1
|
Tang Z, Fang Z, Wu X, Liu J, Tian L, Li X, Diao J, Ji B, Li D. Folding of N-terminally acetylated α-synuclein upon interaction with lipid membranes. Biophys J 2024; 123:3698-3720. [PMID: 39306670 DOI: 10.1016/j.bpj.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
α-Synuclein (α-syn) is an abundant presynaptic neuronal protein whose aggregation is strongly associated with Parkinson's disease. It has been proposed that lipid membranes significantly affect α-syn's aggregation process. Extensive studies have been conducted to understand the interactions between α-syn and lipid membranes and have demonstrated that the N-terminus plays a critical role. However, the dynamics of the interactions and the conformational transitions of the N-terminus of α-syn at the atomistic scale details are still highly desired. In this study, we performed extensive enhanced sampling molecular dynamics simulations to quantify the folding and interactions of wild-type and N-terminally acetylated α-syn when interacting with lipid structures. We found that N-terminal acetylation significantly increases the helicity of the first few residues in solution or when interacting with lipid membranes. The observations in simulations showed that the binding of α-syn with lipid membranes mainly follows the induced-fit model, where the disordered α-syn binds with the lipid membrane through the electrostatic interactions and hydrophobic contacts with the packing defects; after stable insertion, N-terminal acetylation promotes the helical folding of the N-terminus to enhance the anchoring, thus increasing the binding affinity. We have shown the critical role of the first N-terminal residue methionine for recognition and anchoring to the negatively charged membrane. Although N-terminal acetylation neutralizes the positive charge of Met1 that may affect the electrostatic interactions of α-syn with membranes, the increase in helicity of the N-terminus should compensate for the binding affinity. This study provides detailed insight into the folding dynamics of α-syn's N-terminus with or without acetylation in solution and upon interaction with lipids, which clarifies how the N-terminal acetylation regulates the affinity of α-syn binding to lipid membranes. It also shows how packing defects and electrostatic effects coregulate the N-terminus of α-syn folding and its interaction with membranes.
Collapse
Affiliation(s)
- Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xuwei Wu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Liu
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liangfei Tian
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Xuejin Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) and Wenzhou Institute of University of Chinese Academy of Science, Wenzhou, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Vidyadhara DJ, Bäckström D, Chakraborty R, Ruan J, Park JM, Mistry PK, Chandra SS. Synaptic vesicle endocytosis deficits underlie GBA-linked cognitive dysfunction in Parkinson's disease and Dementia with Lewy bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619548. [PMID: 39484386 PMCID: PMC11527026 DOI: 10.1101/2024.10.23.619548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
GBA mutations are major risk factors for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies associated with cognitive impairment. Here, we investigated the role of GBA mutations in cognitive decline by utilizing Gba L444P mutant mice, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but no PD-like motor deficits up to 12 months old. Conversely, SNCA tg mice displayed age-related motor deficits but no cognitive abnormalities. Gba-SNCA mice exhibited exacerbated motor deficits and cognitive decline. Immunohistological analysis revealed cortical phospho-α-synuclein pathology in SNCA tg mice, which was exacerbated in Gba-SNCA mice, especially in layer 5 cortical neurons. Significantly, Gba mutant mice did not show α-synuclein pathology. Single-nucleus RNA sequencing of cortices instead uncovered selective synaptic vesicle cycle defects in excitatory neurons of Gba mutant and Gba-SNCA mice, via robust downregulation in gene networks regulating synapse vesicle cycle and synapse assembly. Meanwhile SNCA tg mice displayed broader synaptic changes. Immunohistochemical and electron microscopic analyses validated these findings. Together, our results indicate that Gba mutations, while exacerbating pre-existing α-synuclein aggregation and PD-like motor deficits, contribute to cognitive deficits through α-synuclein-independent mechanisms, likely involving dysfunction in synaptic vesicle endocytosis. Additionally, Gba-SNCA mice are a valuable model for studying cognitive and motor deficits in PD and DLB.
Collapse
Affiliation(s)
- D J Vidyadhara
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Discipline of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - David Bäckström
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Risha Chakraborty
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
| | - Jiapeng Ruan
- Department of Internal Medicine, Yale University, CT, USA
| | - Jae-Min Park
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Van Andel Institute, MI, USA
| | | | - Sreeganga. S. Chandra
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| |
Collapse
|
3
|
Zalon AJ, Quiriconi DJ, Pitcairn C, Mazzulli JR. α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson's disease. Neuroscientist 2024; 30:612-635. [PMID: 38420922 PMCID: PMC11358363 DOI: 10.1177/10738584241232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain. A hallmark of both familial and sporadic PD is the presence of Lewy body inclusions composed mainly of aggregated α-synuclein (α-syn), a presynaptic protein encoded by the SNCA gene. The mechanisms driving the relationship between α-syn accumulation and neurodegeneration are not completely understood, although recent evidence indicates that multiple branches of the proteostasis pathway are simultaneously perturbed when α-syn aberrantly accumulates within neurons. Studies from patient-derived midbrain cultures that develop α-syn pathology through the endogenous expression of PD-causing mutations show that proteostasis disruption occurs at the level of synthesis/folding in the endoplasmic reticulum (ER), downstream ER-Golgi trafficking, and autophagic-lysosomal clearance. Here, we review the fundamentals of protein transport, highlighting the specific steps where α-syn accumulation may intervene and the downstream effects on proteostasis. Current therapeutic efforts are focused on targeting single pathways or proteins, but the multifaceted pathogenic role of α-syn throughout the proteostasis pathway suggests that manipulating several targets simultaneously will provide more effective disease-modifying therapies for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Annie J Zalon
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Drew J Quiriconi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Breznik L, Daurer M, Rabl R, Loeffler T, Etxeberria-Rekalde E, Neddens J, Flunkert S, Prokesch M. Motor deficits and brain pathology in the Parkinson's disease mouse model hA53Ttg. Front Neurosci 2024; 18:1462041. [PMID: 39371610 PMCID: PMC11450652 DOI: 10.3389/fnins.2024.1462041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of α-synuclein (α-syn) aggregates. The A53T missense point mutation occurs in autosomal dominant familial PD and has been found to promote the aggregation of α-syn. To investigate the role of the A53T mutation in PD, researchers have developed various mouse models with this mutation. Objective We therefore conducted a comprehensive characterization of the tg(THY1-SNCA*A53T)M53Sud mouse model (hA53Ttg mice) for its motor and pathological features. Methods hA53Ttg mice were tested for motor impairments in a series of motor tests at 2, 4 or 6 months of age. Human α-syn and α-syn pSer129, as well as GFAP and Iba1 signal were labeled and quantified in the cortex, hippocampus, and brainstem. Neurofilament light chain (NF-L) levels were measured in the cerebrospinal fluid (CSF) and plasma. Ex vivo analyses were performed at the age of 2, 4, 6, and 10 months. Results Behavioral tests revealed early muscle weakness and motor impairments that progressed with age. Immunohistochemical analyses demonstrated elevated levels of human α-syn and α-syn pSer129 in all evaluated brain regions. α-syn pSer129 labeling further revealed fiber-like structures in the cortex of older animals. Neuroinflammation was observed in an age-dependent manner. Biochemical evaluation revealed elevated NF-L levels in the plasma and CSF. Overall, our findings highlight the value of hA53Ttg mice in modeling PD-associated pathologies that closely resemble those observed in PD patients. Conclusion Our results thus suggest that hA53Ttg mice are a useful tool for studying the underlying mechanisms of PD.
Collapse
|
5
|
Zhiyan C, Min Z, Yida D, Chunying H, Xiaohua H, Yutong L, Huan W, Linjuan S. Bioinformatic analysis of hippocampal histopathology in Alzheimer's disease and the therapeutic effects of active components of traditional Chinese medicine. Front Pharmacol 2024; 15:1424803. [PMID: 39221152 PMCID: PMC11362046 DOI: 10.3389/fphar.2024.1424803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.
Collapse
Affiliation(s)
- Chen Zhiyan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhan Min
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Du Yida
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - He Chunying
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu Xiaohua
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yutong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Huan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Sun Linjuan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
6
|
Aupič J, Pokorná P, Ruthstein S, Magistrato A. Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning. J Phys Chem Lett 2024; 15:8177-8186. [PMID: 39093570 DOI: 10.1021/acs.jpclett.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Intrinsically disordered proteins and regions (IDP/IDRs) are ubiquitous across all domains of life. Characterized by a lack of a stable tertiary structure, IDP/IDRs populate a diverse set of transiently formed structural states that can promiscuously adapt upon binding with specific interaction partners and/or certain alterations in environmental conditions. This malleability is foundational for their role as tunable interaction hubs in core cellular processes such as signaling, transcription, and translation. Tracing the conformational ensemble of an IDP/IDR and its perturbation in response to regulatory cues is thus paramount for illuminating its function. However, the conformational heterogeneity of IDP/IDRs poses several challenges. Here, we review experimental and computational methods devised to disentangle the conformational landscape of IDP/IDRs, highlighting recent computational advances that permit proteome-wide scans of IDP/IDRs conformations. We briefly evaluate selected computational methods using the disordered N-terminal of the human copper transporter 1 as a test case and outline further challenges in IDP/IDRs ensemble prediction.
Collapse
Affiliation(s)
- Jana Aupič
- CNR-IOM at International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Pavlína Pokorná
- CNR-IOM at International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences and the Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Alessandra Magistrato
- CNR-IOM at International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
7
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
8
|
Caramiello AM, Pirota V. Novel Therapeutic Horizons: SNCA Targeting in Parkinson's Disease. Biomolecules 2024; 14:949. [PMID: 39199337 PMCID: PMC11352499 DOI: 10.3390/biom14080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-synuclein (αSyn) aggregates are the primary component of Lewy bodies, which are pathological hallmarks of Parkinson's disease (PD). The toxicity of αSyn seems to increase with its elevated expression during injury, suggesting that therapeutic approaches focused on reducing αSyn burden in neurons could be beneficial. Additionally, studies have shown higher levels of SNCA mRNA in the midbrain tissues and substantia nigra dopaminergic neurons of sporadic PD post-mortem brains compared to controls. Therefore, the regulation of SNCA expression and inhibition of αSyn synthesis could play an important role in the pathogenesis of injury, resulting in an effective treatment approach for PD. In this context, we summarized the most recent and innovative strategies proposed that exploit the targeting of SNCA to regulate translation and efficiently knock down cytoplasmatic levels of αSyn. Significant progress has been made in developing antisense technologies for treating PD in recent years, with a focus on antisense oligonucleotides and short-interfering RNAs, which achieve high specificity towards the desired target. To provide a more exhaustive picture of this research field, we also reported less common but highly innovative strategies, including small molecules, designed to specifically bind 5'-untranslated regions and, targeting secondary nucleic acid structures present in the SNCA gene, whose formation can be modulated, acting as a transcription and translation control. To fully describe the efficiency of the reported strategies, the effect of αSyn reduction on cellular viability and dopamine homeostasis was also considered.
Collapse
Affiliation(s)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy;
| |
Collapse
|
9
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of cysteine string protein alpha-mediated synapse maintenance. Proc Natl Acad Sci U S A 2024; 121:e2320064121. [PMID: 38833477 PMCID: PMC11181078 DOI: 10.1073/pnas.2320064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Mary Alice Allnutt
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Rosalie M. Grijalva
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| |
Collapse
|
10
|
Chopra A, Lang AE, Höglinger G, Outeiro TF. Towards a biological diagnosis of PD. Parkinsonism Relat Disord 2024; 122:106078. [PMID: 38472075 DOI: 10.1016/j.parkreldis.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Since the original description by James Parkinson, Parkinson's disease (PD) has intrigued us for over 200 years. PD is a progressive condition that is incurable so far, and affects millions of people worldwide. Over the years, our knowledge has expanded tremendously, and a range of criteria have been put forward and used to try to define PD. However, owing to the complexity of the problem, it is still not consensual how to diagnose and classify a disease that manifests with diverse features, and that responds differently to existing therapies and to those under development. We are now living a time when 'biological' information is becoming abundant, precise, and accessible enabling us to attempt to incorporate different sources of information to classify different forms of PD. These refinements are essential for basic science, as they will enable us to develop improved models for studying PD, and to implement new findings into clinical practice, as this will be the path towards effective personalized medicine.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Brain Institute, University Health Network and the Department of Medicine, University of Toronto, Canada
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
11
|
Barker E, Morgan A, Barclay JW. Tissue distribution of cysteine string protein/DNAJC5 in C. elegans analysed by CRISPR/Cas9-mediated tagging of endogenous DNJ-14. Cell Tissue Res 2024; 396:41-55. [PMID: 38403745 PMCID: PMC10997724 DOI: 10.1007/s00441-024-03875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of molecular chaperones. CSP is enriched in neurons, where it mainly localises to synaptic vesicles. Mutations in CSP-encoding genes in flies, worms, mice and humans result in neuronal dysfunction, neurodegeneration and reduced lifespan. Most attention has therefore focused on CSP's neuronal functions, although CSP is also expressed in non-neuronal cells. Here, we used genome editing to fluorescently tag the Caenorhabditis elegans CSP orthologue, dnj-14, to identify which tissues preferentially express CSP and hence may contribute to the observed mutant phenotypes. Replacement of dnj-14 with wrmScarlet caused a strong chemotaxis defect, as seen with other dnj-14 null mutants. In contrast, inserting the reporter in-frame to create a DNJ-14-wrmScarlet fusion protein had no effect on chemotaxis, indicating that C-terminal tagging does not impair DNJ-14 function. WrmScarlet fluorescence appeared most obvious in the intestine, head/pharynx, spermathecae and vulva/uterus in the reporter strains, suggesting that DNJ-14 is preferentially expressed in these tissues. Crossing the DNJ-14-wrmScarlet strain with GFP marker strains confirmed the intestinal and pharyngeal expression, but only a partial overlap with neuronal GFP was observed. DNJ-14-wrmScarlet fluorescence in the intestine was increased in response to starvation, which may be relevant to mammalian CSPα's role in microautophagy. DNJ-14's enrichment in worm reproductive tissues (spermathecae and vulva/uterus) parallels the testis-specific expression of CSPβ and CSPγ isoforms in mammals. Furthermore, CSPα messenger RNA is highly expressed in the human proximal digestive tract, suggesting that CSP may have a conserved, but overlooked, function within the gastrointestinal system.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Current address: Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| |
Collapse
|
12
|
Lenzi P, Lazzeri G, Ferrucci M, Scotto M, Frati A, Puglisi-Allegra S, Busceti CL, Fornai F. Is There a Place for Lewy Bodies before and beyond Alpha-Synuclein Accumulation? Provocative Issues in Need of Solid Explanations. Int J Mol Sci 2024; 25:3929. [PMID: 38612739 PMCID: PMC11011529 DOI: 10.3390/ijms25073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.
Collapse
Affiliation(s)
- Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Marco Scotto
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Alessandro Frati
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Carla Letizia Busceti
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
13
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
14
|
Runwal GM, Edwards RH. The role of α-synuclein in exocytosis. Exp Neurol 2024; 373:114668. [PMID: 38147972 DOI: 10.1016/j.expneurol.2023.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The pathogenesis of degeneration in Parkinson's disease (PD) remains poorly understood but multiple lines of evidence have converged on the presynaptic protein α-synuclein (αsyn). αSyn has been shown to regulate several cellular processes, however, its normal function remains poorly understood. In this review, we will specifically focus on its role in exocytosis.
Collapse
Affiliation(s)
- Gautam M Runwal
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
15
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
16
|
Barker E, Milburn AE, Helassa N, Hammond DE, Sanchez-Soriano N, Morgan A, Barclay JW. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem J 2024; 481:BCJ20230319. [PMID: 38193346 PMCID: PMC10903463 DOI: 10.1042/bcj20230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Amy E. Milburn
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Dean E. Hammond
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Alan Morgan
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Jeff W. Barclay
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| |
Collapse
|
17
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
18
|
Chopra A, Outeiro TF. Aggregation and beyond: alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024; 147:81-90. [PMID: 37526295 DOI: 10.1093/brain/awad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
19
|
Guo T, Xiong J, Feng H, Bu L, Xiao T, Zhou L, He J, Deng M, Liu Y, Zhang Z, Zhang Z. L116 Deletion in CSPα Promotes α-Synuclein Aggregation and Neurodegeneration. Mol Neurobiol 2024; 61:15-27. [PMID: 37566176 DOI: 10.1007/s12035-023-03552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Parkinsonism is a clinical syndrome that is caused by Parkinson's disease (PD) and other neurodegenerative diseases. Here, we report a patient who exhibited progressive parkinsonism, epilepsy, and cognitive impairment and was diagnosed with adult-onset neuronal ceroid lipofuscinoses (ANCLs). The patient carries a mutation (p.Leu116 del) in the DNAJC5 gene that encodes cysteine string protein (CSPα). Since the patient shows typical parkinsonism and loss of dopamine transporter in the striatum, we investigated the effect of wild-type and L116del mutant CSPα on the aggregation of α-synuclein (α-syn) and neurotoxicity in vitro. Overexpression of wild-type CSPα attenuated the phosphorylation, ubiquitination, and aggregation of α-syn induced by α-syn fibrils. Moreover, wild-type CSPα inhibits oxidative stress and cell apoptosis and rescues inefficient SNARE complex formation induced by α-syn fibrils in SH-SY5Y cells. However, these protective effects of CSPα were abolished by the L116del mutation. Collectively, these results indicate that L116 deletion in CSPα promotes α-syn pathology and neurotoxicity. Boosting CSPα may be therapeutically useful for treating synucleinopathies.
Collapse
Affiliation(s)
- Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongyan Feng
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juanfeng He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
20
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
22
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Smith AN, Joshi S, Chanzu H, Alfar HR, Prakhya KS, Whiteheart SW. α-Synuclein is the major platelet isoform but is dispensable for activation, secretion, and thrombosis. Platelets 2023; 34:2267147. [PMID: 37927048 PMCID: PMC10629845 DOI: 10.1080/09537104.2023.2267147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023]
Abstract
Platelets play many roles in the vasculature ensuring proper hemostasis and maintaining integrity. These roles are facilitated, in part, by cargo molecules released from platelet granules via Soluble NSF Attachment Protein Receptor (SNARE) mediated membrane fusion, which is controlled by several protein-protein interactions. Chaperones have been characterized for t-SNAREs (i.e. Munc18b for Syntaxin-11), but none have been clearly identified for v-SNAREs. α-Synuclein has been proposed as a v-SNARE chaperone which may affect SNARE-complex assembly, fusion pore opening, and thus secretion. Despite its abundance and that it is the only isoform present, α-synuclein's role in platelet secretion is uncharacterized. In this study, immunofluorescence showed that α-synuclein was present on punctate structures that co-stained with markers for α-granules and lysosomes and in a cytoplasmic pool. We analyzed the phenotype of α-synuclein-/- mice and their platelets. Platelets from knockout mice had a mild, agonist-dependent secretion defect but aggregation and spreading in vitro were unaffected. Consistently, thrombosis/hemostasis were unaffected in the tail-bleeding, FeCl3 carotid injury and jugular vein puncture models. None of the platelet secretory machinery examined, e.g. the v-SNAREs, were affected by α-synuclein's loss. The results indicate that, despite its abundance, α-synuclein has only a limited role in platelet function and thrombosis.
Collapse
Affiliation(s)
- Alexis N. Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Harry Chanzu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
- Present address: GenScript USA Inc., 860 Centennial Ave. Piscataway, NJ 08854, USA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
24
|
Edwardson MA, Shivapurkar N, Li J, Khan M, Smith J, Giannetti ML, Fan R, Dromerick AW. Expansion of plasma MicroRNAs over the first month following human stroke. J Cereb Blood Flow Metab 2023; 43:2130-2143. [PMID: 37694957 PMCID: PMC10925862 DOI: 10.1177/0271678x231196982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 09/12/2023]
Abstract
Few have characterized miRNA expression during the transition from injury to neural repair and secondary neurodegeneration following stroke in humans. We compared expression of 754 miRNAs from plasma samples collected 5, 15, and 30 days post-ischemic stroke from a discovery cohort (n = 55) and 15-days post-ischemic stroke from a validation cohort (n = 48) to healthy control samples (n = 55 and 48 respectively) matched for age, sex, race and cardiovascular comorbidities using qRT-PCR. Eight miRNAs remained significantly altered across all time points in both cohorts including many described in acute stroke. The number of significantly dysregulated miRNAs more than doubled from post-stroke day 5 (19 miRNAs) to days 15 (50 miRNAs) and 30 (57 miRNAs). Twelve brain-enriched miRNAs were significantly altered at one or more time points (decreased expression, stroke versus controls: miR-107; increased expression: miR-99-5p, miR-127-3p, miR-128-3p, miR-181a-3p, miR-181a-5p, miR-382-5p, miR-433-3p, miR-491-5p, miR-495-3p, miR-874-3p, and miR-941). Many brain-enriched miRNAs were associated with apoptosis over the first month post-stroke whereas other miRNAs suggested a transition to synapse regulation and neuronal protection by day 30. These findings suggest that a program of decreased cellular proliferation may last at least 30 days post-stroke, and points to specific miRNAs that could contribute to neural repair in humans.
Collapse
Affiliation(s)
- Matthew A Edwardson
- Department of Neurology, Georgetown University, Washington, DC, USA
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | | | - James Li
- Department of Biostatistics, Bioinformatics, and Mathematics, Georgetown University, Washington, DC, USA
| | - Muhib Khan
- Spectrum Health, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jamal Smith
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Margot L Giannetti
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Mathematics, Georgetown University, Washington, DC, USA
| | - Alexander W Dromerick
- Department of Neurology, Georgetown University, Washington, DC, USA
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
25
|
Casey M, Zou D, Pera RAR, Cabin DE. Alpha-synuclein null mutation exacerbates the phenotype of a model of Menkes disease in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567255. [PMID: 38014334 PMCID: PMC10680713 DOI: 10.1101/2023.11.15.567255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetic modifier screens provide a useful tool, in diverse organisms from Drosophila to C. elegans and mice, for recovering new genes of interest that may reduce or enhance a phenotype of interest. This study reports a modifier screen, based on N-ethyl-N-nitrosourea (ENU) mutagenesis and outcrossing, designed to increase understanding of the normal function of murine α-synuclein ( Snca ). Human SNCA was the first gene linked to familial Parkinson's disease. Since the discovery of the genetic link of SNCA to Parkinson's nearly three decades ago, numerous studies have investigated the normal function of SNCA protein with divergent roles associated with different cellular compartments. Understanding of the normal function of murine Snca is complicated by the fact that mice with homozygous null mutations live a normal lifespan and have only subtle synaptic deficits. Here, we report that the first genetic modifier (a sensitized mutation) that was identified in our screen was the X-linked gene, ATPase copper transporting alpha (Atp7a). In humans, mutations in Atp7a are linked to to Menkes disease, a disease with pleiotropic phenotypes that include a severe neurological component. Atp7a encodes a trans-Golgi copper transporter that supplies the copper co-factor to enzymes that pass through the ER-Golgi network. Male mice that carry a mutation in Atp7a die within 3 weeks of age regardless of Snca genotype. In contrast, here we show that Snca disruption modifies the phenotype of Atp7a in female mice. Female mice that carry the Atp7a mutation, on an Snca null background, die earlier (prior to 35 days) at a significantly higher rate than those that carry the Atp7a mutation on a wildtype Snca background ATPase copper transporting alpha. Thus, Snca null mutations sensitize female mice to mutations in Atp7a, suggesting that Snca protein may have a protective effect in females, perhaps in neurons, given the co-expression patterns. Although data has suggested diverse functions for human and mouse α-synuclein proteins in multiple cell compartments, this is the first demonstration via use of genetic screening to demonstrate that Snca protein may function in the ER-Golgi system in the mammalian brain in a sex-dependent manner. Author summary This study sought to probe the normal function(s) of a protein associated with Parkinson's disease, the second most common neurodegenerative disease in humans. We used a genetic modifier approach to uncover aspects of normal protein function, via mutagenesis of mice and screening for neurological problems that are decreased or enhanced in mice that are null for α-synuclein ( Snca) . Through these studies, we identified the X-linked gene that is mutated in Menkes disease in humans as a modifier of the null Snca phenotype, specifically in female mice. The gene mutated in Menkes disease, ATP7a , encodes a copper transporter that is known to act in the trans-Golgi sub-cellular compartment. Genetic modifier effects suggest that Snca may also play a role in that compartment, potentially in the mammalian brain.
Collapse
|
26
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of Cysteine String Protein alpha-mediated synapse maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560611. [PMID: 37873460 PMCID: PMC10592922 DOI: 10.1101/2023.10.02.560611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mary Alice Allnutt
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | | | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
27
|
Waqar S, Khan H, Zulfiqar SK, Ahmad A. Skin Biopsy as a Diagnostic Tool for Synucleinopathies. Cureus 2023; 15:e47179. [PMID: 38022110 PMCID: PMC10652148 DOI: 10.7759/cureus.47179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Studies published in the last decade identified skin biopsies as a promising source of material for detecting alpha-synuclein (αSN). Alpha-synuclein gets deposited in the skin of patients with synucleinopathies, and therefore, a skin biopsy can be used to diagnose and confirm these diseases histopathologically. A skin biopsy can also be helpful for studies focusing on the nature of αSN deposits. The most important aspects of a biomarker are sensitivity, specificity, and technical feasibility. The potential for a skin biopsy to become the clinical tool of choice as a reliable biomarker for diagnosing synucleinopathies appears to be high, with consistently high sensitivity (>80%) and specificity approaching 100%. The review aims to provide an overview of the factors impacting skin biopsy's sensitivity, specificity, and feasibility in detecting dermal αSN deposits.
Collapse
Affiliation(s)
- Sara Waqar
- Pathology, Geisinger Health System, Danville, USA
| | - Hajra Khan
- Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | | | - Adeel Ahmad
- Dermatopathology/Dermatology/Pathology, Private Practice, Beckley, USA
| |
Collapse
|
28
|
Yin S, Ma XY, Sun YF, Yin YQ, Long Y, Zhao CL, Ma JW, Li S, Hu Y, Li MT, Hu G, Zhou JW. RGS5 augments astrocyte activation and facilitates neuroinflammation via TNF signaling. J Neuroinflammation 2023; 20:203. [PMID: 37674228 PMCID: PMC10481574 DOI: 10.1186/s12974-023-02884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ying-Feng Sun
- Center for Brain Disorders Research, Center of Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Long
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chun-Lai Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun-Wei Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sen Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yan Hu
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Tao Li
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science, Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Co-Innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
29
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
30
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
31
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
32
|
Albarran E, Sun Y, Liu Y, Raju K, Dong A, Li Y, Wang S, Südhof TC, Ding JB. Postsynaptic synucleins mediate endocannabinoid signaling. Nat Neurosci 2023; 26:997-1007. [PMID: 37248337 PMCID: PMC10244176 DOI: 10.1038/s41593-023-01345-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Endocannabinoids are among the most powerful modulators of synaptic transmission throughout the nervous system, and yet little is understood about the release of endocannabinoids from postsynaptic compartments. Here we report an unexpected finding that endocannabinoid release requires synucleins, key contributors to Parkinson's disease. We show that endocannabinoids are released postsynaptically by a synuclein-dependent and SNARE-dependent mechanism. Specifically, we found that synuclein deletion blocks endocannabinoid-dependent synaptic plasticity; this block is reversed by postsynaptic expression of wild-type but not of mutant α-synuclein. Whole-cell recordings and direct optical monitoring of endocannabinoid signaling suggest that the synuclein deletion specifically blocks endocannabinoid release. Given the presynaptic role of synucleins in regulating vesicle lifecycle, we hypothesize that endocannabinoids are released via a membrane interaction mechanism. Consistent with this hypothesis, postsynaptic expression of tetanus toxin light chain, which cleaves synaptobrevin SNAREs, also blocks endocannabinoid-dependent signaling. The unexpected finding that endocannabinoids are released via a synuclein-dependent mechanism is consistent with a general function of synucleins in membrane trafficking and adds a piece to the longstanding puzzle of how neurons release endocannabinoids to induce synaptic plasticity.
Collapse
Affiliation(s)
- Eddy Albarran
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Yue Sun
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Karthik Raju
- Department of Molecular and Cellular Physiology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Barker E, Morgan A, Barclay JW. A Caenorhabditis elegans model of autosomal dominant adult-onset neuronal ceroid lipofuscinosis identifies ethosuximide as a potential therapeutic. Hum Mol Genet 2023; 32:1772-1785. [PMID: 36282524 PMCID: PMC10196665 DOI: 10.1093/hmg/ddac263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/22/2023] Open
Abstract
Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder. This was achieved through CRISPR/Cas9-mediated gene editing of dnj-14, the C. elegans ortholog of DNAJC5. The resultant homozygous ANCL mutant worms exhibited reduced lifespans and severely impaired chemotaxis, similar to isogenic dnj-14 null mutants. Importantly, these phenotypes were also seen in balanced heterozygotes carrying one wild-type and one ANCL mutant dnj-14 allele, mimicking the heterozygosity of ANCL patients. We observed a more severe chemotaxis phenotype in heterozygous ANCL mutant worms compared with haploinsufficient worms lacking one copy of CSP, consistent with a dominant-negative mechanism of action. Additionally, we provide evidence of CSP haploinsufficiency in longevity, as heterozygous null mutants exhibited significantly shorter lifespan than wild-type controls. The chemotaxis phenotype of dnj-14 null mutants was fully rescued by transgenic human CSPα, confirming the translational relevance of the worm model. Finally, a focused compound screen revealed that the anti-epileptic drug ethosuximide could restore chemotaxis in dnj-14 ANCL mutants to wild-type levels. This suggests that ethosuximide may have therapeutic potential for ANCL and demonstrates the utility of this C. elegans model for future larger-scale drug screening.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| |
Collapse
|
34
|
Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, Kim SS, Fuentes-Moliz A, Wang X, Feng Z, Sera F, Takeda T, Homma S, Ko CP, Tabares L, Ebert AD, Rich MM, Monani UR. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023; 111:1423-1439.e4. [PMID: 36863345 PMCID: PMC10164130 DOI: 10.1016/j.neuron.2023.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Narendra N Jha
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Tomoyuki Awano
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Charlotte Caine
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Kishore Gollapalli
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, New York, NY, USA
| | - Andrea Fuentes-Moliz
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fusako Sera
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taishi Takeda
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Umrao R Monani
- Department of Neurology, New York, NY, USA; Department of Pathology & Cell Biology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA; Colleen Giblin Research Laboratory, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
35
|
Vidyadhara DJ, Somayaji M, Wade N, Yücel B, Zhao H, Shashaank N, Ribaudo J, Gupta J, Lam TT, Sames D, Greene LE, Sulzer DL, Chandra SS. Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease. Cell Rep 2023; 42:112231. [PMID: 36920906 PMCID: PMC10127800 DOI: 10.1016/j.celrep.2023.112231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mahalakshmi Somayaji
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Nigel Wade
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Betül Yücel
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Helen Zhao
- Department of Neurology, Yale University, New Haven, CT, USA
| | - N Shashaank
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Joseph Ribaudo
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jyoti Gupta
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dalibor Sames
- Department of Chemistry and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - David L Sulzer
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Departments of Neurology and Pharmacology, Columbia University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Chen Y, Lu H, Ding Y, Liu S, Ding Y, Lu B, Xiao J, Zhou X. Dietary Protective Potential of Fucoxanthin as an Active Food Component on Neurological Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3599-3619. [PMID: 36802555 DOI: 10.1021/acs.jafc.2c08249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aβ aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hao Lu
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yicheng Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shulai Liu
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuxia Zhou
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
37
|
So RWL, Watts JC. α-Synuclein Conformational Strains as Drivers of Phenotypic Heterogeneity in Neurodegenerative Diseases. J Mol Biol 2023:168011. [PMID: 36792008 DOI: 10.1016/j.jmb.2023.168011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
The synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/xsakuraphie
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/JoelWattsLab
| |
Collapse
|
38
|
Martin-Lopez E, Vidyadhara DJ, Liberia T, Meller SJ, Harmon LE, Hsu RM, Spence N, Brennan B, Han K, Yücel B, Chandra SS, Greer CA. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease. J Neurosci 2023; 43:1051-1071. [PMID: 36596700 PMCID: PMC9908323 DOI: 10.1523/jneurosci.1526-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Teresa Liberia
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sarah J Meller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Leah E Harmon
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Ryan M Hsu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Natalie Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Betül Yücel
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
39
|
Bagree G, Srivastava T, Mahasivam S, Sinha M, Bansal V, Ramanathan R, Priya S, Sharma SK. Differential interactions of α-synuclein conformers affect refolding and activity of proteins. J Biochem 2023; 173:107-114. [PMID: 36368019 DOI: 10.1093/jb/mvac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation of protein aggregates as intracellular inclusions interferes with cellular protein homeostasis leading to protein aggregation diseases. Protein aggregation results in the formation of several protein conformers including oligomers and fibrils, where each conformer has its own structural characteristic and proteotoxic potential. The present study explores the effect of alpha-synuclein (α-syn) conformers on the activity and spontaneous refolding of firefly luciferase. Of the different conformers, α-syn monomers delayed the inactivation of luciferase under thermal stress conditions and enhanced the spontaneous refolding of luciferase. In contrast, the α-syn oligomers and fibrils adversely affected luciferase activity and refolding, where the oligomers inhibited spontaneous refolding, whereas a pronounced effect on the inactivation of native luciferase was observed in the case of fibrils. These results indicate that the oligomers and fibrils of α-syn interfere with the refolding of luciferase and promote its misfolding and aggregation. The study reveals the differential propensities of various conformers of a pathologically relevant protein in causing inactivation, structural modifications and misfolding of other proteins, consequently resulting in altered protein homeostasis.
Collapse
Affiliation(s)
- Gayatri Bagree
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tulika Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sanje Mahasivam
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Smriti Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
40
|
Sharma M, Burré J. α-Synuclein in synaptic function and dysfunction. Trends Neurosci 2023; 46:153-166. [PMID: 36567199 PMCID: PMC9877183 DOI: 10.1016/j.tins.2022.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
α-Synuclein is a neuronal protein that is enriched in presynaptic terminals. Under physiological conditions, it binds to synaptic vesicle membranes and functions in neurotransmitter release, although the molecular details remain unclear, and it is controversial whether α-synuclein inhibits or facilitates neurotransmitter release. Pathologically, in synucleinopathies including Parkinson's disease (PD), α-synuclein forms aggregates that recruit monomeric α-synuclein and spread throughout the brain, which triggers neuronal dysfunction at molecular, cellular, and organ levels. Here, we present an overview of the effects of α-synuclein on SNARE-complex assembly, neurotransmitter release, and synaptic vesicle pool homeostasis, and discuss how the observed divergent effects of α-synuclein on neurotransmitter release can be reconciled. We also discuss how gain-of-function versus loss-of-function of α-synuclein may contribute to pathogenesis in synucleinopathies.
Collapse
Affiliation(s)
- Manu Sharma
- Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
42
|
Dias SB, de Lemos L, Sousa L, Bitoque DB, Silva GA, Seabra MC, Tenreiro S. Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules 2023; 13:biom13010180. [PMID: 36671565 PMCID: PMC9855780 DOI: 10.3390/biom13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alpha-synuclein (aSyn) plays a central role in Parkinson's disease (PD) and has been extensively studied in the brain. This protein is part of the synuclein family, which is also composed of beta-synuclein (bSyn) and gamma-synuclein (gSyn). In addition to its neurotoxic role, synucleins have important functions in the nervous system, modulating synaptic transmission. Synucleins are expressed in the retina, but they have been poorly characterized. However, there is evidence that they are important for visual function and that they can play a role in retinal degeneration. This study aimed to profile synucleins in the retina of naturally aged mice and to correlate their patterns with specific retinal cells. With aging, we observed a decrease in the thickness of specific retinal layers, accompanied by an increase in glial reactivity. Moreover, the aSyn levels decreased, whereas bSyn increased with aging. The colocalization of both proteins was decreased in the inner plexiform layer (IPL) of the aged retina. gSyn presented an age-related decrease at the inner nuclear layer but was not significantly changed in the ganglion cell layer. The synaptic marker synaptophysin was shown to be preferentially colocalized with aSyn in the IPL with aging. At the same time, aSyn was found to exist at the presynaptic endings of bipolar cells and was affected by aging. Overall, this study suggests that physiological aging can be responsible for changes in the retinal tissue, implicating functional alterations that could affect synuclein family function.
Collapse
Affiliation(s)
- Sarah Batista Dias
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luísa de Lemos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Gabriela Araújo Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
43
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife 2023; 12:e85837. [PMID: 36626307 PMCID: PMC9876576 DOI: 10.7554/elife.85837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Alpha-synuclein (α-syn), a major component of Lewy bodies found in Parkinson's disease (PD) patients, has been found exported outside of cells and may mediate its toxicity via cell-to-cell transmission. Here, we reconstituted soluble, monomeric α-syn secretion by the expression of DnaJ homolog subfamily C member 5 (DNAJC5) in HEK293T cells. DNAJC5 undergoes palmitoylation and anchors on the membrane. Palmitoylation is essential for DNAJC5-induced α-syn secretion, and the secretion is not limited by substrate size or unfolding. Cytosolic α-syn is actively translocated and sequestered in an endosomal membrane compartment in a DNAJC5-dependent manner. Reduction of α-syn secretion caused by a palmitoylation-deficient mutation in DNAJC5 can be reversed by a membrane-targeting peptide fusion-induced oligomerization of DNAJC5. The secretion of endogenous α-syn mediated by DNAJC5 is also found in a human neuroblastoma cell line, SH-SY5Y, differentiated into neurons in the presence of retinoic acid, and in human-induced pluripotent stem cell-derived midbrain dopamine neurons. We propose that DNAJC5 forms a palmitoylated oligomer to accommodate and export α-syn.
Collapse
Affiliation(s)
- Shenjie Wu
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | | | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Iona Thomas-Wright
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
45
|
Huang RJ, Tang R, Song XY, Wang JH, Chen K, Tian WD. Insights into aggregation dynamics of NACore peptides from coarse-grained simulations. Proteins 2023; 91:16-21. [PMID: 36514832 DOI: 10.1002/prot.26405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Alpha(α)-synuclein is closely related to the pathogenesis of Parkinson's disease (PD). The NACore, a fragment of α-synuclein, is considered to be the key region of α-synuclein that causes PD. The aggregation dynamics of NACores are studied via coarse-grained molecular dynamics simulations. We find that NACores can self-assemble into a large cluster at high concentrations. The aggregation dynamics can be divided into three stages. The growth kinetics for the first and second stages follows the power law, Smax ~ tγ , with the second stage faster than the first one. The characteristic lifetime for the high concentration is 40 times larger than that for the low concentration, implying the low fluidity. Understanding the aggregation dynamics of NACores is helpful to develop drugs for therapeutic prevention and intervention.
Collapse
Affiliation(s)
- Rui-Jing Huang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Ran Tang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiang-Yan Song
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Jing-Han Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
46
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
47
|
Suthar SK, Lee SY. Ingenuity pathway analysis of α-synuclein predicts potential signaling pathways, network molecules, biological functions, and its role in neurological diseases. Front Mol Neurosci 2022; 15:1029682. [DOI: 10.3389/fnmol.2022.1029682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the knowledge that mutation, multiplication, and anomalous function of α-synuclein cause progressive transformation of α-synuclein monomers into toxic amyloid fibrils in neurodegenerative diseases, the understanding of canonical signaling, interaction network molecules, biological functions, and role of α-synuclein remains ambiguous. The evolution of artificial intelligence and Bioinformatics tools have enabled us to analyze a vast pool of data to draw meaningful conclusions about the events occurring in complex biological systems. We have taken the advantage of such a Bioinformatics tool, ingenuity pathway analysis (IPA) to decipher the signaling pathways, interactome, biological functions, and role of α-synuclein. IPA of the α-synuclein NCBI gene dataset revealed neuroinflammation, Huntington’s disease, TREM1, phagosome maturation, and sirtuin signaling as the key canonical signaling pathways. IPA further revealed Parkinson’s disease (PD), sumoylation, and SNARE signaling pathways specific to the toxicity of α-synuclein. A frequency distribution analysis of α-synuclein-associated genes from the NCBI dataset that appeared in the predicted canonical pathways revealed that NFKB1 was the most populated gene across the predicted pathways followed by FOS, PRKCD, TNF, GSK3B, CDC42, IL6, MTOR, PLCB1, and IL1B. Overlapping of the predicted top-five canonical signaling pathways and the α-synuclein NCBI gene dataset divulged that neuroinflammation signaling was the most overlapped pathway, while NFKB1, TNF, and CASP1 were the most shared molecules among the pathways. The major diseases associated with α-synuclein were predicted to be neurological diseases, organismal injury and abnormalities, skeletal and muscular disorders, psychological disorders, and hereditary disorders. The molecule activity predictor (MAP) analysis of the principal interaction network of α-synuclein gene SNCA revealed that SNCA directly interacts with APP, CLU, and NEDD4, whereas it indirectly communicates with CALCA and SOD1. Besides, IPA also predicted amyloid plaque forming APP, cytokines/inflammatory mediators IL1B, TNF, MIF, PTGS2, TP53, and CCL2, and kinases of MAPK family Mek, ERK, and P38 MAPK as the top upstream regulators of α-synuclein signaling cascades. Taken together, the first IPA analysis of α-synuclein predicted PD as the key toxicity pathway, neurodegeneration as the major pathological outcome, and inflammatory mediators as the critical interacting partners of α-synuclein.
Collapse
|
48
|
Reynolds WF, Malle E, Maki RA. Thiocyanate Reduces Motor Impairment in the hMPO-A53T PD Mouse Model While Reducing MPO-Oxidation of Alpha Synuclein in Enlarged LYVE1/AQP4 Positive Periventricular Glymphatic Vessels. Antioxidants (Basel) 2022; 11:antiox11122342. [PMID: 36552550 PMCID: PMC9774557 DOI: 10.3390/antiox11122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is due to the oxidation of alpha synuclein (αSyn) contributing to motor impairment. We developed a transgenic mouse model of PD that overexpresses the mutated human αSyn gene (A53T) crossed to a mouse expressing the human MPO gene. This model exhibits increased oxidation and chlorination of αSyn leading to greater motor impairment. In the current study, the hMPO-A53T mice were treated with thiocyanate (SCN-) which is a favored substrate of MPO as compared to chlorine. We show that hMPO-A53T mice treated with SCN- have less chlorination in the brain and show an improvement in motor skills compared to the nontreated hMPO-A53T mice. Interestingly, in the hMPO-A53T mice we found a possible link between MPO-related disease and the glymphatic system which clears waste including αSyn from the brain. The untreated hMPO-A53T mice exhibited an increase in the size of periventricular glymphatic vessels expressing the glymphatic marker LYVE1 and aquaporin 4 (AQP4). These vessels also exhibited an increase in MPO and HOCl-modified epitopes in the glymphatic vessels correlating with loss of ependymal cells lining the ventricles. These findings suggest that MPO may significantly promote the impairment of the glymphatic waste removal system thus contributing to neurodegeneration in PD. Moreover, the inhibition of MPO chlorination/oxidation by SCN- may provide a potential therapeutic approach to this disease.
Collapse
Affiliation(s)
- Wanda F. Reynolds
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence:
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Richard A. Maki
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Pirhaghi M, Frank SA, Alam P, Nielsen J, Sereikaite V, Gupta A, Strømgaard K, Andreasen M, Sharma D, Saboury AA, Otzen DE. A penetratin-derived peptide reduces the membrane permeabilization and cell toxicity of α-synuclein oligomers. J Biol Chem 2022; 298:102688. [PMID: 36370848 PMCID: PMC9791135 DOI: 10.1016/j.jbc.2022.102688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced β-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 μM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Signe Andrea Frank
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India; G.N. Ramachandran Protein Centre, Academy of Scientific & Innovative Research, Chennai, India
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
50
|
Liu W, Lim KL, Tan EK. Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson's disease in Drosophila. Transl Neurodegener 2022; 11:44. [PMID: 36253844 PMCID: PMC9575256 DOI: 10.1186/s40035-022-00318-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background Aberrant aggregation of α-synuclein (α-syn) is a key pathological feature of Parkinson’s disease (PD), but the precise role of intestinal α-syn in the progression of PD is unclear. In a number of genetic Drosophila models of PD, α-syn was frequently ectopically expressed in the neural system to investigate the pathobiology. Method We investigated the potential role of intestinal α-syn in PD pathogenesis using a Drosophila model. Human α-syn was overexpressed in Drosophila guts, and life span, survival, immunofluorescence and climbing were evaluated. Immunofluorescence, Western blotting and reactive oxygen species (ROS) staining were performed to assess the effects of intestinal α-syn on intestinal dysplasia. High‐throughput RNA and 16S rRNA gene sequencing, quantitative RT‐PCR, immunofluorescence, and ROS staining were performed to determine the underlying molecular mechanism. Results We found that the intestinal α-syn alone recapitulated many phenotypic and pathological features of PD, including impaired life span, loss of dopaminergic neurons, and progressive motor defects. The intestine-derived α-syn disrupted intestinal homeostasis and accelerated the onset of intestinal ageing. Moreover, intestinal expression of α-syn induced dysbiosis, while microbiome depletion was efficient to restore intestinal homeostasis and ameliorate the progression of PD. Intestinal α-syn triggered ROS, and eventually led to the activation of the dual oxidase (DUOX)–ROS–Jun N-terminal Kinase (JNK) pathway. In addition, α-syn from both the gut and the brain synergized to accelerate the progression of PD. Conclusions The intestinal expression of α-syn recapitulates many phenotypic and pathologic features of PD, and induces dysbiosis that aggravates the pathology through the DUOX–ROS–JNK pathway in Drosophila. Our findings provide new insights into the role of intestinal α-syn in PD pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00318-w.
Collapse
Affiliation(s)
- Wei Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China.,Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Kah-Leong Lim
- Department of Research, National Neuroscience Institute, Singapore, Singapore.,Research, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore. .,Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|