1
|
Shen C, Mao Z, Chen T, Wei Y, Zhou T, Zhong N, Zhu G, Shi Q, Xie Z, Zhao H, Zhang X. Design, Synthesis, and Biological Evaluation of 2-Arylaminopyrimidine Derivatives as Dual Cathepsin L and JAK Inhibitors for the Treatment of Acute Lung Injury. J Med Chem 2024. [PMID: 39699557 DOI: 10.1021/acs.jmedchem.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Acute lung injury (ALI) is a disease characterized by pulmonary inflammation, blood barrier functional disorder, and hypoxemia. Herein, a series of 2-aminopyrimidine derivatives were synthesized. Most of them exhibited inhibitory effects on inflammatory cytokines IL-6 and IL-8 in human bronchial epithelial (HBE) cells at a concentration of 5 μM without significant cytotoxicity. Compound A8 displayed an excellent anti-inflammatory activity, achieving inhibition rates of 83% for IL-6 and 85% for IL-8. Besides, A8 has a strong binding affinity to CTSL and a good inhibitory activity on JAKs. Western blot analysis indicated that compound A8 strongly blocked the maturation of CTSL and the phosphorylation of p-38, p-65, and STATs, thereby repressing the activation of the MAPK, NF-κB, and JAK/STAT signaling pathway. Moreover, animal experiments showed that A8 played a protective and therapeutic role in ALI in mice, validating its potential as a treatment for ALI.
Collapse
Affiliation(s)
- Chunwei Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianpeng Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Tao Zhou
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ningyuan Zhong
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zheyu Xie
- Shaoxing Institute for Food and Drug Control, Shaoxing, Zhejiang 312071, P. R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Tang J, Shi J, Han Z, Chen X. Application of Macrophage Subtype Analysis in Acute Lung Injury/Acute Respiratory Distress Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:412. [PMID: 39735977 DOI: 10.31083/j.fbl2912412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 12/31/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair. During ALI/ARDS, these versatile cells undergo polarization into distinct subtypes with significant variations in transcriptional profiles, developmental trajectory, phenotype, and functionality. This review discusses developments in the analysis of alveolar macrophage subtypes in the study of ALI/ARDS, and the potential value of targeting new macrophage subtypes in the diagnosis, prognostic evaluation, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajia Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Jun Shi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zalucky AA, Matthay MA, Ware LB. Biomarkers of Acute Respiratory Distress Syndrome: Current State and Future Prospects. Clin Chest Med 2024; 45:809-820. [PMID: 39442999 DOI: 10.1016/j.ccm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Biomarkers are an important tool aiding researchers in the study of acute respiratory distress syndrome (ARDS). Mechanisms involving injury to the alveolar-capillary membrane, endothelium and epithelium resulting in lung inflammation and alterations in coagulation pathways have been validated in human trials and have been used to discover promising phenotypes that share similar characteristics and differential treatment responses. The emergence of powerful point-of-care technologies will enable the prospective study of biomarkers for future enrichment trials with the goal of transforming biomarkers into the clinical realm to inform delivery of personalized medicine at the bedside.
Collapse
Affiliation(s)
- Ann A Zalucky
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M-917, Box 0624, San Francisco, CA 94143-0624, USA; Department of Critical Care Medicine, Alberta Health Services and University of Calgary, Calgary, Canada.
| | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M-917, Box 0624, San Francisco, CA 94143-0624, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 777 Preston Research Building 2220, Pierce Avenue, Nashville, TN 37232-6307, USA
| |
Collapse
|
4
|
Wang Y, Li B, Zhang Y, Lu R, Wang Q, Gao Y. Qingfei Huoxue Decoction and Its Active Component Narirutin Alleviate LPS-Induced Acute Lung Injury by Regulating TLR4/NF-κB Pathway Mediated Inflammation. J Inflamm Res 2024; 17:7503-7520. [PMID: 39464340 PMCID: PMC11505584 DOI: 10.2147/jir.s480101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening clinical syndrome with high mortality. Currently, the safe and effective therapies for ALI patients are still limited. Qingfei Huoxue decoction (QFHXD) is a hospital agreement prescription for treating pulmonary diseases and displays a remarkable efficacy. However, the pharmacological effect of QFHXD on preventing lipopolysaccharide (LPS)-induced ALI has yet to be reported, let alone questions of potential molecular mechanisms and anti-ALI active substances. Methods To answer the above-mentioned questions, histopathological observation and kit detection were performed to estimate the protective effect of QFHXD pretreatment against LPS-induced ALI. Based on comprehensive chemical profiling of QFHXD, a network pharmacology strategy and experimental validation were integrated to elucidate the underlying functional mechanisms. The potential anti-ALI active components were identified by molecular docking. The anti-ALI activity of narirutin and its anti-inflammatory mechanism were further validated using animal and molecular experiments. Results Pretreatment with different doses of QFHXD effectively mitigated histopathological lesions and systemic inflammation caused by LPS stimulation. A detailed analysis of established compound-target-disease network revealed the strong correlation between anti-ALI action of QFHXD and inflammatory mechanisms. Compared with the model group, QFHXD intervention markedly restrained the abnormally increased transcription and protein levels of pro-inflammatory factors (TLR4, NF-κB, IL-6, IL-1β, and TNF-α) in lung tissues of ALI mice. The results of molecular docking highlighted the anti-ALI potential of narirutin targeting to TLR4 and NF-κB p65. In addition to the protective effect of narirutin on suppressing LPS-induced pathological changes, we found that narirutin pretreatment effectively normalized the disordered protein levels of above pro-inflammatory factors of ALI mice. Conclusion These interesting findings indicate the beneficial effects of QFHXD and its active component narirutin against ALI partly via regulating TLR4/NF-κB mediated inflammation. This work contributes to the development of novel medications for ALI patients.
Collapse
Affiliation(s)
- Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Bei Li
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Ruiling Lu
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Qianzhuo Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Rocha NN, Silva PL, Battaglini D, Rocco PRM. Heart-lung crosstalk in acute respiratory distress syndrome. Front Physiol 2024; 15:1478514. [PMID: 39493867 PMCID: PMC11527665 DOI: 10.3389/fphys.2024.1478514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is initiated by a primary insult that triggers a cascade of pathological events, including damage to lung epithelial and endothelial cells, extracellular matrix disruption, activation of immune cells, and the release of pro-inflammatory mediators. These events lead to increased alveolar-capillary barrier permeability, resulting in interstitial/alveolar edema, collapse, and subsequent hypoxia and hypercapnia. ARDS not only affects the lungs but also significantly impacts the cardiovascular system. We conducted a comprehensive literature review on heart-lung crosstalk in ARDS, focusing on the pathophysiology, effects of mechanical ventilation, hypoxemia, and hypercapnia on cardiac function, as well as ARDS secondary to cardiac arrest and cardiac surgery. Mechanical ventilation, essential for ARDS management, can increase intrathoracic pressure, decrease venous return and right ventricle preload. Moreover, acidemia and elevations in transpulmonary pressures with mechanical ventilation both increase pulmonary vascular resistance and right ventricle afterload. Cardiac dysfunction can exacerbate pulmonary edema and impair gas exchange, creating a vicious cycle, which hinders both heart and lung therapy. In conclusion, understanding the heart-lung crosstalk in ARDS is important to optimize therapeutic strategies. Future research should focus on elucidating the precise mechanisms underlying this interplay and developing targeted interventions that address both organs simultaneously.
Collapse
Affiliation(s)
- Nazareth N. Rocha
- Biomedical Institute, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Yuan L, Yang Y, Huang J, Zhuo Z, Wu X. Application value of P-selectin and Clara cell secretory protein 16 expression in children with severe adenovirus pneumonia. J Med Virol 2024; 96:e29888. [PMID: 39228315 DOI: 10.1002/jmv.29888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
This study investigated the roles of P-selectin and Clara cell secretory protein 16 (CC16) levels in the pathogenesis of severe adenovirus (ADV) pneumonia in children and evaluated their ability to predict disease. Fifty-one children (age, 1-5 years) with ADV pneumonia who were admitted to Xiamen Children's Hospital were included in this study and divided into the mild group (24 patients) and severe group (27 patients). A control group comprising healthy children of the same age who underwent routine physical examinations during the same period (30 patients) was also included. The univariate analysis demonstrated that the levels of the white blood cell count and C-reactive protein, procalcitonin, d-dimer, and P-selectin were increased in a severe group compared with a mild group, while CC16 levels were significantly decreased (p < 0.05). The logistic regression analysis revealed that P-selectin and CC16 levels were independent risk factors for severe ADV pneumonia in children. The areas under the ROC curves suggested that P-selectin and CC16 exhibited high predictive value for severe ADV pneumonia. P-selectin values more than 898.58 pg/mL and CC16 values less than 11.355 ng/mL predicted severe ADV pneumonia. P-selectin and CC16 levels are correlated with the severity of ADV pneumonia in children.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Infectious Disease, Xiamen Children's Hospital/Children's Hospital of Fudan University at Xiamen/State-level Regional Children's Medical Center, Xiamen, Fujian, China
| | - Yunyan Yang
- Department of Clinical Laboratory, Xiamen Children's Hospital/Children's Hospital of Fudan University at Xiamen/State-level Regional Children's Medical Center, Xiamen, Fujian, China
| | - Jingjing Huang
- Department of Infectious Disease, Xiamen Children's Hospital/Children's Hospital of Fudan University at Xiamen/State-level Regional Children's Medical Center, Xiamen, Fujian, China
| | - Zhiqiang Zhuo
- Department of Infectious Disease, Xiamen Children's Hospital/Children's Hospital of Fudan University at Xiamen/State-level Regional Children's Medical Center, Xiamen, Fujian, China
| | - Xingdong Wu
- Department of Infectious Disease, Xiamen Children's Hospital/Children's Hospital of Fudan University at Xiamen/State-level Regional Children's Medical Center, Xiamen, Fujian, China
| |
Collapse
|
7
|
Chen Z, Liang N, Li H, Zhang H, Li H, Yan L, Hu Z, Chen Y, Zhang Y, Wang Y, Ke D, Shi N. Exploring explainable AI features in the vocal biomarkers of lung disease. Comput Biol Med 2024; 179:108844. [PMID: 38981214 DOI: 10.1016/j.compbiomed.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.
Collapse
Affiliation(s)
- Zhao Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyuan Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijiao Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziteng Hu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Ke
- Special Disease Clinic, Huaishuling Branch of Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China.
| | - Nannan Shi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Atochina-Vasserman E, Meshanni J, Stevenson E, Zhang D, Sun R, Ona N, Reagan E, Abramova E, Guo CJ, Wilkinson M, Baboo I, Yang Y, Pan L, Maurya D, Percec V, Li Y, Gow A, Weissman D. Targeted delivery of TGF-β mRNA to lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. RESEARCH SQUARE 2024:rs.3.rs-4656663. [PMID: 39041040 PMCID: PMC11261981 DOI: 10.21203/rs.3.rs-4656663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta (TGF-β), to produce transient protein expression in the lower regions of the lung. This study highlights IAJD's potential for precise, effective, and safe delivery of TGF-β mRNA to the lung. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathan Ona
- University of Pennsylvania Perelman School of Medicine
| | - Erin Reagan
- University of Pennsylvania Perelman School of Medicine
| | | | | | | | - Ishana Baboo
- University of Pennsylvania Perelman School of Medicine
| | - Yuzi Yang
- East China University of Science and Technology
| | - Liuyan Pan
- East China University of Science and Technology
| | - Devendra Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania
| | | | | | | | | |
Collapse
|
9
|
Zhang C, Ma J, Liu C, Yan X. The protective effect of karanjin against sepsis-induced acute lung injury in mice is involved in the suppression of the TLR4 pathway. Chem Biol Drug Des 2024; 104:e14579. [PMID: 39013775 DOI: 10.1111/cbdd.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a severe complication of sepsis. Karanjin, a natural flavonoid compound, has been proved to have anti-inflammatory function, but its role in sepsis-stimulated ALI is uncertain. Herein, the effect of karanjin on sepsis-stimulated ALI was investigated. We built a mouse model of lipopolysaccharide (LPS)-stimulated ALI. The histopathological morphology of lung tissues was scrutinized by hematoxylin-eosin (H&E) staining. The lung injury score and lung wet/dry weight ratio were detected. The myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were scrutinized by commercial kits. Murine alveolar lung epithelial (MLE-12) cells were treated with LPS to mimic a cellular model of ALI. The cell viability was scrutinized by the CCK-8 assay. The contents of proinflammatory cytokines were scrutinized by qRT-PCR and ELISA. The TLR4 and MyD88 contents were scrutinized by qRT-PCR and western blotting. Results showed that karanjin alleviated LPS-stimulated ALI in mice by inhibiting lung tissue lesions, edema, and oxidative stress. Moreover, karanjin inhibited LPS-stimulated inflammation and TLR4 pathway activation in mice. However, treatment with GSK1795091, an agonist of TLR4, attenuated the effects of karanjin on LPS-induced ALI. Furthermore, karanjin repressed LPS-stimulated inflammatory response and TLR4 pathway activation in MLE-12 cells. Overexpression of TLR4 attenuated karanjin effects on LPS-stimulated inflammatory responses in MLE-12 cells. In conclusion, karanjin repressed sepsis-stimulated ALI in mice by suppressing the TLR4 pathway.
Collapse
Affiliation(s)
- Chujie Zhang
- Department of Emergency, Huai'an Second People's Hospital, The Affliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Juncong Ma
- Department of Emergency, Lianshui County People's Hospital, Huai'an, China
| | - Chang Liu
- Department of Emergency, Huai'an Second People's Hospital, The Affliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xianliang Yan
- Department of Emergency, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Cheng L, Tian HL, Lei HY, Wang YZ, Jiao MJ, Liang YH, Wu ZZ, Deng XK, Ren YS. Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction". Chin J Integr Med 2024:10.1007/s11655-024-3556-4. [PMID: 38816635 DOI: 10.1007/s11655-024-3556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism. METHODS The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS). RESULTS UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05). CONCLUSIONS BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Collapse
Affiliation(s)
- Long Cheng
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Hui-Ling Tian
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Hong-Yuan Lei
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Ying-Zhou Wang
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Ma-Jing Jiao
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Hui Liang
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Zhi-Zheng Wu
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Xu-Kun Deng
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China
| | - Yong-Shen Ren
- School of Pharmacy, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
11
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
12
|
Cai B, Xu Y, Luo R, Lu K, Wang Y, Zheng L, Zhang Y, Yin L, Tu L, Luo W, Zheng L, Zhang F, Lv X, Tang Q, Liang G, Chen L. Discovery of a doublecortin-like kinase 1 inhibitor to prevent inflammatory responses in acute lung injury. Bioorg Chem 2024; 145:107215. [PMID: 38394920 DOI: 10.1016/j.bioorg.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKβ phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Binhao Cai
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Ruixiang Luo
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Kongqin Lu
- Schol of Basic Medicine, Inner Mongolia Medical University, Hohhot 010059, China
| | - Yuhan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Yawen Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Linglan Tu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Xinting Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingfeng Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China.
| |
Collapse
|
13
|
Stueckle TA, Jensen J, Coyle JP, Derk R, Wagner A, Dinu CZ, Kornberg TG, Friend SA, Dozier A, Agarwal S, Gupta RK, Rojanasakul LW. In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches. Part Fibre Toxicol 2024; 21:16. [PMID: 38509617 PMCID: PMC10956245 DOI: 10.1186/s12989-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Collapse
Affiliation(s)
- Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - Jake Jensen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Raymond Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alixandra Wagner
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Cerasela Zoica Dinu
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Tiffany G Kornberg
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alan Dozier
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sushant Agarwal
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|
14
|
Lai CJ, Shih PY, Cheng YJ, Lin CK, Cheng SJ, Peng HH, Chang WT, Chien KL. Incidence and risk factors of postoperative pulmonary complications after oral cancer surgery with free flap reconstruction: A single center study. J Formos Med Assoc 2024; 123:347-356. [PMID: 37739911 DOI: 10.1016/j.jfma.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Postoperative pulmonary complications (PPCs) increase the risk of morbidity and mortality in patients who underwent oral cancer surgery with free flap reconstruction. The association between PPC and preoperative risk factors has been investigated; however, reports on intraoperative factors are limited. Therefore, we investigated PPC incidence and its associated preoperative and intraoperative risk factors in these patients. METHODS We retrospectively analyzed medical records of patients who underwent free flap reconstruction between 2009 and 2019. PPC was defined as presence of atelectasis, pneumonia, and respiratory failure based on radiological confirmation and clinical symptoms during hospitalization. Mortality, hospital stay, preoperative factors (including age and tumor stages), American Society of Anesthesiologists (ASA) classification, and intraoperative factors (including intraoperative fluids and medications) were recorded. RESULTS PPC incidence among the 993 patients included in this study was 25.8% (256 patients). Six patients with PPCs died; death was not observed among patients without PPCs (p < 0.001). Patients with PPCs had longer hospitalization than those without PPCs (30.3 vs 23.3 days; p < 0.001). Tumor stage (stage I: reference; stage II [OR]: 3.3, p = 0.019; stage III: 4.4, p = 0.002; stage IV: 4.8, p = 0.002), age (OR: 1.0; p < 0.001), and ASA grade >2 (OR: 1.4; p = 0.020) were independent risk factors of PPC; using labetalol was a borderline significant factor (OR: 1.4; p = 0.050). CONCLUSION The PPC incidence was 25.8% in patients undergoing oral cancer surgery with free flap reconstruction. Tumor stage, age, and ASA >2 were risk factors of developing PPC.
Collapse
Affiliation(s)
- Chih-Jun Lai
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Shih
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Jung Cheng
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan; Department of Anesthesiology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ching-Kai Lin
- Department of Internal Thoracic Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Oral and Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Hui Peng
- Department of Oral and Maxillofacial Surgery, Hsin-Chu Branch of National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ting Chang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Population Health Research Center, National Taiwan University, Taiwan.
| |
Collapse
|
15
|
Mahamed Z, Shadab M, Najar RA, Millar MW, Bal J, Pressley T, Fazal F. The Protective Role of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Protein Sigma-1 Receptor in Regulating Endothelial Inflammation and Permeability Associated with Acute Lung Injury. Cells 2023; 13:5. [PMID: 38201208 PMCID: PMC10778450 DOI: 10.3390/cells13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Earlier studies from our lab identified endoplasmic reticulum (ER) chaperone BiP/GRP78, an important component of MAM, to be a novel determinant of endothelial cell (EC) dysfunction associated with acute lung injury (ALI). Sigma1R (Sig1R) is another unique ER receptor chaperone that has been identified to associate with BiP/GRP78 at the MAM and is known to be a pluripotent modulator of cellular homeostasis. However, it is unclear if Sig1R also plays a role in regulating the EC inflammation and permeability associated with ALI. Our data using human pulmonary artery endothelial cells (HPAECs) showed that siRNA-mediated knockdown of Sig1R potentiated LPS-induced the expression of proinflammatory molecules ICAM-1, VCAM-1 and IL-8. Consistent with this, Sig1R agonist, PRE-084, known to activate Sig1R by inducing its dissociation from BiP/GRP78, blunted the above response. Notably, PRE-084 failed to blunt LPS-induced inflammatory responses in Sig1R-depleted cells, confirming that the effect of PRE-084 is driven by Sig1R. Furthermore, Sig1R antagonist, NE-100, known to inactivate Sig1R by blocking its dissociation from BiP/GRP78, failed to block LPS-induced inflammatory responses, establishing that dissociation from BiP/GRP78 is required for Sig1R to exert its anti-inflammatory action. Unlike Sig1R, the siRNA-mediated knockdown or Subtilase AB-mediated inactivation of BiP/GRP78 protected against LPS-induced EC inflammation. Interestingly, the protective effect of BiP/GRP78 knockdown or inactivation was abolished in cells that were depleted of Sig1R, confirming that BiP/GRP78 knockdown/inactivation-mediated suppression of EC inflammation is mediated via Sig1R. In view of these findings, we determined the in vivo relevance of Sig1R in a mouse model of sepsis-induced ALI. The intraperitoneal injection of PRE-084 mitigated sepsis-induced ALI, as evidenced by a decrease in ICAM-1, IL-6 levels, lung PMN infiltration, and lung vascular leakage. Together, these data evidence a protective role of Sig1R against endothelial dysfunction associated with ALI and identify it as a viable target in terms of controlling ALI in sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabeha Fazal
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (Z.M.); (M.S.); (R.A.N.); (M.W.M.); (J.B.); (T.P.)
| |
Collapse
|
16
|
Zhou Y, Li QX, Liao ZZ, Liu Y, Ouyang Y, Jiang WJ, Tang MT, Hu JF, Zhang W. Anti-inflammatory effect and component analysis of Chaihu Qingwen granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116763. [PMID: 37315646 DOI: 10.1016/j.jep.2023.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1β, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Qing-Xian Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wen-Jing Jiang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Meng-Ting Tang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Chung FT, Kuo CH, Wang CH, Lin SM. Thrombin worsens extravascular lung water and outcomes of septic patients with acute respiratory distress syndrome: A case control study. Medicine (Baltimore) 2023; 102:e36200. [PMID: 38050307 PMCID: PMC10695594 DOI: 10.1097/md.0000000000036200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
Endothelial cell (EC) activation may increase systemic vascular permeability, causing extravascular lung water (EVLW) in sepsis with acute respiratory distress syndrome (ARDS). However, the correlation between thrombin and EVLW in sepsis and ARDS has not yet been addressed. Patients with sepsis and ARDS were prospectively enrolled between 2014 and 2016, and EVLW and serum thrombin levels on days 1 and 3 were measured and compared between surviving and non-surviving patients. Additionally, morphological changes in human umbilical vein endothelial cells (HUVECs) in the serum of patients with high and low EVLW were evaluated. The levels of EVLW, endothelial cells, and thrombin may positively correlate with the survival of patients with severe sepsis and ARDS. Twenty-seven patients were enrolled, and baseline characteristics, including age, sex, Acute Physiology and Chronic Health Evaluation (APACHE) II, prior 24-h fluid balance, body mass index, and shock status, were similar between survivors and non-survivors; however, day 1 EVLW was higher in non-survivors (27.5 ± 8.4 vs 22 ± 6.5 mL/kg, P = .047). EVLW of survivors improved from day 1 to day 3 (22 ± 6.5 vs 11 ± 3.8 mL/kg, P < .001), but did not improve in non-survivors (27.5 ± 8.4 vs 28 ± 6.7 mL/kg, P = .086), which means that patients had significantly lower EVLW on day 3 than on day 1. Thrombin levels of survivors significantly improved (1.03 ± 0.55 vs 0.87 ± 0.25 U/mL, P = .04) but did not improve in non-survivors (1.97 ± 0.75 vs 2.2 ± 0.75 U/mL, P = .08) from day 1 to day 3. EVLW and thrombin levels were positively correlated (r2 = 0.71, P < .0001). In vitro, the morphology and junctions of HUVECs changed when the serum from patients with high EVLW was added. The intercellular distances among the control, high EVLW, and low EVLW groups were 5.25 ± 1.22, 21.33 ± 2.15, and 11.17 ± 1.64 µm, respectively (P < .05).
Collapse
Affiliation(s)
- Fu-Tsai Chung
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine, Taipei, Taiwan
- Department of Respiratory Therapy, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Scholar of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, St’ Paul Hospital, Taoyuan, Taiwan
| | - Chih-Hsi Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Gour A, Dogra A, Verma MK, Bhardwaj M, Kour D, Jamwal A, Gorain B, Kumar M, Vij B, Kumar A, Nandi U. Ayurveda-based phytochemical composition attenuates lung inflammation and precipitates pharmacokinetic interaction with favipiravir: an in vivo investigation using disease-state of acute lung injury. Nat Prod Res 2023; 37:3758-3765. [PMID: 36469694 DOI: 10.1080/14786419.2022.2150620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical form of acute lung injury (ALI). Here, we investigated the effect of a defined combination of ten pure phytochemicals in equal proportions of weight (NPM) from plants, recommended by Ayurveda for any protective action against lipopolysaccharide (LPS)-induced ALI. Results indicate that NPM markedly improved protein and neutrophil contents, myeloperoxidase and hydroxyproline levels, oxidative stress markers (glutathione and malonaldehyde), inflammatory cytokines, and genes (IL-6, TNF-α, TGF-β, and NF-κB/IκBα) in BALF/lung tissue. The histopathological examination of the lung revealed the shielding effect of NPM against ALI. NPM exhibited a protective effect on the lung by reducing oxidative stress and inhibiting inflammation. A substantial drop in favipiravir's oral exposure was observed in ALI-state compared to normal-state, but oral exposure upon NPM treatment in ALI-state followed similar behaviour of favipiravir alike normal-state without NPM treatment. Overall, results offer potential insight into Ayurvedic recommendations for immunity boosting during ALI situations.
Collapse
Affiliation(s)
- Abhishek Gour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Dogra
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mahendra K Verma
- Natural Products and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Mahir Bhardwaj
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dilpreet Kour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashiya Jamwal
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi-835215, India
| | - Mukesh Kumar
- Natural Products and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Bhavna Vij
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajay Kumar
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Utpal Nandi
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
19
|
Sawoo R, Dey R, Ghosh R, Bishayi B. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsis-induced macrophage polarization. J Appl Toxicol 2023; 43:1549-1572. [PMID: 37177863 DOI: 10.1002/jat.4496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Multi-organ dysfunction is one of the major reasons behind the high mortality of sepsis throughout the world. With the pathophysiology of sepsis remaining largely unknown, the uncontrolled reactive oxygen species (ROS) production along with the decreased antioxidants contributes to the progression toward septic shock. Being the effector cells of the innate immunity system, macrophages secrete both pro-inflammatory and anti-inflammatory mediators during inflammation. Lipopolysaccharide (LPS) binding to toll-like receptor 4 (TLR4) releases TNF-α, which initiates pro-inflammatory events through tumor necrosis factor receptor 1 (TNFR1) signaling. However, it is counteracted by the anti-inflammatory interleukin 10 (IL-10) causing decreased oxidative stress. Our study thus aimed to assess the effects of exogenous IL-10 treatment post-neutralization of TLR4 and TNFR1 (by anti-TLR4 antibody and anti-TNFR1 antibody, respectively) in an in vivo murine model of LPS-sepsis. We have also examined the tissue-specific antioxidant status in the spleen, liver, and lungs along with the serum cytokine levels in adult male Swiss albino mice to determine the functional association with the disease. The results showed that administration of recombinant IL-10 post-neutralization of the receptors was beneficial in shifting the macrophage polarization to the anti-inflammatory M2 phenotype. IL-10 treatment significantly downregulated the free radicals production resulting in diminished lipid peroxidase (LPO) levels. The increased antioxidant activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GRX ) conferred protection against LPS-induced sepsis. Western blot data further confirmed diminished expressions of TLR4 and TNFR1 along with suppressed stress-activated protein kinases/Jun amino-terminal kinases (SAPK/JNK) and increased SOD and CAT expressions, which altogether indicated that neutralization of TLR4 and TNFR1 along with IL-10 posttreatment might be a potential therapeutic measure for the treatment of sepsis.
Collapse
Affiliation(s)
- Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| |
Collapse
|
20
|
Wang J, Yang H, Zheng D, Sun Y, An L, Li G, Zhao Z. Integrating network pharmacology and pharmacological evaluation to reveal the therapeutic effects and potential mechanism of S-allylmercapto-N-acetylcysteine on acute respiratory distress syndrome. Int Immunopharmacol 2023; 121:110516. [PMID: 37369159 DOI: 10.1016/j.intimp.2023.110516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
In this research, we sought to examine the effectiveness of S-allylmercapto-N-acetylcysteine (ASSNAC) on LPS-provoked acute respiratory distress syndrome (ARDS) and its potential mechanism based on network pharmacology. To incorporate the effective targets of ASSNAC against ARDS, we firstly searched DisGeNET, TTD, GeneCards and OMIM databases. Then we used String database and Cytoscape program to create the protein-protein interaction network. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis both identified the potential pathways connected to genes. Cytoscape software was used to build the network of drug-targets-pathways and the SwissDock platform was applied to dock the molecule of ASSNAC with the key disease targets. Correspondingly, an ARDS model was established by instillation of LPS in mice to confirm the underlying action mechanism of ASSNAC on ARDS as indicated by the network pharmacology analysis. Results exhibited that 27 overlapping targets, including TLR4, ICAM1, HIF1A, MAPK1, NFKB1, and others, were filtered out. The in vivo experiments showed that ASSNAC alleviated LPS-induced lung injury by downregulating levels of pro-inflammatory mediators and lung dry-wet ratio. Also, ASSNAC attenuated oxidative stress evoked by LPS via diminishing MDA production and SOD consumption as well as upregulating HO-1 level through Nrf2 activation. Results from western blot, quantitative real-time PCR and immunohistochemistry suggested that ASSNAC developed its therapeutic effects by regulating TLR4/MyD88/NF-κB signaling pathway. In conclusion, our research presented the efficacy of ASSNAC against ARDS. Furthermore, the mechanism of ASSNAC on ARDS was clarified by combining network pharmacology prediction with experimental confirmation.
Collapse
Affiliation(s)
- Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Huatian Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Dandan Zheng
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yueyue Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Lulu An
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
21
|
Dibekoğlu C, Uyanıkgil Y, Erbaş O. Sulfasalazine prevents lung injury due to intra-abdominal sepsis in rats: possible role of Nrf2 and angiopoietin-2. Braz J Med Biol Res 2023; 56:e12698. [PMID: 37255096 DOI: 10.1590/1414-431x2023e12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
This study aimed to investigate the effect of sulfasalazine in preventing and treating intra-abdominal sepsis-induced acute respiratory distress syndrome (ARDS) in a rat model. Forty male Wistar albino rats were used. The rats were randomly divided into four equal groups, and sepsis was induced in 30 rats by intraperitoneal administration of a fecal saline solution prepared from rat feces. Group 1: normal control (n=10) [non-surgical], Group 2: fecal intraperitoneal injection (FIP) (n=10) [untreated septic group], Group 3: FIP+saline (placebo) (n=10) [saline administered intraperitoneally], Group 4 (n=10): FIP+sulfasalazine [250 mg/kg per day administered intraperitoneally]. Computed tomography was performed and blood samples were collected for biochemical and blood gas analysis. The lungs were removed for histopathological studies. Statistically significant reductions in interleukin (IL)-6, IL1-β, tumor necrosis factor (TNF)-α, malondialdehyde (MDA), and angiopoietin-2 (ANG-2) levels were observed in the sulfasalazine group compared to the FIP+saline group (P<0.001). Nrf2 levels were significantly higher in the sulfasalazine-treated group than in the FIP and FIP+saline groups (P<0.01). Lung tissue scores were significantly reduced in the sulfasalazine group compared to the other sepsis groups. The Hounsfield unit (HU) value was significantly lower in the sulfasalazine group than in the FIP+saline group (P<0.001). PaO2 values were significantly higher in the sulfasalazine-treated group than in the FIP+saline-treated group (P<0.05). Sulfasalazine was shown to be effective in preventing and treating ARDS.
Collapse
Affiliation(s)
- C Dibekoğlu
- Department of General Surgery, Demiroğlu Bilim University, Istanbul, Turkey
| | - Y Uyanıkgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - O Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
22
|
Zhang Q, Yang C, Ma S, Guo S, Hu X, Zhou Z, Liu Y, Zhang X, Jiang R, Zhang Z, Wen L. Shiwei Qingwen decoction regulates TLR4/NF-κB signaling pathway and NLRP3 inflammasome to reduce inflammatory response in lipopolysaccharide -induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116615. [PMID: 37164255 DOI: 10.1016/j.jep.2023.116615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shiwei Qingwen decoction (SWQ), a Chinese herbal formula based on the classic traditional Chinese medicine prescription Yu Ping Feng San, has shown efficacy in preventing and treating early pneumonia with good clinical outcomes. However, its underlying mechanism is yet unclear. AIM OF THE STUDY To clarify the preventive and therapeutic effects of SWQ on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the underlying mechanism by which SWQ influences pneumonia. MATERIALS AND METHODS First, the chemical composition of SWQ was preliminarily determined by high performance liquid chromatography (HPLC), and the impact of SWQ (3.27, 6.55, and 13.1 g/kg) was assessed in the LPS-induced ALI rat model. Next, its inflammatory pathway was determined via network pharmacology. Finally, the molecular mechanism of SWQ was validated using a rat ALI model and a THP-1 cell inflammation model. RESULTS HPLC identified chlorogenic acid, prime-O-glucosylcimifugin, calycosin, and 5-O-methylaminoside in the chemical profile of SWQ. In the ALI model, SWQ alleviated ALI by reducing lung wet/dry weight ratio (W/D) and preventing histopathological damage to the lungs. At the same time, SWQ decreased penetration of inflammatory mediators by upregulating AQP1 and AQP5 and endothelial nitric oxide synthase (eNOS). Pretreatment with SWQ downregulated white blood cells and neutrophils count in BALF and suppressed LPS-induced expression levels of MPO, NE, and pro-inflammatory factors (TNF-α, IL-1β, IL-6, and iNOS). Network pharmacology showed that SWQ was associated with TLR4/NF-κB inflammation pathway. Moreover, pretreatment with SWQ reduced the expression level of TLR4/NF-κB signaling pathway-associated proteins (TLR4, Myd88, p-IκB, and p-p65) and NLRP3 inflammasome (NLRP3, ASC, caspase-1, and cleaved-IL-1β) in vivo and vitro. CONCLUSIONS The present study demonstrates that SWQ can reduce inflammation in ALI by inhibiting TLR4/NF-κB and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Chengxiong Yang
- School of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, 448000, China
| | - Shangzhi Ma
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Shuyun Guo
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiaodi Hu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiuqiao Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Ruixue Jiang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhihua Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| | - Li Wen
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
23
|
Wetherill RR, Doot RK, Young AJ, Lee H, Schubert EK, Wiers CE, Leone FT, Mach RH, Kranzler HR, Dubroff JG. Molecular Imaging of Pulmonary Inflammation in Users of Electronic and Combustible Cigarettes: A Pilot Study. J Nucl Med 2023; 64:797-802. [PMID: 36657981 PMCID: PMC10152129 DOI: 10.2967/jnumed.122.264529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Electronic cigarette (EC) use has increased dramatically, particularly among adolescents and young adults, and, like cigarette use, can cause pulmonary inflammation and increase the risk of lung disease. Methods: This preliminary study used PET with 18F-6-(1/2)(2-fluoro-propyl)-4-methylpyridin-2-amine (18F-NOS) to quantify inducible nitric oxide synthase expression to characterize oxidative stress and inflammation in the lungs in vivo in 3 age- and sex-matched groups: 5 EC users, 5 cigarette smokers, and 5 controls who had never smoked or vaped. Results: EC users showed greater 18F-NOS nondisplaceable binding potential (BPND) than cigarette smokers (P = 0.03) and controls (P = 0.01), whereas BPND in cigarette smokers did not differ from that in controls (P > 0.1). 18F-NOS lung tissue delivery and inducible nitric oxide synthase distribution volume did not significantly differ among groups. Although there were no group differences in peripheral inflammatory biomarker concentrations, 18F-NOS BPND correlated with the proinflammatory cytokine tumor necrosis factor-α concentrations (rs = 0.87, P = 0.05) in EC users. Additionally, when EC users and cigarette smokers were pooled together, number of vaping episodes or cigarettes per day correlated with interleukin-6 levels (rs = 0.86, P = 0.006). Conclusion: This is the first PET imaging study to compare lung inflammation between EC and cigarette users in vivo. We found preliminary evidence that EC users have greater pulmonary inflammation than cigarette smokers and controls, with a positive association between pulmonary and peripheral measures of inflammation.
Collapse
Affiliation(s)
- Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank T Leone
- Comprehensive Smoking Treatment Program, Penn Lung Center, Philadelphia, Pennsylvania; and
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Hee Jo E, Eun Moon J, Han Chang M, Jin Lim Y, Hyun Park J, Hee Lee S, Rae Cho Y, Cho AE, Pil Pack S, Kim HW, Crowley L, Le B, Nukhet AB, Chen Y, Zhong Y, Zhao J, Li Y, Cha H, Hoon Pan J, Kyeom Kim J, Hyup Lee J. Sensitization of GSH synthesis by curcumin curtails acrolein-induced alveolar epithelial apoptosis via Keap1 cysteine conjugation: A randomized controlled trial and experimental animal model of pneumonitis. J Adv Res 2023; 46:17-29. [PMID: 35772713 PMCID: PMC10105072 DOI: 10.1016/j.jare.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Epidemiological studies have reported an association between exposures to ambient air pollution and respiratory diseases, including chronic obstructive pulmonary disease (COPD). Pneumonitis is a critical driving factor of COPD and exposure to air pollutants (e.g., acrolein) is associated with increased incidence of pneumonitis. OBJECTIVES Currently available anti-inflammatory therapies provide little benefit against respiratory diseases. To this end, we investigated the preventive role of curcumin against air pollutant-associated pneumonitis and its underlying mechanism. METHODS A total of 40 subjects was recruited from Chengdu, China which is among the top three cities in terms of respiratory mortality related to air pollution. The participants were randomly provided either placebo or curcumin supplements for 2 weeks and blood samples were collected at the baseline and at the end of the intervention to monitor systemic markers. In our follow up mechanistic study, C57BL/6 mice (n = 40) were randomly allocated into 4 groups: Control group (saline + no acrolein), Curcumin only group (curcumin + no acrolein), Acrolein only group (saline + acrolein), and Acrolein + Curcumin group (curcumin + acrolein). Curcumin was orally administered at 100 mg/kg body weight once a day for 10 days, and then the mice were subjected to nasal instillation of acrolein (5 mg/kg body weight). Twelve hours after single acrolein exposure, all mice were euthanized. RESULTS Curcumin supplementation, with no noticeable adverse responses, reduced circulating pro-inflammatory cytokines in association with clinical pneumonitis as positive predictive while improving those of anti-inflammatory cytokines. In the pre-clinical study, curcumin reduced pneumonitis manifestations by suppression of intrinsic and extrinsic apoptotic signaling, which is attributed to enhanced redox sensing of Nrf2 and thus sensitized synthesis and restoration of GSH, at least in part, through curcumin-Keap1 conjugation. CONCLUSIONS Our study collectively suggests that curcumin could provide an effective preventive measure against air pollutant-enhanced pneumonitis and thus COPD.
Collapse
Affiliation(s)
- Eun Hee Jo
- Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea; Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Ji Eun Moon
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Ye Jin Lim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Health Functional Food Policy Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jung Hyun Park
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Suk Hee Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Young Rae Cho
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Art E Cho
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Seung Pil Pack
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Bioinformatics, Korea University, Sejong, Republic of Korea
| | | | - Liana Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Brandy Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Aykin-Burns Nukhet
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yinfeng Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yihang Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Hanvit Cha
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
25
|
Lin H, Liu Q, Zhao L, Liu Z, Cui H, Li P, Fan H, Guo L. Circulating Pulmonary-Originated Epithelial Biomarkers for Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24076090. [PMID: 37047065 PMCID: PMC10093822 DOI: 10.3390/ijms24076090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have found several biomarkers for acute respiratory distress syndrome (ARDS), but the accuracy of most biomarkers is still in doubt due to the occurrence of other comorbidities. In this systematic review and meta-analysis, we aimed to explore ideal ARDS biomarkers which can reflect pathophysiology features precisely and better identify at-risk patients and predict mortality. Web of Science, PubMed, Embase, OVID, and the Cochrane Library were systematically searched for studies assessing the reliability of pulmonary-originated epithelial proteins in ARDS. A total of 32 studies appeared eligible for meta-analysis, including 2654 ARDS/ALI patients in this study. In the at-risk patients' identification group, the highest pooled effect size was observed in Krebs von den Lungren-6 (KL-6) (SMD: 1.17 [95% CI: 0.55, 1.79]), followed by club cell proteins 16 (CC16) (SMD: 0.74 [95% CI: 0.01, 1.46]), and surfactant proteins-D (SP-D) (SMD: 0.71 [95% CI: 0.57, 0.84]). For the mortality prediction group, CC16 exhibited the largest effect size with SMD of 0.92 (95% CI: 0.42, 1.43). Meanwhile, the summary receiver operating characteristic (SROC) of CC16 for ARDS diagnosis reached an AUC of 0.80 (95% CI: 0.76, 0.83). In conclusion, this study provides a ranking system for pulmonary-originated epithelial biomarkers according to their association with distinguishing at-risk patients and predicting mortality. In addition, the study provides evidence for the advantage of biomarkers over traditional diagnostic criteria. The performance of biomarkers may help to clinically improve the ARDS diagnosis and mortality prediction.
Collapse
Affiliation(s)
- Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300381, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Huanhuan Cui
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
26
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
27
|
Palikova YA, Palikov VA, Novikova NI, Slashcheva GA, Rasskazova EA, Tukhovskaya EA, Danilkovich AV, Dyachenko IA, Belogurov Jr. AA, Kudriaeva AA, Bugrimov DY, Krasnorutskaya ON, Murashev AN. Derinat ® has an immunomodulatory and anti-inflammatory effect on the model of acute lung injury in male SD rats. Front Pharmacol 2022; 13:1111340. [PMID: 36642990 PMCID: PMC9837527 DOI: 10.3389/fphar.2022.1111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
To simulate acute lung injury (ALI) in SD male rats they we administered intratracheally with lipopolysaccharide (LPS) followed by hyperventilation of the lungs (HVL), which lead to functional changes in the respiratory system and an increase in the blood serum concentration of inflammatory cytokines. LPS + HVL after 4 h lead to pronounced histological signs of lung damage. We have studied the effectiveness of Derinat® when administered intramuscularly at dose of 7.5 mg/kg for 8 days in the ALI model. Derinat® administration lead to an increase in the concentration of most of the studied cytokines in a day. In the ALI model the administration of Derinat® returned the concentration of cytokines to its original values already 48 h after LPS + HVL, and also normalized the parameters of pulmonary respiration in comparison with animals without treatment. By the eighth day after LPS + HVL, respiratory parameters and cytokine levels, as well as biochemical and hematological parameters did not differ between groups, while histological signs of residual effects of lung damage were found in all animals, and were more pronounced in Derinat® group, which may indicate stimulation of the local immune response. Thus, the administration of Derinat® stimulates the immune response, has a pronounced protective effect against cytokinemia and respiratory failure caused by ALI, has immunomodulatory effect, and also stimulates a local immune response in lung tissues. Thus, Derinat® is a promising treatment for ALI.
Collapse
Affiliation(s)
- Yulia A. Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Victor A. Palikov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Nadezhda I. Novikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Gulsara A. Slashcheva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Ekaterina A. Rasskazova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Elena A. Tukhovskaya
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia,*Correspondence: Elena A. Tukhovskaya,
| | - Alexey V. Danilkovich
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Igor A. Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia
| | - Alexey A. Belogurov Jr.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str, Moscow, Russia,Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str, Moscow, Russia
| | - Daniil Y Bugrimov
- Voronezh State Medical University Named After N. N. Burdenko, 10 Studencheskaya Str, Voronezh, Russia
| | - Olga N. Krasnorutskaya
- Voronezh State Medical University Named After N. N. Burdenko, 10 Studencheskaya Str, Voronezh, Russia
| | - Arkady N. Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, Pushchino, Russia,*Correspondence: Elena A. Tukhovskaya,
| |
Collapse
|
28
|
Dey R, Samadder A, Nandi S. Selected Phytochemicals to Combat Lungs Injury: Natural Care. Comb Chem High Throughput Screen 2022; 25:2398-2412. [PMID: 35293289 DOI: 10.2174/1386207325666220315113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
29
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
30
|
Kadam AH, Kandasamy K, Buss T, Cederstrom B, Yang C, Narayanapillai S, Rodriguez J, Levin MD, Koziol J, Olenyuk B, Borok Z, Chrastina A, Schnitzer JE. Targeting caveolae to pump bispecific antibody to TGF-β into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS One 2022; 17:e0276462. [PMID: 36413536 PMCID: PMC9681080 DOI: 10.1371/journal.pone.0276462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (μg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-β signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.
Collapse
Affiliation(s)
- Anil H. Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Kathirvel Kandasamy
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Chun Yang
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Sreekanth Narayanapillai
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Juan Rodriguez
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Michael D. Levin
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Zea Borok
- Department of Medicine, UCSD School of Medicine, La Jolla, California, United States of America
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
- Institute for Engineering in Medicine, UCSD, La Jolla, California, United States of America
| |
Collapse
|
31
|
Zhang Y, Xu Z, Zhan L, Gao Y, Zheng B, Zhou Y, Sheng Y, Liang G, Song Z. Design, synthesis and biological evaluation of novel chromone-maleimide hybrids as potent anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Chem 2022; 128:106049. [DOI: 10.1016/j.bioorg.2022.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
|
32
|
Anwar F, Sparrow NA, Rashid MH, Guidry G, Gezalian MM, Ley EJ, Koronyo-Hamaoui M, Danovitch I, Ely EW, Karumanchi SA, Lahiri S. Systemic interleukin-6 inhibition ameliorates acute neuropsychiatric phenotypes in a murine model of acute lung injury. Crit Care 2022; 26:274. [PMID: 36100846 PMCID: PMC9469063 DOI: 10.1186/s13054-022-04159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.
Collapse
|
33
|
Inhibition of miR-29b-1-5p Attenuates Inflammatory Response and Pulmonary Fibrosis in LPS-Induced Acute Lung Injury by Regulating RTN4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7523591. [PMID: 36118085 PMCID: PMC9481378 DOI: 10.1155/2022/7523591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Objective Acute lung injury (ALI) is a severe respiratory disorder causing alveolar-capillary barrier, leading to a high rate of morbidity and death in critically ill individuals. microRNAs (miRNAs)-mediated mechanism in the pathogenesis of ALI has attracted much interest. Herein, we attempt to characterize a candidate miRNA and its downstream target that is linked to the pathogenesis of ALI. Methods LPS-conditioned MH-S cells were treated with miR-29a-1-5p mimic, inhibitor, and RNT4 expression vector, and the ALI animal model was injected with agomir and antagomir of miR-29b-1-5p and RNT4 expression vector, in which the pro-inflammatory cytokine production, cell viability and apoptosis, myeloperoxidase (MPO) activity, wet/dry (W/D) ratio, and expression of TGF-β1, α-smooth muscle actin (α-SMA), E-cadherin, and vimentin were examined. miR-29a-1-5p inhibition of RTN4 translation was confirmed by luciferase activity assays. Results An elevated miR-29a-1-5p expression was demonstrated in LPS-conditioned MH-S cells. miR-29a-1-5p inhibitor transfection attenuated the production of pro-inflammatory cytokines and MH-S cell viability but enhanced the apoptosis. miR-29a-1-5p inhibition of RTN4 translation was demonstrated in the setting of LPS-induced ALI. LPS-induced murine models demonstrated upregulated miR-29a-1-5p. Intravenous injection of miR-29b-1-5p agomir attenuated mouse lung injury and pulmonary fibrosis. RTN4 overexpression resisting to miR-29a-1-5p overexpression was demonstrated in LPS-induced murine models. Conclusion The findings obtained from the study that disturbing the action of miR-29a-1-5p may be a novel therapeutic strategy for preventing ALI.
Collapse
|
34
|
Stevenson ER, Wilkinson ML, Abramova E, Guo C, Gow AJ. Intratracheal Administration of Acyl Coenzyme A Acyltransferase-1 Inhibitor K-604 Reduces Pulmonary Inflammation Following Bleomycin-Induced Lung Injury. J Pharmacol Exp Ther 2022; 382:356-365. [PMID: 35970601 PMCID: PMC9426763 DOI: 10.1124/jpet.122.001284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Acute lung injury (ALI) is characterized by epithelial damage, barrier dysfunction, and pulmonary edema. Macrophage activation and failure to resolve play a role in ALI; thus, macrophage phenotype modulation is a rational target for therapeutic intervention. Large, lipid-laden macrophages have been observed in various injury models, including intratracheal bleomycin (ITB), suggesting that lipid storage may play a role in ALI severity. The endoplasmic reticulum-associated enzyme acyl coenzyme A acyltransferase-1 (Acat-1/Soat1) is highly expressed in macrophages, where it catalyzes the esterification of cholesterol, leading to intracellular lipid accumulation. We hypothesize that inhibition of Acat-1 will reduce macrophage activation and improve outcomes of lung injury in ITB. K-604, a selective inhibitor of Acat-1, was used to reduce cholesterol esterification and hence lipid accumulation in response to ITB. Male and female C57BL6/J mice (n = 16-21/group) were administered control, control + K-604, ITB, or ITB + K-604 on d0, control or K-604 on d3, and were sacrificed on day 7. ITB caused significant body weight loss and an increase in cholesterol accumulation in bronchoalveolar lavage cells. These changes were mitigated by Acat-1 inhibition. K-604 also significantly reduced ITB-induced alveolar thickening. Surfactant composition was normalized as indicated by a significant decrease in phospholipid: SP-B ratio in ITB+K-604 compared with ITB. K-604 administration preserved mature alveolar macrophages, decreased activation in response to ITB, and decreased the percentage mature and pro-fibrotic interstitial macrophages. These results show that inhibition of Acat-1 in the lung is associated with reduced inflammatory response to ITB-mediated lung injury. SIGNIFICANCE STATEMENT: Acyl coenzyme A acyltransferase-1 (Acat-1) is critical to lipid droplet formation, and thus inhibition of Acat-1 presents as a pharmacological target. Intratracheal administration of K-604, an Acat-1 inhibitor, reduces intracellular cholesterol ester accumulation in lung macrophages, attenuates inflammation and macrophage activation, and normalizes mediators of surface-active function after intratracheal bleomycin administration in a rodent model. The data presented within suggest that inhibition of Acat-1 in the lung improves acute lung injury outcomes.
Collapse
Affiliation(s)
- Emily R Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melissa L Wilkinson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrew J Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
35
|
Yang L, Chen H, Hu Q, Liu L, Yuan Y, Zhang C, Tang J, Shen X. Eupalinolide B attenuates lipopolysaccharide-induced acute lung injury through inhibition of NF-κB and MAPKs signaling by targeting TAK1 protein. Int Immunopharmacol 2022; 111:109148. [PMID: 35988521 DOI: 10.1016/j.intimp.2022.109148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe inflammatory response, which has no pharmacological therapy in clinic. In this study, we found that eupalinolide B (EB), a sesquiterpene lactone isolated from Eupatorium lindleyanum, significantly ameliorated lipopolysaccharide (LPS)-induced ALI in mice, which manifests as reduction in lung injury score, activity of myeloperoxidase, and release of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). In RAW264.7 murine macrophages, EB effectively inhibited LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by down-regulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), respectively. Mechanistically, EB not only blocked LPS-induced phosphorylation of inhibitor of nuclear factor kappa B kinase-α/β (IKKα/β), phosphorylation and degradation of inhibitor of nuclear factor-kappa B alpha (IκBα), and phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) P65, but also suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in vitro or in vivo. Through cellular thermal shift assay and western blotting, EB was demonstrated to target and inactivate transforming growth factor β activated kinase-1 (TAK1), which is an important upstream kinase for the activation of NF-κB and MAPKs pathways. Additionally, EB-mediated actions were markedly abolished by dithiothreitol in LPS-exposed RAW264.7 cells, suggesting a crucial role of the α,γ-unsaturated lactone for the anti-inflammatory activity of EB. In conclusion, our findings showed that EB could effectively alleviate ALI in mice, and attenuate inflammatory response by inhibiting the activation of TAK1, and TAK1-mediated activation of NF-κB and MAPKs cascades.
Collapse
Affiliation(s)
- Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
36
|
Jia R, Wei M, Zhang X, Du R, Sun W, Wang L, Song L. Pyroptosis participates in PM 2.5-induced air-blood barrier dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60987-60997. [PMID: 35435555 DOI: 10.1007/s11356-022-20098-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Epidemiological studies have shown that particulate matters with diameter less than 2.5 μm (PM2.5) play an important role in inducing and promoting respiratory diseases, but its underlying mechanism remains to be explored. The air-blood barrier, also known as the alveolar-capillary barrier, is the key element of the lung, working as the site of oxygen and carbon dioxide exchange between pulmonary vasculatures. In this study, a mouse PM2.5 exposure model was established, which leads to an induced lung injury and air-blood barrier disruption. Oxidative stress and pyroptosis were observed in this process. After reducing the oxidative stress by N-acetyl-L-cysteine (NAC) treatment, the air-blood barrier function was improved and the effect of PM2.5 was alleviated. The level of pyroptosis and related pathway were also effectively relieved. These results indicate that acute PM2.5 exposure can cause lung injury and the alveolar-capillary barrier disruption by inducing reactive oxygen species (ROS) with the participation of pyroptosis pathway.
Collapse
Affiliation(s)
- Ruxue Jia
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116023
| | - Min Wei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044
| | - Rui Du
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116023
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China, 116044.
| |
Collapse
|
37
|
Ghaidan H, Stenlo M, Niroomand A, Mittendorfer M, Hirdman G, Gvazava N, Edström D, Silva IAN, Broberg E, Hallgren O, Olm F, Wagner DE, Pierre L, Hyllén S, Lindstedt S. Reduction of primary graft dysfunction using cytokine adsorption during organ preservation and after lung transplantation. Nat Commun 2022; 13:4173. [PMID: 35882835 PMCID: PMC9325745 DOI: 10.1038/s41467-022-31811-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Despite improvements, lung transplantation remains hampered by both a scarcity of donor organs and by mortality following primary graft dysfunction (PGD). Since acute respiratory distress syndrome (ARDS) limits donor lungs utilization, we investigated cytokine adsorption as a means of treating ARDS donor lungs. We induced mild to moderate ARDS using lipopolysaccharide in 16 donor pigs. Lungs were then treated with or without cytokine adsorption during ex vivo lung perfusion (EVLP) and/or post-transplantation using extracorporeal hemoperfusion. The treatment significantly decreased cytokine levels during EVLP and decreased levels of immune cells post-transplantation. Histology demonstrated fewer signs of lung injury across both treatment periods and the incidence of PGD was significantly reduced among treated animals. Overall, cytokine adsorption was able to restore lung function and reduce PGD in lung transplantation. We suggest this treatment will increase the availability of donor lungs and increase the tolerability of donor lungs in the recipient. Lung transplantation is hindered by the scarcity of organs and by mortality following primary graft dysfunction. Here, the authors show that cytokine absorption can be used in donor lungs during ex vivo lung perfusion and post-transplant, and leads to restored lung function and reduced primary graft dysfunction in animal models.
Collapse
Affiliation(s)
- Haider Ghaidan
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Rutgers Robert University, New Brunswick, NJ, USA
| | - Margareta Mittendorfer
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Nika Gvazava
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Iran A N Silva
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Oskar Hallgren
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Franziska Olm
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Sandra Lindstedt
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Clinical Sciences, Lund University, Lund, Sweden. .,Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
38
|
Serra A, del Giudice G, Kinaret PAS, Saarimäki LA, Poulsen SS, Fortino V, Halappanavar S, Vogel U, Greco D. Characterization of ENM Dynamic Dose-Dependent MOA in Lung with Respect to Immune Cells Infiltration. NANOMATERIALS 2022; 12:nano12122031. [PMID: 35745370 PMCID: PMC9228743 DOI: 10.3390/nano12122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023]
Abstract
The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL) is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological changes. Toxicogenomic approaches help characterize the mechanism of action (MOA) of ENMs by investigating the differentially expressed genes (DEG). However, dissecting which molecular mechanisms and events are directly induced by the exposure is not straightforward. It is now generally accepted that direct effects follow a monotonic dose-dependent pattern. Here, we applied an integrated modeling approach to study the MOA of four ENMs by retrieving the DEGs that also show a dynamic dose-dependent profile (dddtMOA). We further combined the information of the dddtMOA with the dose dependency of four immune cell populations derived from BAL counts. The dddtMOA analysis highlighted the specific adaptation pattern to each ENM. Furthermore, it revealed the distinct effect of the ENM physicochemical properties on the induced immune response. Finally, we report three genes dose-dependent in all the exposures and correlated with immune deregulation in the lung. The characterization of dddtMOA for ENM exposures, both for apical endpoints and molecular responses, can further promote toxicogenomic approaches in a regulatory context.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | | | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
39
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Lim MJ, Zinter MS, Chen L, Wong KMY, Bhalla A, Gala K, Guglielmo M, Alkhouli M, Huard LL, Hanudel MR, Vangala S, Schwingshackl A, Matthay M, Sapru A. Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:837-847. [PMID: 34678846 PMCID: PMC9035468 DOI: 10.1097/ccm.0000000000005373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Soluble receptor for advanced glycation end products is a known plasma marker of alveolar epithelial injury. However, RAGE is also expressed on cell types beyond the lung, and its activation leads to up-regulation of pro-inflammatory mediators. We sought to examine the relationship between plasma soluble receptor for advanced glycation end products and primary pulmonary dysfunction, extrapulmonary organ dysfunction, and mortality in pediatric acute respiratory distress syndrome patients at two early time points following acute respiratory distress syndrome diagnosis and compare these results to plasma surfactant protein-D, a marker of pure alveolar epithelial injury. DESIGN Prospective observational study. SETTING Five academic PICUs. PATIENTS Two hundred fifty-eight pediatric patients 30 days to 18 years old meeting Berlin Criteria for acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma was collected for soluble receptor for advanced glycation end products and surfactant protein-D measurements within 24 hours (day 1) and 48 to 72 hours (day 3) after acute respiratory distress syndrome diagnosis. Similar to surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with a higher oxygenation index (p < 0.01) and worse lung injury score (p < 0.001) at the time of acute respiratory distress syndrome diagnosis. However, unlike surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with worse extrapulmonary Pediatric Logistic Organ Dysfunction score during ICU stay (day 3; p < 0.01) and positively correlated with plasma levels of interleukin-6 (p < 0.01), tumor necrosis factor-α (p < 0.01), and angiopoietin-2 (p < 0.01). Among children with indirect lung injury, plasma soluble receptor for advanced glycation end products was associated with mortality independent of age, sex, race, cancer/bone marrow transplant, and Pediatric Risk of Mortality score (day 3; odds ratio, 3.14; 95% CI, 1.46-6.75; p < 0.01). CONCLUSIONS Unlike surfactant protein-D, which is primarily localized to the alveolar epithelium plasma soluble receptor for advanced glycation end products is systemically expressed and correlates with markers of inflammation, extrapulmonary multiple organ dysfunction, and death in pediatric acute respiratory distress syndrome with indirect lung injury. This suggests that unlike surfactant protein-D, soluble receptor for advanced glycation end products is a multifaceted marker of alveolar injury and increased inflammation and that receptor for advanced glycation end products activation may contribute to the pathogenesis of multiple organ failure among children with indirect acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Michelle J. Lim
- UC Davis School of Medicine, UC Davis Children’s Hospital, Department of Pediatrics, Division of Critical Care, Sacramento, CA, USA
| | - Matt S. Zinter
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Lucia Chen
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Kayley Man Yee Wong
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- USC Keck School of Medicine, Children’s Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine, Los Angeles, CA, USA
| | - Kinisha Gala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mona Guglielmo
- Loma Linda University School of Medicine, Loma Linda University Children’s Hospital, Department of Pediatrics, Division of Critical Care, Loma Linda, CA, USA
| | - Mustafa Alkhouli
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Leanna L. Huard
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mark R. Hanudel
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Nephrology, Los Angeles, CA, USA
| | - Sitaram Vangala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Andreas Schwingshackl
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Michael Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Anil Sapru
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| |
Collapse
|
41
|
Alshalani A, van Manen L, Boshuizen M, van Bruggen R, Acker JP, Juffermans NP. The Effect of Sex-Mismatched Red Blood Cell Transfusion on Endothelial Cell Activation in Critically Ill Patients. Transfus Med Hemother 2022; 49:98-105. [PMID: 35611381 PMCID: PMC9082204 DOI: 10.1159/000520651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/30/2021] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Observational studies suggest that sex-mismatched transfusion is associated with increased mortality. Mechanisms driving mortality are not known but may include endothelial activation. The aim of this study is to investigate the effects of sex-mismatched red blood cell (RBC) transfusions on endothelial cell activation markers in critically ill patients. STUDY DESIGN AND METHODS In patients admitted to the intensive care unit who received a single RBC unit, blood samples were drawn before (T0), 1 h after (T1), and 24 h after transfusion (T24) for analysis of soluble syndecan-1, soluble intercellular adhesion molecule-1, soluble thrombomodulin (sTM), von Willebrand factor antigen, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα). Changes in the levels of these factors were compared between sex-matched and sex-mismatched groups. RESULTS Of 69 included patients, 32 patients were in the sex-matched and 37 patients were in the sex-mismatched group. Compared to baseline, sex-matched transfusion was associated with significant reduction in sTM level (p value = 0.03). Between-group comparison showed that levels of syndecan-1 and sTM were significantly higher in the sex-mismatched group compared to the sex-matched group at T24 (p value = 0.04 and 0.01, respectively). Also, TNFα and IL-6 levels showed a statistically marginal significant increase compared to baseline in the sex-mismatched group at T24 (p value = 0.06 and 0.05, respectively), but not in the sex-matched group. DISCUSSION Transfusion of a single sex-mismatched RBC unit was associated with higher syndecan-1 and sTM levels compared to transfusion of sex-matched RBC unit. These findings may suggest that sex-mismatched RBC transfusion is associated with endothelial activation.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lisa van Manen
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Margit Boshuizen
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Ribeiro RVP, Ku T, Wang A, Pires L, Ferreira VH, Michaelsen V, Ali A, Galasso M, Moshkelgosha S, Gazzalle A, Jeppesen MG, Rosenkilde MM, Liu M, Singer LG, Kumar D, Keshavjee S, Sinclair J, Kledal TN, Humar A, Cypel M. Ex vivo treatment of cytomegalovirus in human donor lungs using a novel chemokine-based immunotoxin. J Heart Lung Transplant 2022; 41:287-297. [PMID: 34802874 DOI: 10.1016/j.healun.2021.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transmission of latent human cytomegalovirus (HCMV) via organ transplantation with post-transplant viral reactivation is extremely prevalent and results in substantial adverse impact on outcomes. Therapies targeting the latent reservoir within the allograft to mitigate viral transmission would represent a major advance. Here, we delivered an immunotoxin (F49A-FTP) that targets and kills latent HCMV aiming at reducing the HCMV reservoir from donor lungs using ex-vivo lung perfusion (EVLP). METHODS HCMV seropositive human lungs were placed on EVLP alone or EVLP + 1mg/L of F49A-FTP for 6 hours (n = 6, each). CD14+ monocytes isolated from biopsies pre and post EVLP underwent HCMV reactivation assay designed to evaluate viral reactivation capacity. Off-target effects of F49A-FTP were studied evaluating cell death markers of CD34+ and CD14+ cells using flow cytometry. Lung function on EVLP and inflammatory cytokine production were evaluated as safety endpoints. RESULTS We demonstrate that lungs treated ex-vivo with F49A-FTP had a significant reduction in HCMV reactivation compared to controls, suggesting successful targeting of latent virus (76% median reduction in F49A-FTP vs 15% increase in controls, p = 0.0087). Furthermore, there was comparable cell death rates of the targeted cells between both groups, suggesting no off-target effects. Ex-vivo lung function was stable over 6 hours and no differences in key inflammatory cytokines were observed demonstrating safety of this novel treatment. CONCLUSIONS Ex-vivo F49A-FTP treatment of human lungs targets and kills latent HCMV, markedly attenuating HCMV reactivation. This approach demonstrates the first experiments targeting latent HCMV in a donor organ with promising results towards clinical translation.
Collapse
Affiliation(s)
- Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Terrance Ku
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Layla Pires
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Vinicius Michaelsen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcos Galasso
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anajara Gazzalle
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Mette M Rosenkilde
- Synklino ApS, Ole Måløes vej X, Copenhagen, Denmark; Laboratory of Molecular Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - Atul Humar
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury In Vivo and In Vitro Through the PIP2/NF-κB/NLRP3 Signaling Pathway. Front Immunol 2022; 13:846384. [PMID: 35281058 PMCID: PMC8913935 DOI: 10.3389/fimmu.2022.846384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Hongwei Gao,
| |
Collapse
|
44
|
Zheng F, Pan Y, Yang Y, Zeng C, Fang X, Shu Q, Chen Q. Novel biomarkers for acute respiratory distress syndrome: genetics, epigenetics and transcriptomics. Biomark Med 2022; 16:217-231. [PMID: 35026957 DOI: 10.2217/bmm-2021-0749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) can be induced by multiple clinical factors, including sepsis, acute pancreatitis, trauma, intestinal ischemia/reperfusion and burns. However, these factors alone may poorly explain the risk and outcomes of ARDS. Emerging evidence suggests that genomic-based or transcriptomic-based biomarkers may hold the promise to establish predictive or prognostic stratification methods for ARDS, and also to help in developing novel therapeutic targets for ARDS. Notably, genetic/epigenetic variations correlated with susceptibility and prognosis of ARDS and circulating microRNAs have emerged as potential biomarkers for diagnosis or prognosis of ARDS. Although limited by sample size, ethnicity and phenotypic heterogeneity, ongoing genetic/transcriptomic research contributes to the characterization of novel biomarkers and ultimately helps to develop innovative therapeutics for ARDS patients.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Clinical Research Center, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yihang Pan
- Department of Clinical Research Center, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yang Yang
- Department of Intensive Care Medicine, The Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Congli Zeng
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| |
Collapse
|
45
|
Design, synthesis and structure-activity relationship studies of 4-indole-2-arylaminopyrimidine derivatives as anti-inflammatory agents for acute lung injury. Eur J Med Chem 2021; 225:113766. [PMID: 34425313 PMCID: PMC8357485 DOI: 10.1016/j.ejmech.2021.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a clinically high mortality disease, has not been effectively treated till now, and the development of anti-acute lung injury drugs is imminent. Acute lung injury was efficiently treated by inhibiting the cascade of inflammation, and reducing the inflammatory response in the lung. A series of novel compounds with highly efficient inhibiting the expression of inflammatory factors were designed by using 4-indolyl-2-aminopyrimidine as the core skeleton. Totally eleven 4-indolyl-2-arylaminopyrimidine derivatives were designed and synthesized. As well, the related anti-ALI activity of these compounds was evaluated. Compounds 6c and 6h showed a superior activity among these compounds, and the inhibition rate of IL-6 and IL-8 release ranged from 62% to 77%, and from 65% to 72%, respectively. Furthermore, most of compounds had no significant cytotoxicity in vitro. The infiltration of inflammatory cells into lung tissue significantly reduced by using compound 6h (20 mg/kg) in the ALI mice model, which achieved the effect of protecting lung tissue and improving ALI. In addition, the inflammatory response was inhibited by using compound 6h through inhibiting phosphorylation of p-38 and ERK in MAPK signaling pathway, and resulted in protective effect on ALI. These data indicated that compound 6h showed good anti-inflammatory activity in vitro and in vivo, which was expected to become a leading compound for the treatment of ALI.
Collapse
|
46
|
Corylin Ameliorates LPS-Induced Acute Lung Injury via Suppressing the MAPKs and IL-6/STAT3 Signaling Pathways. Pharmaceuticals (Basel) 2021; 14:ph14101046. [PMID: 34681270 PMCID: PMC8537250 DOI: 10.3390/ph14101046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.
Collapse
|
47
|
Yarrarapu SNS, Bansal P, Abia-Trujillo D, Cusick A, Melody M, Moktan V, Rivero A, Brigham TJ, Libertin C, Brumble L, Jennifer JO, Lee A, Klaus T, Santos C, Rivera C, Siegel J, Guru P, Franco PM, Sanghavi D. V.I.T.A.M. in COVID 19: A Systematic Approach to a Global Pandemic. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2021; 15:11795484211047432. [PMID: 34629922 PMCID: PMC8493324 DOI: 10.1177/11795484211047432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
Introduction In the unprecedented era of COVID-19, ongoing research and evolution of evidence has led to ever-changing guidelines for clinical monitoring and therapeutic options. Formulating treatment protocols requires the understanding and application of the evolving research. Objective The primary objective of this study is to present a systematic evidence-based approach to synthesize the necessary data in order to optimize the management of COVID-19. Methods At Mayo Clinic Florida, we developed a multidisciplinary centralized COVID Treatment Review Panel (TRP) of expert pulmonologists, intensivists, infectious disease specialists, anesthesiologists, hematologists, rheumatologists, and hospitalists that in real-time reviews the latest evidence in peer-reviewed journals, the available clinical trials, and help guide the rapid application of therapeutics or interventions to the patient and the bedside provider. Results/Conclusions The multi-disciplinary team approach of synthesizing clinical data and coordinating care is effective in responding to rapidly evolving and changing evidence. Systematic data collection and evidence-based treatment algorithms enable physicians to rapidly translate the current literature to clinical practice, and improve care and outcomes of patients.
Collapse
Affiliation(s)
| | - Pankaj Bansal
- Mayo Clinic Health System. 1400 Bellinger Street, Eau Claire, WI - 54701
| | | | | | - Megan Melody
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Varun Moktan
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Andrea Rivero
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Tara J Brigham
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Claudia Libertin
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Lisa Brumble
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | | | - Augustine Lee
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Torp Klaus
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Christan Santos
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Candido Rivera
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Jason Siegel
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | - Pramod Guru
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| | | | - Devang Sanghavi
- Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224
| |
Collapse
|
48
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
49
|
Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin 2021; 37:795-815. [PMID: 34548134 PMCID: PMC8149201 DOI: 10.1016/j.ccc.2021.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Infection and Immunity, Amsterdam University Medical Center, AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
50
|
Han J, Li G, Hou M, Ng J, Kwon MY, Xiong K, Liang X, Taglauer E, Shi Y, Mitsialis SA, Kourembanas S, El-Chemaly S, Lederer JA, Rosas IO, Perrella MA, Liu X. Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Res Ther 2021; 12:487. [PMID: 34461993 PMCID: PMC8404310 DOI: 10.1186/s13287-021-02550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background Acute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) are immune privileged, and demonstrate the capability of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI. Methods ALI was induced by intratracheal delivery of bleomycin (BLM) in mice. After exposure to BLM, pre-labeled TSCs or fibroblasts (FBs) were intratracheally administered into the lungs. Analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed. Results The lungs displayed a reduction in cellularity, with decreased CD45+ cells, and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin (IL) 6, monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) in the injured lungs. The levels of inflammatory cytokines in BALF, particularly IL-6, were decreased in ALI mice receiving TSCs, compared to ALI mice that received PBS or FBs. TSCs also significantly reduced BLM-induced apoptosis of alveolar epithelial cells in vitro and in vivo. Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. Conclusion Intratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02550-z.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gu Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Minmin Hou
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Elizabeth Taglauer
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - S Alex Mitsialis
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stella Kourembanas
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA. .,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|