers (Basel) 2023; 15:3477. [PMID: 37631534 PMCID: PMC10459413 DOI: 10.3390/polym15163477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to synthesize chitosan/polyvinyl alcohol (CS/PVA)-based zinc oxide (ZnO) and titanium dioxide (TiO2) hybrid bionanocomposites (BNCs) and observe their comparative accomplishment against the skin cancer cell line, A431, and antioxidant potential. CS was blended with PVA to form polymeric films reinforced with the immobilization of ZnO and TiO2 nanoparticles (NPs), separately. The optimization of the BNCs was done via physicochemical studies, viz. moisture content, swelling ratio, and contact angle measurements. The free radical scavenging activity was observed for 1,1-diphenyl-2-picryl-hydrazyl, and the antibacterial assay against the Escherichia coli strain showed a higher zone of inhibition. Furthermore, the anticancer activity of the synthesized BNCs was revealed against the skin cancer cell line A431 under varying concentrations of 50, 100, 150, 200, and 300 μg/mL. The anticancer study revealed a high percent of cancerous cell inhibition (70%) in ZnO BNCs as compared to (61%) TiO2 BNCs in a dose-dependent manner.
Collapse
Affiliation(s)
- Annu
- Thin-Film Engineering and Materials Laboratory, School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Zafar Iqbal Bhat
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Saiqa Ikram
- Thin-Film Engineering and Materials Laboratory, School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dong Kil Shin
- Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
19
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
20
|
Azadi A, Rafieian F, Sami M, Rezaei A. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. Int J Biol Macromol 2023; 245:125225. [PMID: 37285892 DOI: 10.1016/j.ijbiomac.2023.125225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The aim of this investigation was to prepare and characterize active composite films made of chitosan (CS), tragacanth gum (TG), polyvinyl alcohol (PVA) and loaded with different concentrations of cinnamon essential oil (CEO) nanoemulsion (CEO, 2 and 4 % v/v). For this purpose, the amount of CS was fixed and the ratio of TG to PVA (90:10, 80:20, 70:30, and 60:40) was considered variable. The physical (thickness and opacity), mechanical, antibacterial and water-resistance properties of the composite films were evaluated. According to the microbial tests, the optimal sample was determined and evaluated with several analytical instruments. CEO loading increased the thickness and EAB of composite films, while decreasing light transmission, tensile strength, and water vapor permeability. All the films containing CEO nanoemulsion had antimicrobial properties, but this activity was higher against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) than Gram-negative types (Escherichia coli (O157:H7) and Salmonella typhimurium). According to the results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD), the interaction between the components of the composite film was confirmed. It can be concluded that the CEO nanoemulsion can be incorporated in CS/TG/PVA composite films and successfully used as active and environmentally friendly packaging.
Collapse
Affiliation(s)
- Aidin Azadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Abdel Maksoud MIA, Abdelhaleem S, Tawfik EK, Awed AS. Gamma radiation-induced synthesis of novel PVA/Ag/CaTiO 3 nanocomposite film for flexible optoelectronics. Sci Rep 2023; 13:12385. [PMID: 37524696 PMCID: PMC10390552 DOI: 10.1038/s41598-023-38829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A flexible nanocomposite film based on polyvinyl alcohol (PVA), silver nanoparticles, and calcium titanate (CaTiO3) was synthesized using gamma radiation induced-reduction. Temperature-dependent structural, optical, DC electrical conductivity, electric modulus, and dielectric properties of PVA/Ag/CaTiO3 nanocomposite film were investigated. The XRD pattern proved the successful preparation of the nanocomposite film. Also, as the temperature increases, the average crystallite sizes of CaTiO3 and Ag nanoparticles decrease from 19.8 to 9.7 nm and 25 to 14.8 nm, respectively. Further, the optical band gap increased from 5.75 to 5.84 eV with increasing temperature. The thermal stability is improved, and the semiconductor behavior for PVA/Ag/CaTiO3 nanocomposite film is confirmed by thermal activation energy ΔE with values in the 0.11-0.8 eV range. Furthermore, the maximum barrier Wm value was found of 0.29 eV. PVA/Ag/CaTiO3 nanocomposite film exhibits a semicircular arc originating from the material's grain boundary contributions for all temperatures. The optical, DC electrical conductivity, and dielectric properties of the PVA/Ag/CaTiO3 nanocomposite film can be suitable for flexible electronic devices such as electronic chips, optoelectronics, and energy storage applications.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Soraya Abdelhaleem
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Eman K Tawfik
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - A S Awed
- Higher Institute for Engineering and Technology at Manzala, El Manzala, Egypt
| |
Collapse
|
22
|
Dhiman NK, Reddy MS, Agnihotri S. Graphene oxide reinforced chitosan/polyvinyl alcohol antibacterial coatings on stainless steel surfaces exhibit superior bioactivity without human cell cytotoxicity. Colloids Surf B Biointerfaces 2023; 227:113362. [PMID: 37257298 DOI: 10.1016/j.colsurfb.2023.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
The study proposes an alternative therapeutics to diminish bacterial attachment in biomedical implants by modifying their surface with passive coatings. A uniform, thin-film of chitosan/polyvinyl alcohol/graphene oxide (CS/PVA/GO) was coated on 316 L stainless steel (SS) surface through spread casting followed by solvent evaporation. The abundant anchoring sites available at macromolecular interfaces of chitosan/PVA matrix facilitated a smooth, dense loading of GO. The effect of GO content on physicochemical features, antibacterial potential, and biocompatibility of coatings was thoroughly studied. The hybrid films displayed good adhesion behavior, and UV-protection ability with desired mechanical and thermal stability when coated on SS surface. Coatings manifested a 1.5-1.7 fold rise in antibacterial efficacy against Staphylococcus epidermidis and Staphylococcus aureus and exhibited a permanent biocidal response after 6 h of contact-active behaviour. We investigated a 3-fold generation of reactive oxygen species as the predominant antibacterial mechanism, which diminishes bacterial integrity by inducing protein leakage (8.5-9 fold higher) and suppressing respiratory chain activity as two secondary mechanisms. All coatings with varying GO content appeared non-haemolytic (<2%) with ultra-low cytotoxicity (<29.08%) against human hepatocellular carcinoma (HepG2) and peripheral blood mononuclear cells. The degradation rate of coatings in simulated body fluid exhibited a higher stability, indicated by a lower weight loss (69-78%) and a decrease in pH values as the GO content in coatings increased from 0.05 to 0.15 wt%. Such anti-infective coating is a step forward in inhibiting bacterial colonization on SS surfaces to extend its lifespan.
Collapse
Affiliation(s)
- Navneet Kaur Dhiman
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India; Centre for Advanced Translational Research in Food Nano-Biotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| |
Collapse
|
23
|
Campelo MDS, Mota LB, Câmara Neto JF, Barbosa MLL, Gonzaga MLDC, Leal LKAM, Bastos MDSR, Soares SDA, Ricardo NMPS, Cerqueira GS, Ribeiro MENP. Agaricus blazei Murill extract-loaded in alginate/poly(vinyl alcohol) films prepared by Ca 2+ cross-linking for wound healing applications. J Biomed Mater Res B Appl Biomater 2023; 111:1035-1047. [PMID: 36455230 DOI: 10.1002/jbm.b.35212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
This work aimed the development and evaluation of the wound healing activity of films based on sodium alginate, polyvinyl alcohol (PVA) and Ca2+ loaded with Agaricus blazei Murill hydroalcoholic extract (AbE). Firstly, AbE was prepared using a previously standardized methodology. The films were prepared by casting technique and cross-linked with Ca2+ using CaCl2 as cross-linking agent. The physicochemical, morphological and water vapor barrier properties of the films were analyzed and the pre-clinical efficacy was investigated against the cutaneous wound model in mice. The films showed barrier properties to water vapor promising for wound healing. AbE showed physical and chemical interactions between both polymers, noticed by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal analysis. The delivery of AbE in alginate/PVA films enhanced the antioxidant and wound healing properties of these polymers. Consequently, a reduction of malondialdehyde levels was observed, as well as an increase of the epidermis/dermis thickness and enhancement in collagen I deposition. Thus, these formulations are promising biomaterials for wound care and tissue repairing.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lucas Barroso Mota
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Lucianny Lima Barbosa
- Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Leônia da Costa Gonzaga
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Laboratório de Tecnologia de Embalagens de Alimentos, Embrapa Agroindústria Tropical, Fortaleza, Brazil
| | | | | | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Gilberto Santos Cerqueira
- Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
24
|
Wu S, Shi W, Li K, Cai J, Xu C, Gao L, Lu J, Ding F. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 2023; 239:124264. [PMID: 37003384 DOI: 10.1016/j.ijbiomac.2023.124264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption separation membranes.
Collapse
|
25
|
Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. Int J Biol Macromol 2023; 225:673-686. [PMID: 36403767 DOI: 10.1016/j.ijbiomac.2022.11.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Natural extract-based bio-composite material for wound healing is gaining much attention due to risk of infection and high cost of commercial wound dressing film causes serious problem on the human well-being. Herein, the study outlines the preparation of Poly (vinyl alcohol)/Chitosan/Basella alba stem extract (BAE) based bio-composite film through solvent casting technique and well characterized for wound healing application. Incorporation of BAE into Poly (vinyl alcohol)/Chitosan matrix has shown existence of secondary interactions confirmed by FT-IR analysis. Good morphology, thermal stability and significant improvement in flexibility (∼63.38 %) of the films were confirmed by SEM, TGA and Mechanical test results, respectively. Hydrophilic property (∼9.04 %), water vapor transmission rate (∼70.07 %), swelling ability (∼14.7 %) and degradation rate (∼14.04 %) were enhanced with increase in BAE content. In-vitro studies have shown good antibacterial activity against foremost infectious bacterial strains S. aureus and E. coli. Additionally, BAE integrated Poly (vinyl alcohol)/Chitosan film has amplified anti-inflammatory (∼79.38 %) property, hemocompatibility and excellent biocompatibility (94.9 %) was displayed by cytotoxicity results. Moreover, in-vitro scratch assay and cell adhesion test results illustrated prominent wound healing (96.5 %) and adhesion. Overall results of the present work proclaim that developed bio-composite film could be utilized as a biomaterial in wound care applications.
Collapse
|
26
|
A mini-review on innovative strategies for simultaneous microbial bioremediation of toxic heavy metals and dyes from wastewater. Arch Microbiol 2023; 205:29. [DOI: 10.1007/s00203-022-03367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
27
|
Said AEA, Abu‐Sehly AA, Mahmoud AZ, Ahmed H, Goda MN. Adsorptive Remediation of Hazardous Crystal Violet Dye using Ni
1‐x
Zn
x
Fe
2
O
4
Magnetic Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202203442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Abd El‐Aziz A. Said
- Catalysis and Surface Chemistry Lab Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| | | | - Amera Z. Mahmoud
- Physics Department, Faculty of Science Assiut University Assiut 71516 Egypt
- College of Sciences and Art at ArRass Qassim University ArRass 51921 Kingdom of Saudi Arabia
| | - Haiam Ahmed
- Physics Department, Faculty of Science Assiut University Assiut 71516 Egypt
| | - Mohamed N. Goda
- Catalysis and Surface Chemistry Lab Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
28
|
Zhang J, Chen J, Zhang C, Yi H, Liu D, Liu D. Characterization and antibacterial properties of chitosan–polyvinyl alcohol-3-phenyllactic acid as a biodegradable active food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wardhono EY, Pinem MP, Susilo S, Siom BJ, Sudrajad A, Pramono A, Meliana Y, Guénin E. Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach. Polymers (Basel) 2022; 14:polym14235216. [PMID: 36501610 PMCID: PMC9740446 DOI: 10.3390/polym14235216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The premise of this work is the modification of the properties of chitosan-based film for possible use in food packaging applications. The biofilm was prepared via thermal and mechanical treatment through blending polymers with chitosan using Polyvinyl Alcohol (PVA) and loading different types of chemical agents, i.e., citric acid (CA), succinic acid (SA), and tetraethoxysilane (TEOS). The modification was carried out under high-speed homogenization at elevated temperature to induce physical cross-linkage of chitosan polymer chains without a catalyst. The findings showed that PVA improved the chitosan films' Tensile strength (TS) and elongation at break (Eb). The presence of chemicals caused an increase in the film strength for all samples prepared, in which a 5% w/w of chemical in the optimum composition CS/PVA (75/25) provided the maximum strength, namely, 33.9 MPa, 44.0 MPa, and 41.9 MPa, for CA-5, SA-5, and TEOS-5, respectively. The chemical agents also increased the water contact angles for all tested films, indicating that they promoted hydrophobicity. The chemical structure analysis showed that, by incorporating three types of chemical agents into the CS/PVA blend films, no additional spectral bands were found, indicating that no covalent bonds were formed. The thermal properties showed enhancement in melting peak and degradation temperature of the blend films, compared to those without chemical agents at the optimum composition. The X-ray diffraction patterns exhibited that PVA led to an increasing crystallization tendency in the blend films. The morphological observation proved that no irregularities were detected in CS/PVA blend films, representing high compatibility with both polymers.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Correspondence: ; Tel.: +62-254-395-502
| | - Mekro Permana Pinem
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Sidik Susilo
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Bintang Junita Siom
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agung Sudrajad
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agus Pramono
- Faculty of Metallurgical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Yenny Meliana
- Research Center for Chemistry, National Research and Innovation Agency, BRIN, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| |
Collapse
|
30
|
Hammani S, Daikhi S, Bechelany M, Barhoum A. Role of ZnO Nanoparticles Loading in Modifying the Morphological, Optical, and Thermal Properties of Immiscible Polymer (PMMA/PEG) Blends. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8453. [PMID: 36499948 PMCID: PMC9738493 DOI: 10.3390/ma15238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
High-performance hybrid polymer blends can be prepared by blending different types of polymers to improve their properties. However, most polymer blends exhibit phase separation after blending. In this study, polymethylmethacrylate/polyethylene glycol (PMMA/PEG) polymer blends (70/30 and 30/70 w/w) were prepared by solution casting with and without ZnO nanoparticles (NPs) loading. The effect of loading ZnO nanoparticles on blend morphology, UV blocking, glass transition, melting, and crystallization were investigated. Without loading ZnO NP, the PMMA/PEG blends showed phase separation, especially the PEG-rich blend. Loading PMMA/PEG blend with ZnO NPs increased the miscibility of the blend and most of the ZnO NPs dispersed in the PEG phase. The interaction of the ZnO NPs with the blend polymers slightly decreased the intensity of infrared absorption of the functional groups. The UV-blocking properties of the blends increased by 15% and 20%, and the band gap energy values were 4.1 eV and 3.8 eV for the blends loaded with ZnO NPs with a PMMA/PEG ratio of 70/30 and 30/70, respectively. In addition, the glass transition temperature (Tg) increased by 14 °C, the crystallinity rate increased by 15%, the melting (Tm) and crystallization(Tc) temperatures increased by 2 °C and 14 °C, respectively, and the thermal stability increased by 25 °C compared to the PMMA/PEG blends without ZnO NP loading.
Collapse
Affiliation(s)
- Salim Hammani
- Laboratoire Chimie Physique Moléculaire et Macromoléculaire, Université Saad Dahlab Blida1, Route de Soumaa, BP 270, Blida 09000, Algeria
| | - Sihem Daikhi
- Laboratoire Chimie Physique Moléculaire et Macromoléculaire, Université Saad Dahlab Blida1, Route de Soumaa, BP 270, Blida 09000, Algeria
| | - Mikhael Bechelany
- Institut Europeen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
31
|
Alamdari S, Mirzaee O, Nasiri Jahroodi F, Tafreshi MJ, Ghamsari MS, Shik SS, Ara MHM, Lee KY, Park HH. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. SURFACES AND INTERFACES 2022; 34:102349. [PMID: 36160476 PMCID: PMC9490491 DOI: 10.1016/j.surfin.2022.102349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2023]
Abstract
Following the global corona virus pandemic and environmental contamination caused by chemical plastic packaging, awareness of the need for environmentally friendly biofilms and antibacterial coatings is increasing. In this study, a biodegradable hybrid film, comprising of green-synthesized zinc oxide nanoparticles (ZnO NPs) with a chitosan (CS) matrix, was fabricated using a simple casting procedure. The ZnO NPs were synthesized using wild Mentha pulegium extract, and the synthesized NPs and films were characterized using different approaches. The structural, morphological, mechanical, antibacterial, and optical properties, as well as the hydrophilicity, of the prepared samples were investigated using various techniques. Gas chromatography-mass spectrometry measurements revealed the presence of phenolic compounds in the M. pulegium extract. In addition, a strong coordination connection between Zn2+ and the chitosan matrix was confirmed, which resulted in a good dispersion of ZnO in the chitosan film. The surface of the composite films was transparent, smooth, and uniform, and the flexible bio-based hybrid films exhibited significant antibacterial and antioxidant characteristics, strong visible emission in the 480 nm region, and UV-blocking properties. The ZnO/CS films displayed a potential to extend the shelf life of fruits by up to eight days when stored at 23°C, and also acted as an acceptable barrier against oxygen and water. The biodegradable ZnO/CS film is expected to keep fruit fresher than general chemical plastic films and be used for the packaging of active ingredients.
Collapse
Affiliation(s)
- Sanaz Alamdari
- Faculty of Physics, Semnan University, P.O. Box:35195‑363, Semnan, Iran
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Omid Mirzaee
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | | | - Morteza Sasani Ghamsari
- Photonics & Quantum Technologies Research School, Nuclear Science, and Technology Research Institute, Tehran, 11155-3486, Iran
| | | | - Mohammad Hossein Majles Ara
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Kyu-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
32
|
Tsou CH, Chen S, Li X, Chen JC, De Guzman MR, Sun YL, Du J, Zhang Y. Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Chen S, De Guzman MR, Tsou CH, Li M, Suen MC, Gao C, Tsou CY. Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity. Polym J 2022. [DOI: 10.1038/s41428-022-00711-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Zhang X, Guo H, Luo W, Chen G, Xiao N, Xiao G, Liu C. Development of functional hydroxyethyl cellulose-based composite films for food packaging applications. Front Bioeng Biotechnol 2022; 10:989893. [PMID: 36246371 PMCID: PMC9557200 DOI: 10.3389/fbioe.2022.989893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Cellulose-based functional composite films can be a good substitute for conventional plastic packaging to ensure food safety. In this study, the semi-transparent, mechanical strengthened, UV-shielding, antibacterial and biocompatible films were developed from hydroxyethyl cellulose Polyvinyl alcohol (PVA) and ε-polylysine (ε-PL) were respectively used as reinforcing agent and antibacterial agent, and chemical cross-linking among these three components were constructed using epichlorohydrin The maximum tensile strength and elongation at break were 95.9 ± 4.1 MPa and 148.8 ± 2.6%, respectively. TG-FTIR and XRD analyses indicated that chemical structure of the composite films could be well controlled by varying component proportion. From UV-Vis analysis, the optimum values of the percentage of blocking from UV-A and UV-B and ultraviolet protection factor values were 98.35%, 99.99% and 60.25, respectively. Additionally, the composite films exhibited good water vapor permeability, swelling behavior, antibacterial activity and biocompatibility. In terms of these properties, the shelf life of grapes could be extended to 6 days after packing with the composite film.
Collapse
Affiliation(s)
- Xueqin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Haoqi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenhan Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guojian Chen
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| | - Gengsheng Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Naiyu Xiao, ; Gengsheng Xiao, ; Chuanfu Liu,
| |
Collapse
|
35
|
Gaafar MM, Eltaweel FM, Fouda HA, Abdelaal MY. Synthesis of novel chitosan Schiff base and its ZnO nanocomposite for removal of synthetic dye, antimicrobial, and cytotoxicity activity. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, a novel chitosan Schiff base 4-(2-Hydroxyaniline)pent-3-en-2-one chitosan (2-HyA-CS) and its ZnO nanocomposite (2-HyA-CS/ZnO) were sensitized and characterized by appropriate methods; FTIR, XRD, Elemental analysis, SEM, TEM and TGA. The result of characterization methods confirms the preparation of 2-HyA-CS and 2-HyA-CS/ZnO. The SEM images reveal that chitosan, 2-HyA-CS, and 2-HyA-CS/ZnO have a varied roughness and porous surfaces. The reason for this difference was attributed to the formation of Schiff base 2-HyA-CS and the presence of ZnO nanoparticles in 2-HyA-CS/ZnO. The patterns of XRD and FTIR confirm the formation of 2-HyA-CS and 2-HyA-CS/ZnO. The degree of substitution (DS) of modified chitosan 2-HyA-CS was calculated using Elemental analysis and FTIR.ATR, it was found to be 74%. The adsorption efficiency of the produced adsorbents was compared with pure chitosan to remove of Remazol Brilliant Blue R (RBBR) from an aqueous medium and antimicrobial activity. The removal percentage of RBBR by chitosan, 2-HyA-CS, and 2-HyA-CS/ZnO are 47.12%, 91.9%, and 96.56%, respectively with the following order: 2-HyA-CS/ZnO > 2-HyA-CS > chitosan. Their antimicrobial activities were studied against two Gram negative bacteria ( E. coli and P. aeruginosa), two Gram positive bacteria ( S. aureus and B. cereus) and ( C. albicans) as a yeast strain, the inhibitory zone measurements revealed that the activity of 2-HyA-CS/ZnO is excellent and higher than 2-HyA-CS and pure chitosan. The cytotoxicity of the prepared compound 2-HyA-CS and 2-HyA-CS/ZnO along with pure chitosan was estimated against two human cancer cells MCF-7 cells and HepG-2 cells, the result indicates that 2-HyA-CS/ZnO having higher Inhibitory activity against both MCF-7 and HepG-2 cells with 53.5 ± 2.86 and 27.4 ± 1.23 µg/mL respectively and 2-HyA-CS possessing moderate Inhibitory activity against both MCF-7 and HepG-2 cancer cells with IC50 = 216.5 ± 7.48 and 135.6 ± 6.49 µg/ml respectively.
Collapse
Affiliation(s)
- Mostafa M Gaafar
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Fathy M Eltaweel
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Hamada A Fouda
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Magdy Y Abdelaal
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
36
|
Mekahlia S, Douadi T. Chitosan–ZnO nanocomposite from a circular economy perspective: in situ cotton-used fabric recycling and the nanocomposite recovering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
de Aguiar DBDS, de Aguiar DJM, de Paula JDFP, Cintho OM. Obtaining Ultrafine Dispersions of Silver Particles in Poly(vinyl Alcohol) Matrix Using Mechanical Alloying. Polymers (Basel) 2022; 14:3588. [PMID: 36080663 PMCID: PMC9460001 DOI: 10.3390/polym14173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanical alloying was performed to obtain a composite material with a homogeneous dispersion of silver particles in a poly(vinyl alcohol) (PVA) matrix. Silver is a bactericidal material, and PVA is a widely used biocompatible polymer. Therefore, this mix can lead to a potentially functional biomaterial. This study focuses on the combination of both materials, processed by mechanical alloying, which has a promising application potential. The silver (Ag) used was ultrafine, measuring between 200 and 400 nanometers, produced from silver nitrate (AgNO3) redox. The Attritor high-energy, water-cooled ball mill was used to mill PVA for 4 h, at 600 rpm speed rotation and 38:1 power milling. Mechanical alloying was demonstrated to cause particle refinement in PVA with a timespan of 1 h. A slight additional particle decrease occurred for long-time milling. A milling time of 4 h was used to disperse the silver particles in the polymer matrix homogeneously. Hot pressing films were produced from the obtained dispersion powders. The microstructural features were studied using several material characterization techniques. Antimicrobial Susceptibility Tests (AST), conducted in an in-vitro assay, showed a hydrophilic character of the films and a protection against bacterial growth, making the process a promising path for the production of surface protective polymeric films.
Collapse
Affiliation(s)
| | | | | | - Osvaldo Mitsuyuki Cintho
- Departamento de Engenharia de Materiais (DEMA), State University of Ponta Grossa, Ponta Grossa 84030–900, PR, Brazil
| |
Collapse
|
38
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
39
|
Jasim SA, Abdelbasset WK, Hachem K, Kadhim MM, Yasin G, Obaid MA, Hussein BA, Lafta HA, Mustafa YF, Mahmoud ZH. Novel
Gd
2
O
3
/
SrFe
12
O
19
@Schiff base chitosan (Gd/
SrFe
@
SBCs
) nanocomposite as a novel magnetic sorbent for the removal of Pb(
II
) and Cd(
II
) ions from aqueous solution. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al Kharj Saudi Arabia
- Department of Physical Therapy Kasr Al‐Aini Hospital, Cairo University Giza Egypt
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida ‐ Dr Moulay Tahar Saïda Algeria
| | - Mustafa M. Kadhim
- Department of Dentistry Kut University College Kut Iraq
- College of Technical Engineering, The Islamic University Najaf Iraq
- Department of Pharmacy Osol Aldeen University College Baghdad Iraq
| | - Ghulam Yasin
- Department of Botany Bahauddin Zakariya University Multan Pakistan
| | - Maithm A. Obaid
- National University of Science and Technology, College of Pharmacy Thi Qar Iraq
| | | | - Holya A. Lafta
- Department of Physics Al‐Nisour University College Baghdad Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry College of Pharmacy, University of Mosul Mosul Iraq
| | | |
Collapse
|
40
|
Zhou A, Yang K, Wu X, Liu G, Zhang TC, Wang Q, Luo F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
de Lima Silva ID, de Almeida Nascimento JA, de Moraes Filho LEPT, Caetano VF, de Andrade MF, de Almeida YMB, Hallwass F, Brito AMSS, Vinhas GM. Production of potential antioxidant and antimicrobial active films of poly (vinyl alcohol) incorporated with cashew tree extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Fernando Hallwass
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | - Glória Maria Vinhas
- Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| |
Collapse
|
42
|
Pei X, Zheng X, Liu X, Lei A, Zhang L, Yin X. Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydr Polym 2022; 286:119313. [PMID: 35337519 DOI: 10.1016/j.carbpol.2022.119313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/01/2022]
Abstract
With the development of society, the problem of environmental pollution is becoming increasingly serious, such as the typical pollution of nitro compounds or dyes in wastewater. An effective strategy to remove these organic pollutants is catalytic conversion, including converting them into more chemically valuable compounds. Herein, a nanoporous chitosan microsphere derived from seafood waste resources of chitin was constructed via sol-gel method, which was used as supports to successfully fabricate a highly dispersed Pd nano-catalyst (mean diameter ~ 1.8 nm) via a facile way based on its interconnected nanoporous structure and rich functional -OH/-NH2 groups. The synthetic catalyst was applied to the hydrogenation of toxic nitro compounds, which could efficiently and selectively catalyze the conversion of nitro compounds. The catalyst was also used for the degradation of some representative dyes, which also showed good activity and stability, suggesting potential of applications in green environmental governance.
Collapse
Affiliation(s)
- Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xingli Zheng
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinyun Liu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaogang Yin
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
43
|
Al-Ghamdi YO. Immobilization of cellulose extracted from Robinia Pseudoacacia seed fibers onto chitosan: Chemical characterization and study of methylene blue removal. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Luo C, Guo A, Zhao Y, Sun X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr Polym 2022; 286:119268. [DOI: 10.1016/j.carbpol.2022.119268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
|
45
|
Rabanimehr F, Farhadian M, Nazar ARS. A high-performance microreactor integrated with chitosan/ Bi 2WO 6/CNT/TiO 2 nanofibers for adsorptive/photocatalytic removal of cephalexin from aqueous solution. Int J Biol Macromol 2022; 208:260-274. [PMID: 35337910 DOI: 10.1016/j.ijbiomac.2022.03.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
A Z-scheme Bi2WO6/CNT/TiO2 photocatalyst was synthesized hydrothermally and loaded on chitosan nanofibers with different mass percentages using the electrospinning process. The batch adsorption experiments for chitosan nanofibrous samples containing Bi2WO6/CNT/TiO2 revealed that the adsorption process and its kinetic followed the Langmuir isotherm and pseudo-second-order model, respectively. A planar microreactor with a reusable plate-type configuration was fabricated employing an inexpensive micromachining technique and integrated with chitosan/Bi2WO6/CNT/TiO2 nanofibers. The synergistic effect of the adsorption and photocatalysis was assessed for removing cephalexin under simulated sunlight irradiation in a continuous flow microreactor. The nanofibers containing 15 wt% of Bi2WO6/CNT/TiO2 exhibited the most removal efficiency. The effects of operational variables were investigated in the microreactor and optimized using response surface methodology as light intensity = 17.45 W/m2, retention time = 256 s, pH = 4.8, and initial cephalexin concentration = 29 mg/L. At this condition, cephalexin and TOC removal efficiencies reached 99.2% and 92.4%, respectively. The kinetic of disappearance of cephalexin under optimal conditions followed the Langmuir-Hinshelwood model. The adsorption equilibrium constant deduced from this model was similar to that one calculated from the Langmuir isotherm model. At the optimum condition, cephalexin removal efficiency reduced to 80% after 1500 min of microreactor operation and the nanofibers revealed appropriate stability and reusability.
Collapse
Affiliation(s)
- Fayazeh Rabanimehr
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
46
|
Jawad AH, Abdulhameed AS, Selvasembian R, ALOthman ZA, Wilson LD. Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box–Behnken design optimization and mechanism study. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03067-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Hu D, Liu X, Qin Y, Yan J, Li J, Yang Q. A novel edible packaging film based on chitosan incorporated with persimmon peel extract for the postharvest preservation of banana. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
This study aimed to develop a novel edible packaging film for the postharvest preservation of banana based on chitosan (CS) and persimmon peel extract (PPE). Scanning electron microscopy (SEM) analysis showed PPE was evenly distributed in the CS matrix and Fourier transform infrared (FT-IR) spectroscopy analysis showed CS and PPE interacted to form hydrogen bonds, demonstrating good compatibility. Simultaneously, the addition of PPE also significantly improved CS film's physical properties and antioxidant activity. Among them, the CS film containing 10% PPE (CS-PPE 10) showed the optimal mechanical properties, water vapor barrier properties and oxygen barrier properties. The CS film containing 15% PPE (CS-PPE 15) exhibited the best thermal stability, UV-Vis barrier properties and antioxidant activity. In the experiment of banana preservation, CS-PPE 10 film obtained optimal performance on decreasing senescence spots, weight loss, fruit softening, cell wall degradation, inhibiting the activities of polyphenol oxidase and cell wall degrading enzymes and maintaining the content of total soluble sugar and ascorbic acid during the storage period. Consequently, CS-PPE 10 film was expected to be a novel edible packaging material to maintain banana quality and prolong shelf life.
Collapse
|
48
|
Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
. S, SİNGH J, SAND A. Development of Functional Guar Gum-Based Highly Water Absorbent and Investigation of Reaction Parameters. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Poly (vinyl alcohol)/chitosan/sodium alginate composite blended membrane: Preparation, characterization, and water‐induced shape memory phenomenon. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|