1
|
Dao HH, Nguyen TH, Hoang DH, Vu BD, Tran MA, Le MT, Hoang NTM, Bui AV, Than UTT, Nguyen XH. Manufacturing exosomes for wound healing: Comparative analysis of culture media. PLoS One 2024; 19:e0313697. [PMID: 39541412 PMCID: PMC11563385 DOI: 10.1371/journal.pone.0313697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes (EXs) have emerged as promising therapeutic agents for wound healing. However, the optimal conditions for manufacturing MSC-derived EXs that maximize their wound-healing potential have yet to be established. Hence, we compared the efficacy of five different MSC culture media, including three different serum-free, a platelet-supplemented, and a fetal bovine serum-supplemented media, in exosome manufacturing for wound healing applications. Although umbilical cord-derived MSCs (UCMSCs) cultured in these media exhibited similar proliferation, morphology, MSC surface marker expression, and stemness, EXs derived from UCMSCs cultured in different culture media displayed varying levels of growth factors and cytokines. Notably, EXs derived from platelet-supplemented media (DM-PLT_EXs) exhibited significantly higher concentrations of keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), interleukin 6 (IL-6), interleukin 7 (IL-7), and interleukin 8 (IL-8) than EXs from other media. These differences correlated with the superior capability of DM-PLT_EXs to promote human skin fibroblast proliferation and stimulate angiogenesis of human umbilical vein endothelial cells, making them a more suitable choice for wound healing applications. Our findings emphasize the significance of the culture medium selection in tailoring the therapeutic potential of UCMSC-derived EXs for wound healing.
Collapse
Affiliation(s)
- Huy Hoang Dao
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | - Bach Duong Vu
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Minh-Anh Tran
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Mai Thi Le
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Viet Bui
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
2
|
Sakunrangsit N, Khuisangeam N, Inthanachai T, Yodsurang V, Taechawattananant P, Suppipat K, Tawinwung S. Incorporating IL7 receptor alpha signaling in the endodomain of B7H3-targeting chimeric antigen receptor T cells mediates antitumor activity in glioblastoma. Cancer Immunol Immunother 2024; 73:98. [PMID: 38619641 PMCID: PMC11018726 DOI: 10.1007/s00262-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo. All the B7H3-IL7Rα CAR-T cells exhibited a less differentiated phenotype and effectively eliminated B7H3-positive glioblastoma in vitro. Superiority was found in B7H3 CAR-T cells contained the short length of the IL7Rα cytoplasmic domain. Integration of the IL7R-S cytoplasmic domain maintained pSTAT5 activation and increased T-cell proliferation while reducing activation-induced cell death. Moreover, RNA-sequencing analysis of B7H3-IL7R-S CAR-T cells after coculture with a glioblastoma cell line revealed downregulation of proapoptotic genes and upregulation of genes associated with T-cell proliferation compared with those in 2nd generation B7H3 CAR-T cells. In animal models, compared with conventional CAR-T cells, B7H3-IL7R-S CAR-T cells suppressed tumor growth and prolonged overall survival. Our study demonstrated the therapeutic potential of IL7Rα-incorporating CAR-T cells for glioblastoma treatment, suggesting a promising strategy for augmenting the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattarika Khuisangeam
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thananya Inthanachai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varalee Yodsurang
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasrawin Taechawattananant
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Koramit Suppipat
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, Peterson CW, Kiem HP, Kitchen SG. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol Ther 2024; 32:1000-1015. [PMID: 38414243 PMCID: PMC11163220 DOI: 10.1016/j.ymthe.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wenli Mu
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather Martin
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Wu D, Hao O, Hu W, Wu Z, Bian L, Wang H, Zhu J. Circulating cytokines and alcoholic liver disease: a two-sample bidirectional Mendelian randomization study. Scand J Gastroenterol 2024; 59:325-332. [PMID: 37994815 DOI: 10.1080/00365521.2023.2286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Increased inflammation in the liver during ethanol exposure is a major feature of alcoholic liver disease (ALD). An important contributing component to the development of ALD is the inflammatory response brought on by immunological response, however the connection between individual circulating cytokines and ALD is still unclear. To ascertain the causation, we conducted a two-sample bidirectional Mendelian randomization research. METHODS We extracted 41 cytokines and growth factors of 8293 Europeans and ALD cases of the same ethnicity (1416 cases and 217,376 controls) from the Genome-Wide Association Studies (GWAS) database for two-sample bidirectional MR analysis. RESULTS Our analyses suggest that higher interleukin-7 (IL-7) levels are associated with an increased risk of ALD (p = 0.028, OR = 1.191,95% CI = 1.019-1.392), while tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a protective factor for ALD (p = 0.032, OR = 0.863, 95% CI = 0.754-0.988) which can reduce the risk of disease occurrence. In addition, genetically predicted ALD does not affect the expression of circulating cytokines regulators. CONCLUSIONS Our study supports that cytokines play a pivotal role in the pathogenesis of ALD. To determine the mechanisms and pathways of action of these biomarkers, further basic research is required to ensure their clinical suitability for preventing and treating ALD.
Collapse
Affiliation(s)
- Duan Wu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ouyang Hao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaorong Wu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linke Bian
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Park JH, Lee SW, Choi D, Lee C, Sung YC. Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies. Immune Netw 2024; 24:e9. [PMID: 38455462 PMCID: PMC10917577 DOI: 10.4110/in.2024.24.e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Donghoon Choi
- Research Institute of NeoImmune Tech., Co, Ltd., Bio Open Innovation Center, Pohang 37666, Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
6
|
Kwon DI, Park S, Jeong YL, Kim YM, Min J, Lee C, Choi JA, Choi YH, Kong HJ, Choi Y, Baek S, Lee KJ, Kang YW, Jeong C, You G, Oh Y, Im SK, Song M, Kim JK, Chang J, Choi D, Lee SW. Fc-fused IL-7 provides broad antiviral effects against respiratory virus infections through IL-17A-producing pulmonary innate-like T cells. Cell Rep Med 2024; 5:101362. [PMID: 38232693 PMCID: PMC10829794 DOI: 10.1016/j.xcrm.2023.101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.
Collapse
Affiliation(s)
- Dong-Il Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Young-Min Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jeongyong Min
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungtae Baek
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Chaerim Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Youngsik Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Sun-Kyoung Im
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea.
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea.
| |
Collapse
|
7
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Schmidt H, Raj T, O'Neill TJ, Muschaweckh A, Giesert F, Negraschus A, Hoefig KP, Behrens G, Esser L, Baumann C, Feederle R, Plaza-Sirvent C, Geerlof A, Gewies A, Isay SE, Ruland J, Schmitz I, Wurst W, Korn T, Krappmann D, Heissmeyer V. Unrestrained cleavage of Roquin-1 by MALT1 induces spontaneous T cell activation and the development of autoimmunity. Proc Natl Acad Sci U S A 2023; 120:e2309205120. [PMID: 37988467 PMCID: PMC10691344 DOI: 10.1073/pnas.2309205120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.
Collapse
Affiliation(s)
- Henrik Schmidt
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Timsse Raj
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Thomas J. O'Neill
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich, School of Medicine, Munich81675, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Arlinda Negraschus
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Kai P. Hoefig
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich81337, Germany
| | - Gesine Behrens
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Lena Esser
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Christina Baumann
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich81337, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Carlos Plaza-Sirvent
- Department of Molecular Immunology, ZKF2, Ruhr-University Bochum, Bochum44801, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Andreas Gewies
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Sophie E. Isay
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich81675, Germany
| | - Jürgen Ruland
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich81675, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich81675, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, ZKF2, Ruhr-University Bochum, Bochum44801, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
- Max-Planck-Institute of Psychiatry, Munich80804, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising85354, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich, School of Medicine, Munich81675, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Medical Faculty, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich81337, Germany
| |
Collapse
|
9
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Gallardo-Dodd CJ, Oertlin C, Record J, Galvani RG, Sommerauer C, Kuznetsov NV, Doukoumopoulos E, Ali L, Oliveira MMS, Seitz C, Percipalle M, Nikić T, Sadova AA, Shulgina SM, Shmarov VA, Kutko OV, Vlasova DD, Orlova KD, Rykova MP, Andersson J, Percipalle P, Kutter C, Ponomarev SA, Westerberg LS. Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells. SCIENCE ADVANCES 2023; 9:eadg1610. [PMID: 37624890 PMCID: PMC10456848 DOI: 10.1126/sciadv.adg1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+ T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity.
Collapse
Affiliation(s)
- Carlos J. Gallardo-Dodd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Christian Oertlin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rômulo G. Galvani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Universidade Veiga de Almeida, Rio de Janeiro, Brazil
- Laboratory for Thymus Research (LPT), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Christian Sommerauer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V. Kuznetsov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | | | - Liaqat Ali
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Core Technology Platform, NYUAD, Abu Dhabi, United Arab Emirates
| | - Mariana M. S. Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Percipalle
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tijana Nikić
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia A. Sadova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Sofia M. Shulgina
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Vjacheslav A. Shmarov
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V. Kutko
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Daria D. Vlasova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Kseniya D. Orlova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Marina P. Rykova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYUAD, Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sergey A. Ponomarev
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Preston SP, Allison CC, Schaefer J, Clow W, Bader SM, Collard S, Forsyth WO, Clark MP, Garnham AL, Li-Wai-Suen CSN, Peiris T, Teale J, Mackiewicz L, Davidson S, Doerflinger M, Pellegrini M. A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection. Cell Death Dis 2023; 14:123. [PMID: 36792599 PMCID: PMC9931694 DOI: 10.1038/s41419-023-05635-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damage and impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic and persistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated because proteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining the role of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributes to the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing that necroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docile strain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads are not altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, we identified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. This was not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function of RIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to an impaired antiviral immune response and abrogated clearance of chronic LCMV infection.
Collapse
Affiliation(s)
- Simon P. Preston
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia ,SYNthesis Research, Bio21 Institute, Parkville, VIC Australia
| | - Cody C. Allison
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Jan Schaefer
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - William Clow
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Stefanie M. Bader
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Sophie Collard
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Wasan O. Forsyth
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Michelle P. Clark
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Alexandra L. Garnham
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Connie S. N. Li-Wai-Suen
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Thanushi Peiris
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Jack Teale
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Liana Mackiewicz
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Sophia Davidson
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
13
|
Vimali J, Yong YK, Murugesan A, Vishnupriya K, Ashwin R, Daniel EA, Balakrishnan P, Raju S, Rosmawati M, Velu V, Larsson M, Shankar EM. Plasma interleukin-7 correlation with human immunodeficiency virus RNA and CD4+ T cell counts, and interleukin-5 with circulating hepatitis B virus DNA may have implications in viral control. Front Med (Lausanne) 2022; 9:1019230. [PMID: 36405584 PMCID: PMC9668853 DOI: 10.3389/fmed.2022.1019230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic viral infections represent a leading cause of global morbidity and mortality. Chronic HBV, HCV, and HIV infections result in cytokine perturbations that may hold key implications in understanding the complex disease mechanisms driving virus persistence and/or resolution. Here, we determined the levels of various plasma cytokines using a commercial Bio-Plex Luminex cytokine array in chronic HBV (n = 30), HCV (n = 15), and HIV (n = 40) infections and correlated with corresponding plasma viral loads (PVLs) and liver parameters. We observed differential perturbations in cytokine profiles among the study groups. The cytokines levels positively correlated with PVL and liver transaminases. The monocyte-derived cytokines viz., MIP-1β, IL-8, and TNF-α, and Th2 cytokines like IL-4, IL-5, and IL-13 showed a better correlation with liver enzymes as compared to their corresponding PVLs. Our investigation also identified two cytokines viz., IL-5 and IL-7 that inversely correlated with HBV DNA and HIV PVLs, respectively. Regression analysis adjusted for age showed that every increase of IL-5 by one unit was associated with a reduction in HBV PVL by log10 0.4, whereas, every elevation by a unit of IL-7 was associated with decreased HIV PVL by log10 2.5. We also found that IL-7 levels correlated positively with absolute CD4+ T cell counts in HIV-infected patients. We concluded that plasma IL-5 and IL-7 may likely have a key role on viral control in HBV and HIV infections, respectively. A noteworthy increase in cytokines appears to bear protective and pathological significance, and indeed is reflective of the host's versatile immune armory against viral persistence.
Collapse
Affiliation(s)
- Jaisheela Vimali
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | | | - Rajeev Ashwin
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evangeline Ann Daniel
- National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Pachamuthu Balakrishnan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Mohamed Rosmawati
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Universiti Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
14
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Background There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. Methods This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. Results Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. Conclusions It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- *Correspondence: Marcos Jessé Abrahão Silva,
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
15
|
Li F, Liu H, Zhang D, Ma Y, Zhu B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 2022; 167:482-494. [DOI: 10.1111/imm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fei Li
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Huiling Liu
- Department of gynecology and obstetrics Gansu Provincial Hospital Lanzhou China
| | - Dan Zhang
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
- State Key Laboratory of Veterinary Etiological Biology, School of Veterinary Medicine and Biosafety Lanzhou University Lanzhou China
| |
Collapse
|
16
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
17
|
Ebrahimnezhaddarzi S, Bird CH, Allison CC, Tuipulotu DE, Kostoulias X, Macri C, Stutz MD, Abraham G, Kaiserman D, Pang SS, Man SM, Mintern JD, Naderer T, Peleg AY, Pellegrini M, Whisstock JC, Bird PI. Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunol Cell Biol 2022; 100:529-546. [PMID: 35471730 PMCID: PMC9545170 DOI: 10.1111/imcb.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
To control infections phagocytes can directly kill invading microbes. Macrophage‐expressed gene 1 (Mpeg1), a pore‐forming protein sometimes known as perforin‐2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68‐positive endolysosomal compartment, and that it exists predominantly as a processed, two‐chain disulfide‐linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.
Collapse
Affiliation(s)
- Salimeh Ebrahimnezhaddarzi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Xenia Kostoulias
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Siew Siew Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School Monash University Prahran VIC Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
18
|
Shin JJ, Par-Young J, Unlu S, McNamara A, Park HJ, Shin MS, Gee RJ, Doyle H, Afinogenova Y, Zidan E, Kwah J, Russo A, Mamula M, Hsu FI, Catanzaro J, Racke M, Bucala R, Wilen C, Kang I. Defining Clinical and Immunological Predictors of Poor Immune Responses to COVID-19 mRNA Vaccines in Patients with Primary Antibody Deficiency. J Clin Immunol 2022; 42:1137-1150. [PMID: 35713752 PMCID: PMC9203263 DOI: 10.1007/s10875-022-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines in primary antibody deficiencies (PADs) are largely unknown. We investigated antibody and CD4+ T-cell responses specific for SARS-CoV-2 spike protein (S) before and after vaccination and associations between vaccine response and patients' clinical and immunological characteristics in PADs. The PAD cohort consisted of common variable immune deficiency (CVID) and other PADs, not meeting the criteria for CVID diagnosis (oPADs). Anti-S IgG, IgA, and IgG subclasses 1 and 3 increased after vaccination and correlated with neutralization activity in HCs and patients with oPADs. However, 42% of CVID patients developed such responses after the 2nd dose. A similar pattern was also observed with S-specific CD4+ T-cells as determined by OX40 and 4-1BB expression. Patients with poor anti-S IgG response had significantly lower levels of baseline IgG, IgA, CD19+ B-cells, switched memory B-cells, naïve CD8+ T-cells, and a higher frequency of EM CD8+ T-cells and autoimmunity compared to patients with adequate anti-S IgG responses. Patients with oPADs can develop humoral and cellular immune responses to vaccines similar to HCs. However, a subset of CVID patients exhibit impairment in developing such responses, which can be predicted by the baseline immune profile and history of autoimmunity.
Collapse
Affiliation(s)
- Junghee Jenny Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jennefer Par-Young
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Serhan Unlu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Andrew McNamara
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Hong-Jai Park
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Min Sun Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Renelle J Gee
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Hester Doyle
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Yuliya Afinogenova
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Elena Zidan
- Department of Internal Medicine, Bridgeport Hospital - Yale New Haven Health, Bridgeport, CT, 06610, USA
| | - Jason Kwah
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Armand Russo
- Section of Hematology and Oncology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Mark Mamula
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Florence Ida Hsu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Michael Racke
- Quest Diagnostics, 500 Plaza Dr, Secaucus, NJ, 07094, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Craig Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
19
|
Lélu K, Dubois C, Evlachev A, Crausaz M, Baldazza M, Kehrer N, Brandely R, Schlesinger Y, Silvestre N, Marchand JB, Bastien B, Leung-Theung-Long S, Unsinger J, Martin P, Inchauspé G. Viral Delivery of IL-7 Is a Potent Immunotherapy Stimulating Innate and Adaptive Immunity and Confers Survival in Sepsis Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:99-117. [PMID: 35667841 DOI: 10.4049/jimmunol.2101145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022]
Abstract
Persistence of an immunosuppressive state plays a role in septic patient morbidity and late mortality. Both innate and adaptive pathways are impaired, pointing toward the need for immune interventions targeting both arms of the immune system. We developed a virotherapy using the nonpropagative modified vaccinia virus Ankara (MVA), which harbors the intrinsic capacity to stimulate innate immunity, to deliver IL-7, a potent activator of adaptive immunity. The rMVA-human IL-7 (hIL-7)-Fc encoding the hIL-7 fused to the human IgG2-Fc was engineered and shown to express a dimeric, glycosylated, and biologically active cytokine. Following a single i.v. injection in naive mice, the MVA-hIL-7-Fc increased the number of total and activated B, T, and NK cells but also myeloid subpopulations (Ly6Chigh, Ly6Cint, and Ly6Cneg cells) in both lung and spleen. It triggered differentiation of T cells in central memory, effector memory, and acute effector phenotypes and enhanced polyfunctionality of T cells, notably the number of IFN-γ-producing cells. The MVA vector contributed significantly to immune cell activation, particularly of NK cells. The MVA-hIL-7-Fc conferred a significant survival advantage in the cecal ligation and puncture (CLP) and Candida albicans sepsis models. It significantly increased cell numbers and activation in both spleen and lung of CLP mice. Comparatively, in naive and CLP mice, the rhIL-7-Fc soluble counterpart overall induced less vigorous, shorter lasting, and narrower immune activities than did the MVA-hIL-7-Fc and favored TNF-α-producing cells. The MVA-hIL-7-Fc represents a novel class of immunotherapeutic with clinical potential for treatment of septic patients.
Collapse
Affiliation(s)
- Karine Lélu
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Clarisse Dubois
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Alexei Evlachev
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Morgane Crausaz
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Marie Baldazza
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Nadine Kehrer
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Renée Brandely
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | - Yasmin Schlesinger
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | - Nathalie Silvestre
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | | | - Bérangère Bastien
- Department of Medical Affairs, Transgene SA, Illkirch-Graffenstraden, France
| | | | - Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO.,Department of Medicine, Washington University School of Medicine, St. Louis, MO; and.,Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Perrine Martin
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | | |
Collapse
|
20
|
Emery A, Moore S, Turner JE, Campbell JP. Reframing How Physical Activity Reduces The Incidence of Clinically-Diagnosed Cancers: Appraising Exercise-Induced Immuno-Modulation As An Integral Mechanism. Front Oncol 2022; 12:788113. [PMID: 35359426 PMCID: PMC8964011 DOI: 10.3389/fonc.2022.788113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Undertaking a high volume of physical activity is associated with reduced risk of a broad range of clinically diagnosed cancers. These findings, which imply that physical activity induces physiological changes that avert or suppress neoplastic activity, are supported by preclinical intervention studies in rodents demonstrating that structured regular exercise commonly represses tumour growth. In Part 1 of this review, we summarise epidemiology and preclinical evidence linking physical activity or regular structured exercise with reduced cancer risk or tumour growth. Despite abundant evidence that physical activity commonly exerts anti-cancer effects, the mechanism(s)-of-action responsible for these beneficial outcomes is undefined and remains subject to ongoing speculation. In Part 2, we outline why altered immune regulation from physical activity - specifically to T cells - is likely an integral mechanism. We do this by first explaining how physical activity appears to modulate the cancer immunoediting process. In doing so, we highlight that augmented elimination of immunogenic cancer cells predominantly leads to the containment of cancers in a 'precancerous' or 'covert' equilibrium state, thus reducing the incidence of clinically diagnosed cancers among physically active individuals. In seeking to understand how physical activity might augment T cell function to avert cancer outgrowth, in Part 3 we appraise how physical activity affects the determinants of a successful T cell response against immunogenic cancer cells. Using the cancer immunogram as a basis for this evaluation, we assess the effects of physical activity on: (i) general T cell status in blood, (ii) T cell infiltration to tissues, (iii) presence of immune checkpoints associated with T cell exhaustion and anergy, (iv) presence of inflammatory inhibitors of T cells and (v) presence of metabolic inhibitors of T cells. The extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers - and whether physical activity changes these determinants in an interconnected or unrelated manner - is unresolved. Accordingly, we analyse how physical activity might alter each determinant, and we show how these changes may interconnect to explain how physical activity alters T cell regulation to prevent cancer outgrowth.
Collapse
Affiliation(s)
- Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
21
|
A randomized phase 2 trial of idiotype vaccination and adoptive autologous T-cell transfer in patients with multiple myeloma. Blood 2022; 139:1289-1301. [PMID: 34521108 PMCID: PMC8900281 DOI: 10.1182/blood.2020008493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding antimyeloma idiotype (Id)-keyhole limpet hemocyanin (KLH) vaccine to vaccine-specific costimulated T cells. In this randomized phase 2 trial, patients received either control (KLH only) or Id-KLH vaccine, autologous transplantation, vaccine-specific costimulated T cells expanded ex vivo, and 2 booster doses of assigned vaccine. In 36 patients (KLH, n = 20; Id-KLH, n = 16), no dose-limiting toxicity was seen. At last evaluation, 6 (30%) and 8 patients (50%) had achieved complete remission in KLH-only and Id-KLH arms, respectively (P = .22), and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; P = .32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with patients receiving KLH only, there was a greater change in IR genes in T cells in those receiving Id-KLH relative to baseline. Specifically, upregulation of genes associated with activation, effector function induction, and memory CD8+ T-cell generation after Id-KLH but not after KLH control vaccination was observed. Similarly, in responding patients across both arms, upregulation of genes associated with T-cell activation was seen. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of patients receiving Id-KLH. In conclusion, in this combination immunotherapy approach, we observed significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies. This trial was registered at www.clinicaltrials.gov as #NCT01426828.
Collapse
|
22
|
Kahan SM, Bakshi RK, Ingram JT, Hendrickson RC, Lefkowitz EJ, Crossman DK, Harrington LE, Weaver CT, Zajac AJ. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection. Sci Immunol 2022; 7:eabl6322. [PMID: 35148200 PMCID: PMC8923238 DOI: 10.1126/sciimmunol.abl6322] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we show that the capacity to manufacture IL-2 identifies constituents of the expanded CD8 T cell effector pool that display stem-like features, preferentially survive, rapidly attain memory traits, resist exhaustion, and control chronic viral challenges. The cell-intrinsic synthesis of IL-2 by CD8 T cells attenuates the ability to receive IL-2-dependent STAT5 signals, thereby limiting terminal effector formation, endowing the IL-2-producing effector subset with superior protective powers. In contrast, the non-IL-2-producing effector cells respond to IL-2 signals and gain effector traits at the expense of memory formation. Despite having distinct properties during the effector phase, IL-2-producing and nonproducing CD8 T cells appear to converge transcriptionally as memory matures to form populations with equal recall abilities. Therefore, the potential to produce IL-2 during the effector, but not memory stage, is a consequential feature that dictates the protective capabilities of the response.
Collapse
Affiliation(s)
- Shannon M. Kahan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States,Present address: NextCure, Beltsville, MD 20705, United States,These authors contributed equally
| | - Rakesh K. Bakshi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States,Present address: NextCure, Beltsville, MD 20705, United States,Deceased
| | - Jennifer T. Ingram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R. Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Laurie E. Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States,Corresponding Author: Allan J. Zajac
| |
Collapse
|
23
|
Outcome of progressive multifocal leukoencephalopathy treated by Interleukin‐ 7. Ann Neurol 2022; 91:496-505. [DOI: 10.1002/ana.26307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
|
24
|
Sheikh A, Jackson J, Shim HB, Yau C, Seo JH, Abraham N. Selective dependence on IL-7 for antigen-specific CD8 T cell responses during airway influenza infection. Sci Rep 2022; 12:135. [PMID: 34997007 PMCID: PMC8741933 DOI: 10.1038/s41598-021-03936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Interleukin-7 (IL-7) is a cytokine known for its importance in T cell development and survival. How IL-7 shapes CD8 T cell responses during an acute viral infection is less understood. We had previously shown that IL-7 signaling deficient mice have reduced accumulation of influenza-specific CD8 T cells following influenza infection. We sought to determine whether IL-7 affects early CD8 T cell expansion in the mediastinal lymph node and effector function in the lungs. Using IL-7Rα signaling deficient mice, we show that IL-7 is required for a normal sized mediastinal lymph node and the early clonal expansion of influenza-specific CD8 T cells therein. We show that IL-7 plays a cell-intrinsic role in the accumulation of NP366-374 and PA224-233-specific CD8 T cells in the lymph node. We also found that IL-7 shapes terminal differentiation, degranulation and cytokine production to a greater extent in PA224-233-specific than NP366-374-specific CD8 T cells. We further demonstrate that IL-7 is induced in the lung tissue by viral infection and we characterize multiple cellular sources that contribute to IL-7 production. Our findings on IL-7 and its effects on lower respiratory diseases will be important for expanding the utility of therapeutics that are currently available.
Collapse
Affiliation(s)
- Abdalla Sheikh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennie Jackson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hanjoo Brian Shim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Clement Yau
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Jung Hee Seo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ninan Abraham
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:187. [PMID: 35284964 PMCID: PMC8918078 DOI: 10.1007/s00018-022-04220-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, hematopoietic stem and progenitor cells (HSPCs) in the bone marrow niches are responsible for the highly regulated and interconnected hematopoiesis process. At the same time, they must recognize potential threats and respond promptly to protect the host. A wide spectrum of microbial agents/products and the consequences of infection-induced mediators (e.g. cytokines, chemokines, and growth factors) can have prominent impact on HSPCs. While COVID-19 starts as a respiratory tract infection, it is considered a systemic disease which profoundly alters the hematopoietic system. Lymphopenia, neutrophilia, thrombocytopenia, and stress erythropoiesis are the hallmark of SARS-CoV-2 infection. Moreover, thrombocytopenia and blood hypercoagulability are common among COVID-19 patients with severe disease. Notably, the invasion of erythroid precursors and progenitors by SARS-CoV-2 is a cardinal feature of COVID-19 disease which may in part explain the mechanism underlying hypoxia. These pieces of evidence support the notion of skewed steady-state hematopoiesis to stress hematopoiesis following SARS-CoV-2 infection. The functional consequences of these alterations depend on the magnitude of the effect, which launches a unique hematopoietic response that is associated with increased myeloid at the expense of decreased lymphoid cells. This article reviews some of the key pathways including the infectious and inflammatory processes that control hematopoiesis, followed by a comprehensive review that summarizes the latest evidence and discusses how SARS-CoV-2 infection impacts hematopoiesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Faculty of Medicine and Dentistry, School of Dentistry, Division of Foundational Sciences, Department of Oncology, and Li Ka Shing Institute of Virology, University of Alberta, 7020 Katz Group Centre, 11361-87th Ave NW, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
26
|
El-Sabbagh NM, Khalil RH, Khallaf MM, Shakweer MS, Ghetas HA, Atallah MM. Pharmacological and ameliorative effects of Withania somnifera against cadmium chloride-induced oxidative stress and immune suppression in Nile tilapia, Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6777-6792. [PMID: 34458972 DOI: 10.1007/s11356-021-15630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the effects of dietary supplementation of aqueous extract of Withania somnifera (W. somnifera) against cadmium chloride-induced toxicity in the Nile tilapia, Oreochromis niloticus. Five experimental groups were designed: group (I) was free from cadmium chloride and W. somnifera and served as a control, group (II) was exposed to 1.775 mg L-1 of cadmium chloride only (which is equivalent to 1/4 96-h LC50), while groups (III), (IV), and (V) were exposed to 1.775 mg cadmium chloride L-1 with co-supplementation of dietary W. somnifera in doses of 1.0, 2.0, and 3.0 mL kg-1 body weight (bwt), respectively. The experiment lasted for 4 weeks. In the second and fourth weeks of the experiment, the following indicators were evaluated: hematological (hemogram and blood protein profile), biochemical (activities of serum liver enzymes, namely alanine transaminase (ALT) and aspartate transaminase (AST)), immunological (immunoglobulin M (IgM), serum lysozyme), and tissue antioxidant changes (malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD)). Additionally, gene expressions of glutathione-S-transferase (GST) in the liver were assessed. At the end of the experiment, all fish in all groups were experimentally challenged with Aeromonas hydrophila and the relative protection survival (RPS) was demonstrated. The results revealed that groups exposed to cadmium chloride toxicity and co-supplemented with dietary aqueous extract of W. somnifera at high doses showed significant ameliorative effects in hemogram parameters, total protein, globulin, IgM, and lysozyme against cadmium chloride-induced toxicity compared to the control group and the group exposed to a sublethal dose of cadmium chloride without co-suplemntation of W. somnifera. The results showed also that groups supplemented orally with W. somnifera at high doses have higher antioxidant activities of CAT and SOD and reduction of MDA formation. Levels of gene expressions of GST in the liver were higher in W. somnifera extract-supplemented groups more than those in the group exposed to cadmium chloride-induced toxicity without W. somnifera supplementation. In addition, the results revealed improved RPS with the dietary supply of W. somnifera extract in high doses. In conclusion, this study showed that the dietary supplementation of W. somnifera extract to diets of O. niloticus could be suggested as an effective way to overcome cadmium chloride-induced toxicity because it improves blood parameters and antioxidants, and it can be used as an immunostimulant against the invading bacterial pathogens.
Collapse
Affiliation(s)
- Nasser M El-Sabbagh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed M Khallaf
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Medhat S Shakweer
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan A Ghetas
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Mohamed M Atallah
- Faculty of Aquaculture and Fish Wealth, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
28
|
Kim DH, Kim HY, Lee WW. Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8 + T Cells, Resulting in Enhanced IL-1β Dependent Effector Function. Immune Netw 2021; 21:e33. [PMID: 34796037 PMCID: PMC8568912 DOI: 10.4110/in.2021.21.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
29
|
Bekele Y, Sui Y, Berzofsky JA. IL-7 in SARS-CoV-2 Infection and as a Potential Vaccine Adjuvant. Front Immunol 2021; 12:737406. [PMID: 34603318 PMCID: PMC8484798 DOI: 10.3389/fimmu.2021.737406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
IL-7/IL-7R signaling is critical for development, maturation, maintenance and survival of many lymphocytes in the thymus and periphery. IL-7 has been used as immunotherapy in pre-clinical and clinical studies to treat cancer, HIV infection and sepsis. Here, we discuss the critical function of IL-7 in diagnosis, prognosis and treatment of COVID-19 patients. We also summarize a promising role of IL-7 as a vaccine adjuvant. It could potentially enhance the immune responses to vaccines especially against SARS-CoV-2 or other new vaccines.
Collapse
Affiliation(s)
- Yonas Bekele
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
30
|
He H, Qiao B, Guo S, Cui H, Li N, Liu H, Qin J, He J, Yang X, Xue W, Wang Y. Induction of T helper 17 cell response by interleukin-7 in patients with primary cutaneous melanoma. Melanoma Res 2021; 31:328-337. [PMID: 34054059 DOI: 10.1097/cmr.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin (IL)-7 plays a vital role in proliferation and activation of T cells, however, its signaling through CD127 is impaired in T cells in cancers and chronic infections. The mechanisms underlying T helper 17 (Th17) cell responses by IL-7 in melanoma remain not fully understood. The aim of this study was to assess the effect of IL-7 signaling on Th17 responses in patients with primary cutaneous melanoma. Healthy and primary cutaneous melanoma donors were selected for this study of Th17 cell function. IL-17+CD4+ Th17 cells and CD127 expression on Th17 cells were determined by flow cytometry. Cytokine level was measured by ELISA. Peripheral and tissue-infiltrating CD4+ T cells were isolated using magnetic beads, and then stimulated with IL-7 and/or signal transducer and activator of transcription 5 inhibitor. Activated signaling molecules were analyzed by flow cytometry. Peripheral and tumor-infiltrating Th17 cells percentage was decreased, while peripheral IL-7 level was also reduced in melanoma patients. There was no significant difference of CD127 expression on Th17 cells between melanoma patients and controls. Antiapoptotic protein Bcl-2 was downregulated, whereas proapoptotic protein-activated caspase-3 was upregulated in peripheral and tissue-infiltrating Th17 cells in melanoma patients. Higher concentration of IL-7 (10 ng/mL), but not lower IL-7 concentration (1 ng/mL), promoted Bcl-2 expression and decreased caspase-3 expression in Th17 cells in melanoma patients. Inhibition of signal transducer and activator of transcription 5 resulted in the downregulation of Bcl-2 while upregulation of caspase-3 in Th17 cells. The present data suggested that reduced IL-7 responsiveness might be insufficient for Th17 activation in patients with primary cutaneous melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Ning Li
- Department of Pathology, The First Hospital of Shanxi Medical University
| | | | - Junxia Qin
- Department of Dermatology, The Affiliated Shanxi Provincial People's Hospital of Shanxi Medical University
| | - Jinghong He
- Department of Radiology, The First Hospital of Shanxi Medical University
| | | | | | - Yanzhen Wang
- Department of Rehabilitation, Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| |
Collapse
|
31
|
Fung ITH, Zhang Y, Shin DS, Sankar P, Sun X, D'Souza SS, Song R, Kuentzel ML, Chittur SV, Zuloaga KL, Yang Q. Group 2 innate lymphoid cells are numerically and functionally deficient in the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2021; 18:152. [PMID: 34229727 PMCID: PMC8261980 DOI: 10.1186/s12974-021-02202-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background The immune pathways in Alzheimer’s disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown. Methods In this study, we examined the numbers and functional capability of ILC2 from the triple transgenic AD mice (3xTg-AD) and control wild-type mice. We investigated the effects of treatment with IL-5, a cytokine produced by ILC2, on the cognitive function of 3xTg-AD mice. Results We demonstrate that brain-associated ILC2 are numerically and functionally defective in the triple transgenic AD mouse model (3xTg-AD). The numbers of brain-associated ILC2 were greatly reduced in 7-month-old 3xTg-AD mice of both sexes, compared to those in age- and sex-matched control wild-type mice. The remaining ILC2 in 3xTg-AD mice failed to efficiently produce the type 2 cytokine IL-5 but gained the capability to express a number of proinflammatory genes. Administration of IL-5, a cytokine produced by ILC2, transiently improved spatial recognition and learning in 3xTg-AD mice. Conclusion Our results collectively indicate that numerical and functional deficiency of ILC2 might contribute to the cognitive impairment of 3xTg-AD mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02202-2.
Collapse
Affiliation(s)
- Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Xiangwan Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Renjie Song
- Biochemistry & Immunology Core Facility at Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY, 12144, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY, 12144, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
32
|
Pedrosa CDSG, Goto-Silva L, Temerozo JR, Souza LRQ, Vitória G, Ornelas IM, Karmirian K, Mendes MA, Gomes IC, Sacramento CQ, Fintelman-Rodrigues N, Cardoso Soares V, Silva Gomes Dias SD, Salerno JA, Puig-Pijuan T, Oliveira JT, Aragão LGHS, Torquato TCQ, Veríssimo C, Biagi D, Cruvinel EM, Dariolli R, Furtado DR, Borges HL, Bozza PT, Rehen S, Moreno L Souza T, Guimarães MZP. Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res 2021; 54:102436. [PMID: 34186311 PMCID: PMC8236004 DOI: 10.1016/j.scr.2021.102436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.
Collapse
Affiliation(s)
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Jairo R Temerozo
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Isis M Ornelas
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Karina Karmirian
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Mayara A Mendes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Ismael C Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Q Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vinicius Cardoso Soares
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil; Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Suelen da Silva Gomes Dias
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - José A Salerno
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Teresa Puig-Pijuan
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Julia T Oliveira
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Luiz G H S Aragão
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Carla Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Rafael Dariolli
- Pluricell Biotech, São Paulo, SP, Brazil; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel R Furtado
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Helena L Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Thiago Moreno L Souza
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil; Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Marília Zaluar P Guimarães
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Weber MG, Walters-Laird CJ, Kol A, Santos Rocha C, Hirao LA, Mende A, Balan B, Arredondo J, Elizaldi SR, Iyer SS, Tarantal AF, Dandekar S. Gut germinal center regeneration and enhanced antiviral immunity by mesenchymal stem/stromal cells in SIV infection. JCI Insight 2021; 6:149033. [PMID: 34014838 PMCID: PMC8262475 DOI: 10.1172/jci.insight.149033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.
Collapse
Affiliation(s)
| | | | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, USA
| | | | | | - Abigail Mende
- Department of Medical Microbiology and Immunology and
| | - Bipin Balan
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | | - Smita S Iyer
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, USA.,Center for Immunology and Infectious Diseases.,California National Primate Research Center, and
| | - Alice F Tarantal
- California National Primate Research Center, and.,Departments of Pediatrics and Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology and.,California National Primate Research Center, and
| |
Collapse
|
34
|
Pedrosa CDSG, Goto-Silva L, Temerozo JR, Souza LRQ, Vitória G, Ornelas IM, Karmirian K, Mendes MA, Gomes IC, Sacramento CQ, Fintelman-Rodrigues N, Soares VC, Dias SDSG, Salerno JA, Puig-Pijuan T, Oliveira JT, Aragão LGHS, Torquato TCQ, Veríssimo C, Biagi D, Cruvinel EM, Dariolli R, Furtado DR, Borges HL, Bozza PT, Rehen S, Souza TML, Guimarães MZP. Non-permissive SARS-CoV-2 infection in human neurospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.11.293951. [PMID: 33052345 PMCID: PMC7553174 DOI: 10.1101/2020.09.11.293951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.
Collapse
Affiliation(s)
| | - Livia Goto-Silva
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Jairo R. Temerozo
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Leticia R. Q. Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Isis M. Ornelas
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Karina Karmirian
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Mayara A. Mendes
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Ismael C. Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vinicius Cardoso Soares
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Suelen da Silva Gomes Dias
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - José Alexandre Salerno
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Teresa Puig-Pijuan
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Julia T. Oliveira
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | | | - Carla Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Rafael Dariolli
- Pluricell Biotech, São Paulo, SP, Brazil
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Daniel R. Furtado
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Helena L. Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia T. Bozza
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Stevens Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marília Zaluar P. Guimarães
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Xie J, Wang M, Cheng A, Jia R, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Luo Q, Wang Y, Xu Z, Chen Z, Zhu L, Liu Y, Yu Y, Zhang L, Chen X. The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma. Virol J 2021; 18:74. [PMID: 33849568 PMCID: PMC8045357 DOI: 10.1186/s12985-021-01544-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host’s antiviral responses to achieve persistent infection. Conclusions This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| |
Collapse
|
36
|
Duan D, Wang K, Wei C, Feng D, Liu Y, He Q, Xu X, Wang C, Zhao S, Lv L, Long J, Lin D, Zhao A, Fang B, Jiang J, Tang S, Gao J. The BCMA-Targeted Fourth-Generation CAR-T Cells Secreting IL-7 and CCL19 for Therapy of Refractory/Recurrent Multiple Myeloma. Front Immunol 2021; 12:609421. [PMID: 33767695 PMCID: PMC7985831 DOI: 10.3389/fimmu.2021.609421] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) technology has revolutionized cancer treatment, particularly in malignant hematological tumors. Currently, the BCMA-targeted second-generation CAR-T cells have showed impressive efficacy in the treatment of refractory/relapsed multiple myeloma (R/R MM), but up to 50% relapse remains to be addressed urgently. Here we constructed the BCMA-targeted fourth-generation CAR-T cells expressing IL-7 and CCL19 (i.e., BCMA-7 × 19 CAR-T cells), and demonstrated that BCMA-7 × 19 CAR-T cells exhibited superior expansion, differentiation, migration and cytotoxicity. Furthermore, we have been carrying out the first-in-human clinical trial for therapy of R/R MM by use of BCMA-7 × 19 CAR-T cells (ClinicalTrials.gov Identifier: NCT03778346), which preliminarily showed promising safety and efficacy in first two enrolled patients. The two patients achieved a CR and VGPR with Grade 1 cytokine release syndrome only 1 month after one dose of CAR-T cell infusion, and the responses lasted more than 12-month. Taken together, BCMA-7 × 19 CAR-T cells were safe and effective against refractory/relapsed multiple myeloma and thus warranted further clinical study.
Collapse
Affiliation(s)
- Deming Duan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Keke Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Hematology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dudu Feng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yonghua Liu
- Department of Hematology, Lishui People's Hospital, Lishui, China
| | - Qingyan He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xing Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunling Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuping Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Leili Lv
- Department of Hematology, Lishui People's Hospital, Lishui, China
| | - Jing Long
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danni Lin
- Harvard Medical School, Boston, MA, United States
| | - Ai Zhao
- Department of Hematology, Shunde Hospital, Southern Medical University, Foshan, China.,Zhejiang Qixin Biotech, Wenzhou, China
| | - Bingmu Fang
- Department of Hematology, Lishui People's Hospital, Lishui, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People's Hospital, Lishui, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Qixin Biotech, Wenzhou, China
| |
Collapse
|
37
|
Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E, Larrubia JR. Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8 + T Cell Response during Chronic Hepatitis C. Cells 2021; 10:cells10030538. [PMID: 33802622 PMCID: PMC8001543 DOI: 10.3390/cells10030538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cell response is essential in natural HCV infection control, but it becomes exhausted during persistent infection. Nowadays, chronic HCV infection can be resolved by direct acting anti-viral treatment, but there are still some non-responders that could benefit from CD8+ T cell response restoration. To become fully reactive, T cell needs the complete release of T cell receptor (TCR) signalling but, during exhaustion this is blocked by the PD-1 effect on CD28 triggering. The T cell pool sensitive to PD-1 modulation is the progenitor subset but not the terminally differentiated effector population. Nevertheless, the blockade of PD-1/PD-L1 checkpoint cannot be always enough to restore this pool. This is due to the HCV ability to impair other co-stimulatory mechanisms and metabolic pathways and to induce a pro-apoptotic state besides the TCR signalling impairment. In this sense, gamma-chain receptor cytokines involved in memory generation and maintenance, such as low-level IL-2, IL-7, IL-15, and IL-21, might carry out a positive effect on metabolic reprogramming, apoptosis blockade and restoration of co-stimulatory signalling. This review sheds light on the role of combinatory immunotherapeutic strategies to restore a reactive anti-HCV T cell response based on the mixture of PD-1 blocking plus IL-2/IL-7/IL-15/IL-21 treatment.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Gene Expression Regulation
- Hepacivirus/immunology
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/therapeutic use
- Lymphocyte Activation/drug effects
- Precursor Cells, T-Lymphoid/drug effects
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/virology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, gamma-delta/agonists
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Department of Biology of Systems, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Henar Calvo
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Miguel Torralba
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Service of Internal Medicine, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Juan-Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-949-20-9200
| |
Collapse
|
38
|
Infectious Complications Predict Premature CD8 + T-cell Senescence in CD40 Ligand-Deficient Patients. J Clin Immunol 2021; 41:795-806. [PMID: 33495902 DOI: 10.1007/s10875-021-00968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE CD40 ligand (CD40L)-deficient patients display increased susceptibilities to infections that can be mitigated with effective prophylactic strategies including immunoglobulin G (IgG) replacement and prophylactic antibiotics. CD8+ T-cell senescence has been described in CD40L deficiency, but it is unclear if this is an intrinsic feature of the disease or secondary to infectious exposures. To address this question, we assessed CD8+ T-cell senescence and its relationship to clinical histories, including prophylaxis adherence and infections, in CD40L-deficient patients. METHODS Peripheral CD8+ T-cells from seven CD40L-deficient patients and healthy controls (HCs) were assessed for senescent features using T-cell receptor excision circle (TREC) analysis, flow cytometry, cytometry by time of flight (CyTOF) and in vitro functional determinations including CMV-specific proliferation and cytokine release assays. RESULTS Three patients (5, 28, and 34 years old) who were poorly adherent to immunoglobulin G replacement and Pneumocystis jirovecii pneumonia (PJP) prophylaxis and/or experienced multiple childhood pneumonias (patient group 1) had an expansion of effector memory CD8+ T-cells with the senescent phenotype when compared to HCs. Such changes were not observed in the patient group 2 (four patients, 16, 22, 24, and 33 years old) who were life-long adherents to prophylaxis and experienced few infectious complications. CyTOF analysis of CD8+ T-cells from the 5-year-old patient and older adult HCs showed similar expression patterns of senescence-associated molecules. CONCLUSIONS Our findings support that recurrent infections and non-adherence to prophylaxis promote early CD8+ T-cell senescence in CD40L deficiency. Premature senescence may increase malignant susceptibilities and further exacerbate infectious risk in CD40L-deficient patients.
Collapse
|
39
|
Rueschenbaum S, Cai C, Schmidt M, Schwarzkopf K, Dittmer U, Zeuzem S, Welsch C, Lange CM. Translation of IRF-1 Restricts Hepatic Interleukin-7 Production to Types I and II Interferons: Implications for Hepatic Immunity. Front Immunol 2021; 11:581352. [PMID: 33584648 PMCID: PMC7874116 DOI: 10.3389/fimmu.2020.581352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-7 (IL-7) is an important cytokine with pivotal pro-survival functions in the adaptive immune system. However, the role of IL-7 in innate immunity is not fully understood. In the present study, the impact of hepatic IL-7 on innate immune cells was assessed by functional experiments as well as in patients with different stages of liver cirrhosis or acute-on-chronic liver failure (ACLF). Human hepatocytes and liver sinusoidal endothelial cells secreted IL-7 in response to stimulation with interferons (IFNs) of type I and II, yet not type III. De novo translation of interferon-response factor-1 (IRF-1) restricted IL-7 production to stimulation with type I and II IFNs. LPS-primed human macrophages were identified as innate immune target cells responding to IL-7 signaling by inactivation of Glycogen synthase kinase-3 (GSK3). IL-7-mediated GSK3 inactivation augmented LPS-induced secretion of pro-inflammatory cytokines and blunted LPS tolerance of macrophages. The IFN-IRF-1-IL-7 axis was present in liver cirrhosis patients. However, liver cirrhosis patients with or without ACLF had significantly lower concentrations of IL-7 in serum compared to healthy controls, which might contribute to LPS-tolerance in these patients. In conclusion, we propose the presence of an inflammatory cascade where IFNs of type I/II induce hepatocellular IL-7 in an IRF-1-restriced way. Beyond its role in adaptive immune responses, IL-7 appears to augment the response of macrophages to LPS and to ameliorate LPS tolerance, which may improve innate immune responses against invading pathogens.
Collapse
Affiliation(s)
- Sabrina Rueschenbaum
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Chengcong Cai
- Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Matthias Schmidt
- Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | | | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Christoph Welsch
- Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
40
|
Veerabathiran R, Ragunath B, Kaviarasan V, Mohammed V, Ahmed SSSJ. Identification of selected genes associated with the SARS-CoV-2: a therapeutic approach and disease severity. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:79. [PMID: 33907373 PMCID: PMC8063172 DOI: 10.1186/s42269-021-00540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ongoing pandemic of COVID-19 viruses takes its sole origin from the Wuhan Huanan seafood market, China. The first case was recorded as viral pneumonia and later became a worldwide pandemic (officially declared by WHO on March 11, 2020). MAIN BODY SARS-CoV-2 is an extremely infectious and transferrable virus that develops severe conditions like respiratory syndrome, high blood pressure and weakens the immune system. Coronavirus falls under the Coronaviridae family and Beta coronavirus genus. Affected individuals will encounter problems starting with fever followed by severe complications like SARS, ARDS, and many others. These SARS-CoV and MERS-CoV enter the host cells by the endosomal pathway, and about 16 non-structural proteins are involved in assembling the viral RNA synthesis complex. They possess a positive-sense single-stranded RNA, and about four major genes are mainly associated with the development of ASRD, SARS, and other respiratory problems. CONCLUSION Susceptibility of these four major genes such as ACE2, IL-2, 7 and 10, TNF, and VEGF is associated with COVID-19. This highlights the identification of the above-mentioned genes that can be used as potential biomarkers for early diagnosis and targeted drug delivery for treating the SARS-CoV-2 neurological symptoms and reducing inflammation in the brain.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Barath Ragunath
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Vaishak Kaviarasan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE), Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
41
|
Preston SP, Doerflinger M, Scott HW, Allison CC, Horton M, Cooney J, Pellegrini M. The role of MKK4 in T-cell development and immunity to viral infections. Immunol Cell Biol 2020; 99:428-435. [PMID: 33175451 PMCID: PMC8247422 DOI: 10.1111/imcb.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Hamish W Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Miles Horton
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Jensen MP, George M, Gilroy D, Sofat R. Beyond dexamethasone, emerging immuno-thrombotic therapies for COVID-19. Br J Clin Pharmacol 2020; 87:845-857. [PMID: 32881064 DOI: 10.1111/bcp.14540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Host immunity is required to clear SARS-CoV-2, and inability to clear the virus because of host or pathogen factors renders those infected at risk of poor outcomes. Estimates of those who are able to clear the virus with asymptomatic or paucisymptomatic COVID-19 remain unclear, and dependent on widespread testing. However, evidence is emerging that in severe cases, pathological mechanisms of hyperinflammation and coagulopathy ensue, the former supported by results from the RECOVERY trial demonstrating a reduction in mortality with dexamethasone in advanced COVID-19. It remains unclear whether these pathogenic pathways are secondary to a failure to clear the virus because of maladaptive immune responses or if these are sequential COVID-19 defining illnesses. Understanding the pathophysiological mechanisms underpinning these cascades is essential to formulating rationale therapeutic approaches beyond the use of dexamethasone. Here, we review the pathophysiology thought to underlie COVID-19 with clinical correlates and the current therapeutic approaches being investigated.
Collapse
Affiliation(s)
| | - Marc George
- Centre for Clinical Pharmacology and Therapeutics, UCL, London, UK
| | - Derek Gilroy
- Centre for Clinical Pharmacology and Therapeutics, UCL, London, UK
| | - Reecha Sofat
- Centre for Clinical Pharmacology and Therapeutics, UCL, London, UK.,Institute of Health Informatics, 222 Euston Road, London, UK
| |
Collapse
|
43
|
Kim JH, Kim YM, Choi D, Jo SB, Park HW, Hong SW, Park S, Kim S, Moon S, You G, Kang YW, Park Y, Lee BH, Lee SW. Hybrid Fc-fused interleukin-7 induces an inflamed tumor microenvironment and improves the efficacy of cancer immunotherapy. Clin Transl Immunology 2020; 9:e1168. [PMID: 32994996 PMCID: PMC7507498 DOI: 10.1002/cti2.1168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Emerging oncotherapeutic strategies require the induction of an immunostimulatory tumor microenvironment (TME) containing numerous tumor‐reactive CD8+ T cells. Interleukin‐7 (IL‐7), a T‐cell homeostatic cytokine, induces an antitumor response; however, the detailed mechanisms underlying the contributions of the IL‐7 to TME remain unclear. Here, we aimed to investigate the mechanism underlying the induction of antitumor response by hybrid Fc‐fused long‐acting recombinant human IL‐7 (rhIL‐7‐hyFc) through regulation of both adaptive and innate immune cells in the TME. Methods We evaluated rhIL‐7‐hyFc‐mediated antitumor responses in murine syngeneic tumor models. We analysed the cellular and molecular features of tumor‐infiltrating lymphocytes (TILs) and changes in the TME after rhIL‐7‐hyFc treatment. Furthermore, we evaluated the antitumor efficacy of rhIL‐7‐hyFc combined with chemotherapy and checkpoint inhibitors (CPIs). Results Systemic delivery of rhIL‐7‐hyFc induced significant therapeutic benefits by expanding CD8+ T cells with enhanced tumor tropism. In tumors, rhIL‐7‐hyFc increased both tumor‐reactive and bystander CD8+ TILs, all of which displayed enhanced effector functions but less exhausted phenotypes. Moreover, rhIL‐7‐hyFc suppressed the generation of immunosuppressive myeloid cells in the bone marrow of tumor‐bearing mice, resulting in the immunostimulatory TME. Combination therapy with chemotherapy and CPIs, rhIL‐7‐hyFc elicited a strong antitumor response and even under a T lymphopenic condition by restoring CD8+ T cells. When combined with chemotherapy and CPIs, rhIL‐7‐hyFc administration enhanced antitumor response under intact andlymphopenic conditions by restoring CD8+ T cells. Conclusion Taken together, these data demonstrate that rhIL‐7‐hyFc induces antitumor responses by generating T‐cell‐inflamed TME and provide a preclinical proof of concept of immunotherapy with rhIL‐7‐hyFc to enhance therapeutic responses in the clinic.
Collapse
Affiliation(s)
- Ji-Hae Kim
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea
| | - Young-Min Kim
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech, Inc. Rockville MD USA
| | - Saet-Byeol Jo
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Han Wook Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sung-Wook Hong
- Laboratory of T Cell Biology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea.,Department of Microbiology and Immunology Center for Immunology University of Minnesota Medical School Minneapolis MN USA
| | - Sujeong Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sora Kim
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sookjin Moon
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Gihoon You
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Yeon-Woo Kang
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Yunji Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Byung Ha Lee
- Research Institute of NeoImmuneTech, Inc. Rockville MD USA
| | - Seung-Woo Lee
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea.,Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| |
Collapse
|
44
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Co-Expression of IL-7 Improves NKG2D-Based CAR T Cell Therapy on Prostate Cancer by Enhancing the Expansion and Inhibiting the Apoptosis and Exhaustion. Cancers (Basel) 2020; 12:cancers12071969. [PMID: 32698361 PMCID: PMC7409228 DOI: 10.3390/cancers12071969] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising approach in treating solid tumors but the therapeutic effect is limited. Prostate cancer is a typical solid malignancy with invasive property and a highly immunosuppressive microenvironment. Ligands for the NKG2D receptor are primarily expressed on many cancer cells, including prostate cancer. In this study, we utilized NKG2D-based CAR to treat prostate cancer, and improved the therapeutic effect by co-expression of IL-7. The results showed that NKG2D-CAR T cells performed significantly increased cytotoxicity against prostate cancer compared to non-transduced T cells in vitro and in vivo. Moreover, the introduction of the IL-7 gene into the NKG2D-CAR backbone enhanced the production of IL-7 in an antigen-dependent manner. NKG2DIL7-CAR T cells exhibited better antitumor efficacy at 16 h and 72 h in vitro, and inhibited tumor growth in xenograft models more effectively. In mechanism, enhanced proliferation and Bcl-2 expression in CD8+ T cells, decreased apoptosis and exhaustion, and increased less-differentiated cell phenotype may be the reasons for the improved persistence and survival of NKG2DIL7-CAR T cells. In conclusion, these findings demonstrated that NKG2D is a promising option for CAR T-cell therapy on prostate cancer, and IL-7 has enhanced effect on NKG2D-based CAR T-cell immunotherapy, providing a novel adoptive cell therapy for prostate cancer either alone or in combination with IL-7.
Collapse
|
46
|
Kranich J, Chlis NK, Rausch L, Latha A, Schifferer M, Kurz T, Foltyn-Arfa Kia A, Simons M, Theis FJ, Brocker T. In vivo identification of apoptotic and extracellular vesicle-bound live cells using image-based deep learning. J Extracell Vesicles 2020; 9:1792683. [PMID: 32944180 PMCID: PMC7480589 DOI: 10.1080/20013078.2020.1792683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo detection of dead cells remains a major challenge due to technical hurdles. Here, we present a novel method, where injection of fluorescent milk fat globule-EGF factor 8 protein (MFG-E8) in vivo combined with imaging flow cytometry and deep learning allows the identification of dead cells based on their surface exposure of phosphatidylserine (PS) and other image parameters. A convolutional autoencoder (CAE) was trained on defined pictures and successfully used to identify apoptotic cells in vivo. However, unexpectedly, these analyses also revealed that the great majority of PS+ cells were not apoptotic, but rather live cells associated with PS+ extracellular vesicles (EVs). During acute viral infection apoptotic cells increased slightly, while up to 30% of lymphocytes were decorated with PS+ EVs of antigen-presenting cell (APC) exosomal origin. The combination of recombinant fluorescent MFG-E8 and the CAE-method will greatly facilitate analyses of cell death and EVs in vivo.
Collapse
Affiliation(s)
- Jan Kranich
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Nikolaos-Kosmas Chlis
- Institute of Computational Biology, Neuherberg, Germany.,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Lisa Rausch
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Ashretha Latha
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Tilman Kurz
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | | | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Thomas Brocker
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| |
Collapse
|
47
|
Dunham SR, Schmidt R, Clifford DB. Treatment of Progressive Multifocal Leukoencephalopathy Using Immune Restoration. Neurotherapeutics 2020; 17:955-965. [PMID: 32166631 PMCID: PMC7641288 DOI: 10.1007/s13311-020-00848-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a viral disease of the brain associated with immunodeficiency, immune suppressing medications, and malignancy. In the absence of effective anti-viral therapy for the causative JC virus, immune restoration has emerged as the critical therapeutic alternative. The evolving treatment of PML (and other rare JC virus-associated neurologic syndromes) requires consideration of baseline immune functioning and comorbid diseases while selecting from a number of therapeutic options to restore an effective immune response. This review focuses on the current options for management of PML in typical situations where this disease presents, including several where immune restoration is a standard therapeutic approach such as in PML associated with HIV/AIDS and in multiple sclerosis associated with natalizumab. Other circumstances in which PML occurs including associated with primary immunodeficiencies, malignancies, and transplants present greater challenges to immune reconstitution, but emerging concepts may enhance therapeutic options for these situations. Particular attention is focused on recent experience with checkpoint inhibitors, guidance for MS drug discontinuation, and strategies to monitor and facilitate immune restoration.
Collapse
Affiliation(s)
- S Richard Dunham
- Department of Neurology, Washington University in St Louis, St. Louis, MO, USA
| | - Robert Schmidt
- Department of Pathology & Immunology, Washington University in St Louis, St. Louis, MO, USA
| | - David B Clifford
- Department of Neurology, Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
48
|
Interleukin-22 Inhibits Respiratory Syncytial Virus Production by Blocking Virus-Mediated Subversion of Cellular Autophagy. iScience 2020; 23:101256. [PMID: 32580124 PMCID: PMC7317237 DOI: 10.1016/j.isci.2020.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause severe bronchiolitis in infants requiring hospitalization, whereas the elderly and immunocompromised are prone to RSV-induced pneumonia. RSV primarily infects lung epithelial cells. Given that no vaccine against RSV is currently available, we tested the ability of the epithelial-barrier protective cytokine interleukin-22 (IL-22) to control RSV production. When used in a therapeutic modality, IL-22 efficiently blunted RSV production from infected human airway and alveolar epithelial cells and IL-22 administration drastically reduced virus titer in the lungs of infected newborn mice. RSV infection resulted in increased expression of LC3B, a key component of the cellular autophagic machinery, and knockdown of LC3B ablated virus production. RSV subverted LC3B with evidence of co-localization and caused a significant reduction in autophagic flux, both reversed by IL-22 treatment. Our findings inform a previously unrecognized anti-viral effect of IL-22 that can be harnessed to prevent RSV-induced severe respiratory disease. RSV infection of lung epithelial cells subverts the cellular autophagic machinery RSV infection inhibits autophagic flux in infected cells IL-22 inhibits RSV production from human lung epithelial cells and in neonatal mice IL-22 blocks RSV-LC3B co-localization and restores cellular autophagic flux
Collapse
|
49
|
SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54:62-75. [PMID: 32513566 PMCID: PMC7265853 DOI: 10.1016/j.cytogfr.2020.06.001] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
A wide range of cytokines are involved in the development of COVID-19 disease. Some of these biomolecules are related to the progression and even to the prognosis of the infection. Findings on the role of cytokine storm associated with SARS-CoV-2 infection can be useful in order to manage this highly virulent disease.
COVID-19 disease, caused by infection with SARS-CoV-2, is related to a series of physiopathological mechanisms that mobilize a wide variety of biomolecules, mainly immunological in nature. In the most severe cases, the prognosis can be markedly worsened by the hyperproduction of mainly proinflammatory cytokines, such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, preferentially targeting lung tissue. This study reviews published data on alterations in the expression of different cytokines in patients with COVID-19 who require admission to an intensive care unit. Data on the implication of cytokines in this disease and their effect on outcomes will support the design of more effective approaches to the management of COVID-19.
Collapse
|
50
|
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med 2020; 217:e20200678. [PMID: 32353870 PMCID: PMC7191310 DOI: 10.1084/jem.20200678] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.
Collapse
Affiliation(s)
- Santosha A. Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Human Oncology Pathogenesis Program, Department of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine and Graduate School of Biomedical Sciences, New York, NY
| |
Collapse
|