1
|
Panzeri I, Madaj Z, Fagnocchi L, Apostle S, Tompkins M, Hostetter G, Pospisilik JA. Chronic obesity does not alter cancer survival in Tp53 R270H/+ mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618190. [PMID: 39463991 PMCID: PMC11507782 DOI: 10.1101/2024.10.14.618190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Obesity is a complex chronic disease characterized by excessive adiposity and associations with numerous co-morbidities, including cancer. Despite extensive research, we have limited understanding of the mechanisms coupling obesity to cancer risk, and, of the contexts in which obesity does or does not exacerbate disease. Here, we show that chronic high-fat diet (HFD)-induced obesity has no significant effect on the Tp53 R270H/+ mouse, a model of human Li-Fraumeni multi-cancer syndrome. Surprisingly, despite inducing rapid and highly penetrant obesity and long-term differences in metabolic and adiposity, greater than one year of HFD had no significant effect on survival or tumor burden. These findings were replicated in two separate cohorts and thus provide important negative data for the field. Given strong publication bias against negative data in the literature, this large cohort study represents a clear case where chronic diet-induced obesity does not accelerate or aggravate cancer outcomes. The data thus carry high impact for researchers, funders, and policymakers alike.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
2
|
Li RL, Kang S. Rewriting cellular fate: epigenetic interventions in obesity and cellular programming. Mol Med 2024; 30:169. [PMID: 39390356 PMCID: PMC11465847 DOI: 10.1186/s10020-024-00944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifications, and RNA-mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differentiated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epigenetic interventions influence obesity, focusing on DNA methylation, histone modifications, and non-coding RNAs. We also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large-scale screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly in the context of adipogenesis and metabolic homeostasis; Single-cell RNA sequencing (scRNA-seq) provides a high-resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular programming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical management of obesity.
Collapse
Affiliation(s)
- Rui-Lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China.
| |
Collapse
|
3
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Ahn C, Divoux A, Zhou M, Seldin MM, Sparks LM, Whytock KL. An optimized pipeline for high-throughput bulk RNA-Seq deconvolution illustrates the impact of obesity and weight loss on cell composition of human adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614489. [PMID: 39386599 PMCID: PMC11463495 DOI: 10.1101/2024.09.23.614489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cellular heterogeneity of human adipose tissue, is linked to the pathophysiology of obesity and may impact the response to energy restriction and changes in fat mass. Here, we provide an optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose tissue (ASAT) from publicly available bulk RNA-Seq using signature profiles from our previously published full-length single nuclei (sn)RNA-Seq of the same depot. Individuals with obesity had greater proportions of macrophages and lower proportions of adipocyte sub-populations and vascular cells compared with lean individuals. Two months of diet-induced weight loss (DIWL) increased the estimated proportions of macrophages; however, two years of DIWL reduced the estimated proportions of macrophages, thereby suggesting a bi-phasic nature of cellular remodeling of ASAT during weight loss. Our optimized high-throughput pipeline facilitates the assessment of composition changes of highly characterized cell types in large numbers of ASAT samples using low-cost bulk RNA-Seq. Our data reveal novel changes in cellular heterogeneity and its association with cardiometabolic health in humans with obesity and following weight loss.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Mingqi Zhou
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
5
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
6
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Herrmann S, Fink M, Fagnocchi L, Matsuo K, Fink J, Lässle C, Marjanovic G, Fichtner-Feigl S, Pospisilik JA, Seifert G. Association of parental obesity with the profile of metabolic-bariatric surgery patients: a cohort study of the German StuDoQ|MBE registry. BMJ Open 2024; 14:e079217. [PMID: 38862221 PMCID: PMC11168148 DOI: 10.1136/bmjopen-2023-079217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES To investigate the association of parental obesity (PO) with onset of obesity, pre-surgical disease duration and body mass index (BMI) at the time of surgery in patients undergoing metabolic-bariatric surgery (MBS). DESIGN This is a cohort study of the German StuDoQ registry for metabolic-bariatric diseases. All surgical cases from initiation of the registry in September 2015 until August 2020 were screened for pertinent information. SETTING The registry is based on participating German hospitals of various sizes. PARTICIPANTS A total of 11 891 patients were included in this analysis, 74.2% of which were females and 25.8% males. Roux-en-Y gastric bypass was performed in 5652 (47.5%) cases, sleeve gastrectomy in 4618 (38.8%) cases and one-anastomosis gastric bypass in 1621 (13.6%) cases. RESULTS One-sided and two-sided PO are independently associated with early-onset obesity (OR 1.61, [95% CI, 1.47 to 1.76], p<0.001 and OR 2.45, [95% CI, 2.22 to 2.71], p<0.001) and prolonged pre-surgical disease duration (regression coefficient 2.39, [95% CI, 1.93 to 2.83], p<0.001 and regression coefficient 4.27, [95% CI, 3.80 to 4.75], p<0.001). Unlike one-sided PO, two-sided PO had a significant association with BMI at the time of surgery (regression coefficient 0.49, [95% CI, 0.14 to 0.85], p=0.006). Age at the onset of obesity and disease duration had a negative association with BMI at the time of surgery (regression coefficient -0.13, [95% CI, -0.14 to -0.11], p<0.001 and regression coefficient -0.05, [95% CI, -0.07 to -0.04], p<0.001). CONCLUSIONS This study established a clear association between PO status of patients undergoing MBS and their pre-surgical patient profile as well as known risk factors for poor postoperative response.
Collapse
Affiliation(s)
- Stephan Herrmann
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - Mira Fink
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Koji Matsuo
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jodok Fink
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - Claudia Lässle
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - Goran Marjanovic
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gabriel Seifert
- Department of General and Visceral Surgery, Medical Center - University of Freiburg Medical, Freiburg, Germany
| |
Collapse
|
8
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 2024; 67:1079-1094. [PMID: 38512414 PMCID: PMC11058053 DOI: 10.1007/s00125-024-06123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024]
Abstract
AIMS/HYPOTHESIS Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Adrien Osakwe
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sneha S Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sayed M Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, London, UK
- Imaging Resource Facility, Research Operations, St George's, University of London, London, UK
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Republic of Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, Republic of Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Republic of Singapore
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Robert Sladek
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montréal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Guy A Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
| | - Steven J Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
9
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Cheng C, Yu F, Yuan G, Jia J. Update on N6-methyladenosine methylation in obesity-related diseases. Obesity (Silver Spring) 2024; 32:240-251. [PMID: 37989724 DOI: 10.1002/oby.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/23/2023]
Abstract
Obesity is a chronic metabolic disease that is closely related to type 2 diabetes mellitus, cardiovascular diseases, nonalcoholic fatty liver disease, obstructive sleep apnea, and osteoarthritis. The prevalence of obesity is increasing rapidly every year and is recognized as a global public health problem. In recent years, the role of epigenetics in the development of obesity and related diseases has been recognized and is currently a research hotspot. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification in the eukaryotic RNA, including mRNA and noncoding RNA. Several studies have shown that the m6A modifications in the target mRNA and the corresponding m6A regulators play a significant role in lipid metabolism and are strongly associated with the pathogenesis of obesity-related diseases. In this review, the latest research findings regarding the role of m6A methylation in obesity and related metabolic diseases are summarized. The authors' aim is to highlight evidence that suggests the clinical utility of m6A modifications and the m6A regulators as novel early prediction biomarkers and precision therapeutics for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fan Yu
- Department of Endocrinology and Metabolism, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
12
|
Randolph K, Hyder U, Challa A, Perez E, D’Orso I. Functional Analysis of KAP1/TRIM28 Requirements for HIV-1 Transcription Activation. Viruses 2024; 16:116. [PMID: 38257816 PMCID: PMC10819576 DOI: 10.3390/v16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
HIV-1 latency maintenance and reactivation are regulated by several viral and host factors. One such factor is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β). While initial studies have revealed KAP1 to be a positive regulator of latency reversal in transformed and primary CD4+ T cells, subsequent studies have proposed KAP1 to be a repressor required for latency maintenance. Given this discrepancy, in this study, we re-examine KAP1 transcription regulatory functions using a chemical genetics strategy to acutely deplete KAP1 expression to avoid the accumulation of indirect effects. Notably, KAP1 acute loss partially decreased HIV-1 promoter activity in response to activating signals, a function that can be restored upon complementation with exogenous KAP1, thus revealing that KAP1-mediated activation is on target. By combining comprehensive KAP1 domain deletion and mutagenesis in a cell-based reporter assay, we genetically defined the RING finger domain and an Intrinsically Disordered Region as key activating features. Together, our study solidifies the notion that KAP1 activates HIV-1 transcription by exploiting its multi-domain protein arrangement via previously unknown domains and functions.
Collapse
Affiliation(s)
| | | | | | | | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.R.); (U.H.)
| |
Collapse
|
13
|
Ludzki AC, Hansen M, Zareifi D, Jalkanen J, Huang Z, Omar-Hmeadi M, Renzi G, Klingelhuber F, Boland S, Ambaw YA, Wang N, Damdimopoulos A, Liu J, Jernberg T, Petrus P, Arner P, Krahmer N, Fan R, Treuter E, Gao H, Rydén M, Mejhert N. Transcriptional determinants of lipid mobilization in human adipocytes. SCIENCE ADVANCES 2024; 10:eadi2689. [PMID: 38170777 PMCID: PMC10776019 DOI: 10.1126/sciadv.adi2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Defects in adipocyte lipolysis drive multiple aspects of cardiometabolic disease, but the transcriptional framework controlling this process has not been established. To address this, we performed a targeted perturbation screen in primary human adipocytes. Our analyses identified 37 transcriptional regulators of lipid mobilization, which we classified as (i) transcription factors, (ii) histone chaperones, and (iii) mRNA processing proteins. On the basis of its strong relationship with multiple readouts of lipolysis in patient samples, we performed mechanistic studies on one hit, ZNF189, which encodes the zinc finger protein 189. Using mass spectrometry and chromatin profiling techniques, we show that ZNF189 interacts with the tripartite motif family member TRIM28 and represses the transcription of an adipocyte-specific isoform of phosphodiesterase 1B (PDE1B2). The regulation of lipid mobilization by ZNF189 requires PDE1B2, and the overexpression of PDE1B2 is sufficient to attenuate hormone-stimulated lipolysis. Thus, our work identifies the ZNF189-PDE1B2 axis as a determinant of human adipocyte lipolysis and highlights a link between chromatin architecture and lipid mobilization.
Collapse
Affiliation(s)
- Alison C. Ludzki
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mattias Hansen
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Danae Zareifi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Jutta Jalkanen
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Gianluca Renzi
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Boland
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A. Ambaw
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Na Wang
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Anastasios Damdimopoulos
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, SE-182 88 Stockholm, Sweden
| | - Paul Petrus
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
14
|
Chen J, Feng X, Zhou X, Li Y. Role of the tripartite motif-containing (TRIM) family of proteins in insulin resistance and related disorders. Diabetes Obes Metab 2024; 26:3-15. [PMID: 37726973 DOI: 10.1111/dom.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.
Collapse
Affiliation(s)
- Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Centre for Endocrine and Metabolic disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Centre for Metabolic disease, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Zhou
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Li
- Department of Anaesthesiology, Medical Centre of Anaesthesiology and Pain, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527050. [PMID: 38076935 PMCID: PMC10705251 DOI: 10.1101/2023.02.04.527050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aims/hypothesis Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "βHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sanjay Khadayate
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Adrien Osakwe
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sneha S. Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sayed M. Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alex Montoya
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - James Elliott
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Chad Whilding
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Pavel Shliaha
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Holger Kramer
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, 168751
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, 768828
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Robert Sladek
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Dominic J. Withers
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Guy A. Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Steven J. Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
16
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
18
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
19
|
Bak ST, Haupt-Jorgensen M, Dudele A, Wegener G, Wang T, Nielsen AL, Lund S. The anti-inflammatory agent 5-ASA reduces the level of specific tsRNAs in sperm cells of high-fat fed C57BL/6J mouse sires and improves glucose tolerance in female offspring. J Diabetes Complications 2023; 37:108563. [PMID: 37499293 DOI: 10.1016/j.jdiacomp.2023.108563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The prevalence of obesity and associated comorbidities have increased to epidemic proportions globally. Paternal obesity is an independent risk factor for developing obesity and type 2 diabetes in the following generation, and growing evidence suggests epigenetic inheritance as a mechanism for this predisposition. How and why obesity induces epigenetic changes in sperm cells remain to be clarified in detail. Yet, recent studies show that alterations in sperm content of transfer RNA-derived small RNAs (tsRNAs) can transmit the effects of paternal obesity to offspring. Obesity is closely associated with low-grade chronic inflammation. Thus, we evaluated whether the anti-inflammatory agent 5-aminosalicylic acid (5-ASA) could intervene in the transmission of epigenetic inheritance of paternal obesity by reducing the inflammatory state in obese fathers. METHODS Male C57BL/6JBomTac mice were either fed a high-fat diet or a high-fat diet with 5-ASA for ten weeks before mating. The offspring metabolic phenotype was evaluated, and spermatozoa from sires were isolated for assessment of specific tsRNAs levels. RESULTS 5-ASA intervention reduced the levels of Glu-CTC tsRNAs in sperm cells and improved glucose tolerance in female offspring fed a chow diet. Paternal high-fat diet-induced obesity per se had only a moderate impact on the metabolic phenotype of both male and female offspring in our setting. CONCLUSION The results indicate that the low-grade inflammatory response associated with obesity may be an important factor in epigenetic inheritance of paternal obesity.
Collapse
Affiliation(s)
| | - Martin Haupt-Jorgensen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, 2200 Copenhagen N, Denmark.
| | - Anete Dudele
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, 8200 Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinial Medicine, Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Tobias Wang
- Department of Bioscience, Section for Zoophysiology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Sten Lund
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
20
|
Rudolph A, Stengel A, Suhs M, Schaper S, Wölk E, Rose M, Hofmann T. Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters. Nutrients 2023; 15:3657. [PMID: 37630847 PMCID: PMC10459747 DOI: 10.3390/nu15163657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Human genetic studies have associated Neuronatin gene variants with anorexia nervosa (AN) and obesity. Studies on the expression of the Neuronatin gene product, a proteolipid, are lacking. We investigated the relationship between circulating Neuronatin, body mass index (BMI), body composition (BC), physical activity (PA), and psychometric outcomes in patients with AN, normal weight, and obesity. Plasma Neuronatin was measured by ELISA in (1) 79 subjects of five BMI categories (AN/BMI < 17.5 kg/m2; normal weight/BMI 18.5-25 kg/m2; obesity/BMI 30-40 kg/m2; obesity/BMI 40-50 kg/m2; obesity/BMI > 50 kg/m2) with assessment of BC (bioimpedance analysis; BIA); (2) 49 women with AN (BMI 14.5 ± 1.8 kg/m2) with measurements of BC (BIA) and PA (accelerometry); (3) 79 women with obesity (BMI 48.8 ± 7.8 kg/m2) with measurements of anxiety (GAD-7), stress (PSQ-20), depression (PHQ-9) and eating behavior (EDI-2). Overall, a positive correlation was found between Neuronatin and BMI (p = 0.006) as well as total fat mass (FM; p = 0.036). In AN, Neuronatin did not correlate with BMI, FM, or PA (p > 0.05); no correlations were found between Neuronatin and psychometric outcomes in obesity (p > 0.05). The findings suggest an FM-dependent peripheral Neuronatin expression. The decreased Neuronatin expression in AN provides evidence that Neuronatin is implicated in the pathogenesis of eating disorders.
Collapse
Affiliation(s)
- Amelie Rudolph
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Andreas Stengel
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maria Suhs
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Selina Schaper
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Ellen Wölk
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Matthias Rose
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tobias Hofmann
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Department of Psychosomatic Medicine, DRK Kliniken Berlin Wiegmann Klinik, 14050 Berlin, Germany
| |
Collapse
|
21
|
Lechner L, Opitz R, Silver MJ, Krabusch PM, Prentice AM, Field MS, Stachelscheid H, Leitão E, Schröder C, Fernandez Vallone V, Horsthemke B, Jöckel KH, Schmidt B, Nöthen MM, Hoffmann P, Herms S, Kleyn PW, Megges M, Blume-Peytavi U, Weiss K, Mai K, Blankenstein O, Obermayer B, Wiegand S, Kühnen P. Early-set POMC methylation variability is accompanied by increased risk for obesity and is addressable by MC4R agonist treatment. Sci Transl Med 2023; 15:eadg1659. [PMID: 37467315 DOI: 10.1126/scitranslmed.adg1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.
Collapse
Affiliation(s)
- Lara Lechner
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Robert Opitz
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Matt J Silver
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Philipp M Krabusch
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Andrew M Prentice
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Harald Stachelscheid
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | | | - Valeria Fernandez Vallone
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | - Matthias Megges
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Venerology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Katja Weiss
- Klinik für Angeborene Herzfehler - Kinderkardiologie, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes, and Nutrition and Charité Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Center for Diabetes Research, 85764 München-Neuherberg, Germany
| | - Oliver Blankenstein
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Department Endocrinology and Metabolism, Labor Berlin-Charité Vivantes GmbH, 13353 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health/Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Susanna Wiegand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, 13353 Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
22
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
23
|
Parra-Vargas M, Bouret SG, Bruning JC, de Moura EG, Garland T, Lisboa PC, Ozanne SE, Patti ME, Plagemann A, Speakman JR, Tena-Sempere M, Vergely C, Zeltser LM, Jiménez-Chillarón JC. The long-lasting shadow of litter size in rodents: litter size is an underreported variable that strongly determines adult physiology. Mol Metab 2023; 71:101707. [PMID: 36933618 PMCID: PMC10074241 DOI: 10.1016/j.molmet.2023.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND/PURPOSE Litter size is a biological variable that strongly influences adult physiology in rodents. Despite evidence from previous decades and recent studies highlighting its major impact on metabolism, information about litter size is currently underreported in the scientific literature. Here, we urge that this important biological variable should be explicitly stated in research articles. RESULTS/CONCLUSION Below, we briefly describe the scientific evidence supporting the impact of litter size on adult physiology and outline a series of recommendations and guidelines to be implemented by investigators, funding agencies, editors in scientific journals, and animal suppliers to fill this important gap.
Collapse
Affiliation(s)
- Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain
| | - Sebastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, F-59000, Lille, France
| | - Jens C Bruning
- Max Planck Institute for Metabolism Research, Policlinic for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany
| | - Egberto G de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Welcome-MRC Institute of Metabolic Science, University of Cambridge, UK
| | - Mary-Elizabeth Patti
- Joslin Diabetes Center, Section of Integrative Physiology and Metabolism, Harvard Medical School, Boston, MA, USA
| | - Andreas Plagemann
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin. Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2) research team, Faculty of Health Sciences, University of Bourgogne, Dijon, France
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Josep C Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain; Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
24
|
Iqbal W, Zhou W. Computational Methods for Single-cell DNA Methylome Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:48-66. [PMID: 35718270 PMCID: PMC10372927 DOI: 10.1016/j.gpb.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
Dissecting intercellular epigenetic differences is key to understanding tissue heterogeneity. Recent advances in single-cell DNA methylome profiling have presented opportunities to resolve this heterogeneity at the maximum resolution. While these advances enable us to explore frontiers of chromatin biology and better understand cell lineage relationships, they pose new challenges in data processing and interpretation. This review surveys the current state of computational tools developed for single-cell DNA methylome data analysis. We discuss critical components of single-cell DNA methylome data analysis, including data preprocessing, quality control, imputation, dimensionality reduction, cell clustering, supervised cell annotation, cell lineage reconstruction, gene activity scoring, and integration with transcriptome data. We also highlight unique aspects of single-cell DNA methylome data analysis and discuss how techniques common to other single-cell omics data analyses can be adapted to analyze DNA methylomes. Finally, we discuss existing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Waleed Iqbal
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Liu H, Liu Y, Jin SG, Johnson J, Xuan H, Lu D, Li J, Zhai L, Li X, Zhao Y, Liu M, Craig SEL, Floramo JS, Molchanov V, Li J, Li JD, Krawczyk C, Shi X, Pfeifer GP, Yang T. TRIM28 secures skeletal stem cell fate during skeletogenesis by silencing neural gene expression and repressing GREM1/AKT/mTOR signaling axis. Cell Rep 2023; 42:112012. [PMID: 36680774 PMCID: PMC11339952 DOI: 10.1016/j.celrep.2023.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Long bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential. Moreover, TRIM28 loss causes hyperexpression of GREM1, which is an extracellular signaling factor promoting SSC self-renewal and SSC neurogenic potential by activating AKT/mTORC1 signaling. Our results suggest that TRIM28-mediated chromatin silencing establishes a barrier for maintaining the SSC lineage trajectory and preventing a transition to ectodermal fate by regulating both intrinsic and microenvironment cues.
Collapse
Affiliation(s)
- Huadie Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ye Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jianshuang Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xianfeng Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yaguang Zhao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Joseph S Floramo
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jie Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jia-Da Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
26
|
Emerging Roles of TRIM Family Proteins in Gliomas Pathogenesis. Cancers (Basel) 2022; 14:cancers14184536. [PMID: 36139694 PMCID: PMC9496762 DOI: 10.3390/cancers14184536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Gliomas remain challenging tumors due to their increased heterogeneity, complex molecular profile, and infiltrative phenotype that are often associated with a dismal prognosis. In a constant search for molecular changes and associated mechanisms, the TRIM protein family has emerged as an important area of investigation because of the regulation of vital cellular processes involved in brain pathophysiology that may possibly lead to brain tumor development. Herein, we discuss the diverse role of TRIM proteins in glioma progression, aiming to detect potential targets for future intervention. Abstract Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.
Collapse
|
27
|
Mohammad BD, Baig MS, Bhandari N, Siddiqui FA, Khan SL, Ahmad Z, Khan FS, Tagde P, Jeandet P. Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents. Molecules 2022; 27:molecules27186001. [PMID: 36144735 PMCID: PMC9502781 DOI: 10.3390/molecules27186001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.
Collapse
Affiliation(s)
- Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, G R T Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani 631209, Tamil Nadu, India
| | - Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad 431001, Maharashtra, India
| | - Neeraj Bhandari
- Arni School of Pharmacy, Arni University, Kathgarh, Indora 176401, Himachal Pradesh, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
- Correspondence: (S.L.K.); (P.J.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection, University of Reims, USC INRAe 1488, SFR Condorcet FR CNRS 3417, 51687 Reims, France
- Correspondence: (S.L.K.); (P.J.)
| |
Collapse
|
28
|
Yang CH, Fagnocchi L, Apostle S, Wegert V, Casaní-Galdón S, Landgraf K, Panzeri I, Dror E, Heyne S, Wörpel T, Chandler DP, Lu D, Yang T, Gibbons E, Guerreiro R, Bras J, Thomasen M, Grunnet LG, Vaag AA, Gillberg L, Grundberg E, Conesa A, Körner A, Pospisilik JA. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022; 4:1150-1165. [PMID: 36097183 PMCID: PMC9499872 DOI: 10.1038/s42255-022-00629-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent β-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Collapse
Affiliation(s)
- Chih-Hsiang Yang
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Vanessa Wegert
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Kathrin Landgraf
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
| | - Ilaria Panzeri
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Roche Diagnostics Deutschland, Mannheim, Germany
| | - Till Wörpel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Di Lu
- Van Andel Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Martin Thomasen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, MO, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Valencia, Spain
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, USA
| | - Antje Körner
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - J Andrew Pospisilik
- Van Andel Institute, Grand Rapids, MI, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
29
|
Holland ML, Rakyan VK. A stochastic basis for metabolic phenotypes. Nat Metab 2022; 4:1091-1092. [PMID: 36097184 DOI: 10.1038/s42255-022-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michelle L Holland
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Hijacking of transcriptional condensates by endogenous retroviruses. Nat Genet 2022; 54:1238-1247. [PMID: 35864192 PMCID: PMC9355880 DOI: 10.1038/s41588-022-01132-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate ‘hijacking’ of transcriptional condensates in various developmental and disease contexts. TRIM28 depletion in embryonic stem cells disconnects transcriptional condensates from super-enhancers, which is rescued by knockdown of endogenous retroviruses.
Collapse
|
31
|
Zhou W, Hinoue T, Barnes B, Mitchell O, Iqbal W, Lee SM, Foy KK, Lee KH, Moyer EJ, VanderArk A, Koeman JM, Ding W, Kalkat M, Spix NJ, Eagleson B, Pospisilik JA, Szabó PE, Bartolomei MS, Vander Schaaf NA, Kang L, Wiseman AK, Jones PA, Krawczyk CM, Adams M, Porecha R, Chen BH, Shen H, Laird PW. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. CELL GENOMICS 2022; 2:100144. [PMID: 35873672 PMCID: PMC9306256 DOI: 10.1016/j.xgen.2022.100144] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 05/21/2023]
Abstract
We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bret Barnes
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | - Owen Mitchell
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Waleed Iqbal
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kelly K. Foy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kwang-Ho Lee
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ethan J. Moyer
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra VanderArk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Julie M. Koeman
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wubin Ding
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manpreet Kalkat
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nathan J. Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bryn Eagleson
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Liang Kang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A. Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rishi Porecha
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| | - Peter W. Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| |
Collapse
|
32
|
Van de Pette M, Dimond A, Galvão AM, Millership SJ, To W, Prodani C, McNamara G, Bruno L, Sardini A, Webster Z, McGinty J, French PMW, Uren AG, Castillo-Fernandez J, Watkinson W, Ferguson-Smith AC, Merkenschlager M, John RM, Kelsey G, Fisher AG. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat Commun 2022; 13:2464. [PMID: 35513363 PMCID: PMC9072353 DOI: 10.1038/s41467-022-30022-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations. Exposure to high-fat diet in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 in offspring (loss of imprinting) and increased DNA methylation at the somatic differentially methylated region (sDMR). In the next generation heterogeneous Dlk1 mis-expression is seen exclusively among animals born to F1-exposed females. Oocytes from these females show altered gene and microRNA expression without changes in DNA methylation, and correct imprinting is restored in subsequent generations. Our results illustrate how diet impacts the foetal epigenome, disturbing canonical and non-canonical imprinting mechanisms to modulate the properties of successive generations of offspring.
Collapse
Affiliation(s)
- Mathew Van de Pette
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - António M Galvão
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Steven J Millership
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wilson To
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chiara Prodani
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Gráinne McNamara
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ludovica Bruno
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Zoe Webster
- Transgenics and Embryonic Stem Cell Laboratory, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anthony G Uren
- Cancer Genomics Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - William Watkinson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Matthias Merkenschlager
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
| | - Amanda G Fisher
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
33
|
Pepin AS, Lafleur C, Lambrot R, Dumeaux V, Kimmins S. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol Metab 2022; 59:101463. [PMID: 35183795 PMCID: PMC8931445 DOI: 10.1016/j.molmet.2022.101463] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Parental environmental exposures can strongly influence descendant risks for adult disease. How paternal obesity changes the sperm chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. The objective of this study was to assess (1) whether obesity induced by a high-fat diet alters sperm histone methylation; (2) whether paternal obesity can induce metabolic disturbances across generations; (3) whether there could be cumulative damage to the sperm epigenome leading to enhanced metabolic dysfunction in descendants; and (4) whether obesity-sensitive regions associate with embryonic epigenetic and transcriptomic profiles. Using a genetic mouse model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic dysfunction. This transgenic mouse overexpresses the histone demethylase enzyme KDM1A in the developing germline and has an altered sperm epigenome at the level of histone H3K4 methylation. We hypothesized that challenging transgenic sires with a high-fat diet would further erode the sperm epigenome and lead to enhanced metabolic disturbances in the next generations. METHODS To assess whether paternal obesity can have inter- or transgenerational impacts, and if so to identify potential mechanisms of this non-genetic inheritance, we used wild-type C57BL/6NCrl and transgenic males with a pre-existing altered sperm epigenome. To induce obesity, sires were fed either a control or high-fat diet (10% or 60% kcal fat, respectively) for 10-12 weeks, then bred to wild-type C57BL/6NCrl females fed a regular diet. F1 and F2 descendants were characterized for metabolic phenotypes by examining the effects of paternal obesity by sex, on body weight, fat mass distribution, the liver transcriptome, intraperitoneal glucose, and insulin tolerance tests. To determine whether obesity altered the F0 sperm chromatin, native chromatin immunoprecipitation-sequencing targeting H3K4me3 was performed. To gain insight into mechanisms of paternal transmission, we compared our sperm H3K4me3 profiles with embryonic and placental chromatin states, histone modification, and gene expression profiles. RESULTS Obesity-induced alterations in H3K4me3 occurred in genes implicated in metabolic, inflammatory, and developmental processes. These processes were associated with offspring metabolic dysfunction and corresponded to genes enriched for H3K4me3 in embryos and overlapped embryonic and placenta gene expression profiles. Transgenerational susceptibility to metabolic disease was only observed when obese F0 had a pre-existing modified sperm epigenome. This coincided with increased H3K4me3 alterations in sperm and more severe phenotypes affecting their offspring. CONCLUSIONS Our data suggest sperm H3K4me3 might serve as a metabolic sensor that connects paternal diet with offspring phenotypes via the placenta. This non-DNA-based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability and may lead to novel routes for the prevention of disease. This study highlights the need to further study the connection between the sperm epigenome, placental development, and children's health. SUMMARY SENTENCE Paternal obesity impacts sperm H3K4me3 and is associated with placenta, embryonic and metabolic outcomes in descendants.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Christine Lafleur
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Romain Lambrot
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Vanessa Dumeaux
- Department of Biology, PERFORM Center, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada.
| |
Collapse
|
34
|
Randolph K, Hyder U, D’Orso I. KAP1/TRIM28: Transcriptional Activator and/or Repressor of Viral and Cellular Programs? Front Cell Infect Microbiol 2022; 12:834636. [PMID: 35281453 PMCID: PMC8904932 DOI: 10.3389/fcimb.2022.834636] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Several transcriptional and epigenetic regulators have been functionally linked to the control of viral and cellular gene expression programs. One such regulator is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β), which has been extensively studied in the past three decades. Here we offer an up-to date review of its various functions in a diversity of contexts. We first summarize the discovery of KAP1 repression of endogenous retroviruses during development. We then deliberate evidence in the literature suggesting KAP1 is both an activator and repressor of HIV-1 transcription and discuss experimental differences and limitations of previous studies. Finally, we discuss KAP1 regulation of DNA and RNA viruses, and then expand on KAP1 control of cellular responses and immune functions. While KAP1 positive and negative regulation of viral and cellular transcriptional programs is vastly documented, our mechanistic understanding remains narrow. We thus propose that precision genetic tools to reveal direct KAP1 functions in gene regulation will be required to not only illuminate new biology but also provide the foundation to translate the basic discoveries from the bench to the clinics.
Collapse
|
35
|
Parmar CD, Bosch K, Benhmida R, O'Connell N, Fong C, Batterham R. First Report of One Anastomosis Gastric Bypass Performed in Twins. Obes Surg 2022; 32:1757-1760. [PMID: 35064865 DOI: 10.1007/s11695-022-05906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Chetan D Parmar
- Department of Surgery, Whittington Hospital, London, N19 5NF, UK.
| | | | | | | | | | - Rachel Batterham
- Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
36
|
Anwer H, Morris MJ, Noble DWA, Nakagawa S, Lagisz M. Transgenerational effects of obesogenic diets in rodents: A meta-analysis. Obes Rev 2022; 23:e13342. [PMID: 34595817 DOI: 10.1111/obr.13342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Obesity is a major health condition that affects millions worldwide. There is an increased interest in understanding the adverse outcomes associated with obesogenic diets. A multitude of studies have investigated the transgenerational impacts of maternal and parental obesogenic diets on subsequent generations of offspring, but results have largely been mixed. We conducted a systematic review and meta-analysis on rodent studies to elucidate how obesogenic diets impact the mean and variance of grand-offspring traits. Our study focused on transgenerational effects (i.e., F2 and F3 generations) in one-off and multigenerational exposure studies. From 33 included articles, we obtained 407 effect sizes representing pairwise comparisons of control and treatment grand-offspring groups pertaining to measures of body weight, adiposity, glucose, insulin, leptin, and triglycerides. We found evidence that male and female grand-offspring descended from grandparents exposed to an obesogenic diet displayed phenotypes consistent with metabolic syndrome, especially in cases where the obesogenic diet was continued across generations. Further, we found stronger evidence for the effects of grand-maternal than grand-paternal exposure on grand-offspring traits. A high-fat diet in one-off exposure studies did not seem to impact phenotypic variation, whereas in multigenerational exposure studies it reduced variation in several traits.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
38
|
Abdulhasan M, Ruden X, Rappolee B, Dutta S, Gurdziel K, Ruden DM, Awonuga AO, Korzeniewski SJ, Puscheck EE, Rappolee DA. Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:2164-2177. [PMID: 34155611 PMCID: PMC8216586 DOI: 10.1007/s12015-021-10188-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopeptidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embryonic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stress increases ESC viral susceptibility. Taken together, the data suggest that a control hyperosmotic stress can increase Covid-19 susceptibility and decrease viral host resistance in mouse ESC. However, this limited pilot study should be followed with studies in human ESC, tests of environmental, hormonal, and pharmaceutical stressors and direct tests for infection of stressed, cultured ESC and embryos by Covid-19.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
| | - Ximena Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | | | - Sudipta Dutta
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Endocrinology and Cell Signaling LaboratoryDepartment of Integrative BiosciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Katherine Gurdziel
- Genome Sciences Center, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Douglas M Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Awoniyi O Awonuga
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | - Steve J Korzeniewski
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Elizabeth E Puscheck
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, 60169, USA
| | - Daniel A Rappolee
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA.
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA.
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
39
|
Pessoa Rodrigues C, Chatterjee A, Wiese M, Stehle T, Szymanski W, Shvedunova M, Akhtar A. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun 2021; 12:6212. [PMID: 34707105 PMCID: PMC8551339 DOI: 10.1038/s41467-021-26277-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Aindrila Chatterjee
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Meike Wiese
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Stehle
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Witold Szymanski
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
40
|
Braun JL, Teng ACT, Geromella MS, Ryan CR, Fenech RK, MacPherson REK, Gramolini AO, Fajardo VA. Neuronatin promotes SERCA uncoupling and its expression is altered in skeletal muscles of high-fat diet-fed mice. FEBS Lett 2021; 595:2756-2767. [PMID: 34693525 DOI: 10.1002/1873-3468.14213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Neuronatin (NNAT) is a transmembrane protein in the endoplasmic reticulum involved in metabolic regulation. It shares sequence homology with sarcolipin (SLN), which negatively regulates the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) that maintains energy homeostasis in muscles. Here, we examined whether NNAT could uncouple the Ca2+ transport activity of SERCA from ATP hydrolysis, similarly to SLN. NNAT significantly reduced Ca2+ uptake without altering SERCA activity, ultimately lowering the apparent coupling ratio of SERCA. This effect of NNAT was reversed by the adenylyl cyclase activator forskolin. Furthermore, soleus muscles from high fat diet (HFD)-fed mice showed a significant downregulation in NNAT content compared with chow-fed mice, whereas an upregulation in NNAT content was observed in fast-twitch muscles from HFD- versus chow- fed mice. Therefore, NNAT is a SERCA uncoupler in cells and may function in adaptive thermogenesis.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Chantal R Ryan
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rachel K Fenech
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rebecca E K MacPherson
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| |
Collapse
|
41
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
42
|
Cimino I, Rimmington D, Tung YCL, Lawler K, Larraufie P, Kay RG, Virtue S, Lam BYH, Fagnocchi L, Ma MKL, Saudek V, Zvetkova I, Vidal-Puig A, Yeo GSH, Farooqi IS, Pospisilik JA, Gribble FM, Reimann F, O'Rahilly S, Coll AP. Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Sci Rep 2021; 11:17571. [PMID: 34475432 PMCID: PMC8413370 DOI: 10.1038/s41598-021-96278-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/-p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/-p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/-p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/-p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/-p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/-p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.
Collapse
Affiliation(s)
- Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Y C Loraine Tung
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Pierre Larraufie
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Richard G Kay
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Samuel Virtue
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marcella K L Ma
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Ilona Zvetkova
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Frank Reimann
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK.
| |
Collapse
|
43
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
44
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
45
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
46
|
The dual nature of obesity in metabolic programming: quantity versus quality of adipose tissue. Clin Sci (Lond) 2021; 134:2447-2451. [PMID: 32975284 DOI: 10.1042/cs20201028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
The global prevalence of obesity has been rising at an alarming rate, accompanied by an increase in both childhood and maternal obesity. The concept of metabolic programming is highly topical, and in this context, describes a predisposition of offspring of obese mothers to the development of obesity independent of environmental factors. Research published in this issue of Clinical Science conducted by Litzenburger and colleagues (Clin. Sci. (Lond.) (2020) 134, 921-939) have identified sex-dependent differences in metabolic programming and identify putative signaling pathways involved in the differential phenotype of adipose tissue between males and females. Delineating the distinction between metabolically healthy and unhealthy obesity is a topic of emerging interest, and the precise nature of adipocytes are key to pathogenesis, independent of adipose tissue volume.
Collapse
|
47
|
Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 2021; 33:437-453.e5. [PMID: 33378646 DOI: 10.1016/j.cmet.2020.12.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.
Collapse
Affiliation(s)
- Anitta Kinga Sárvári
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Elvira Laila Van Hauwaert
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Lasse Kruse Markussen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ellen Gammelmark
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ann-Britt Marcher
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ronni Nielsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jonathan Richard Brewer
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jesper Grud Skat Madsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| |
Collapse
|
48
|
Bernhardt L, Dittrich M, El-Merahbi R, Saliba AE, Müller T, Sumara G, Vogel J, Nichols-Burns S, Mitchell M, Haaf T, El Hajj N. A genome-wide transcriptomic analysis of embryos fathered by obese males in a murine model of diet-induced obesity. Sci Rep 2021; 11:1979. [PMID: 33479343 PMCID: PMC7820458 DOI: 10.1038/s41598-021-81226-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Paternal obesity is known to have a negative impact on the male’s reproductive health as well as the health of his offspring. Although epigenetic mechanisms have been implicated in the non-genetic transmission of acquired traits, the effect of paternal obesity on gene expression in the preimplantation embryo has not been fully studied. To this end, we investigated whether paternal obesity is associated with gene expression changes in eight-cell stage embryos fathered by males on a high-fat diet. We used single embryo RNA-seq to compare the gene expression profile of embryos generated by males on a high fat (HFD) versus control (CD) diet. This analysis revealed significant upregulation of the Samd4b and Gata6 gene in embryos in response to a paternal HFD. Furthermore, we could show a significant increase in expression of both Gata6 and Samd4b during differentiation of stromal vascular cells into mature adipocytes. These findings suggest that paternal obesity may induce changes in the male germ cells which are associated with the gene expression changes in the resulting preimplantation embryos.
Collapse
Affiliation(s)
- Laura Bernhardt
- Institute of Human Genetics, Julius Maximilians University, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074, Würzburg, Germany.,Department of Bioinformatics, Julius Maximilians University, 97074, Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, Haus D15, 97080, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, Haus D15, 97080, Würzburg, Germany.,Nencki Institute of Experimental Biology, PAS, 02-093, Warsaw, Poland
| | - Jörg Vogel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080, Würzburg, Germany.,Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Stefanie Nichols-Burns
- Laboratory for Molecular Medicine, Department of Obstetrics and Gynaecology, Erlangen University Hospital, Universitaetsstrasse, Erlangen, Germany.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Megan Mitchell
- Laboratory for Molecular Medicine, Department of Obstetrics and Gynaecology, Erlangen University Hospital, Universitaetsstrasse, Erlangen, Germany.,School of Paediatrics and Reproductive Health, The Robinson Institute, University of Adelaide, Adelaide, SA, Australia
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, 97074, Würzburg, Germany. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
49
|
Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nat Commun 2021; 12:74. [PMID: 33397965 PMCID: PMC7782476 DOI: 10.1038/s41467-020-20434-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The effective storage of lipids in white adipose tissue (WAT) critically impacts whole body energy homeostasis. Many genes have been implicated in WAT lipid metabolism, including tripartite motif containing 28 (Trim28), a gene proposed to primarily influence adiposity via epigenetic mechanisms in embryonic development. However, in the current study we demonstrate that mice with deletion of Trim28 specifically in committed adipocytes, also develop obesity similar to global Trim28 deletion models, highlighting a post-developmental role for Trim28. These effects were exacerbated in female mice, contributing to the growing notion that Trim28 is a sex-specific regulator of obesity. Mechanistically, this phenotype involves alterations in lipolysis and triglyceride metabolism, explained in part by loss of Klf14 expression, a gene previously demonstrated to modulate adipocyte size and body composition in a sex-specific manner. Thus, these findings provide evidence that Trim28 is a bona fide, sex specific regulator of post-developmental adiposity and WAT function.
Collapse
|
50
|
Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, Nestor CE, Löf M. DNA methylation in infants with low and high body fatness. BMC Genomics 2020; 21:769. [PMID: 33167873 PMCID: PMC7654595 DOI: 10.1186/s12864-020-07169-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Birth weight is determined by the interplay between infant genetics and the intrauterine environment and is associated with several health outcomes in later life. Many studies have reported an association between birth weight and DNA methylation in infants and suggest that altered epigenetics may underlie birthweight-associated health outcomes. However, birth weight is a relatively nonspecific measure of fetal growth and consists of fat mass and fat-free mass which may have different effects on health outcomes which motivates studies of infant body composition and DNA methylation. Here, we combined genome-wide DNA methylation profiling of buccal cells from 47 full-term one-week old infants with accurate measurements of infant fat mass and fat-free mass using air-displacement plethysmography. RESULTS No significant association was found between DNA methylation in infant buccal cells and infant body composition. Moreover, no association between infant DNA methylation and parental body composition or indicators of maternal glucose metabolism were found. CONCLUSIONS Despite accurate measures of body composition, we did not identify any associations between infant body fatness and DNA methylation. These results are consistent with recent studies that generally have identified only weak associations between DNA methylation and birthweight. Although our results should be confirmed by additional larger studies, our findings may suggest that differences in DNA methylation between individuals with low and high body fatness may be established later in childhood.
Collapse
Affiliation(s)
- Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Brodin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Forsum
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|