1
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613147. [PMID: 39345421 PMCID: PMC11429699 DOI: 10.1101/2024.09.15.613147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal protein in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
2
|
Park G, Park Y, Yang S, Cho Y, Serikov A, Jung D, Seo DC, Lee SE, Nam MH, Kim D, Kim J. Neurotensin-specific corticothalamic circuit regulates innate response conflict. Curr Biol 2024; 34:3473-3487.e6. [PMID: 39067450 DOI: 10.1016/j.cub.2024.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Animals must simultaneously select and balance multiple action contingencies in ambiguous situations: for instance, evading danger during feeding. This has rarely been examined in the context of information selection; despite corticothalamic pathways that mediate sensory attention being relatively well characterized, neural mechanisms filtering conflicting actions remain unclear. Here, we develop a new loom/feed test to observe conflict between naturally induced fear and feeding and identify a novel anterior cingulate cortex (ACC) output to the ventral anterior and ventral lateral thalamus (VA/VL) that adjusts selectivity between these innate actions. Using micro-endoscopy and fiber photometry, we reveal that activity in corticofugal outputs was lowered during unbalanced/singularly occupied periods, as were the resulting decreased thalamic initiation-related signals for less-favored actions, suggesting that the integration of ACC-thalamic firing may directly regulate the output of behavior choices. Accordingly, the optoinhibition of ACC-VA/VL circuits induced high bias toward feeding at the expense of defense. To identify upstream "commander" cortical cells gating this output, we established dual-order tracing (DOT)-translating ribosome affinity purification (TRAP)-a scheme to label upstream neurons with transcriptome analysis-and found a novel population of neurotensin-positive interneurons (ACCNts). The photoexcitation of ACCNts cells indeed caused similarly hyper-selective behaviors. Collectively, this new "corticofugal action filter" scheme suggests that communication in multi-step cingulate circuits may critically influence the summation of motor signals in thalamic outputs, regulating bias between innate action types.
Collapse
Affiliation(s)
- Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongjun Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dajung Jung
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Cui M, Ji R, Song L, Wang X, Pan X, Han Y, Zhai X, Ai L, Zhang W, Xie A, Wu Z, Song W, Yang JX, Hu A, Liu H, Cao JL, Zhang H. Neuronal and Molecular Mechanisms Underlying Chronic Pain and Depression Comorbidity in the Paraventricular Thalamus. J Neurosci 2024; 44:e1752232024. [PMID: 38378273 PMCID: PMC10977023 DOI: 10.1523/jneurosci.1752-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xianlei Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenxin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - An Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weiyi Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou 313003, China
- The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313003, China
- The Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou 313003, China
- The Affiliated Central Hospital, Huzhou University, Huzhou 313003, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
5
|
Harkany T, Tretiakov E, Varela L, Jarc J, Rebernik P, Newbold S, Keimpema E, Verkhratsky A, Horvath T, Romanov R. Molecularly stratified hypothalamic astrocytes are cellular foci for obesity. RESEARCH SQUARE 2024:rs.3.rs-3748581. [PMID: 38405925 PMCID: PMC10889077 DOI: 10.21203/rs.3.rs-3748581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Astrocytes safeguard the homeostasis of the central nervous system1,2. Despite their prominent morphological plasticity under conditions that challenge the brain's adaptive capacity3-5, the classification of astrocytes, and relating their molecular make-up to spatially devolved neuronal operations that specify behavior or metabolism, remained mostly futile6,7. Although it seems unexpected in the era of single-cell biology, the lack of a major advance in stratifying astrocytes under physiological conditions rests on the incompatibility of 'neurocentric' algorithms that rely on stable developmental endpoints, lifelong transcriptional, neurotransmitter, and neuropeptide signatures for classification6-8 with the dynamic functional states, anatomic allocation, and allostatic plasticity of astrocytes1. Simplistically, therefore, astrocytes are still grouped as 'resting' vs. 'reactive', the latter referring to pathological states marked by various inducible genes3,9,10. Here, we introduced a machine learning-based feature recognition algorithm that benefits from the cumulative power of published single-cell RNA-seq data on astrocytes as a reference map to stepwise eliminate pleiotropic and inducible cellular features. For the healthy hypothalamus, this walk-back approach revealed gene regulatory networks (GRNs) that specified subsets of astrocytes, and could be used as landmarking tools for their anatomical assignment. The core molecular censuses retained by astrocyte subsets were sufficient to stratify them by allostatic competence, chiefly their signaling and metabolic interplay with neurons. Particularly, we found differentially expressed mitochondrial genes in insulin-sensing astrocytes and demonstrated their reciprocal signaling with neurons that work antagonistically within the food intake circuitry. As a proof-of-concept, we showed that disrupting Mfn2 expression in astrocytes reduced their ability to support dynamic circuit reorganization, a time-locked feature of satiety in the hypothalamus, thus leading to obesity in mice. Overall, our results suggest that astrocytes in the healthy brain are fundamentally more heterogeneous than previously thought and topologically mirror the specificity of local neurocircuits.
Collapse
Affiliation(s)
- Tibor Harkany
- Center for Brain Research, Medical University of Vienna
| | | | | | - Jasna Jarc
- Center for Brain Research, Medical University of Vienna
| | | | | | - Erik Keimpema
- Medical University of Vienna, Center for Brain Research
| | | | | | | |
Collapse
|
6
|
de Jong JW, Liang Y, Verharen JPH, Fraser KM, Lammel S. State and rate-of-change encoding in parallel mesoaccumbal dopamine pathways. Nat Neurosci 2024; 27:309-318. [PMID: 38212586 DOI: 10.1038/s41593-023-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
The nervous system uses fast- and slow-adapting sensory detectors in parallel to enable neuronal representations of external states and their temporal dynamics. It is unknown whether this dichotomy also applies to internal representations that have no direct correlation in the physical world. Here we find that two distinct dopamine (DA) neuron subtypes encode either a state or its rate-of-change. In mice performing a reward-seeking task, we found that the animal's behavioral state and rate-of-change were encoded by the sustained activity of DA neurons in medial ventral tegmental area (VTA) DA neurons and transient activity in lateral VTA DA neurons, respectively. The neural activity patterns of VTA DA cell bodies matched DA release patterns within anatomically defined mesoaccumbal pathways. Based on these results, we propose a model in which the DA system uses two parallel lines for proportional-differential encoding of a state variable and its temporal dynamics.
Collapse
Affiliation(s)
- Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Yilan Liang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Kurt M Fraser
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Miller PA, Williams-Ikhenoba JG, Sankhe AS, Hoffe BH, Chee MJ. Neuroanatomical, electrophysiological, and morphological characterization of melanin-concentrating hormone cells coexpressing cocaine- and amphetamine-regulated transcript. J Comp Neurol 2024; 532:e25588. [PMID: 38335050 DOI: 10.1002/cne.25588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.
Collapse
Affiliation(s)
| | | | - Aditi S Sankhe
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brendan H Hoffe
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Ly T, Oh JY, Sivakumar N, Shehata S, La Santa Medina N, Huang H, Liu Z, Fang W, Barnes C, Dundar N, Jarvie BC, Ravi A, Barnhill OK, Li C, Lee GR, Choi J, Jang H, Knight ZA. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature 2023; 624:130-137. [PMID: 37993711 PMCID: PMC10700140 DOI: 10.1038/s41586-023-06758-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.
Collapse
Affiliation(s)
- Truong Ly
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Y Oh
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nilla Sivakumar
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi Huang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengya Liu
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wendy Fang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Naz Dundar
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brooke C Jarvie
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anagh Ravi
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Olivia K Barnhill
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chelsea Li
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Grace R Lee
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jaewon Choi
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heeun Jang
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
10
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
11
|
Zheng F, Pang Y, Li L, Pang Y, Zhang J, Wang X, Raes G. Applications of nanobodies in brain diseases. Front Immunol 2022; 13:978513. [PMID: 36426363 PMCID: PMC9679430 DOI: 10.3389/fimmu.2022.978513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/30/2022] [Indexed: 03/31/2024] Open
Abstract
Nanobodies are antibody fragments derived from camelids, naturally endowed with properties like low molecular weight, high affinity and low immunogenicity, which contribute to their effective use as research tools, but also as diagnostic and therapeutic agents in a wide range of diseases, including brain diseases. Also, with the success of Caplacizumab, the first approved nanobody drug which was established as a first-in-class medication to treat acquired thrombotic thrombocytopenic purpura, nanobody-based therapy has received increasing attention. In the current review, we first briefly introduce the characterization and manufacturing of nanobodies. Then, we discuss the issue of crossing of the brain-blood-barrier (BBB) by nanobodies, making use of natural methods of BBB penetration, including passive diffusion, active efflux carriers (ATP-binding cassette transporters), carrier-mediated influx via solute carriers and transcytosis (including receptor-mediated transport, and adsorptive mediated transport) as well as various physical and chemical methods or even more complicated methods such as genetic methods via viral vectors to deliver nanobodies to the brain. Next, we give an extensive overview of research, diagnostic and therapeutic applications of nanobodies in brain-related diseases, with emphasis on Alzheimer's disease, Parkinson's disease, and brain tumors. Thanks to the advance of nanobody engineering and modification technologies, nanobodies can be linked to toxins or conjugated with radionuclides, photosensitizers and nanoparticles, according to different requirements. Finally, we provide several perspectives that may facilitate future studies and whereby the versatile nanobodies offer promising perspectives for advancing our knowledge about brain disorders, as well as hopefully yielding diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yucheng Pang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Luyao Li
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yuxing Pang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi Wang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
12
|
Cheung V, Chung P, Bjorni M, Shvareva VA, Lopez YC, Feinberg EH. Virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq) defines projection neurons involved in sensorimotor integration. Cell Rep 2021; 37:110131. [PMID: 34936877 PMCID: PMC8719358 DOI: 10.1016/j.celrep.2021.110131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Behavior arises from concerted activity throughout the brain. Consequently, a major focus of modern neuroscience is defining the physiology and behavioral roles of projection neurons linking different brain areas. Single-cell RNA sequencing has facilitated these efforts by revealing molecular determinants of cellular physiology and markers that enable genetically targeted perturbations such as optogenetics, but existing methods for sequencing defined projection populations are low throughput, painstaking, and costly. We developed a straightforward, multiplexed approach, virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq). VECTORseq repurposes commercial retrogradely infecting viruses typically used to express functional transgenes (e.g., recombinases and fluorescent proteins) by treating viral transgene mRNA as barcodes within single-cell datasets. VECTORseq is compatible with different viral families, resolves multiple populations with different projection targets in one sequencing run, and identifies cortical and subcortical excitatory and inhibitory projection populations. Our study provides a roadmap for high-throughput identification of neuronal subtypes based on connectivity.
Collapse
Affiliation(s)
- Victoria Cheung
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Philip Chung
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Max Bjorni
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Varvara A Shvareva
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yesenia C Lopez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan H Feinberg
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
14
|
Silva-Pilipich N, Smerdou C, Vanrell L. A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Microorganisms 2021; 9:microorganisms9091956. [PMID: 34576851 PMCID: PMC8465657 DOI: 10.3390/microorganisms9091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanobodies are camelid-derived single-domain antibodies that present some advantages versus conventional antibodies, such as a smaller size, and higher tissue penetrability, stability, and hydrophilicity. Although nanobodies can be delivered as proteins, in vivo expression from adeno-associated viral (AAV) vectors represents an attractive strategy. This is due to the fact that AAV vectors, that can provide long-term expression of recombinant genes, have shown an excellent safety profile, and can accommodate genes for one or several nanobodies. In fact, several studies showed that AAV vectors can provide sustained nanobody expression both locally or systemically in preclinical models of human diseases. Some of the pathologies addressed with this technology include cancer, neurological, cardiovascular, infectious, and genetic diseases. Depending on the indication, AAV-delivered nanobodies can be expressed extracellularly or inside cells. Intracellular nanobodies or “intrabodies” carry out their function by interacting with cell proteins involved in disease and have also been designed to help elucidate cellular mechanisms by interfering with normal cell processes. Finally, nanobodies can also be used to retarget AAV vectors, when tethered to viral capsid proteins. This review covers applications in which AAV vectors have been used to deliver nanobodies, with a focus on their therapeutic use.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| | - Lucía Vanrell
- Biotechnology Laboratory, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, Montevideo 11100, Uruguay
- Nanogrow Biotech, CIE BIO Incubator, Mercedes 1237, Montevideo 11100, Uruguay
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| |
Collapse
|
15
|
Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11091112. [PMID: 34573134 PMCID: PMC8471472 DOI: 10.3390/brainsci11091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The selective degeneration of both upper motor neurons (UMNs) and lower motor neurons (LMNs) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Unlike the simple organisation of LMNs in the brainstem and spinal cord, UMNs are embedded in the complex cytoarchitecture of the primary motor cortex, which complicates their identification. UMNs therefore remain a challenging neuronal population to study in ALS research, particularly in the early pre-symptomatic stages of animal models. A better understanding of the mechanisms that lead to selective UMN degeneration requires unequivocal visualization and cellular identification of vulnerable UMNs within the heterogeneous cortical neuronal population and circuitry. Here, we review recent novel gene delivery methods developed to cellularly identify vulnerable UMNs and modulate their activity in various mouse models. A critical overview of retrograde tracers, viral vectors encoding reporter genes and transgenic reporter mice used to visualize UMNs in mouse models of ALS is provided. Functional targeting of UMNs in vivo with the advent of optogenetic and chemogenetic technology is also discussed. These exciting gene delivery techniques will facilitate improved anatomical mapping, cell-specific gene expression profiling and targeted manipulation of UMN activity in mice. These advancements in the field pave the way for future work to uncover the precise role of UMNs in ALS and improve future therapeutic targeting of UMNs.
Collapse
|
16
|
Wercberger R, Braz JM, Weinrich JA, Basbaum AI. Pain and itch processing by subpopulations of molecularly diverse spinal and trigeminal projection neurons. Proc Natl Acad Sci U S A 2021; 118:e2105732118. [PMID: 34234018 PMCID: PMC8285968 DOI: 10.1073/pnas.2105732118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+ -, Nptx2+ -, Nmb+ -, and Crh+ -expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non-NK1R-expressing projection neurons.
Collapse
Affiliation(s)
- Racheli Wercberger
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Jarret A Weinrich
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA 94158
| |
Collapse
|
17
|
Stern SA, Azevedo EP, Pomeranz LE, Doerig KR, Ivan VJ, Friedman JM. Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metab 2021; 33:1418-1432.e6. [PMID: 33761312 PMCID: PMC8628615 DOI: 10.1016/j.cmet.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.
Collapse
Affiliation(s)
- Sarah A Stern
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine R Doerig
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
18
|
Song JH, Choi W, Song YH, Kim JH, Jeong D, Lee SH, Paik SB. Precise Mapping of Single Neurons by Calibrated 3D Reconstruction of Brain Slices Reveals Topographic Projection in Mouse Visual Cortex. Cell Rep 2021; 31:107682. [PMID: 32460016 DOI: 10.1016/j.celrep.2020.107682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/04/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Recent breakthroughs in neuroanatomical tracing methods have helped unravel complicated neural connectivity in whole-brain tissue at single-cell resolution. However, in most cases, analysis of brain images remains dependent on highly subjective and sample-specific manual processing, preventing precise comparison across sample animals. In the present study, we introduce AMaSiNe, software for automated mapping of single neurons in the standard mouse brain atlas with annotated regions. AMaSiNe automatically calibrates misaligned and deformed slice samples to locate labeled neuronal positions from multiple brain samples into the standardized 3D Allen Mouse Brain Reference Atlas. We exploit the high fidelity and reliability of AMaSiNe to investigate the topographic structures of feedforward projections from the lateral geniculate nucleus to the primary visual area by reconstructing rabies-virus-injected brain slices in 3D space. Our results demonstrate that distinct organization of neural projections can be precisely mapped using AMaSiNe.
Collapse
Affiliation(s)
- Jun Ho Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Daun Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Ruiz-Ortiz J, Tollkuhn J. Specificity in sociogenomics: Identifying causal relationships between genes and behavior. Horm Behav 2021; 127:104882. [PMID: 33121994 PMCID: PMC7855425 DOI: 10.1016/j.yhbeh.2020.104882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
Abstract
There has been rapid growth in the use of transcriptomic analyses to study the interplay between gene expression and behavior. Experience can modify gene expression in the brain, leading to changes in internal state and behavioral displays, while gene expression variation between species is thought to specify many innate behavior differences. However, providing a causal association between a gene and a given behavior remains challenging as it is difficult to determine when and where a gene contributes to the function of a behaviorally-relevant neuronal population. Moreover, given that there are fewer genetic tools available for non-traditional model organisms, transcriptomic approaches have been largely limited to profiling of bulk tissue, which can obscure the contributions of subcortical brain regions implicated in multiple behaviors. Here, we discuss how emerging single cell technologies combined with methods offering additional spatial and connectivity information can give us insight about the genetic profile of specific cells involved in the neural circuit of target social behaviors. We also emphasize how these techniques are broadly adaptable to non-traditional model organisms. We propose that, ultimately, a combination of these approaches applied throughout development will be key to discerning how genes shape the formation of social behavior circuits.
Collapse
Affiliation(s)
- Jenelys Ruiz-Ortiz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
21
|
Allaway KC, Muñoz W, Tremblay R, Sherer M, Herron J, Rudy B, Machold R, Fishell G. Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. eLife 2020; 9:63249. [PMID: 33355093 PMCID: PMC7758062 DOI: 10.7554/elife.63249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
The basal forebrain cholinergic system projects broadly throughout the cortex and constitutes a critical source of neuromodulation for arousal and attention. Traditionally, this system was thought to function diffusely. However, recent studies have revealed a high degree of spatiotemporal specificity in cholinergic signaling. How the organization of cholinergic afferents confers this level of precision remains unknown. Here, using intersectional genetic fate mapping, we demonstrate that cholinergic fibers within the mouse cortex exhibit remarkable laminar and regional specificity and that this is organized in accordance with cellular birthdate. Strikingly, birthdated cholinergic projections within the cortex follow an inside-out pattern of innervation. While early born cholinergic populations target deep layers, late born ones innervate superficial laminae. We also find that birthdate predicts cholinergic innervation patterns within the amygdala, hippocampus, and prefrontal cortex. Our work reveals previously unappreciated specificity within the cholinergic system and the developmental logic by which these circuits are assembled.
Collapse
Affiliation(s)
- Kathryn C Allaway
- Neuroscience Institute, New York University, New York, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| | - William Muñoz
- Neuroscience Institute, New York University, New York, United States.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Robin Tremblay
- Neuroscience Institute, New York University, New York, United States
| | - Mia Sherer
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Jacob Herron
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University, New York, United States
| | - Robert Machold
- Neuroscience Institute, New York University, New York, United States
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| |
Collapse
|
22
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
23
|
Gergues MM, Han KJ, Choi HS, Brown B, Clausing KJ, Turner VS, Vainchtein ID, Molofsky AV, Kheirbek MA. Circuit and molecular architecture of a ventral hippocampal network. Nat Neurosci 2020; 23:1444-1452. [PMID: 32929245 PMCID: PMC7606799 DOI: 10.1038/s41593-020-0705-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/06/2020] [Indexed: 01/23/2023]
Abstract
The ventral hippocampus (vHPC) is a critical hub in networks that process emotional information. While recent studies have indicated that ventral CA1 (vCA1) projection neurons are functionally dissociable, the basic principles of how the inputs and outputs of vCA1 are organized remain unclear. Here, we used viral and sequencing approaches to define the logic of the extended vCA1 circuit. Using high-throughput sequencing of genetically barcoded neurons (MAPseq) to map the axonal projections of thousands of vCA1 neurons, we identify a population of neurons that simultaneously broadcast information to multiple areas known to regulate the stress axis and approach-avoidance behavior. Through molecular profiling and viral input-output tracing of vCA1 projection neurons, we show how neurons with distinct projection targets may differ in their inputs and transcriptional signatures. These studies reveal new organizational principles of vCA1 that may underlie its functional heterogeneity.
Collapse
Affiliation(s)
- Mark M Gergues
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kasey J Han
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Hye Sun Choi
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon Brown
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey J Clausing
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Program in Neuroscience, Harvard Medical School, Cambridge, MA, USA
| | - Victoria S Turner
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D Vainchtein
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anna V Molofsky
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Abstract
Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron's morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Chen Y, Jang H, Spratt PWE, Kosar S, Taylor DE, Essner RA, Bai L, Leib DE, Kuo TW, Lin YC, Patel M, Subkhangulova A, Kato S, Feinberg EH, Bender KJ, Knight ZA, Garrison JL. Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering. Neuron 2020; 107:454-469.e6. [PMID: 32574560 DOI: 10.1016/j.neuron.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.
Collapse
Affiliation(s)
- Yiming Chen
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Heeun Jang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Perry W E Spratt
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Seher Kosar
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Taylor
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Essner
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ling Bai
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Leib
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tzu-Wei Kuo
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mili Patel
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Saul Kato
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan H Feinberg
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
27
|
Huang KW, Sabatini BL. Single-Cell Analysis of Neuroinflammatory Responses Following Intracranial Injection of G-Deleted Rabies Viruses. Front Cell Neurosci 2020; 14:65. [PMID: 32265666 PMCID: PMC7098990 DOI: 10.3389/fncel.2020.00065] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Viral vectors are essential tools for the study of neural circuits, with glycoprotein-deleted rabies viruses being widely used for monosynaptic retrograde tracing to map connectivity between specific cell types in the nervous system. However, the use of rabies virus is limited by the cytotoxicity and the inflammatory responses these viruses trigger. While components of the rabies virus genome contribute to its cytotoxic effects, the function of other neuronal and non-neuronal cells within the vicinity of the infected host neurons in either effecting or mitigating virally-induced tissue damage are still being elucidated. Here, we analyzed 60,212 single-cell RNA profiles to assess both global and cell-type-specific transcriptional responses in the mouse dorsal raphe nucleus (DRN) following intracranial injection of glycoprotein-deleted rabies viruses and axonal infection of dorsal raphe serotonergic neurons. Gene pathway analyses revealed a down-regulation of genes involved in metabolic processes and neurotransmission following infection. We also identified several transcriptionally diverse leukocyte populations that infiltrate the brain and are distinct from resident immune cells. Cell type-specific patterns of cytokine expression showed that antiviral responses were likely orchestrated by Type I and Type II interferon signaling from microglia and infiltrating CD4+ T cells, respectively. Additionally, we uncovered transcriptionally distinct states of microglia along an activation trajectory that may serve different functions, which range from surveillance to antigen presentation and cytokine secretion. Intercellular interactions inferred from transcriptional data suggest that CD4+ T cells facilitate microglial state transitions during the inflammatory response. Our study uncovers the heterogeneity of immune cells mediating neuroinflammatory responses and provides a critical evaluation of the compatibility between rabies-mediated connectivity mapping and single-cell transcriptional profiling. These findings provide additional insights into the distinct contributions of various cell types in mediating different facets of antiviral responses in the brain and will facilitate the design of strategies to circumvent immune responses to improve the efficacy of viral gene delivery.
Collapse
Affiliation(s)
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Lavoie A, Liu BH. Canine Adenovirus 2: A Natural Choice for Brain Circuit Dissection. Front Mol Neurosci 2020; 13:9. [PMID: 32174812 PMCID: PMC7056889 DOI: 10.3389/fnmol.2020.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Canine adenovirus-2 (CAV) is a canine pathogen that has been used in a variety of applications, from vaccines against more infectious strains of CAV to treatments for neurological disorders. With recent engineering, CAV has become a natural choice for neuroscientists dissecting the connectivity and function of brain circuits. Specifically, as a reliable genetic vector with minimal immunogenic and cytotoxic reactivity, CAV has been used for the retrograde transduction of various types of projection neurons. Consequently, CAV is particularly useful when studying the anatomy and functions of long-range projections. Moreover, combining CAV with conditional expression and transsynaptic tracing results in the ability to study circuits with cell- and/or projection-type specificity. Lastly, with the well-documented knowledge of viral transduction, new innovations have been developed to increase the transduction efficiency of CAV and circumvent its tropism, expanding the potential of CAV for circuit analysis.
Collapse
Affiliation(s)
- Andréanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Verharen JPH, Zhu Y, Lammel S. Aversion hot spots in the dopamine system. Curr Opin Neurobiol 2020; 64:46-52. [PMID: 32146296 DOI: 10.1016/j.conb.2020.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Through the development of optogenetics and other viral vector-based technologies, our view of the dopamine system has substantially advanced over the last decade. In particular, progress has been made in the reclassification of dopamine neurons based on subtypes displaying specific projections, which are associated with different features at the anatomical, molecular and behavioral level. Together, these discoveries have raised the possibility that individual groups of dopamine cells make a unique contribution to the processing of reward and aversion. Here, we review recent studies that have identified non-canonical dopamine pathways that are excited in response to aversive stimuli, including dopamine projections to the ventromedial shell of the nucleus accumbens, prefrontal cortex, tail of the striatum, and amygdala.
Collapse
Affiliation(s)
- J P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, USA.
| |
Collapse
|
30
|
Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020; 43:155-169. [PMID: 32101709 PMCID: PMC7285906 DOI: 10.1016/j.tins.2020.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zachary Gaertner
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Hanchate NK, Lee EJ, Ellis A, Kondoh K, Kuang D, Basom R, Trapnell C, Buck LB. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc Natl Acad Sci U S A 2020; 117:4375-4384. [PMID: 32034095 PMCID: PMC7049128 DOI: 10.1073/pnas.1912176117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Eun Jeong Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andria Ellis
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Kunio Kondoh
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Donghui Kuang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| | - Linda B Buck
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| |
Collapse
|
32
|
Li C, Ma Y, Fei F, Zheng M, Li Z, Zhao Q, Du J, Liu K, Lu R, Zhang S. Critical role and its underlying molecular events of the plasminogen receptor, S100A10 in malignant tumor and non-tumor diseases. J Cancer 2020; 11:826-836. [PMID: 31949486 PMCID: PMC6959022 DOI: 10.7150/jca.36203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
S100A10 is a small molecular weight protein expressed in the cytoplasm of many cells and one of the members of the S100 protein family that binds calcium and forms the largest subgroup of EF-hand proteins. The regulatory processes of S100A10 are complicated. S100A10 participates in the regulation of a variety of tumor and non-tumor diseases through cascade reactions with multitudinous signaling molecules. In malignant tumors, such as acute promyelocytic leukemia (APL) and lung cancer, S100A10 is likely involved in their progression, including invasion and metastasis through the regulation of plasmin production and subsequent plasmin-dependent stimulation of other proteases, such as matrix metalloproteinase (MMP)-2 and -9. Both the plasmin and MMPs are capable of inducing degradation of the extracellular matrix (ECM) and basement membrane, which is a critical step for tumor progression. In non-tumor diseases, the distribution of S100A10 in the brain and its interaction with 5-hydroxytryptamine 1B (5-HT1B) receptor, an important mediator in the central nervous system that maintains a dynamic balance of the neurotransmitters, correlates with depression-like behavior. S100A10 also participates in inflammatory responses through the regulation of peripheral macrophage migration to the inflammatory sites, which depends on the generation of plasmin and other proteinases at the surface of macrophages. Considerable attention should be paid to understand the significant role of S100A10 in the modulation of malignant tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Yi Ma
- Department of ophthalmology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qi Zhao
- Tianjin Medical University, Tianjin, P.R. China
| | - Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Liu
- Tianjin Medical University, Tianjin, P.R. China
| | - Rui Lu
- Tianjin Medical University, Tianjin, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| |
Collapse
|
33
|
Stern SA, Doerig KR, Azevedo EP, Stoffel E, Friedman JM. Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues. Mol Psychiatry 2020; 25:666-679. [PMID: 29875477 PMCID: PMC6281813 DOI: 10.1038/s41380-018-0072-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.
Collapse
Affiliation(s)
- Sarah A. Stern
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Katherine R. Doerig
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Estefania P. Azevedo
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Elina Stoffel
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA
| | - Jeffrey M. Friedman
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, Chevy Chase, MD USA
| |
Collapse
|
34
|
Reynolds RH, Hardy J, Ryten M, Gagliano Taliun SA. Informing disease modelling with brain-relevant functional genomic annotations. Brain 2019; 142:3694-3712. [PMID: 31603214 PMCID: PMC6885670 DOI: 10.1093/brain/awz295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
The past decade has seen a surge in the number of disease/trait-associated variants, largely because of the union of studies to share genetic data and the availability of electronic health records from large cohorts for research use. Variant discovery for neurological and neuropsychiatric genome-wide association studies, including schizophrenia, Parkinson's disease and Alzheimer's disease, has greatly benefitted; however, the translation of these genetic association results to interpretable biological mechanisms and models is lagging. Interpreting disease-associated variants requires knowledge of gene regulatory mechanisms and computational tools that permit integration of this knowledge with genome-wide association study results. Here, we summarize key conceptual advances in the generation of brain-relevant functional genomic annotations and amongst tools that allow integration of these annotations with association summary statistics, which together provide a new and exciting opportunity to identify disease-relevant genes, pathways and cell types in silico. We discuss the opportunities and challenges associated with these developments and conclude with our perspective on future advances in annotation generation, tool development and the union of the two.
Collapse
Affiliation(s)
- Regina H Reynolds
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London (UCL), London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - Sarah A Gagliano Taliun
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Dong JX, Lee Y, Kirmiz M, Palacio S, Dumitras C, Moreno CM, Sando R, Santana LF, Südhof TC, Gong B, Murray KD, Trimmer JS. A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. eLife 2019; 8:48750. [PMID: 31566565 PMCID: PMC6785268 DOI: 10.7554/elife.48750] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Abstract
Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites.
Collapse
Affiliation(s)
- Jie-Xian Dong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Yongam Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Stephanie Palacio
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
36
|
Li SJ, Vaughan A, Sturgill JF, Kepecs A. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons. Neuron 2019; 98:905-917.e5. [PMID: 29879392 DOI: 10.1016/j.neuron.2018.05.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/30/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits.
Collapse
Affiliation(s)
- Shu-Jing Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
37
|
Schneeberger M, Parolari L, Das Banerjee T, Bhave V, Wang P, Patel B, Topilko T, Wu Z, Choi CHJ, Yu X, Pellegrino K, Engel EA, Cohen P, Renier N, Friedman JM, Nectow AR. Regulation of Energy Expenditure by Brainstem GABA Neurons. Cell 2019; 178:672-685.e12. [PMID: 31257028 DOI: 10.1016/j.cell.2019.05.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/21/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.
Collapse
Affiliation(s)
- Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Luca Parolari
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Tania Das Banerjee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Varun Bhave
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Bindiben Patel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Topilko
- ICM, Brain and Spine Institute, Hopital de la Pitie-Salpetriere, Sorbonne Universite, Inserm, CNRS, Paris 75013, France
| | - Zhuhao Wu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Chan Hee J Choi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Nicolas Renier
- ICM, Brain and Spine Institute, Hopital de la Pitie-Salpetriere, Sorbonne Universite, Inserm, CNRS, Paris 75013, France
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Alexander R Nectow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
In vivo nuclear capture and molecular profiling identifies Gmeb1 as a transcriptional regulator essential for dopamine neuron function. Nat Commun 2019; 10:2508. [PMID: 31175277 PMCID: PMC6555850 DOI: 10.1038/s41467-019-10267-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/26/2019] [Indexed: 11/08/2022] Open
Abstract
Midbrain dopamine (mDA) neurons play a central role in reward signaling and are widely implicated in psychiatric and neurodegenerative disorders. To understand how mDA neurons perform these functions, it is important to understand how mDA-specific genes are regulated. However, cellular heterogeneity in the mammalian brain presents a major challenge to obtaining this understanding. To this end, we developed a virus-based approach to label and capture mDA nuclei for transcriptome (RNA-Seq), and low-input chromatin accessibility (liDNase-Seq) profiling, followed by predictive modeling to identify putative transcriptional regulators of mDA neurons. Using this method, we identified Gmeb1, a transcription factor predicted to regulate expression of Th and Dat, genes critical for dopamine synthesis and reuptake, respectively. Gmeb1 knockdown in mDA neurons resulted in downregulation of Th and Dat, as well as in severe motor deficits. This study thus identifies Gmeb1 as a master regulator of mDA gene expression and function, and provides a general method for identifying cell type-specific transcriptional regulators.
Collapse
|
39
|
Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019; 103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
A crucial step in understanding the sleep-control mechanism is to identify sleep neurons. Through systematic anatomical screening followed by functional testing, we identified two sleep-promoting neuronal populations along a thalamo-amygdala pathway, both expressing neurotensin (NTS). Rabies-mediated monosynaptic retrograde tracing identified the central nucleus of amygdala (CeA) as a major source of GABAergic inputs to multiple wake-promoting populations; gene profiling revealed NTS as a prominent marker for these CeA neurons. Optogenetic activation and inactivation of NTS-expressing CeA neurons promoted and suppressed non-REM (NREM) sleep, respectively, and optrode recording showed they are sleep active. Further tracing showed that CeA GABAergic NTS neurons are innervated by glutamatergic NTS neurons in a posterior thalamic region, which also promote NREM sleep. CRISPR/Cas9-mediated NTS knockdown in either the thalamic or CeA neurons greatly reduced their sleep-promoting effect. These results reveal a novel thalamo-amygdala circuit for sleep generation in which NTS signaling is essential for both the upstream glutamatergic and downstream GABAergic neurons.
Collapse
|
40
|
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019; 177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/04/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Collapse
Affiliation(s)
- Zhe Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peng Zhong
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fei Hu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zeke Barger
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yulan Ren
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Franz Weber
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shinjae Chung
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Zhang H, Chaudhury D, Nectow AR, Friedman AK, Zhang S, Juarez B, Liu H, Pfau ML, Aleyasin H, Jiang C, Crumiller M, Calipari ES, Ku SM, Morel C, Tzavaras N, Montgomery SE, He M, Salton SR, Russo SJ, Nestler EJ, Friedman JM, Cao JL, Han MH. α 1- and β 3-Adrenergic Receptor-Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. Biol Psychiatry 2019; 85:226-236. [PMID: 30336931 PMCID: PMC6800029 DOI: 10.1016/j.biopsych.2018.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described. METHODS In a well-established chronic social defeat stress model of depression, using projection-specific electrophysiological recordings and optogenetic, pharmacological, and molecular profiling techniques, we investigated the functional role and molecular basis of an LC→VTA circuit in conferring resilience to social defeat stress. RESULTS We found that LC neurons projecting to the VTA exhibit enhanced firing activity in resilient, but not susceptible, mice. Optogenetically mimicking this firing adaptation in susceptible mice reverses their depression-related behaviors, and induces reversal of cellular hyperactivity and homeostatic plasticity in VTA DA neurons projecting to the nucleus accumbens. Circuit-specific molecular profiling studies reveal that α1- and β3-adrenergic receptors are highly expressed in VTA→nucleus accumbens DA neurons. Pharmacologically activating these receptors induces similar proresilient effects at the ion channel and cellular and behavioral levels, whereas antagonizing these receptors blocks the proresilient effect of optogenetic activation of LC→VTA circuit neurons in susceptible mice. CONCLUSIONS These findings reveal a key role of the LC→VTA circuit in mediating homeostatic plasticity in stress resilience and reveal α1- and β3-adrenergic receptors as new molecular targets for therapeutically promoting resilience.
Collapse
Affiliation(s)
- Hongxing Zhang
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Dipesh Chaudhury
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Allyson K Friedman
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Song Zhang
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Barbara Juarez
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacology, University of Washington, Seattle, Washington
| | - He Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Madeline L Pfau
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hossein Aleyasin
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cheng Jiang
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marshall Crumiller
- Laboratory of Biophysics, The Rockefeller University, New York, New York
| | - Erin S Calipari
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stacy M Ku
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carole Morel
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nikos Tzavaras
- Microscopy CORE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sarah E Montgomery
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michelle He
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stephen R Salton
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
42
|
Logrip ML. Molecular tools to elucidate factors regulating alcohol use. Alcohol 2019; 74:3-9. [PMID: 30033149 DOI: 10.1016/j.alcohol.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorder (AUD) is a pervasive societal problem, marked by high levels of alcohol intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD display a range of disordered drinking and alcohol-related behaviors. The diversity in disease presentation, as well as the established polygenic nature of the disorder and complex neurocircuitry, speaks to the variety of neurochemical changes resulting from alcohol intake that may differentially regulate alcohol-related behaviors. Investigations into the molecular adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior through neurochemical changes. This review highlights recent advances in molecular methodology, addressing how incorporation of these cutting-edge techniques not only may enhance current knowledge of the molecular bases of AUD, but also may facilitate identification of improved treatment targets that may be therapeutic in specific subpopulations of AUD individuals.
Collapse
|
43
|
Tozzi A, Peters JF. The common features of different brain activities. Neurosci Lett 2019; 692:41-46. [PMID: 30385139 DOI: 10.1016/j.neulet.2018.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 11/15/2022]
Abstract
The term "brain activity" refers to a wide range of mental faculties that can be assessed either on anatomical/functional micro-, meso- and macro- spatiotemporal scales of observation, or on intertwined cortical levels with mutual interactions. Our aim is to show that every brain activity encompassed in a given anatomical or functional level necessarily displays a counterpart in others, i.e., they are "dual". "Duality" refers to the case where two seemingly different physical systems turn out to be equivalent. We describe a method, based on novel topological findings, that makes different manifolds (standing for different brain activities) able to scatter, collide and combine, in order that they merge, condense and stitch together in a quantifiable way. We develop a computational tool which explains how, despite their local cortical functional differences, all mental processes, from perception to emotions, from cognition to mind wandering, may be reduced to a single, general brain activity that takes place in dimensions higher than the classical three-dimensional plus time. This framework permits a topological duality among different brain activities and neuro-techniques, because it holds for all the types of spatio-temporal nervous functions, independent of their cortical location, inter- and intra-level relationships, strength, magnitude and boundaries.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas 1155 Union Circle, #311427 Denton, TX 76203-5017, USA.
| | - James F Peters
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle Winnipeg, MB R3T 5V6, Canada; Department of Mathematics, Adıyaman University, 02040, Adıyaman, Turkey.
| |
Collapse
|
44
|
Sarno E, Robison AJ. Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacol Biochem Behav 2018; 174:2-8. [PMID: 29709585 PMCID: PMC6369584 DOI: 10.1016/j.pbb.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023]
Abstract
Over the past half century, novel tools have allowed the characterization of myriad molecular underpinnings of neural phenomena including synaptic function, neurogenesis and neurodegeneration, membrane excitability, and neurogenetics/epigenetics. More recently, transgenic mice have made possible cell type-specific explorations of these phenomena and have provided critical models of many neurological and psychiatric diseases. However, it has become clear that many critical areas of study require tools allowing the study and manipulation of individual neural circuits within the brain, and viral vectors have come to the forefront in driving these circuit-specific studies. Here, we present a surface-level review of the general classes of viral vectors used for study of the brain, along with their suitability for circuit-specific studies. We then cover in detail a new long-lasting, retrograde expressing form of herpes simplex virus termed LT-HSV that has become highly useful in circuit-based studies. We detail some of its current uses and propose a variety of future uses for this critical new tool, including circuit-based transgene overexpression, gene editing, and gene expression profiling.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
45
|
Chuhma N, Mingote S, Yetnikoff L, Kalmbach A, Ma T, Ztaou S, Sienna AC, Tepler S, Poulin JF, Ansorge M, Awatramani R, Kang UJ, Rayport S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. eLife 2018; 7:39786. [PMID: 30295607 PMCID: PMC6175576 DOI: 10.7554/elife.39786] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Dopamine neurons have different synaptic actions in the ventral and dorsal striatum (dStr), but whether this heterogeneity extends to dStr subregions has not been addressed. We have found that optogenetic activation of dStr dopamine neuron terminals in mouse brain slices pauses the firing of cholinergic interneurons in both the medial and lateral subregions, while in the lateral subregion the pause is shorter due to a subsequent excitation. This excitation is mediated mainly by metabotropic glutamate receptor 1 (mGluR1) and partially by dopamine D1-like receptors coupled to transient receptor potential channel 3 and 7. DA neurons do not signal to spiny projection neurons in the medial dStr, while they elicit ionotropic glutamate responses in the lateral dStr. The DA neurons mediating these excitatory signals are in the substantia nigra (SN). Thus, SN dopamine neurons engage different receptors in different postsynaptic neurons in different dStr subregions to convey strikingly different signals. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| | - Susana Mingote
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| | - Leora Yetnikoff
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychology, College of Staten Island, New York, United States.,CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, United States
| | - Abigail Kalmbach
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States.,Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Thong Ma
- Department of Neurology, Columbia University, New York, United States
| | - Samira Ztaou
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| | - Anna-Claire Sienna
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| | - Sophia Tepler
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| | | | - Mark Ansorge
- Department of Psychiatry, Columbia University, New York, United States.,Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | | | - Un Jung Kang
- Department of Neurology, Columbia University, New York, United States
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States.,Department of Psychiatry, Columbia University, New York, United States
| |
Collapse
|
46
|
Hudry E, Andres-Mateos E, Lerner EP, Volak A, Cohen O, Hyman BT, Maguire CA, Vandenberghe LH. Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 2018; 10:197-209. [PMID: 30109242 PMCID: PMC6083902 DOI: 10.1016/j.omtm.2018.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) have demonstrated potential in applications for neurologic disorders, and the discovery that some AAVs can cross the blood-brain barrier (BBB) after intravenous injection has further expanded these opportunities for non-invasive brain delivery. Anc80L65, a novel AAV capsid designed from in silico reconstruction of the viral evolutionary lineage, has previously demonstrated robust transduction capabilities after local delivery in various tissues such as liver, retina, or cochlea, compared with conventional AAVs. Here, we compared the transduction efficacy of Anc80L65 with conventional AAV9 in the CNS after intravenous, intracerebroventricular (i.c.v.), or intraparenchymal injections. Anc80L65 was more potent at targeting the brain and spinal cord after intravenous injection than AAV9, and mostly transduced astrocytes and a wide range of neuronal subpopulations. Although the efficacy of Anc80L65 and AAV9 is similar after direct intraparenchymal injection in the striatum, Anc80L65's diffusion throughout the CNS was more extensive than AAV9 after i.c.v. infusion, leading to widespread EGFP expression in the cerebellum. These findings demonstrate that Anc80L65 is a highly efficient gene transfer vector for the murine CNS. Systemic injection of Anc80L65 leads to notable expression in the CNS that does not rely on a self-complementary genome. These data warrant further testing in larger animal models.
Collapse
Affiliation(s)
- Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eli P. Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia Cohen
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A. Maguire
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Liu DS, Xu TL. Cell-Type Identification in the Autonomic Nervous System. Neurosci Bull 2018; 35:145-155. [PMID: 30171526 DOI: 10.1007/s12264-018-0284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved. One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.
Collapse
Affiliation(s)
- Di-Shi Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
48
|
Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. Proc Natl Acad Sci U S A 2018; 115:E6900-E6909. [PMID: 29967172 DOI: 10.1073/pnas.1806123115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.
Collapse
|
49
|
Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM. Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 2018; 13:83-89. [PMID: 29843980 PMCID: PMC6026325 DOI: 10.1016/j.molmet.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. RESULTS We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance. CONCLUSIONS Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.
Collapse
Affiliation(s)
- Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; A*Star Institute of Medical Biology, 1 Fusionopolis Way, #20-10 Connexis North Tower, Singapore, 138632, Singapore
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; Princeton Neuroscience institute, Princeton University, Princeton, NJ, 08544-2098, USA
| | - Luca Parolari
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Caner Caglar
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Estefania Azevedo
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Zhiying Li
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ana Domingos
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
50
|
He M, Huang ZJ. Genetic approaches to access cell types in mammalian nervous systems. Curr Opin Neurobiol 2018; 50:109-118. [PMID: 29471215 PMCID: PMC5984678 DOI: 10.1016/j.conb.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
Understanding brain circuit organization and function requires systematic dissection of its cellular components. With vast cell number and diversity, mammalian nervous systems present a daunting challenge for achieving specific and comprehensive cell type access-prerequisite to circuit analysis. Genetic approaches in the mouse have relied on germline engineering to access marker-defined cell populations. Combinatorial strategies that engage marker intersection, anatomy and projection pattern (e.g. antero-grade and retro-grade viral vectors), and developmental lineage substantially increase the specificity of cell type targeting. While increasing number of mouse cell types are becoming experimentally accessible, comprehensive coverage requires larger coordinated efforts with strategic infrastructural and fiscal planning. CRISPR-based genome editing may enable cell type access in other species, but issues of time, cost and ethics remain, especially for primates. Novel approaches that bypass the germline, such as somatic cell engineering and cell surface-based gene delivery, may reduce the barrier of genetic access to mammalian cell types.
Collapse
Affiliation(s)
- Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|