1
|
Ma DH, Alto NM, Radhakrishnan A. Monitoring Accessible Cholesterol Levels in Immune Cells. Methods Mol Biol 2025; 2888:83-99. [PMID: 39699726 DOI: 10.1007/978-1-0716-4318-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cholesterol is a critical lipid that is present at high concentrations in the plasma membranes of animal cells. Most of the membrane cholesterol is sequestered by other membrane lipids and the transmembrane domains of proteins. Cholesterol in excess of such sequestration forms a pool that is referred to as "accessible cholesterol." This pool of cholesterol plays a crucial role in maintaining lipid homeostasis and in controlling cell growth. The accessible cholesterol pool can also be exploited by bacteria and viruses to promote infection and host immune responses rapidly lower levels of this pool to confer protection. We had previously developed a bacterial toxin sensor called ALOD4 to monitor and quantify accessible cholesterol in cultured cells. Here, we report the characterization of a modified version of ALOD4 that is specialized to detect and monitor accessible cholesterol levels in primary immune cells by flow cytometry analysis.
Collapse
Affiliation(s)
- Duo H Ma
- Departments of Molecular Genetics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Eichler J, Huver S, Knorr CJ, Wendling C, Kobayashi T, Tomasetto C, Alpy F. Methods for Visualizing and Quantifying Cholesterol Distribution in Mammalian Cells Using Filipin and D4 Probes. Methods Mol Biol 2025; 2888:101-118. [PMID: 39699727 DOI: 10.1007/978-1-0716-4318-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cholesterol is a key component of biological membranes and, like many cellular lipids, is unevenly distributed among organelles. Disruptions in cholesterol trafficking are associated with various pathologies, including lysosomal lipid storage disorders, often characterized by intracellular cholesterol accumulation. A significant challenge in studying cholesterol trafficking is the lack of easy methods to trace this molecule in situ. Fluorescent probes that specifically bind cholesterol have enabled the visualization and imaging of cholesterol distribution within cells. This chapter details optimized methods for visualizing and quantifying free cholesterol at the plasma membrane and intracellulaly, both in individual cells and in large cell populations. These methods use two fluorescent probes: the D4 fragment of perfringolysin O fused to monomeric EGFP (mEGFP-D4 and the more sensitive mutant mEGFP-D4H) and the polyene macrolide filipin. We describe robust methods for quantifying plasma membrane cholesterol by flow cytometry and to visualize intracellular cholesterol pools by light microscopy. Furthermore, we introduce a refined filipin staining protocol that enhances intracellular cholesterol detection. For precise quantification, we developed an automated image analysis pipeline. This chapter provides a comprehensive guide for staining and quantifying cellular cholesterol, offering valuable tools for studying cholesterol dynamics in mammalian cells.
Collapse
Affiliation(s)
- Julie Eichler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France
| | - Sophie Huver
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France
| | - Céline J Knorr
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France
| | - Corinne Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, Inserm, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
3
|
Li YK, Dai GY, Zhang YM, Yao N. Imaging Plant Lipids with Fluorescent Reporters. PLANTS (BASEL, SWITZERLAND) 2024; 14:15. [PMID: 39795280 PMCID: PMC11723198 DOI: 10.3390/plants14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
In plants, lipids function as structural elements and signaling molecules. Understanding lipid composition and dynamics is essential for unraveling their biological functions and metabolism. Mapping the spatiotemporal distribution of lipids in plants holds great potential for elucidating lipid biosynthetic pathways and gaining insights to guide crop genetic engineering. Recent progress in fluorescence microscopy and imaging has opened new opportunities for researchers to visualize plant lipids in vivo at high spatiotemporal resolution. In this review, we provide an up-to-date overview of the methods used to image plant lipids with fluorescence microscopy. We highlight caveats and potential limitations of these approaches and provide suggestions for optimizing their utilization. This review synthesizes current knowledge and highlights the potential of these methods to provide new insights into lipid biology.
Collapse
Affiliation(s)
- Yong-Kang Li
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| | - Guang-Yi Dai
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou 510275, China;
| | - Yu-Meng Zhang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| | - Nan Yao
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.-K.L.); (Y.-M.Z.)
| |
Collapse
|
4
|
Wang S, Jiang H, Hu M, Gong Y, Zhou H. Evolutionary conservation analysis of human sphingomyelin metabolism pathway genes. Heliyon 2024; 10:e40810. [PMID: 39698091 PMCID: PMC11652929 DOI: 10.1016/j.heliyon.2024.e40810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Sphingomyelin is an important member of the sphingolipid family and was first reported more than a century ago. It has been demonstrated that sphingomyelin plays a crucial role in compositing cell membranes and signaling pathways. Despite extensive functional studies on the sphingolipid metabolism pathway genes, one intriguing question remains: how does the emergence of these genes during evolution correlate with the acquisition of new functions in different species? By employing an evolutionary conservation analysis, the sequence of occurrence of biological processes during evolutionary history can be elucidated. Here we summarize and analyze the conservation status of the genes involved in sphingomyelin metabolism.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Huan Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Moran Hu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
5
|
Sannigrahi A, Ghosh S, Pradhan S, Jana P, Jawed JJ, Majumdar S, Roy S, Karmakar S, Mukherjee B, Chattopadhyay K. Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion. EMBO Rep 2024; 25:5561-5598. [PMID: 39482488 PMCID: PMC11624268 DOI: 10.1038/s44319-024-00302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
The first step of successful infection by any intracellular pathogen relies on its ability to invade its host cell membrane. However, the detailed structural and molecular understanding underlying lipid membrane modification during pathogenic invasion remains unclear. In this study, we show that a specific Leishmania donovani (LD) protein, KMP-11, forms oligomers that bridge LD and host macrophage (MΦ) membranes. This KMP-11 induced interaction between LD and MΦ depends on the variations in cholesterol (CHOL) and ergosterol (ERG) contents in their respective membranes. These variations are crucial for the subsequent steps of invasion, including (a) the initial attachment, (b) CHOL transport from MΦ to LD, and (c) detachment of LD from the initial point of contact through a liquid ordered (Lo) to liquid disordered (Ld) membrane-phase transition. To validate the importance of KMP-11, we generate KMP-11 depleted LD, which failed to attach and invade host MΦ. Through tryptophan-scanning mutagenesis and synthesized peptides, we develop a generalized mathematical model, which demonstrates that the hydrophobic moment and the symmetry sequence code at the membrane interacting protein domain are key factors in facilitating the membrane phase transition and, consequently, the host cell infection process by Leishmania parasites.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratim Pradhan
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Junaid Jibran Jawed
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700156, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Syamal Roy
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- INSA Senior Scientist, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Sanat Karmakar
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
6
|
Fedorov NS, Malomouzh AI, Petrov AM. Effects of membrane cholesterol-targeting chemicals on skeletal muscle contractions evoked by direct and indirect stimulation. J Muscle Res Cell Motil 2024; 45:221-231. [PMID: 38904733 DOI: 10.1007/s10974-024-09675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-β-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-β-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-β-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-β-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.
Collapse
Affiliation(s)
- Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
- Kazan National Research Technical University named after A.N. Tupolev-KAI, 10, K. Marx St, Kazan, 420111, Russia.
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Medical University, 49 Butlerova St, Kazan, 420012, Russia
| |
Collapse
|
7
|
Montesinos J, Kabra K, Uceda M, Larrea D, Agrawal R, Tamucci K, Pera M, Ferre A, Gomez-Lopez N, Yun T, Velasco K, Schon E, Area-Gomez E. The contribution of mitochondria-associated ER membranes to cholesterol homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622945. [PMID: 39605513 PMCID: PMC11601226 DOI: 10.1101/2024.11.11.622945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cellular demands for cholesterol are met by a balance between its biosynthesis in the endoplasmic reticulum (ER) and its uptake from lipoproteins. Cholesterol levels in intracellular membranes form a gradient maintained by a complex network of mechanisms including the control of the expression, compartmentalization and allosteric modulation of the enzymes that balance endogenous and exogenous sources of cholesterol. Low-density lipoproteins (LDLs) are internalized and delivered to lysosomal compartments to release their cholesterol content, which is then distributed within cellular membranes. High-density lipoproteins (HDLs), on the other hand, can transfer their cholesterol content directly into cellular membranes through the action of receptors such as the scavenger receptor B type 1 (SR-B1; gene SCARB1). We show here that SR-B1-mediated exogenous cholesterol internalization from HDL stimulates the formation of lipid-raft subdomains in the ER known as mitochondria-associated ER membranes (MAM), that, in turn, suppress de novo cholesterol biosynthesis machinery. We propose that MAM is a regulatory hub for cholesterol homeostasis that offers a novel dimension for understanding the intracellular regulation of this important lipid.
Collapse
Affiliation(s)
- J. Montesinos
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - K. Kabra
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - M. Uceda
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - D. Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - R.R. Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - K.A. Tamucci
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - M. Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - A.C. Ferre
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - N. Gomez-Lopez
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - T.D. Yun
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - K.R. Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - E.A. Schon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - E. Area-Gomez
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Liu X, Min Q, Cheng X, Zhang W, Wu Q, Chen X, Lv M, Liu S, Zhao H, Yang D, Tai Y, Lei X, Wang Y, Zhan Q. Quiescent cancer cells induced by high-density cultivation reveals cholesterol-mediated survival and lung metastatic traits. Br J Cancer 2024; 131:1591-1604. [PMID: 39390252 PMCID: PMC11555385 DOI: 10.1038/s41416-024-02861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The metastatic cascade, a multifaceted and highly aggressive process, is the primary cause of mortality. The survival of quiescent cancer cells in circulatory system during metastasis is crucial, yet our comprehension is constrained by the absence of universally accepted quiescent cancer models. METHOD We developed a quiescent cancer cell model using high-density cultivation. Based on the scRNA-seq analysis, IP-MS, metabolomics, mouse lung metastasis models, cholesterol assay, PLA and other molecular experiments, we explored the molecular mechanism. Immunofluorescence, atomic force microscope, FluidFM, and shear stress stimulation were used to analyze the cytoskeleton and membrane properties contributing to mechanical force resistance. RESULT We established a quiescent cancer cell model induced by high-density cultivation. Single-cell RNA sequencing (scRNA-seq) analysis reveals that CDC25A plays a crucial role in the transition to quiescence, with its expression significantly elevated in the quiescent state. Depletion of CDC25A leads to an increased proliferative capacity, and reduced metastasis under high-density conditions. Mechanistically, upregulated CDC25A in quiescent cells enhances cholesterol metabolism via endosome pathways, leading to cell cycle arrest. This increase in cholesterol reinforces the cytoskeleton, alters membrane properties, and improves resistance to mechanical forces in circulatory system. CONCLUSION CDC25A significantly increased the cholesterol metabolism through endosome pathway in quiescent cancer cells, leading to the significant changes in cytoskeleton and membrane properties so as to enhance the resistance of mechanical force in circulatory system, facilitating lung metastasis. In high-density cultivation, quiescent cancer cells, up-regulate cholesterol metabolism by CDC25A through endosome pathway, enhancing the resistance to mechanical force in circulatory system, facilitating lung metastasis.
Collapse
Affiliation(s)
- Xingyang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qinjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xinxin Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Huihui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yidi Tai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xiao Lei
- Peking University International Cancer Institute, 100191, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Peking University International Cancer Institute, 100191, Beijing, China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, 100730, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
9
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
11
|
Luo H, Zhao X, Wang ZD, Wu G, Xia Y, Dong MQ, Ma Y. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans. J Lipid Res 2024; 65:100553. [PMID: 38704027 PMCID: PMC11153919 DOI: 10.1016/j.jlr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.
Collapse
Affiliation(s)
- Hui Luo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Zi-Dan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Meng-Qiu Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Yan Ma
- National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Kuwashima Y, Yanagawa M, Maekawa M, Abe M, Sako Y, Arita M. TRPV4-dependent Ca 2+ influx determines cholesterol dynamics at the plasma membrane. Biophys J 2024; 123:867-884. [PMID: 38433447 PMCID: PMC10995426 DOI: 10.1016/j.bpj.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The activities of the transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, are controlled by its surrounding membrane lipids (e.g., cholesterol, phosphoinositides). The transmembrane region of TRPV4 contains a cholesterol recognition amino acid consensus (CRAC) motif and its inverted (CARC) motif located in the plasmalemmal cytosolic leaflet. TRPV4 localizes in caveolae, a bulb-shaped cholesterol-rich domain at the plasma membrane. Here, we visualized the spatiotemporal interactions between TRPV4 and cholesterol at the plasma membrane in living cells by dual-color single-molecule imaging using total internal reflection fluorescence microscopy. To this aim, we labeled cholesterol at the cytosolic leaflets of the plasma membrane using a cholesterol biosensor, D4H. Our single-molecule tracking analysis showed that the TRPV4 molecules colocalize with D4H-accessible cholesterol molecules mainly in the low fluidity membrane domains in which both molecules are highly clustered. Colocalization of TRPV4 and D4H-accessible cholesterol was observed both inside and outside of caveolae. Agonist-evoked TRPV4 activation remarkably decreased colocalization probability and association rate between TRPV4 and D4H-accessible cholesterol molecules. Interestingly, upon TRPV4 activation, the particle density of D4H-accessible cholesterol molecules was decreased and the D4H-accessible cholesterol molecules in the fast-diffusing state were increased at the plasma membrane. The introduction of skeletal dysplasia-associated R616Q mutation into the CRAC/CARC motif of TRPV4, which reduced the interaction with cholesterol clusters, could not alter the D4H-accessible cholesterol dynamics. Mechanistically, TRPV4-mediated Ca2+ influx and the C-terminal calmodulin-binding site of TRPV4 are essential for modulating the plasmalemmal D4H-accessible cholesterol dynamics. We propose that TRPV4 remodels its surrounding plasmalemmal environment by manipulating cholesterol dynamics through Ca2+ influx.
Collapse
Affiliation(s)
- Yutaro Kuwashima
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan.
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
13
|
Gao Y, Kennelly JP, Xiao X, Whang E, Ferrari A, Bedard AH, Mack JJ, Nguyen AH, Weston T, Uchiyama LF, Lee MS, Young SG, Bensinger SJ, Tontonoz P. T cell cholesterol transport is a metabolic checkpoint that links intestinal immune responses to dietary lipid absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584164. [PMID: 38559079 PMCID: PMC10979874 DOI: 10.1101/2024.03.08.584164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intrinsic pathways that control membrane organization in immune cells and the impact of such pathways on cellular function are not well defined. Here we report that the non-vesicular cholesterol transporter Aster-A links plasma membrane (PM) cholesterol availability in T cells to immune signaling and systemic metabolism. Aster-A is recruited to the PM during T-cell receptor (TCR) activation, where it facilitates the removal of newly generated "accessible" membrane cholesterol. Loss of Aster-A leads to excess PM cholesterol accumulation, resulting in enhanced TCR nano-clustering and signaling, and Th17 cytokine production. Finally, we show that the mucosal Th17 response is restrained by PM cholesterol remodeling. Ablation of Aster-A in T cells leads to enhanced IL-22 production, reduced intestinal fatty acid absorption, and resistance to diet-induced obesity. These findings delineate a multi-tiered regulatory scheme linking immune cell lipid flux to nutrient absorption and systemic physiology.
Collapse
|
14
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Yang Y, Liu B, Tian J, Teng X, Liu T. Vital role of autophagy flux inhibition of placental trophoblast cells in pregnancy disorders induced by HEV infection. Emerg Microbes Infect 2023; 12:2276336. [PMID: 37882369 PMCID: PMC10796124 DOI: 10.1080/22221751.2023.2276336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Hepatitis E virus (HEV) has become one of the important pathogens that threaten the global public health. Type 3 and 4 HEV are zoonotic, which can spread vertically and cause placental damage. At the same time, autophagy plays an important role in the process of embryo development and pregnancy maintenance. However, the relationship between HEV and autophagy, especially in the placenta tissue, has not been clarified. We found lower litter rates in HEV-infected female mice, with significant intrauterine abortion of the embryo (24.19%). To explore the effects of HEV infection on placenta autophagy, chorionic cells (JEG-3) and mice placenta have been employed as research objects, while the expression of autophagy-related proteins (ATGs) has been detected in JEG-3 cells with different times of HEV inoculation. The results demonstrated that the expression of protein LC3 decreased and p62 accumulated, meanwhile ATGs such as ATG4B, ATG5, and ATG9A in JEG-3 cells have decreased significantly. In addition, the maturation of autophagosomes, which referred to the process of the combination of autophagosomes and lysosomes was prevented by HEV infection as well. All processes of autophagic flux, which include the initiation, development, and maturation three stages, were suppressed in JEG-3 cells after HEV infection. Similarly, the protein and gene expression of LC3 were significantly decreased in the placenta of pregnant mice with HEV infection. In summary, our results suggested that HEV inhibited autophagy in JEG-3 cells and placenta of pregnant mice, which might be the important pathogenic mechanisms of HEV infection leading to embryo abortion.
Collapse
Affiliation(s)
- Yifei Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Bo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuepeng Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Gambardella C, Miroglio R, Trenti F, Guella G, Panevska A, Sbrana F, Grunder M, Garaventa F, Sepčić K. Assessing the toxicity of aegerolysin-based bioinsecticidal complexes using the sea urchin Paracentrotus lividus as model organism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106727. [PMID: 37866166 DOI: 10.1016/j.aquatox.2023.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
The use of alternative solutions for pest management to replace pesticides in agriculture is of great interest. Proteinaceous complexes deriving from edible oyster mushrooms were recently proposed as environmentally friendly bioinsecticides. Such complexes, composed of ostreolysin A6 (OlyA6) and pleurotolysin B (PlyB), target invertebrate-specific membrane sphingolipids in insect's midgut, causing death through the formation of transmembrane pores. In this work, the potential impact of OlyA6/PlyB complexes was tested in the Mediterranean sea urchin Paracentrotus lividus, as an indicator of environmental quality. The ability of the fluorescently tagged OlyA6 to bind sea urchin gametes (sperm, eggs), the lipidome of sea urchin gametes, and the potential toxic effects and developmental anomalies caused by OlyA6/PlyB complexes on P. lividus early development (embryo, larvae) were investigated. The binding of the fluorescently tagged OlyA6 could be observed only in sea urchin eggs, which harbor OlyA6 sphingolipid membrane receptors, conversely to sperm. High protein concentrations affected sea urchin fertilization (>750 µg/L) and early development (> 375 µg/L in embryos; >100 µg/L in larvae), by causing toxicity and morphological anomalies in embryos and larvae. The main anomalies consisted in delayed embryos and incorrect migration of the primary mesenchyme cells that caused larval skeletal anomalies. The classification of these anomalies indicated a slight environmental impact of OlyA6/PlyB complexes at concentrations higher than 750 µg/L. Such impact should not persist in the marine environment, due to the reversible anomalies observed in sea urchin embryos and larvae that may promote defense strategies. However, before promoting the use of OlyA6/PlyB complexes as bio-pesticides at low concentrations, further studies on other marine coastal species are needed.
Collapse
Affiliation(s)
- Chiara Gambardella
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy.
| | - Roberta Miroglio
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Sbrana
- National Research Council- Institute of Biophysics (CNR-IBF), Genoa, Italy
| | - Maja Grunder
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Garaventa
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Honda A, Nozumi M, Ito Y, Natsume R, Kawasaki A, Nakatsu F, Abe M, Uchino H, Matsushita N, Ikeda K, Arita M, Sakimura K, Igarashi M. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep 2023; 42:113195. [PMID: 37816355 DOI: 10.1016/j.celrep.2023.113195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Fatty acids have long been considered essential to brain development; however, the involvement of their synthesis in nervous system formation is unclear. We generate mice with knockout of GPSN2, an enzyme for synthesis of very-long-chain fatty acids (VLCFAs) and investigate the effects. Both GPSN2-/- and GPSN2+/- mice show abnormal neuronal networks as a result of impaired neuronal polarity determination. Lipidomics of GPSN2-/- embryos reveal that ceramide synthesis is specifically inhibited depending on FA length; namely, VLCFA-containing ceramide is reduced. We demonstrate that lipid rafts are highly enriched in growth cones and that GPSN2+/- neurons lose gangliosides in their membranes. Application of C24:0 ceramide, but not C16:0 ceramide or C24:0 phosphatidylcholine, to GPSN2+/- neurons rescues both neuronal polarity determination and lipid-raft density in the growth cone. Taken together, our results indicate that VLCFA synthesis contributes to physiological neuronal development in brain network formation, in particular neuronal polarity determination through the formation of lipid rafts.
Collapse
Affiliation(s)
- Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Center for Research Promotion, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Haruki Uchino
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
20
|
Jia C, Qiu G, Wang H, Zhang S, An J, Cheng X, Li P, Li W, Zhang X, Yang H, Yang K, Jing T, Guo H, Zhang X, Wu T, He M. Lipid metabolic links between serum pyrethroid levels and the risk of incident type 2 diabetes: A mediation study in the prospective design. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132082. [PMID: 37473566 DOI: 10.1016/j.jhazmat.2023.132082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Emerging evidence revealed that pyrethroids and circulating lipid metabolites are involved in incident type 2 diabetes (T2D). However, the pyrethroid-associated lipid profile and its potential role in the association of pyrethroids with T2D remain unknown. Metabolome-wide association or mediation analyses were performed among 1006 pairs of T2D cases and matched controls nested within the prospective Dongfeng-Tongji cohort. We identified 59 lipid metabolites significantly associated with serum deltamethrin levels, of which eight were also significantly associated with serum fenvalerate (false discovery rate [FDR] < 0.05). Pathway enrichment analysis showed that deltamethrin-associated lipid metabolites were significantly enriched in the glycerophospholipid metabolism pathway (FDR = 0.02). Furthermore, we also found that several deltamethrin-associated lipid metabolites (i.e., phosphatidylcholine [PC] 32:0, PC 34:4, cholesterol ester 20:0, triacylglycerol 52:5 [18:2]), and glycerophosphoethanolamine-enriched latent variable mediated the association between serum deltamethrin levels and T2D risk, with the mediated proportions being 44.81%, 15.92%, 16.85%, 16.66%, and 22.86%, respectively. Serum pyrethroids, particularly deltamethrin, may lead to an altered circulating lipid profile primarily in the glycerophospholipid metabolism pathway represented by PCs and lysophosphatidylcholines, potentially mediating the association between serum deltamethrin and T2D. The study provides a new perspective in elucidating the potential mechanisms through which pyrethroid exposure might induce T2D.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gaokun Qiu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Kun Yang
- Department of Endocrinology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Tao Jing
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
21
|
Hu C, Wu H, Zhu Q, Cao N, Wang H. Cholesterol metabolism in T-cell aging: Accomplices or victims. FASEB J 2023; 37:e23136. [PMID: 37584624 DOI: 10.1096/fj.202300515r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Aging has a significant impact on the function and metabolism of T cells. Cholesterol, the most important sterol in mammals, is known as the "gold of the body" because it maintains membrane fluidity, rigidity, and signal transduction while also serving as a precursor of oxysterols, bile acids, and steroid hormones. Cholesterol homeostasis is primarily controlled by uptake, biosynthesis, efflux, and regulatory mechanisms. Previous studies have suggested that there are reciprocal interactions between cholesterol metabolism and T lymphocytes. Here, we will summarize the most recent advances in the effects of cholesterol and its derivatives on T-cell aging. We will furthermore discuss interventions that might be used to help older individuals with immune deficiencies or diminishing immune competence.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hongliang Wu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Qun Zhu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Na Cao
- Department of Hematology, Yueyang People's Hospital, Yueyang, P. R. China
- Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, P.R. China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
22
|
Chen H, Dong X, Ou L, Ma C, Yuan B, Yang K. Thermal-controlled cellular uptake of "hot" nanoparticles. NANOSCALE 2023; 15:12718-12727. [PMID: 37470374 DOI: 10.1039/d3nr02449k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Nanoparticles (NPs) have shown immense potential in the field of biomedical applications, particularly in NP-based photothermal therapy, which offers a remote-controlled approach to achieve precise temperature control for site-specific heating and sub-cellular tumor treatment. However, the molecular mechanisms underlying related cellular activities, such as the cellular uptake behavior of irradiated NPs in photothermal effects, remain elusive. In this study, we conducted a thorough investigation of the interaction between an irradiated NP with elevated temperature (ranging from 270 to 360 K) and a model bilayer membrane composed of DPPC or DOPC using nonequilibrium coarse-grained molecular dynamics simulations with the implicit-solvent Dry Martini force field. We observe that the interaction between a "hot" NP and a membrane is thermally regulated. In addition, the wrapping of membranes around NPs exhibits a strong dependence on the temperature of the irradiated NP, demonstrating a step-like change in behavior. This membrane wrapping effect is attributed to the heat conduction between NPs and membrane lipids, which occurs almost simultaneously with the membrane deformation and wrapping of NPs during the NP-membrane interaction process. Especially, during the process of heat conduction, a gel-to-fluid phase transition of the membrane may occur, which plays a crucial role in determining the deformation behavior of the membrane. Moreover, it is found that the membrane lipids in the two leaflets exhibit obvious and asymmetric molecular-level responses to heat flux, characterized by significant changes in packing states (e.g., the order parameter of lipid tails and area per lipid) and possible interdigitation between lipids. Furthermore, the thermal-controlled wrapping effect is tightly linked to the properties of NPs (e.g., size, NP-lipid affinity) and lipid species. Our findings are valuable for comprehending the thermal-regulated cellular internalization of NPs and offer insights into devising strategies to precisely modulate NP endocytosis by exploiting the interplay between heating and NP properties.
Collapse
Affiliation(s)
- Haibo Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Luping Ou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
23
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
24
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
25
|
Li X, Yin Z, Yan W, Wang M, Chang C, Guo C, Xue L, Zhou Q, Sun Y. Association between Changes in Plasma Metabolism and Clinical Outcomes of Sepsis. Emerg Med Int 2023; 2023:2590115. [PMID: 37346225 PMCID: PMC10281824 DOI: 10.1155/2023/2590115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/23/2023] Open
Abstract
Current prognostic biomarkers for sepsis have limited sensitivity and specificity. This study aimed to investigate dynamic lipid metabolomics and their association with septic immune response and clinical outcomes of sepsis. This prospective cohort study included patients with sepsis who met the Sepsis 3.0 criteria. On hospitalization days 1 (D1) and 7 (D7), plasma samples were collected, and patients underwent liquid chromatography with tandem mass spectrometry. A total of 40 patients were enrolled in the study, 24 (60%) of whom were men. The median age of the enrolled patients was 81 (68-84) years. Thirty-one (77.5%) patients had a primary infection site of the lung. Participants were allocated to the survivor (25 cases) and nonsurvivor (15 cases) groups based on their 28-day survival status. Ultimately, a total of 113 lipids were detected in plasma samples on D 1 and D 7, of which 42 lipids were most abundant in plasma samples. The nonsurvival group had significantly lower lipid expression levels in lysophosphatidylcholine (LysoPC) (16 : 0, 17 : 0,18 : 0) and 18 : 1 SM than those in the survival group (p < 0.05) on D7-D1. The correlation analysis showed that D7-D1 16 : 0 LysoPC (r = 0.367, p = 0.036),17 : 0 LysoPC (r = 0.389, p = 0.025) and 18 : 0 LysoPC(r = 0.472, p = 0.006) levels were positively correlated with the percentage of CD3+ T cell in the D7-D1. Plasma LysoPC and SM changes may serve as prognostic biomarkers for sepsis, and lipid metabolism may play a role in septic immune disturbances.
Collapse
Affiliation(s)
- Xin Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongnan Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chenglin Guo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
26
|
Li S, Huang F, Xia T, Shi Y, Yue T. Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl Chain Length of Sphingomyelin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5995-6005. [PMID: 37086192 DOI: 10.1021/acs.langmuir.2c03492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.
Collapse
Affiliation(s)
- Shixin Li
- College of Bioscience and Biotechnology and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Tie Xia
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology & Infectious Disease and Snyder Institute, University of Calgary, Calgary, Alberta 00000, Canada
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
27
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
28
|
Haram CS, Moitra S, Keane R, Kuhlmann FM, Frankfater C, Hsu FF, Beverley SM, Zhang K, Keyel PA. The sphingolipids ceramide and inositol phosphorylceramide protect the Leishmania major membrane from sterol-specific toxins. J Biol Chem 2023; 299:104745. [PMID: 37094699 PMCID: PMC10209034 DOI: 10.1016/j.jbc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the Leishmania major sphingolipids inositol phosphorylceramide (IPC), and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity, and that ceramide reduced perfringolysin O-, but not streptolysin O-, mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.
Collapse
Affiliation(s)
- Chaitanya S Haram
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Rilee Keane
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - F Matthew Kuhlmann
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409.
| |
Collapse
|
29
|
Vaughen JP, Theisen E, Clandinin TR. From seconds to days: Neural plasticity viewed through a lipid lens. Curr Opin Neurobiol 2023; 80:102702. [PMID: 36965206 DOI: 10.1016/j.conb.2023.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 03/27/2023]
Abstract
Many adult neurons are dynamically remodeled across timescales ranging from the rapid addition and removal of specific synaptic connections, to largescale structural plasticity events that reconfigure circuits over hours, days, and months. Membrane lipids, including brain-enriched sphingolipids, play crucial roles in these processes. In this review, we summarize progress at the intersection of neuronal activity, lipids, and structural remodeling. We highlight how brain activity modulates lipid metabolism to enable adaptive structural plasticity, and showcase glia as key players in membrane remodeling. These studies reveal that lipids act as critical signaling molecules that instruct the dynamic architecture of the brain.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States; Department of Developmental Biology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/gliaful
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/emmaktheisen
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
30
|
Lange Y, Tabei SMA, Steck TL. A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding. J Lipid Res 2023; 64:100344. [PMID: 36791915 PMCID: PMC10119614 DOI: 10.1016/j.jlr.2023.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and Perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the under-staining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic ER proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipid. § Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- 1Department of Pathology, Rush University Medical Center, Chicago, Il 60612, USA.
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Il 60637, USA
| |
Collapse
|
31
|
Panevska A, Čegovnik N, Fortuna K, Vukovič A, Grundner M, Modic Š, Bajc G, Skočaj M, Mravinec Bohte M, Popošek LL, Žigon P, Razinger J, Veranič P, Resnik N, Sepčić K. A single point mutation expands the applicability of ostreolysin A6 in biomedicine. Sci Rep 2023; 13:2149. [PMID: 36750638 PMCID: PMC9905591 DOI: 10.1038/s41598-023-28949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
An aegerolysin protein ostreolysin A6 (OlyA6) binds to cholesterol-complexed sphingomyelin and can be used for specific labelling of lipid rafts. In addition, OlyA6 interacts with even higher affinity with ceramide phosphoethanolamine (CPE), a sphingolipid that dominates in invertebrate cell membranes. In the presence of pleurotolysin B, a protein bearing the membrane-attack complex/perforin domain, OlyA6 forms pores in insect midgut cell membranes and acts as a potent bioinsecticide. It has been shown that a point mutation of glutamate 69 to alanine (E69A) allows OlyA6 to bind to cholesterol-free sphingomyelin. Using artificial lipid membranes and mammalian MDCK cells, we show that this mutation significantly enhances the interaction of OlyA6 with sphingomyelin and CPE, and allows recognition of these sphingolipids even in the absence of cholesterol. Our results suggest that OlyA6 mutant E69A could serve as complementary tool to detect and study cholesterol-associated and free sphingomyelin or CPE in membranes. However, the mutation does not improve the membrane-permeabilizing activity after addition of pleurotolysin B, which was confirmed in toxicity tests on insect and mammalian cell lines, and on Colorado potato beetle larvae.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nastja Čegovnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Klavdija Fortuna
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Alen Vukovič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Špela Modic
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Martina Mravinec Bohte
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Lara Larisa Popošek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Primož Žigon
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
34
|
Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. eLife 2023; 12:e83534. [PMID: 36695568 PMCID: PMC9925056 DOI: 10.7554/elife.83534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.
Collapse
Affiliation(s)
- David B Heisler
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kristen A Johnson
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Duo H Ma
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Maikke B Ohlson
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lishu Zhang
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michelle Tran
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael E Abrams
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
35
|
Burakova E, Vasa SK, Linser R. Characterization of conformational heterogeneity via higher-dimensionality, proton-detected solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2022; 76:197-212. [PMID: 36149571 PMCID: PMC9712413 DOI: 10.1007/s10858-022-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Site-specific heterogeneity of solid protein samples can be exploited as valuable information to answer biological questions ranging from thermodynamic properties determining fibril formation to protein folding and conformational stability upon stress. In particular, for proteins of increasing molecular weight, however, site-resolved assessment without residue-specific labeling is challenging using established methodology, which tends to rely on carbon-detected 2D correlations. Here we develop purely chemical-shift-based approaches for assessment of relative conformational heterogeneity that allows identification of each residue via four chemical-shift dimensions. High dimensionality diminishes the probability of peak overlap in the presence of multiple, heterogeneously broadened resonances. Utilizing backbone dihedral-angle reconstruction from individual contributions to the peak shape either via suitably adapted prediction routines or direct association with a relational database, the methods may in future studies afford assessment of site-specific heterogeneity of proteins without site-specific labeling.
Collapse
Affiliation(s)
- Ekaterina Burakova
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
36
|
Miyata Y, Segawa K. Protocol to analyze lipid asymmetry in the plasma membrane. STAR Protoc 2022; 3:101870. [PMID: 36595929 PMCID: PMC9692065 DOI: 10.1016/j.xpro.2022.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The plasma membrane containing cholesterol exhibits phospholipid asymmetry, with phosphatidylcholine and sphingomyelin enriched in its outer leaflet and phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) on the cytoplasmic side. We herein describe steps for bacterial expression of recombinant proteins that bind to membrane lipids, followed by affinity purification. Using fluorescence-labeled phospholipid analogs, we further detail the assay to detect flippase activity, which maintains the single-sided distribution of PtdSer and PtdEtn, in mammalian cells. For complete details on the use and execution of this protocol, please refer to Segawa et al. (2021).1.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan,Corresponding author
| |
Collapse
|
37
|
Critical Sites on Ostreolysin Are Responsible for Interaction with Cytoskeletal Proteins. Biomedicines 2022; 10:biomedicines10102442. [PMID: 36289704 PMCID: PMC9598724 DOI: 10.3390/biomedicines10102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
We explored the structural features of recombinant ostreolysin A (rOlyA), a protein produced by Pleurotus ostreatus and responsible for binding to α/β-tubulin. We found that rOlyA cell internalization is essential for the induction of adipocyte-associated activity, which is mediated by the interaction of rOlyA and microtubule proteins. We created different point mutations at conserved tryptophan (W) sites in rOlyA and analyzed their biological activity in HIB-1B preadipocytes. We demonstrated that the protein’s cell-internalization ability and the differentiated phenotype induced, such as small lipid-droplet formation and gene expression of mitogenesis activity, were impaired in point-mutated proteins W96A and W28A, where W was converted to alanine (A). We also showed that an rOlyA homologue, OlyA6 complexed with mCherry, cannot bind to β-tubulin and does not induce mitochondrial biosynthesis-associated markers, suggesting that the OlyA6 region masked by mCherry is involved in β-tubulin binding. Protein–protein docking simulations were carried out to investigate the binding mode of rOlyA with β-tubulin. Taken together, we identified functional sites in rOlyA that are essential for its binding to β-tubulin and its adipocyte-associated biological activity.
Collapse
|
38
|
Sokoya T, Parolek J, Foged MM, Danylchuk DI, Bozan M, Sarkar B, Hilderink A, Philippi M, Botto LD, Terhal PA, Mäkitie O, Piehler J, Kim Y, Burd CG, Klymchenko AS, Maeda K, Holthuis JCM. Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway. eLife 2022; 11:e79278. [PMID: 36102623 PMCID: PMC9531943 DOI: 10.7554/elife.79278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.
Collapse
Affiliation(s)
- Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Jan Parolek
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Mads Møller Foged
- Cell Death and Metabolism Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, Université de StrasbourgStrasbourgFrance
| | - Manuel Bozan
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Bingshati Sarkar
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Angelika Hilderink
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Michael Philippi
- Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of UtahSalt Lake CityUnited States
| | - Paulien A Terhal
- Department of Genetics, University Medical Center UtrechtUtrechtNetherlands
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Jacob Piehler
- Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| | - Yeongho Kim
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Christopher G Burd
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, Université de StrasbourgStrasbourgFrance
| | - Kenji Maeda
- Cell Death and Metabolism Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Joost CM Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück UniversityOsnabrückGermany
| |
Collapse
|
39
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
40
|
Fowler JWM, Zhang R, Tao B, Boutagy NE, Sessa WC. Inflammatory stress signaling via NF- kB alters accessible cholesterol to upregulate SREBP2 transcriptional activity in endothelial cells. eLife 2022; 11:79529. [PMID: 35959888 PMCID: PMC9395194 DOI: 10.7554/elife.79529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing appreciation that a tight relationship exists between cholesterol homeostasis and immunity in leukocytes; however, this relationship has not been deeply explored in the vascular endothelium. Endothelial cells (ECs) rapidly respond to extrinsic signals, such as tissue damage or microbial infection, by upregulating factors to activate and recruit circulating leukocytes to the site of injury and aberrant activation of ECs leads to inflammatory based diseases, such as multiple sclerosis and atherosclerosis. Here, we studied the role of cholesterol and a key transcription regulator of cholesterol homeostasis, SREBP2, in the EC responses to inflammatory stress. Treatment of primary human ECs with pro-inflammatory cytokines upregulated SREBP2 cleavage and cholesterol biosynthetic gene expression within the late phase of the acute inflammatory response. Furthermore, SREBP2 activation was dependent on NF-κB DNA binding and canonical SCAP-SREBP2 processing. Mechanistically, inflammatory activation of SREBP was mediated by a reduction in accessible cholesterol, leading to heightened sterol sensing and downstream SREBP2 cleavage. Detailed analysis of NF-κB inducible genes that may impact sterol sensing resulted in the identification of a novel RELA-inducible target, STARD10, that mediates accessible cholesterol homeostasis in ECs. Thus, this study provides an in-depth characterization of the relationship between cholesterol homeostasis and the acute inflammatory response in EC.
Collapse
Affiliation(s)
| | - Rong Zhang
- Department of Pharmacology, Yale University, New Haven, United States
| | - Bo Tao
- Department of Pharmacology, Yale University, New Haven, United States
| | - Nabil E Boutagy
- Department of Pharmacology, Yale University, New Haven, United States
| | - William C Sessa
- Department of Pharmacology, Yale University, New Haven, United States
| |
Collapse
|
41
|
Sea Anemones, Actinoporins, and Cholesterol. Int J Mol Sci 2022; 23:ijms23158771. [PMID: 35955905 PMCID: PMC9369217 DOI: 10.3390/ijms23158771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water–membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.
Collapse
|
42
|
Li Y, Feng R, Liu M, Guo Y, Zhang Z. Mechanism by Which Cholesterol Induces Sphingomyelin Conformational Changes at an Air/Water Interface. J Phys Chem B 2022; 126:5481-5489. [PMID: 35839485 DOI: 10.1021/acs.jpcb.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigates the interactions in cholesterol and sphingomyelin monolayers at the molecular level by high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of natural egg sphingomyelin (ESM) as a function of cholesterol concentration are obtained at an air/water interface under different polarization combinations. The analysis of the spectra shows that cholesterol can induce sphingomyelin conformational changes at an air/water interface. The mechanism is proposed. When cholesterol is inserted into the ESM monolayer, the inherent intramolecular hydrogen bonds between the phosphate moiety and 3OH in the sphingosine backbones are destroyed. During this process, the sphingosine backbones become more ordered, while the conformation of the N-linked long acid chain remains unaltered. The OH of the cholesterol head group can bind to the -PO-2 of the ESM molecule, and the orientation of the -PO-2 in the head groups changes to be more parallel to the interface.
Collapse
Affiliation(s)
- Yiyi Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Yamaji-Hasegawa A, Murate M, Inaba T, Dohmae N, Sato M, Fujimori F, Sako Y, Greimel P, Kobayashi T. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cell Mol Life Sci 2022; 79:324. [PMID: 35644822 PMCID: PMC11072113 DOI: 10.1007/s00018-022-04339-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
We identified a mushroom-derived protein, maistero-2 that specifically binds 3-hydroxy sterol including cholesterol (Chol). Maistero-2 bound lipid mixture in Chol-dependent manner with a binding threshold of around 30%. Changing lipid composition did not significantly affect the threshold concentration. EGFP-maistero-2 labeled cell surface and intracellular organelle Chol with higher sensitivity than that of well-established Chol probe, D4 fragment of perfringolysin O. EGFP-maistero-2 revealed increase of cell surface Chol during neurite outgrowth and heterogeneous Chol distribution between CD63-positive and LAMP1-positive late endosomes/lysosomes. The absence of strictly conserved Thr-Leu pair present in Chol-dependent cytolysins suggests a distinct Chol-binding mechanism for maistero-2.
Collapse
Affiliation(s)
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Cellular Informatics Laboratory, RIKEN CPR, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- UMR 7021, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Takehiko Inaba
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Cellular Informatics Laboratory, RIKEN CPR, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN CSRS, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masayuki Sato
- Yukiguni Maitake Co, Ltd. Yokawa 89, Minamiuonuma, Niigata, 949-6695, Japan
| | - Fumihiro Fujimori
- Laboratory of Biological Science and Technology, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo, 173-8062, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN CPR, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Cellular Informatics Laboratory, RIKEN CPR, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- UMR 7021, CNRS, Université de Strasbourg, 67401, Illkirch, France.
| |
Collapse
|
44
|
Balbi T, Trenti F, Panevska A, Bajc G, Guella G, Ciacci C, Canonico B, Canesi L, Sepčić K. Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Front Mol Biosci 2022; 9:902706. [PMID: 35693554 PMCID: PMC9174665 DOI: 10.3389/fmolb.2022.902706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ostreolysin A6 (OlyA6) is a 15 kDa protein produced by the oyster mushroom (Pleurotus ostreatus). It belongs to the aegerolysin family of proteins and binds with high affinity to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with its partnering protein with the membrane-attack-complex/perforin domain, pleurotolysin B (PlyB), OlyA6 can form bicomponent 13-meric transmembrane pores in artificial and biological membranes containing the aegerolysin lipid receptor, CPE. This pore formation is the main underlying molecular mechanism of potent and selective insecticidal activity of OlyA6/PlyB complexes against two economically important coleopteran plant pests: the western corn rootworm and the Colorado potato beetle. In contrast to insects, the main sphingolipid in cell membranes of marine invertebrates (i.e., molluscs and cnidarians) is ceramide aminoethylphosphonate (CAEP), a CPE analogue built on a phosphono rather than the usual phosphate group in its polar head. Our targeted lipidomic analyses of the immune cells (hemocytes) of the marine bivalve, the mussel Mytilus galloprovincialis, confirmed the presence of 29.0 mol% CAEP followed by 36.4 mol% of phosphatidylcholine and 34.6 mol% of phosphatidylethanolamine. Further experiments showed the potent binding of OlyA6 to artificial lipid vesicles supplemented with mussel CAEP, and strong lysis of these vesicles by the OlyA6/PlyB mixture. In Mytilus haemocytes, short term exposure (max. 1 h) to the OlyA6/PlyB mixture induced lysosomal membrane destabilization, decreased phagocytic activity, increased Annexin V binding and oxyradical production, and decreased levels of reduced glutathione, indicating rapid damage of endo-lysosomal and plasma membranes and oxidative stress. Our data suggest CAEP as a novel high-affinity receptor for OlyA6 and a target for cytolytic OlyA6/PlyB complexes.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| |
Collapse
|
45
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
46
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
47
|
Ray S, Roth R, Keyel PA. Membrane repair triggered by cholesterol-dependent cytolysins is activated by mixed lineage kinases and MEK. SCIENCE ADVANCES 2022; 8:eabl6367. [PMID: 35294243 PMCID: PMC8926344 DOI: 10.1126/sciadv.abl6367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Sucharit Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Corresponding author.
| |
Collapse
|
48
|
Zhong C, Wang B. Regulation of Cholesterol Binding to the Receptor Patched1 by its interactions With the Ligand Sonic Hedgehog (Shh). Front Mol Biosci 2022; 9:831891. [PMID: 35187087 PMCID: PMC8847689 DOI: 10.3389/fmolb.2022.831891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 01/17/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway is essential in cell development and regeneration, which is activated by the ligand Sonic hedgehog (Shh). The binding of Shh to its receptor Patched1 (PTCH1) releases the inhibitory effect on the downstream protein Smoothened (SMO), a G-protein-coupled-receptor (GPCR) protein. Cholesterol was supposed to function as a secondary messenger between PTCH1 and SMO. However, the molecular mechanism of this regulation process is still unclear. Therefore, microsecond coarse-grained molecular dynamics simulations were performed to investigate the protein-lipid interactions of the PTCH1 monomer and dimer-Shh complex. It was observed that the binding of cholesterols to the monomer is more stable than that to the dimer-Shh complex. It is regulated by the enrichment of Ganglioside lipids around proteins and the conformation of Y446, a residue in the sterol-sensing domain (SSD). The regulation of Shh on the dynamics of PTCH1 was further analyzed to explore the allosteric communication pathways between the Shh and the SSD. Our study provides structural and dynamic details of an additional perspective on the regulation of Hh signaling pathway through the lipid micro-environments of PTCH1.
Collapse
Affiliation(s)
- Changqing Zhong
- Centre for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Beibei Wang
- Centre for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
- *Correspondence: Beibei Wang,
| |
Collapse
|
49
|
Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. J Virol 2022; 96:e0181321. [PMID: 35020471 DOI: 10.1128/jvi.01813-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).
Collapse
|
50
|
Kinnebrew M, Johnson KA, Radhakrishnan A, Rohatgi R. Measuring and Manipulating Membrane Cholesterol for the Study of Hedgehog Signaling. Methods Mol Biol 2022; 2374:73-87. [PMID: 34562244 PMCID: PMC8819901 DOI: 10.1007/978-1-0716-1701-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is an abundant lipid in mammalian plasma membranes that regulates the reception of the Hedgehog (Hh) signal in target cells. In vertebrates, cell-surface organelles called primary cilia function as compartments for the propagation of Hh signals. Recent structural, biochemical, and cell-biological studies have led to the model that Patched-1 (PTCH1), the receptor for Hh ligands, uses its transporter-like activity to lower cholesterol accessibility in the membrane surrounding primary cilia. Cholesterol restriction at cilia may represent the long-sought-after mechanism by which PTCH1 inhibits Smoothened (SMO), a cholesterol-responsive transmembrane protein of the G protein-coupled receptor superfamily that transmits the Hh signal across the membrane.Protein probes based on microbial cholesterol-binding proteins revealed that PTCH1 controls only a subset of the total cholesterol molecules, a biochemically defined fraction called accessible cholesterol. The accessible cholesterol pool coexists (and exchanges) with a pool of sequestered cholesterol, which is bound to phospholipids like sphingomyelin. In this chapter, we describe how to measure the accessible and sequestered cholesterol pools in live cells with protein-based probes. We discuss how to purify and fluorescently label these probes for use in flow cytometry and microscopy-based measurements of the cholesterol pools. Additionally, we describe how to modulate accessible cholesterol levels to determine if this pool regulates Hh signaling (or any other cellular process of interest).
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Rohatgi
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|