1
|
Pérez-Prieto I, Plaza-Florido A, Ubago-Guisado E, Ortega FB, Altmäe S. Physical activity, sedentary behavior and microbiome: A systematic review and meta-analysis. J Sci Med Sport 2024; 27:793-804. [PMID: 39048485 DOI: 10.1016/j.jsams.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effects of physical activity and sedentary behavior on human health are well known, however, the molecular mechanisms are poorly understood. Growing evidence points to physical activity as an important modulator of the composition and function of microbial communities, while evidence of sedentary behavior is scarce. We aimed to synthesize and meta-analyze the current evidence about the effects of physical activity and sedentary behavior on microbiome across different body sites and in different populations. METHODS A systematic search in PubMed, Web of Science, Scopus and Cochrane databases was conducted until September 2022. Random-effects meta-analyses including cross-sectional studies (active vs. inactive/athletes vs. non-athletes) or trials reporting the chronic effect of physical activity interventions on gut microbiome alpha-diversity in healthy individuals were performed. RESULTS Ninety-one studies were included in this systematic review. Our meta-analyses of 2632 participants indicated no consistent effect of physical activity on microbial alpha-diversity, although there seems to be a trend toward a higher microbial richness in athletes compared to non-athletes. Most of studies reported an increase in short-chain fatty acid-producing bacteria such as Akkermansia, Faecalibacterium, Veillonella or Roseburia in active individuals and after physical activity interventions. CONCLUSIONS Physical activity levels were positively associated with the relative abundance of short-chain fatty acid-producing bacteria. Athletes seem to have a richer microbiome compared to non-athletes. However, high heterogeneity between studies avoids obtaining conclusive information on the role of physical activity in microbial composition. Future multi-omics studies would enhance our understanding of the molecular effects of physical activity and sedentary behavior on the microbiome.
Collapse
Affiliation(s)
- Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, United States.
| | - Esther Ubago-Guisado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
2
|
Edman S, Jones Iii RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Chambers TL, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth. EMBO Rep 2024:10.1038/s44319-024-00299-z. [PMID: 39482487 DOI: 10.1038/s44319-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.
Collapse
Affiliation(s)
- Sebastian Edman
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Ronald G Jones Iii
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Paulo R Jannig
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Pieter J Koopmans
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Toby L Chambers
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Calvin S Peterson
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Logan N Scott
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Vandre C Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Biological Sciences, Oakland University, Rochester Hills, MI, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Liu Zhengye
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedic Surgery, Region Jönköping County, Eksjö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA.
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
4
|
Doerrier C, Gama-Perez P, Pesta D, Distefano G, Soendergaard SD, Chroeis KM, Gonzalez-Franquesa A, Goodpaster BH, Prats C, Sales-Pardo M, Guimera R, Coen PM, Gnaiger E, Larsen S, Garcia-Roves PM. Harmonization of experimental procedures to assess mitochondrial respiration in human permeabilized skeletal muscle fibers. Free Radic Biol Med 2024; 223:384-397. [PMID: 39097206 DOI: 10.1016/j.freeradbiomed.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
AIM High-resolution respirometry in human permeabilized muscle fibers is extensively used for analysis of mitochondrial adaptions to nutrition and exercise interventions, and is linked to athletic performance. However, the lack of standardization of experimental conditions limits quantitative inter- and intra-laboratory comparisons. METHODS In our study, an international team of investigators measured mitochondrial respiration of permeabilized muscle fibers obtained from three biopsies (vastus lateralis) from the same healthy volunteer to avoid inter-individual variability. High-resolution respirometry assays were performed together at the same laboratory to assess whether the heterogenity in published results are due to the effects of respiration media (MiR05 versus Z) with or without the myosin inhibitor blebbistatin at low- and high-oxygen regimes. RESULTS Our findings reveal significant differences between respiration media for OXPHOS and ETcapacities supported by NADH&succinate-linked substrates at different oxygen concentrations. Respiratory capacities were approximately 1.5-fold higher in MiR05 at high-oxygen regimes compared to medium Z near air saturation. The presence or absence of blebbistatin in human permeabilized muscle fiber preparations was without effect on oxygen flux. CONCLUSION Our study constitutes a basis to harmonize and establish optimum experimental conditions for respirometric studies of permeabilized human skeletal muscle fibers to improve reproducibility.
Collapse
Affiliation(s)
| | - Pau Gama-Perez
- Dept Physiological Sciences, Univ Barcelona and Bellvitge Biomedical Research Inst, Spain.
| | - Dominik Pesta
- Inst Clinical Diabetology, German Diabetes Center, Leibniz Center Diabetes Research Heinrich-Heine Univ Düsseldorf, Germany; German Center Diabetes Research, Munich, Neuherberg, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| | | | - Stine D Soendergaard
- Xlab, Dept Biomedical Sciences, Center Healthy Aging, Fac Health Sciences, Denmark.
| | | | - Alba Gonzalez-Franquesa
- The Novo Nordisk Center Basic Metabolic Research, Section Integrative Physiology, Univ Copenhagen, Denmark.
| | | | - Clara Prats
- Dept Biomedical Sciences, Center Healthy Aging, Fac Health Sciences, Denmark; The Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Marta Sales-Pardo
- Dept of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, Spain.
| | - Roger Guimera
- Dept of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA.
| | - Erich Gnaiger
- Oroboros Instruments, Schöpfstrasse 18, 6020, Innsbruck, Austria.
| | - Steen Larsen
- Xlab, Dept Biomedical Sciences, Center Healthy Aging, Fac Health Sciences, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Pablo M Garcia-Roves
- Dept Physiological Sciences, Univ Barcelona and Bellvitge Biomedical Research Inst, Spain.
| |
Collapse
|
5
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Locatelli G, Stangel M, Rooks D, Boesch J, Pierrel E, Summermatter S. The therapeutic potential of exercise for improving mobility in multiple sclerosis. Front Physiol 2024; 15:1477431. [PMID: 39345788 PMCID: PMC11427913 DOI: 10.3389/fphys.2024.1477431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation and demyelination in the central nervous system (CNS) with subsequent axonal and neuronal degeneration. These changes are associated with a broad range of symptoms including skeletal muscle dysfunction. Importantly, musculoskeletal impairments manifest in various ways, compromise the quality of life and often precede the later development of mobility disability. As current standard disease modifying therapies for MS predominantly act on neuroinflammation, practitioners and patients face an unmet medical need for adjunct therapies specifically targeting skeletal muscle function. This review is intended to detail the nature of the skeletal muscle dysfunctions common in people with MS (pwMS), describe underlying intramuscular alterations and outline evidence-based therapeutic approaches. Particularly, we discuss the emerging role of aerobic and resistance exercise for reducing the perception of fatigue and increasing muscle strength in pwMS. By integrating the most recent literature, we conclude that both exercise interventions should ideally be implemented as early as possible as they can address MS-specific muscle impairments. Aerobic exercise is particularly beneficial for pwMS suffering from fatigue and metabolic impairments, while resistance training efficiently counters muscle weakness and improves the perception of fatigue. Thus, these lifestyle interventions or possible pharmacological mimetics have the potential for improving the general well-being and delaying the functional declines that are relevant to mobility.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Martin Stangel
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniel Rooks
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Cambridge, MA, United States
| | - Julian Boesch
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Eliane Pierrel
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Serge Summermatter
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
7
|
Mankowski RT, Jones R, Buford TW. MoTrPAC Animal Aerobic Exercise Protocol and Biorepository: A Novel Resource for Uncovering Systemic Adaptations to Aerobic Exercise and Extending Healthspan. FUNCTION 2024; 5:zqae040. [PMID: 39251389 PMCID: PMC11420664 DOI: 10.1093/function/zqae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Robert T Mankowski
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Raymond Jones
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
8
|
Plaza-Florido A, Lucia A, Radom-Aizik S. Advancing pediatric exercise research: A focus on immunomics and cutting-edge technologies. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:679-681. [PMID: 37788789 PMCID: PMC11282328 DOI: 10.1016/j.jshs.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, CA 92617, USA.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain; Physical Activity Health Research Group ("PaHerg"), Research Institute of Hospital 12 de Octubre ("imas12"), Madrid 28041, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, CA 92617, USA
| |
Collapse
|
9
|
Plaza-Florido A, Lucia A, Radom-Aizik S, Fiuza-Luces C. Anticancer effects of exercise: Insights from single-cell analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:676-678. [PMID: 38266673 PMCID: PMC11282339 DOI: 10.1016/j.jshs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
•Physical exercise can exert antitumorigenic effects; however, the molecular mechanisms are still poorly understood. •Single-cell analysis may help to characterize the molecular mechanisms underlying the effects of exercise on anticancer immune function as well as on the complex tumor microenvironment. •Recent research using single-cell analysis provides preliminary insights into the molecular mechanisms behind an improved antitumor immunity in response to exercise. Particularly, there is evidence for a “reprogramming” of several immune effectors towards a higher antitumoral toxicity.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA 92617, USA.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain; Physical Activity and Health Research Group ("PaHerg"), Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid 28041, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid 28041, Spain.
| |
Collapse
|
10
|
Jakicic JM, Kohrt WM, Houmard JA, Miller ME, Radom-Aizik S, Rasmussen BB, Ravussin E, Serra M, Stowe CL, Trappe S, Abouassi H, Adkins JN, Alekel DL, Ashley E, Bamman MM, Bergman BC, Bessesen DH, Broskey NT, Buford TW, Burant CF, Chen H, Christle JW, Clish CB, Coen PM, Collier D, Collins KA, Cooper DM, Cortes T, Cutter GR, Dubis G, Fernández FM, Firnhaber J, Forman DE, Gaul DA, Gay N, Gerszten RE, Goodpaster BH, Gritsenko MA, Haddad F, Huffman KM, Ilkayeva O, Jankowski CM, Jin C, Johannsen NM, Johnson J, Kelly L, Kershaw E, Kraus WE, Laughlin M, Lester B, Lindholm ME, Lowe A, Lu CJ, McGowan J, Melanson EL, Montgomery S, Moore SG, Moreau KL, Muehlbauer M, Musi N, Nair VD, Newgard CB, Newman AB, Nicklas B, Nindl BC, Ormond K, Piehowski PD, Qian WJ, Rankinen T, Rejeski WJ, Robbins J, Rogers RJ, Rooney JL, Rushing S, Sanford JA, Schauer IE, Schwartz RS, Sealfon SC, Slentz C, Sloan R, Smith KS, Snyder M, Spahn J, Sparks LM, Stefanovic-Racic M, Tanner CJ, Thalacker-Mercer A, Tracy R, Trappe TA, Volpi E, Walsh MJ, Wheeler MT, Willis L. Molecular Transducers of Physical Activity Consortium (MoTrPAC): human studies design and protocol. J Appl Physiol (1985) 2024; 137:473-493. [PMID: 38634503 PMCID: PMC11427038 DOI: 10.1152/japplphysiol.00102.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a preclinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 wk of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 wk. The adult component also includes recruitment of highly active endurance-trained or resistance-trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.NEW & NOTEWORTHY The Molecular Transducers of Physical Activity Consortium (MoTrPAC) will be the first large trial to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. By generating a compendium of the molecular responses to exercise, MoTrPAC will lay the foundation for a new era of biomedical research on Precision Exercise Medicine. Presented here is the design, protocols, and procedures for the MoTrPAC human studies.
Collapse
Affiliation(s)
- John M Jakicic
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Wendy M Kohrt
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joseph A Houmard
- East Carolina University, Greenville, North Carolina, United States
| | - Michael E Miller
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | | | - Blake B Rasmussen
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Monica Serra
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Cynthia L Stowe
- Wake Forest University School of Medicine, Biostatistics and Data Science, Winston-Salem, North Carolina, United States
| | - Scott Trappe
- Ball State University, Muncie, Indiana, United States
| | - Hiba Abouassi
- Duke University, Durham, North Carolina, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - D Lee Alekel
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Euan Ashley
- Stanford University, Stanford, California, United States
| | - Marcas M Bamman
- The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bryan C Bergman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel H Bessesen
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Thomas W Buford
- The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Haiying Chen
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | | | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Paul M Coen
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | - David Collier
- East Carolina University, Greenville, North Carolina, United States
| | | | - Daniel M Cooper
- University of California, Irvine, Irvine, California, United States
| | - Tiffany Cortes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Gary R Cutter
- The University of Alabama at Birmingham, School of Public Health, Birmingham, Alabama, United States
| | - Gabriel Dubis
- East Carolina University, Greenville, North Carolina, United States
| | | | | | - Daniel E Forman
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Gaul
- Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Nicole Gay
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Robert E Gerszten
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Bret H Goodpaster
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | - Marina A Gritsenko
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Fadia Haddad
- University of California, Irvine, Irvine, California, United States
| | - Kim M Huffman
- Duke University, Durham, North Carolina, United States
| | - Olga Ilkayeva
- Duke University Medical Center, Durham, North Carolina, United States
| | | | - Christopher Jin
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Neil M Johannsen
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | | | - Leslie Kelly
- Duke University, Durham, North Carolina, United States
| | - Erin Kershaw
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William E Kraus
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Adam Lowe
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Ching-Ju Lu
- University of Florida, Gainesville, Florida, United States
| | - Joan McGowan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Edward L Melanson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Stephen Montgomery
- Department of Pathology, Stanford University, Stanford, California, United States
| | - Samuel G Moore
- Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Nicolas Musi
- Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Venugopalan D Nair
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | | | - Anne B Newman
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Barbara Nicklas
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Bradley C Nindl
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kelly Ormond
- Stanford University, Stanford, California, United States
- ETH-Zurich, Zurich, Switzerland
| | - Paul D Piehowski
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Tuomo Rankinen
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - W Jack Rejeski
- Wake Forest University, Winston-Salem, North Carolina, United States
| | - Jeremy Robbins
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Renee J Rogers
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jessica L Rooney
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, United States
| | - Scott Rushing
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - James A Sanford
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Irene E Schauer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Robert S Schwartz
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Stuart C Sealfon
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Cris Slentz
- Duke University, Durham, North Carolina, United States
| | - Ruben Sloan
- East Carolina University, Greenville, North Carolina, United States
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California, United States
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Jessica Spahn
- University of Texas Medical Branch, Galveston, Texas, United States
| | - Lauren M Sparks
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | | | - Charles J Tanner
- East Carolina University, Greenville, North Carolina, United States
| | | | - Russell Tracy
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, United States
| | - Todd A Trappe
- Ball State University, Muncie, Indiana, United States
| | - Elena Volpi
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | | | - Leslie Willis
- Duke University, Durham, North Carolina, United States
| |
Collapse
|
11
|
Novelli G, Calcaterra G, Casciani F, Pecorelli S, Mehta JL. 'Exerkines': A Comprehensive Term for the Factors Produced in Response to Exercise. Biomedicines 2024; 12:1975. [PMID: 39335489 PMCID: PMC11429193 DOI: 10.3390/biomedicines12091975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Regular exercise and physical activity are now considered lifestyle factors with positive effects on human health. Physical activity reduces disease burden, protects against the onset of pathologies, and improves the clinical course of disease. Unlike pharmacological therapies, the effects mediated by exercise are not limited to a specific target organ but act in multiple biological systems simultaneously. Despite the substantial health benefits of physical training, the precise molecular signaling processes that lead to structural and functional tissue adaptation remain largely unknown. Only recently, several bioactive molecules have been discovered that are produced following physical exercise. These molecules are collectively called "exerkines". Exerkines are released from various tissues in response to exercise, and play a crucial role in mediating the beneficial effects of exercise on the body. Major discoveries involving exerkines highlight their diverse functions and health implications, particularly in metabolic regulation, neuroprotection, and muscle adaptation. These molecules, including peptides, nucleic acids, lipids, and microRNAs, act through paracrine, endocrine, and autocrine pathways to exert their effects on various organs and tissues. Exerkines represent a complex network of signaling molecules that mediate the multiple benefits of exercise. Their roles in metabolic regulation, neuroprotection, and muscle adaptation highlight the importance of physical activity in maintaining health and preventing disease.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Italian Federation of Sports Medicine, 00196 Rome, Italy
| | - Giuseppe Calcaterra
- Postgraduate Medical School of Cardiology, University of Palermo, 90127 Palermo, Italy
| | - Federico Casciani
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy
| | - Sergio Pecorelli
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Italian Federation of Sports Medicine, 00196 Rome, Italy
- School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jawahar L Mehta
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Department of Medicine (Cardiology), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
12
|
Lee-Ødegård S, Hjorth M, Olsen T, Moen GH, Daubney E, Evans DM, Hevener AL, Lusis AJ, Zhou M, Seldin MM, Allayee H, Hilser J, Viken JK, Gulseth H, Norheim F, Drevon CA, Birkeland KI. Serum proteomic profiling of physical activity reveals CD300LG as a novel exerkine with a potential causal link to glucose homeostasis. eLife 2024; 13:RP96535. [PMID: 39190027 PMCID: PMC11349297 DOI: 10.7554/elife.96535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Background Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking. Methods We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models. Results Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice. Conclusions Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes. Funding South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes' legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123). Clinical trial number clinicaltrials.gov: NCT01803568.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- The Frazer Institute, The University of QueenslandWoolloongabbaAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
| | - Emily Daubney
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David M Evans
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Hooman Allayee
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - James Hilser
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Jonas Krag Viken
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| | - Hanne Gulseth
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public HealthOsloNorway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of OsloOsloNorway
| | | | - Kåre Inge Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOsloNorway
| |
Collapse
|
13
|
Clayton ZS, Murray KO. Aerobic Exercise and Obesity-related Insulin Resistance: Using Molecular Patterns to Inform Individualized Prescription. J Clin Endocrinol Metab 2024; 109:e1800-e1801. [PMID: 38340335 DOI: 10.1210/clinem/dgae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Guan Y, Spaulding H, Yu Q, Zhang M, Willoughby O, Drake JC, Yan Z. Ulk1 phosphorylation at S555 is not required for endurance training-induced improvements in exercise and metabolic capacity in mice. J Appl Physiol (1985) 2024; 137:223-232. [PMID: 38900860 PMCID: PMC11340693 DOI: 10.1152/japplphysiol.00742.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Endurance exercise training improves exercise capacity as well as skeletal muscle and whole body metabolism, which are hallmarks of high quality-of-life and healthy aging. However, its mechanisms are not yet fully understood. Exercise-induced mitophagy has emerged as an important step in mitochondrial remodeling. Unc-51-like autophagy-activating kinase 1, ULK1, specifically its activation by phosphorylation at serine 555, was discovered as an autophagy driver and to be important for energetic stress-induced mitophagy in skeletal muscle, making it a potential mediator of the beneficial effects of exercise on mitochondrial remodeling. Here, we used CRISPR/Cas9-mediated gene editing and generated knock-in mice with a serine-to-alanine mutation of Ulk1 on serine 555. We now report that these mice displayed normal endurance capacity and cardiac function at baseline with a mild impairment in energy metabolism as indicated by an accelerated increase of respiratory exchange ratio (RER) during acute exercise stress; however, this was completely corrected by 8 wk of voluntary running. Ulk1-S555A mice also retained the exercise-mediated improvements in exercise capacity and metabolic flux. We conclude that Ulk1 phosphorylation at S555 is not required for exercise-mediated improvements of exercise and metabolic capacity in healthy mice.NEW & NOTEWORTHY We have used CRISPR/Cas9-mediated gene editing to generate Ulk1-S555A knock-in mice to show that loss of phosphorylation of Ulk1 at S555 blunted exercise-induced mitophagy and mildly impairs energy metabolism during exercise in healthy mice. However, the knock-in mice retained exercise training-mediated improvements of endurance capacity and energy metabolism during exercise. These findings suggest that exercise-induced mitophagy through Ulk1 activation is not required for the metabolic adaptation and improved exercise capacity in young, healthy mice.
Collapse
Affiliation(s)
- Yuntian Guan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Hannah Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Qing Yu
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Mei Zhang
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Orion Willoughby
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Zhen Yan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
- Molecular Physiology and Biological Physics, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
15
|
Rao P, Keyes MJ, Mi MY, Barber JL, Tahir UA, Deng S, Clish CB, Shen D, Farrell LA, Wilson JG, Gao Y, Yimer WK, Ekunwe L, Hall ME, Muntner PM, Guo X, Taylor KD, Tracy RP, Rich SS, Rotter JI, Xanthakis V, Vasan RS, Bouchard C, Sarzynski MA, Gerszten RE, Robbins JM. Plasma Proteomics of Exercise Blood Pressure and Incident Hypertension. JAMA Cardiol 2024; 9:713-722. [PMID: 38865108 PMCID: PMC11170454 DOI: 10.1001/jamacardio.2024.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Importance Blood pressure response during acute exercise (exercise blood pressure [EBP]) is associated with the future risk of hypertension and cardiovascular disease (CVD). Biochemical characterization of EBP could inform disease biology and identify novel biomarkers of future hypertension. Objective To identify protein markers associated with EBP and test their association with incident hypertension. Design, Setting, and Participants This study assayed 4977 plasma proteins in 681 healthy participants (from 763 assessed) of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE; data collection from January 1993 to December 1997 and plasma proteomics from January 2019 to January 2020) Family Study at rest who underwent 2 cardiopulmonary exercise tests. Individuals were free of CVD at the time of recruitment. Individuals with resting SBP ≥160 mm Hg or DBP ≥100 mm Hg or taking antihypertensive drug therapy were excluded from the study. The association between resting plasma protein levels to both resting BP and EBP was evaluated. Proteins associated with EBP were analyzed for their association with incident hypertension in the Framingham Heart Study (FHS; n = 1177) and validated in the Jackson Heart Study (JHS; n = 772) and Multi-Ethnic Study of Atherosclerosis (MESA; n = 1367). Proteins associated with incident hypertension were tested for putative causal links in approximately 700 000 individuals using cis-protein quantitative loci mendelian randomization (cis-MR). Data were analyzed from January 2023 to January 2024. Exposures Plasma proteins. Main Outcomes and Measures EBP was defined as the BP response during a fixed workload (50 W) on a cycle ergometer. Hypertension was defined as BP ≥140/90 mm Hg or taking antihypertensive medication. Results Among the 681 participants in the HERITAGE Family Study, the mean (SD) age was 34 (13) years; 366 participants (54%) were female; 238 (35%) were self-reported Black and 443 (65%) were self-reported White. Proteomic profiling of EBP revealed 34 proteins that would not have otherwise been identified through profiling of resting BP alone. Transforming growth factor β receptor 3 (TGFBR3) and prostaglandin D2 synthase (PTGDS) had the strongest association with exercise systolic BP (SBP) and diastolic BP (DBP), respectively (TGFBR3: exercise SBP, β estimate, -3.39; 95% CI, -4.79 to -2.00; P = 2.33 × 10-6; PTGDS: exercise DBP β estimate, -2.50; 95% CI, -3.29 to -1.70; P = 1.18 × 10-9). In fully adjusted models, TGFBR3 was inversely associated with incident hypertension in FHS, JHS, and MESA (hazard ratio [HR]: FHS, 0.86; 95% CI, 0.75-0.97; P = .01; JHS, 0.87; 95% CI, 0.77-0.97; P = .02; MESA, 0.84; 95% CI, 0.71-0.98; P = .03; pooled cohort, 0.86; 95% CI, 0.79-0.92; P = 6 × 10-5). Using cis-MR, genetically predicted levels of TGFBR3 were associated with SBP, hypertension, and CVD events (SBP: β, -0.38; 95% CI, -0.64 to -0.11; P = .006; hypertension: odds ratio [OR], 0.99; 95% CI, 0.98-0.99; P < .001; heart failure with hypertension: OR, 0.86; 95% CI, 0.77-0.97; P = .01; CVD: OR, 0.84; 95% CI, 0.77-0.92; P = 8 × 10-5; cerebrovascular events: OR, 0.77; 95% CI, 0.70-0.85; P = 5 × 10-7). Conclusions and Relevance Plasma proteomic profiling of EBP identified a novel protein, TGFBR3, which may protect against elevated BP and long-term CVD outcomes.
Collapse
Affiliation(s)
- Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michelle. J. Keyes
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael Y. Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jacob L. Barber
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shuliang Deng
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Clary B. Clish
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge
| | - Dongxiao Shen
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Laurie. A. Farrell
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - James G. Wilson
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Gao
- Department of Data Sciences, University of Mississippi Medical Center, Jackson
| | - Wondwosen K. Yimer
- Department of Data Sciences, University of Mississippi Medical Center, Jackson
| | - Lynette Ekunwe
- Jackson Heart Study Field Center, University of Mississippi Medical Center, Jackson
| | - Michael E. Hall
- Department of Medicine, Division of Cardiology, University of Mississippi Medical Center, Jackson
| | - Paul M. Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles Medical Center, Torrance
| | - Vanessa Xanthakis
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
16
|
Bahmani A, Cha K, Alavi A, Dixit A, Ross A, Park R, Goncalves F, Ma S, Saxman P, Nair R, Akhavan-Sarraf R, Zhou X, Wang M, Contrepois K, Than JLP, Monte E, Rodriguez DJF, Lai J, Babu M, Tondar A, Rose SMSF, Akbari I, Zhang X, Yegnashankaran K, Yracheta J, Dale K, Miller AD, Edmiston S, McGhee EM, Nebeker C, Wu JC, Kundaje A, Snyder M. Achieving Inclusive Healthcare through Integrating Education and Research with AI and Personalized Curricula. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311182. [PMID: 39211867 PMCID: PMC11361244 DOI: 10.1101/2024.07.31.24311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Precision medicine promises significant health benefits but faces challenges such as the need for complex data management and analytics, interdisciplinary collaboration, and education of researchers, healthcare professionals, and participants. Addressing these needs requires the integration of computational experts, engineers, designers, and healthcare professionals to develop user-friendly systems and shared terminologies. The widespread adoption of large language models (LLMs) like GPT-4 and Claude 3 highlights the importance of making complex data accessible to non-specialists. The Stanford Data Ocean (SDO) strives to mitigate these challenges through a scalable, cloud-based platform that supports data management for various data types, advanced research, and personalized learning in precision medicine. SDO provides AI tutors and AI-powered data visualization tools to enhance educational and research outcomes and make data analysis accessible for users from diverse educational backgrounds. By extending engagement and cutting-edge research capabilities globally, SDO particularly benefits economically disadvantaged and historically marginalized communities, fostering interdisciplinary biomedical research and bridging the gap between education and practical application in the biomedical field.
Collapse
|
17
|
Fang S, Ji Y, Shen Y, Yang S, Zhang H, Xin W, Shi W, Chen W. TET3 Contributes to Exercise-Induced Functional Axon Regeneration and Visual Restoration. Adv Biol (Weinh) 2024:e2400145. [PMID: 39007414 DOI: 10.1002/adbi.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunxiang Ji
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Yang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hongli Zhang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, 663000, China
| | - Weidong Shi
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| |
Collapse
|
18
|
Schenk S, Sagendorf TJ, Many GM, Lira AK, de Sousa LGO, Bae D, Cicha M, Kramer KS, Muehlbauer M, Hevener AL, Rector RS, Thyfault JP, Williams JP, Goodyear LJ, Esser KA, Newgard CB, Bodine SC. Physiological Adaptations to Progressive Endurance Exercise Training in Adult and Aged Rats: Insights from the Molecular Transducers of Physical Activity Consortium (MoTrPAC). FUNCTION 2024; 5:zqae014. [PMID: 38984994 PMCID: PMC11245678 DOI: 10.1093/function/zqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024] Open
Abstract
While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.
Collapse
Affiliation(s)
- Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ana K Lira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luis G O de Sousa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dam Bae
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Cicha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle S Kramer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - R Scott Rector
- Research Service,
Harry S. Truman Memorial Veterans’ Medical Center, Columbia, MO 65201, USA
- NextGen Precision Health,
University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John P Williams
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20898, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism,
Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Sue C Bodine
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Nylén E. Age, Race, Sex and Cardiorespiratory Fitness: Implications for Prevention and Management of Cardiometabolic Disease in Individuals with Diabetes Mellitus. Rev Cardiovasc Med 2024; 25:263. [PMID: 39139417 PMCID: PMC11317329 DOI: 10.31083/j.rcm2507263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Physical inactivity and poor cardiorespiratory fitness (CRF) are strongly associated with type 2 diabetes (DM2) and all-cause and cardiovascular morbidity and mortality. Incorporating physical activity promotion in the management of DM2 has been a pivotal approach modulating the underlying pathophysiology of DM2 of increased insulin resistance, endothelial dysfunction, and abnormal mitochondrial function. Although CRF is considered a modifiable risk factor, certain immutable aspects such as age, race, and gender impact CRF status and is the focus of this review. Results show that diabetes has often been considered a disease of premature aging manifested by early onset of macro and microvascular deterioration with underlying negative impact on CRF and influencing next generation. Certain races such as Native Americans and African Americans show reduced baseline CRF and decreased gain in CRF in randomized trials. Moreover, multiple biological gender differences translate to lower baseline CRF and muted responsivity to exercise in women with increased morbidity and mortality. Although factors such as age, race, and sex may not have major impacts on CRF their influence should be considered with the aim of optimizing precision medicine.
Collapse
Affiliation(s)
- Eric Nylén
- Veterans Affairs Medical Center, Washington, D.C. 20422, USA
- George Washington University School of Medicine, Washington, D.C. 20037, USA
| |
Collapse
|
20
|
Plaza-Florido A, Pérez-Prieto I, Lucia A. The aging lipidome: exercise is medicine. Trends Mol Med 2024:S1471-4914(24)00164-3. [PMID: 38918116 DOI: 10.1016/j.molmed.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The molecular mechanisms behind the potential 'anti-aging' effects of exercise remain to be elucidated. Janssens et al. studied the lipidome of different mouse tissues and human skeletal muscle. They identified an evolutionary conserved 'lipid aging' signature, characterized by bis(monoacylglycero)phosphate accumulation, which, at the muscle level, can be attenuated by exercise.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain; Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| |
Collapse
|
21
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
22
|
Perry AS, Farber-Eger E, Gonzales T, Tanaka T, Robbins JM, Murthy VL, Stolze LK, Zhao S, Huang S, Colangelo LA, Deng S, Hou L, Lloyd-Jones DM, Walker KA, Ferrucci L, Watts EL, Barber JL, Rao P, Mi MY, Gabriel KP, Hornikel B, Sidney S, Houstis N, Lewis GD, Liu GY, Thyagarajan B, Khan SS, Choi B, Washko G, Kalhan R, Wareham N, Bouchard C, Sarzynski MA, Gerszten RE, Brage S, Wells QS, Nayor M, Shah RV. Proteomic analysis of cardiorespiratory fitness for prediction of mortality and multisystem disease risks. Nat Med 2024; 30:1711-1721. [PMID: 38834850 PMCID: PMC11186767 DOI: 10.1038/s41591-024-03039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Gonzales
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Toshiko Tanaka
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeremy M Robbins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shuliang Deng
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keenan A Walker
- Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jacob L Barber
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant Rao
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Y Mi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern Hornikel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas Houstis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gabrielle Y Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, MN, USA
| | - Sadiya S Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina Columbia, Columbia, SC, USA
| | - Robert E Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
23
|
Murray KO, Maurer GS, Gioscia-Ryan RA, Zigler MC, Ludwig KR, D'Alessandro A, Reisz JA, Rossman MJ, Seals DR, Clayton ZS. The plasma metabolome is associated with preservation of physiological function following lifelong aerobic exercise in mice. GeroScience 2024; 46:3311-3324. [PMID: 38265578 PMCID: PMC11009171 DOI: 10.1007/s11357-024-01062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Declines in physiological function with aging are strongly linked to age-related diseases. Lifelong voluntary aerobic exercise (LVAE) preserves physiological function with aging, possibly by increasing cellular quality control processes, but the circulating molecular transducers mediating these processes are incompletely understood. The plasma metabolome may predict biological aging and is impacted by a single bout of aerobic exercise. Here, we conducted an ancillary analysis using plasma samples, and physiological function data, from previously reported studies of LVAE in male C57BL/6N mice randomized to LVAE (wheel running) or sedentary (SED) (n = 8-9/group) to determine if LVAE alters the plasma metabolome and whether these changes correlated with preservation of physiological function with LVAE. Physical function (grip strength, coordination, and endurance) was assessed at 3 and 18 months of age; vascular endothelial function and the plasma metabolome were assessed at 19 months. Physical function was preserved (%decline; mean ± SEM) with LVAE vs SED (all p < 0.05)-grip strength, 0.4 ± 1.7% vs 12 ± 4.0%; coordination, 10 ± 4% vs 73 ± 10%; endurance, 1 ± 15% vs 61 ± 5%. Vascular endothelial function with LVAE (88.2 ± 2.0%) was higher than SED (79.1 ± 2.5%; p = 0.03) and similar to the young controls (91.4 ± 2.9%). Fifteen metabolites were different with LVAE compared to SED (FDR < 0.05) and correlated with the preservation of physiological function. Plasma spermidine, a polyamine that increases cellular quality control (e.g., autophagy), correlated with all assessed physiological indices. Autophagy (LC3A/B abundance) was higher in LVAE skeletal muscle compared to SED (p < 0.01) and inversely correlated with plasma spermidine (r = - 0.5297; p = 0.054). These findings provide novel insight into the circulating molecular transducers by which LVAE may preserve physiological function with aging.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Grace S Maurer
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, CO, 80309, USA.
| |
Collapse
|
24
|
Liu TT, Pascal LE, Bauer SR, Miles HN, Panksepp JB, Lloyd GL, Li L, DeFranco DB, Ricke WA. Age-Dependent Effects of Voluntary Wheel Running Exercise on Voiding Behavior and Potential Age-Related Molecular Mechanisms in Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae007. [PMID: 38198648 PMCID: PMC11079951 DOI: 10.1093/gerona/glae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Older men frequently develop lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). Risk factors for LUTS/BPH include sedentary lifestyle, anxiety/depression, obesity, and frailty, which all increase with age. Although physical exercise may reduce the progression and/or severity of LUTS/BPH, the age-related mechanisms responsible remain unknown. METHODS Voiding symptoms, body mass, and frailty were assessed after 4-weeks of voluntary wheel running in 2-month (n = 10) and 24-month (n = 8) old C57Bl/6J male mice. In addition, various social and individual behaviors were examined in these cohorts. Finally, cellular and molecular markers of inflammation and mitochondrial protein expression were assessed in prostate tissue and systemically. RESULTS Despite running less (aged vs young X¯ = 12.3 vs 30.6 km/week; p = .04), aged mice had reduced voiding symptoms (X¯ = 67.3 vs 23.7; p < .0001) after 1 week of exercise, which was sustained through week 4 (X¯ = 67.3 vs 21.5; p < .0001). Exercise did not affect voiding symptoms in young mice. Exercise also increased mobility and decreased anxiety in both young and aged mice (p < .05). Exercise decreased expression of a key mitochondrial protein (PINK1; p < .05) and inflammation within the prostate (CD68; p < .05 and plasminogen activator inhibitor-1; p < .05) and in the serum (p < .05). However, a frailty index (X¯ = 0.17 vs 0.15; p = .46) and grip strength (X¯ = 1.10 vs 1.19; p = .24) were unchanged after 4 weeks of exercise in aged mice. CONCLUSIONS Voluntary aerobic exercise improves voiding behavior and mobility, and decreases prostatic mitochondrial protein expression and inflammation in aged mice. This promising model could be used to evaluate molecular mechanisms of aerobic exercise as a novel lifestyle intervention for older men with LUTS/BPH.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Laura E Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott R Bauer
- Department of Medicine, Urology, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Hannah N Miles
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Jules B Panksepp
- Waisman Center, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Granville L Lloyd
- Division of Urology, Department of Surgery, Rocky Mountain Regional VA Medical Center, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William A Ricke
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
26
|
Murthy VL, Mosley JD, Perry AS, Jacobs DR, Tanriverdi K, Zhao S, Sawicki KT, Carnethon M, Wilkins JT, Nayor M, Das S, Abel ED, Freedman JE, Clish CB, Shah RV. Metabolic liability for weight gain in early adulthood. Cell Rep Med 2024; 5:101548. [PMID: 38703763 PMCID: PMC11148768 DOI: 10.1016/j.xcrm.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan D Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
27
|
Morais LV, dos Santos SN, Gomes TH, Malta Romano C, Colombo-Souza P, Amaral JB, Shio MT, Neves LM, Bachi ALL, França CN, Nali LHDS. Acute strength exercise training impacts differently the HERV-W expression and inflammatory biomarkers in resistance exercise training individuals. PLoS One 2024; 19:e0303798. [PMID: 38753716 PMCID: PMC11098355 DOI: 10.1371/journal.pone.0303798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Human Endogenous Retroviruses (HERVs) are fossil viruses that composes 8% of the human genome and plays several important roles in human physiology, including muscle repair/myogenesis. It is believed that inflammation may also regulate HERV expression, and therefore may contribute in the muscle repair, especially after training exercise. Hence, this study aimed to assess the level of HERVs expression and inflammation profile in practitioners' resistance exercises after an acute strength training session. METHODS Healthy volunteers were separated in regular practitioners of resistance exercise training group (REG, n = 27) and non-trained individuals (Control Group, n = 20). All individuals performed a strength exercise section. Blood samples were collected before the exercise (T0) and 45 minutes after the training session (T1). HERV-K (HML1-10) and W were relatively quantified, cytokine concentration and circulating microparticles were assessed. RESULTS REG presented higher level of HERV-W expression (~2.5 fold change) than CG at T1 (p<0.01). No difference was observed in the levels of HERV-K expression between the groups as well as the time points. Higher serum TNF-α and IL-10 levels were verified post-training session in REG and CG (p<0.01), and in REG was found a positive correlation between the levels of TNF-α at T1 and IL-10 at T0 (p = 0.01). Finally, a lower endothelial microparticle percentage was observed in REG at T1 than in T0 (p = 0.04). CONCLUSION REG individuals exhibited a significant upregulation of HERV-W and modulation of inflammatory markers when compared to CG. This combined effect could potentially support the process of skeletal muscle repair in the exercised individuals.
Collapse
Affiliation(s)
- Lucas Vinicius Morais
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | | - Tabatah Hellen Gomes
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Camila Malta Romano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) LIM-52, São Paulo, Brazil
| | | | - Jonatas Bussador Amaral
- ENT Research Lab, Department of Otorhinolaryngology-Head and Neck Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Lucas Melo Neves
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | |
Collapse
|
28
|
Endurance exercise causes a multi-organ full-body molecular reaction. Nature 2024:10.1038/d41586-024-00585-9. [PMID: 38693224 DOI: 10.1038/d41586-024-00585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
|
29
|
Dreher SI, Grubba P, von Toerne C, Moruzzi A, Maurer J, Goj T, Birkenfeld AL, Peter A, Loskill P, Hauck SM, Weigert C. IGF1 promotes human myotube differentiation toward a mature metabolic and contractile phenotype. Am J Physiol Cell Physiol 2024; 326:C1462-C1481. [PMID: 38690930 PMCID: PMC11371365 DOI: 10.1152/ajpcell.00654.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.
Collapse
Affiliation(s)
- Simon I Dreher
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Paul Grubba
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Christine von Toerne
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jennifer Maurer
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Goj
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
31
|
Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock KL, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman MF, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman BC, Fernández FM, Goodyear LJ, Hevener AL, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. Nat Metab 2024; 6:963-979. [PMID: 38693320 PMCID: PMC11132991 DOI: 10.1038/s42255-023-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 05/03/2024]
Abstract
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.
Collapse
Affiliation(s)
- Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zhenxin Hou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - David Amar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Ashley Xia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Vetr NG, Gay NR, Montgomery SB. The impact of exercise on gene regulation in association with complex trait genetics. Nat Commun 2024; 15:3346. [PMID: 38693125 PMCID: PMC11063075 DOI: 10.1038/s41467-024-45966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/01/2024] [Indexed: 05/03/2024] Open
Abstract
Endurance exercise training is known to reduce risk for a range of complex diseases. However, the molecular basis of this effect has been challenging to study and largely restricted to analyses of either few or easily biopsied tissues. Extensive transcriptome data collected across 15 tissues during exercise training in rats as part of the Molecular Transducers of Physical Activity Consortium has provided a unique opportunity to clarify how exercise can affect tissue-specific gene expression and further suggest how exercise adaptation may impact complex disease-associated genes. To build this map, we integrate this multi-tissue atlas of gene expression changes with gene-disease targets, genetic regulation of expression, and trait relationship data in humans. Consensus from multiple approaches prioritizes specific tissues and genes where endurance exercise impacts disease-relevant gene expression. Specifically, we identify a total of 5523 trait-tissue-gene triplets to serve as a valuable starting point for future investigations [Exercise; Transcription; Human Phenotypic Variation].
Collapse
|
33
|
Kitzman DW, Halter JB, Bandeen-Roche K. The Pepper Older Americans Independence Centers: An NIA-sponsored program for improving physical function among older persons. J Am Geriatr Soc 2024; 72:1586-1589. [PMID: 38471899 PMCID: PMC11090727 DOI: 10.1111/jgs.18866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Dalane W. Kitzman
- Professor of Medicine, Sections on Cardiovascular Medicine and Geriatrics/Gerontology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jeffrey B. Halter
- Professor Emeritus of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI; and Parkway Visiting Professor in Geriatrics, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Karen Bandeen-Roche
- Professor of Biostatistics, Medicine and Nursing, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
34
|
Amar D, Gay NR, Jean-Beltran PM, Bae D, Dasari S, Dennis C, Evans CR, Gaul DA, Ilkayeva O, Ivanova AA, Kachman MT, Keshishian H, Lanza IR, Lira AC, Muehlbauer MJ, Nair VD, Piehowski PD, Rooney JL, Smith KS, Stowe CL, Zhao B, Clark NM, Jimenez-Morales D, Lindholm ME, Many GM, Sanford JA, Smith GR, Vetr NG, Zhang T, Almagro Armenteros JJ, Avila-Pacheco J, Bararpour N, Ge Y, Hou Z, Marwaha S, Presby DM, Natarajan Raja A, Savage EM, Steep A, Sun Y, Wu S, Zhen J, Bodine SC, Esser KA, Goodyear LJ, Schenk S, Montgomery SB, Fernández FM, Sealfon SC, Snyder MP, Adkins JN, Ashley E, Burant CF, Carr SA, Clish CB, Cutter G, Gerszten RE, Kraus WE, Li JZ, Miller ME, Nair KS, Newgard C, Ortlund EA, Qian WJ, Tracy R, Walsh MJ, Wheeler MT, Dalton KP, Hastie T, Hershman SG, Samdarshi M, Teng C, Tibshirani R, Cornell E, Gagne N, May S, Bouverat B, Leeuwenburgh C, Lu CJ, Pahor M, Hsu FC, Rushing S, Walkup MP, Nicklas B, Rejeski WJ, Williams JP, Xia A, Albertson BG, Barton ER, Booth FW, Caputo T, Cicha M, De Sousa LGO, Farrar R, Hevener AL, Hirshman MF, Jackson BE, Ke BG, Kramer KS, Lessard SJ, Makarewicz NS, Marshall AG, Nigro P, Powers S, Ramachandran K, Rector RS, Richards CZT, Thyfault J, Yan Z, Zang C, Amper MAS, Balci AT, Chavez C, Chikina M, Chiu R, Gritsenko MA, Guevara K, Hansen JR, Hennig KM, Hung CJ, Hutchinson-Bunch C, Jin CA, Liu X, Maner-Smith KM, Mani DR, Marjanovic N, Monroe ME, Moore RJ, Moore SG, Mundorff CC, Nachun D, Nestor MD, Nudelman G, Pearce C, Petyuk VA, Pincas H, Ramos I, Raskind A, Rirak S, Robbins JM, Rubenstein AB, Ruf-Zamojski F, Sagendorf TJ, Seenarine N, Soni T, Uppal K, Vangeti S, Vasoya M, Vornholt A, Yu X, Zaslavsky E, Zebarjadi N, Bamman M, Bergman BC, Bessesen DH, Buford TW, Chambers TL, Coen PM, Cooper D, Haddad F, Gadde K, Goodpaster BH, Harris M, Huffman KM, Jankowski CM, Johannsen NM, Kohrt WM, Lester B, Melanson EL, Moreau KL, Musi N, Newton RL, Radom-Aizik S, Ramaker ME, Rankinen T, Rasmussen BB, Ravussin E, Schauer IE, Schwartz RS, Sparks LM, Thalacker-Mercer A, Trappe S, Trappe TA, Volpi E. Temporal dynamics of the multi-omic response to endurance exercise training. Nature 2024; 629:174-183. [PMID: 38693412 PMCID: PMC11062907 DOI: 10.1038/s41586-023-06877-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/16/2023] [Indexed: 05/03/2024]
Abstract
Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).
Collapse
|
35
|
Qian P, Wang S, Zhang T, Wu J. Transcriptional Expression of Histone Acetyltransferases and Deacetylases During the Recovery of Acute Exercise in Mouse Hippocampus. J Mol Neurosci 2024; 74:34. [PMID: 38565829 DOI: 10.1007/s12031-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, β-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
36
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
37
|
Moosavi D, Vuckovic I, Kunz HE, Lanza IR. Metabolomic response to acute resistance exercise in healthy older adults by 1H-NMR. PLoS One 2024; 19:e0301037. [PMID: 38547208 PMCID: PMC10977811 DOI: 10.1371/journal.pone.0301037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/03/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The favorable health-promoting adaptations to exercise result from cumulative responses to individual bouts of physical activity. Older adults often exhibit anabolic resistance; a phenomenon whereby the anabolic responses to exercise and nutrition are attenuated in skeletal muscle. The mechanisms contributing to age-related anabolic resistance are emerging, but our understanding of how chronological age influences responsiveness to exercise is incomplete. The objective was to determine the effects of healthy aging on peripheral blood metabolomic response to a single bout of resistance exercise and whether any metabolites in circulation are predictive of anabolic response in skeletal muscle. METHODS Thirty young (20-35 years) and 49 older (65-85 years) men and women were studied in a cross-sectional manner. Participants completed a single bout of resistance exercise consisting of eight sets of 10 repetitions of unilateral knee extension at 70% of one-repetition maximum. Blood samples were collected before exercise, immediately post exercise, and 30-, 90-, and 180-minutes into recovery. Proton nuclear magnetic resonance spectroscopy was used to profile circulating metabolites at all timepoints. Serial muscle biopsies were collected for measuring muscle protein synthesis rates. RESULTS Our analysis revealed that one bout of resistance exercise elicits significant changes in 26 of 33 measured plasma metabolites, reflecting alterations in several biological processes. Furthermore, 12 metabolites demonstrated significant interactions between exercise and age, including organic acids, amino acids, ketones, and keto-acids, which exhibited distinct responses to exercise in young and older adults. Pre-exercise histidine and sarcosine were negatively associated with muscle protein synthesis, as was the pre/post-exercise fold change in plasma histidine. CONCLUSIONS This study demonstrates that while many exercise-responsive metabolites change similarly in young and older adults, several demonstrate age-dependent changes even in the absence of evidence of sarcopenia or frailty. TRIAL REGISTRATION Clinical trial registry: ClinicalTrials.gov NCT03350906.
Collapse
Affiliation(s)
- Darya Moosavi
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States of America
| | - Ivan Vuckovic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Hawley E. Kunz
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| | - Ian R. Lanza
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
38
|
Edman S, Jones RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-Hour Time Course of Integrated Molecular Responses to Resistance Exercise in Human Skeletal Muscle Implicates MYC as a Hypertrophic Regulator That is Sufficient for Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586857. [PMID: 38586026 PMCID: PMC10996609 DOI: 10.1101/2024.03.26.586857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.
Collapse
Affiliation(s)
- Sebastian Edman
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Paulo R. Jannig
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Karolinska Institute, Division of Clinical Physiology, Department of Laboratory Medicine, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Karolinska Institute, Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Nicholas T. Thomas
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Pieter Jan Koopmans
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Francielly Morena
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Calvin S. Peterson
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Logan N. Scott
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Vandre C. Figueiredo
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- Oakland University, Department of Biological Sciences, Rochester Hills, MI, USA
| | - Christopher S. Fry
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Liu Zhengye
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Johanna T. Lanner
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Yuan Wen
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Ferdinand von Walden
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| |
Collapse
|
39
|
Xing X, Sun Q, Wang R, Wang Y, Wang R. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life Sci 2024; 341:122471. [PMID: 38301875 DOI: 10.1016/j.lfs.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
AIMS Disruption of the insulin signaling pathway leads to insulin resistance (IR). IR is characterized by impaired glucose and lipid metabolism. Elevated levels of circulating glutamate are correlated with metabolic indicators and may potentially predict the onset of metabolic diseases. Glutamate receptor antagonists have significantly enhanced insulin sensitivity, and improved glucose and lipid metabolism. Exercise is a well-known strategy to combat IR. The aims of our narrative review are to summarize preclinical and clinical findings to show the correlations between circulating glutamate levels, IR and metabolic diseases, discuss the causal role of excessive glutamate in IR and metabolic disturbance, and present an overview of the exercise-induced alteration in circulating glutamate levels. MATERIALS AND METHODS A literature search was conducted to identify studies on glutamate, insulin signaling, and exercise in the PubMed database. The search covered articles published from December 1955 to January 2024, using the search terms of "glutamate", "glutamic acid", "insulin signaling", "insulin resistance", "insulin sensitivity", "exercise", and "physical activity". KEY FINDINGS Elevated levels of circulating glutamate are correlated with IR. Excessive glutamate can potentially hinder the insulin signaling pathway through various mechanisms, including the activation of ectopic lipid accumulation, inflammation, and endoplasmic reticulum stress. Glutamate can also modify mitochondrial function through Ca2+ and induce purine degradation mediated by AMP deaminase 2. Exercise has the potential to decrease circulating levels of glutamate, which can be attributed to accelerated glutamate catabolism and enhanced glutamate uptake. SIGNIFICANCE Glutamate may act as a mediator in the exercise-induced improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Xiaorui Xing
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Qin Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
40
|
Pajski ML, Byrd C, Nandigama N, Seguin E, Seguin A, Fennell A, Graber TG. Endurance exercise preserves physical function in adult and older male C57BL/6 mice: high intensity interval training (HIIT) versus voluntary wheel running (VWR). FRONTIERS IN AGING 2024; 5:1356954. [PMID: 38523671 PMCID: PMC10958787 DOI: 10.3389/fragi.2024.1356954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Exercise has been shown to improve physical function, mitigate aspects of chronic disease and to potentially alter the trajectory of age-related onset of frailty and sarcopenia. Reliable and valid preclinical models are necessary to elucidate the underlying mechanisms at the intersection of age, exercise, and functional decline. The purpose of this study was to compare, head to head, the effects of two common pre-clinical models of endurance exercise: high intensity interval training (HIIT) and voluntary wheel running (VWR). The hypothesis was that a prescribed and regimented exercise program, HIIT, would prove to be a superior training method to unregulated voluntary exercise, VWR. To investigate this hypothesis, we evaluated adult (n = 24, designated 10 m, aged 6 months at the beginning of the study, 10 months at its completion) and older adult (n = 18, designated 26 m, aging from 22 months to 26 months over the course of the study) C57BL/6 male mice. These mice were randomly assigned (with selection criteria) to a 13-week program of voluntary wheel running (VWR), high intensity interval training (HIIT), or sedentary control (SED). The functional aptitude of each mouse was determined pre- and post-training using our composite CFAB (comprehensive functional assessment battery) scoring system consisting of voluntary wheel running (volitional exercise and activity rate), treadmill (endurance), rotarod (overall motor function), grip meter (forelimb strength), and inverted cling (whole body strength/endurance). To measure sarcopenia, we tracked body mass, body composition (with EchoMRI), plantar flexor torque (in 10 m), and measured muscle wet mass post-training. Overall, adult CFAB scores decreased while body mass and percent body fat increased as they matured; however, exercise significantly mitigated the changes (p < 0.05) compared to SED. Older adults demonstrated preservation of function (CFAB) and reduced body fat (p < 0.05) compared to SED. To conclude, both types of exercise maintained physical function equally in older mice.
Collapse
Affiliation(s)
- Megan L. Pajski
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Chris Byrd
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Nainika Nandigama
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Emily Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Anna Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Alyssa Fennell
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Ted G. Graber
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Department of Physiology, East Carolina University, Greenville, NC, United States
- East Carolina Obesity and Diabetes Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
41
|
Haq ATA, Yang PP, Jin C, Shih JH, Chen LM, Tseng HY, Chen YA, Weng YS, Wang LH, Snyder MP, Hsu HL. Immunotherapeutic IL-6R and targeting the MCT-1/IL-6/CXCL7/PD-L1 circuit prevent relapse and metastasis of triple-negative breast cancer. Theranostics 2024; 14:2167-2189. [PMID: 38505617 PMCID: PMC10945351 DOI: 10.7150/thno.92922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process. Methods: We assessed primary tumor invasion, postsurgical local recurrence and distant metastasis in orthotopic syngeneic mice given the indicated immunotherapy and MCT-1 silencing (shMCT-1). Results: We found that shMCT-1 suppresses the transcriptomes of the inflammatory response and metastatic signaling in TNBC cells and inhibits tumor recurrence, metastasis and mortality in xenograft mice. IL-6R immunotherapy and shMCT-1 combined further decreased intratumoral M2 macrophages and T regulatory cells (Tregs) and avoided postsurgical TNBC expansion. shMCT-1 also enhances IL-6R-based immunotherapy effectively in preventing postsurgical TNBC metastasis, recurrence and mortality. Anti-IL-6R improved helper T, cytotoxic T and natural killer (NK) cells in the lymphatic system and decreased Tregs in the recurrent and metastatic tumors. Combined IL-6R and PD-L1 immunotherapies abridged TNBC cell stemness and M2 macrophage activity to a greater extent than monotherapy. Sequential immunotherapy of PD-L1 and IL-6R demonstrated the best survival outcome and lowest postoperative recurrence and metastasis compared with synchronized therapy, particularly in the shMCT-1 context. Multiple positive feedforward loops of the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 axis were identified in TNBC cells, which boosted metastatic niches and immunosuppressive microenvironments. Clinically, MCT-1high/PD-L1high/CXCL7high and CXCL7high/IL-6high/IL-6Rhigh expression patterns predict worse prognosis and poorer survival of breast cancer patients. Conclusion: Systemic targeting the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 interconnections enhances immune surveillance that inhibits the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pao-Pao Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Christopher Jin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
42
|
Plaza-Florido A, Lucia A, Fiuza-Luces C. Exercise is also medicine for iron homeostasis. Trends Endocrinol Metab 2024; 35:180-182. [PMID: 38307812 DOI: 10.1016/j.tem.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
High-intensity interval training (HIIT) is gaining popularity as an effective exercise modality to improve cardiometabolic health. Combining high-throughput/sensitivity proteome analyses in subcutaneous adipose tissue with biochemical blood measures, Larsen et al. recently provided mechanistic insights into a potential beneficial role of this exercise modality on iron homeostasis at the whole-body level.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain; Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| |
Collapse
|
43
|
Halade GV, Upadhyay G, Marimuthu M, Wanling X, Kain V. Exercise reduces pro-inflammatory lipids and preserves resolution mediators that calibrate macrophage-centric immune metabolism in spleen and heart following obesogenic diet in aging mice. J Mol Cell Cardiol 2024; 188:79-89. [PMID: 38364731 DOI: 10.1016/j.yjmcc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The study investigated the role of volunteer exercise and an obesogenic diet (OBD) in mice, focusing on the splenocardiac axis and inflammation-resolution signaling. Male C57BL/6J mice (2 months old) were assigned to control (CON) or OBD groups for ten months, then randomized into sedentary (Sed) or exercise (Exe) groups for two weeks. Leukocytes, heart function, structure, and spleen tissue examined for inflammation-resolution mediators and macrophage-centric gene transcripts. After two weeks of volunteer exercise, cardiac function shows limited changes, but structural changes were notable in the heart and spleen. Exercise induced cardiac nuclear hyperplasia observed in both CON and OBD groups. OBD-Sed mice showed splenic changes and increased neutrophils, whereas increased neutrophils were noted in the CON post exercise. OBD-Sed increased pro-inflammatory lipid mediators in the heart, reduced by exercise in OBD-Exe, while CON-Exe preserved resolution mediators. Chronic OBD-Sed depletes long chain fatty acids (DHA/EPA) in the heart and spleen, while exercise independently regulates lipid metabolism genes in both organs, affecting macrophage-centric lipid and lipoprotein pathways. Chronic obesity amplified cardiac inflammation, countered by exercise that lowered pro-inflammatory bioactive lipid mediators in the heart. OBD sustained inflammation in the heart and spleen, while exercise conserved resolution mediators in CON mice. In summary, these findings emphasize the interplay of diet with exercise and highlight the intricate connection of diet, exercise, inflammation-resolution signaling in splenocardiac axis and immune health.
Collapse
Affiliation(s)
- Ganesh V Halade
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| | - Gunjan Upadhyay
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - MathanKumar Marimuthu
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Xuan Wanling
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Vasundhara Kain
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
44
|
Lynch CE, Brandt AR, Vincenty CS, Robbins E, Skiles C, Minchev K, Chambers TL, Belangee A, Trappe TA, Trappe SW. Adipose biopsy techniques for studies in human exercise physiology. Am J Physiol Regul Integr Comp Physiol 2024; 326:R220-R229. [PMID: 38223939 DOI: 10.1152/ajpregu.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Adipose biopsy techniques are relatively undefined for exercise physiology research in individuals at or near normal weight. The purpose of this study was to compare the influence of two adipose biopsy techniques on tissue quality through measurements of adipocyte cell size, as well as mRNA and protein levels of select pro- and anti-inflammatory cytokines and adipokines. Thirteen participants (9 M, 4 W; 28 ± 4 yr; 27 ± 3 kg·m-2; V̇o2max: 3.3 ± 0.7 L·min-1) underwent subcutaneous adipose biopsies on either side of the umbilicus (incision: ∼8 cm lateral, sampling area: ∼5 cm lateral) using 1) a 6-mm Bergström biopsy needle and 2) a mini-liposuction approach with a 4-mm Mercedes biopsy needle that used prebiopsy tumescent delivery (∼30 mL 0.9% NaCl solution) into the sampling area (i.e., 'wet' technique). Tissue obtained was processed identically for analysis and both techniques returned high-quality tissue for histology (similar % intact adipocytes), mRNA (RNA integrity numbers >7.0), and protein. Adipocyte size was similar (P > 0.05) between both techniques (Bergström: 6,116 ± 1,652 μm2, 554-23,522 µm2; Mercedes: 6,517 ± 952 μm2, 926-21,969 µm2). There were also no differences (P > 0.05) between the two techniques for the measured cytokines (pro- and anti-inflammatory) and adipokines at the mRNA and protein levels. Adipocyte size was positively correlated with body mass index and body fat percentage, and negatively correlated with V̇o2max (P < 0.05). These results suggest both adipose biopsy techniques used in the current investigation are appropriate for histological, transcriptional, and translational level measurements in exercise physiology studies of nonobese women and men.NEW & NOTEWORTHY This study provides investigators with useful information related to adipose biopsy sampling approaches that can be used when planning studies that use measurements of adipose histology, as well as measurements at the mRNA and protein level. Adipose periumbilical sampling with the Bergström biopsy needle and the Mercedes wet mini-liposuction technique are both appropriate options for studies in exercise physiology and in nonobese individuals.
Collapse
Affiliation(s)
- Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Caroline S Vincenty
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ethan Robbins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Chad Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alicia Belangee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
45
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Cavallero S, Roustaei M, Satta S, Cho JM, Phan H, Baek KI, Blázquez-Medela AM, Gonzalez-Ramos S, Vu K, Park SK, Yokota T, Sumner J, Mack JJ, Sigmund CD, Reddy ST, Li R, Hsiai TK. Exercise mitigates flow recirculation and activates metabolic transducer SCD1 to catalyze vascular protective metabolites. SCIENCE ADVANCES 2024; 10:eadj7481. [PMID: 38354249 PMCID: PMC10866565 DOI: 10.1126/sciadv.adj7481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.
Collapse
Affiliation(s)
- Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Henry Phan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Ana M. Blázquez-Medela
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Sheila Gonzalez-Ramos
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Khoa Vu
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jennifer Sumner
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, CA, USA
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rongsong Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Wei W, Raun SH, Long JZ. Molecular Insights From Multiomics Studies of Physical Activity. Diabetes 2024; 73:162-168. [PMID: 38241506 PMCID: PMC10796296 DOI: 10.2337/dbi23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/04/2023] [Indexed: 01/21/2024]
Abstract
Physical activity confers systemic health benefits and provides powerful protection against disease. There has been tremendous interest in understanding the molecular effectors of exercise that mediate these physiologic effects. The modern growth of multiomics technologies-including metabolomics, proteomics, phosphoproteomics, lipidomics, single-cell RNA sequencing, and epigenomics-has provided unparalleled opportunities to systematically investigate the molecular changes associated with physical activity on an organism-wide scale. Here, we discuss how multiomics technologies provide new insights into the systemic effects of physical activity, including the integrative responses across organs as well as the molecules and mechanisms mediating tissue communication during exercise. We also highlight critical unanswered questions that can now be addressed using these high-dimensional tools and provide perspectives on fertile future research directions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
| | - Steffen H. Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA
| |
Collapse
|
48
|
Craighead DH, Freeberg KA, Heinbockel TC, Rossman MJ, Jackman RA, McCarty NP, Jankowski LR, Nemkov T, Reisz JA, D’Alessandro A, Chonchol M, Bailey EF, Seals DR. Time-Efficient, High-Resistance Inspiratory Muscle Strength Training Increases Exercise Tolerance in Midlife and Older Adults. Med Sci Sports Exerc 2024; 56:266-276. [PMID: 37707508 PMCID: PMC10840713 DOI: 10.1249/mss.0000000000003291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
PURPOSE This study aimed to determine if time-efficient, high-resistance inspiratory muscle strength training (IMST), comprising 30 inhalation-resisted breaths per day, improves cardiorespiratory fitness, exercise tolerance, physical function, and/or regional body composition in healthy midlife and older adults. METHODS We performed a double-blind, randomized, sham-controlled clinical trial (NCT03266510) testing 6 wk of IMST (30 breaths per day, 6 d·wk -1 , 55%-75% maximal inspiratory pressure) versus low-resistance sham training (15% maximal inspiratory pressure) in healthy men and women 50-79 yr old. Subjects performed a graded treadmill exercise test to exhaustion, physical performance battery (e.g., handgrip strength, leg press), and body composition testing (dual x-ray absorptiometry) at baseline and after 6 wk of training. RESULTS Thirty-five participants (17 women, 18 men) completed high-resistance IMST ( n = 17) or sham training ( n = 18). Cardiorespiratory fitness (V̇O 2peak ) was unchanged, but exercise tolerance, measured as treadmill exercise time during a graded exercise treadmill test, increased with IMST (baseline, 539 ± 42 s; end intervention, 606 ± 42 s; P = 0.01) but not sham training (baseline, 562 ± 39 s; end intervention, 553 ± 38 s; P = 0.69). IMST increased peak RER (baseline, 1.09 ± 0.02; end intervention, 1.13 ± 0.02; P = 0.012), peak ventilatory efficiency (baseline, 25.2 ± 0.8; end intervention, 24.6 ± 0.8; P = 0.036), and improved submaximal exercise economy (baseline, 23.5 ± 1.1 mL·kg -1 ⋅min -1 ; end intervention, 22.1 ± 1.1 mL·kg -1 ⋅min -1 ; P < 0.001); none of these factors were altered by sham training (all P > 0.05). Changes in plasma acylcarnitines (targeted metabolomics analysis) were consistently positively correlated with changes in exercise tolerance after IMST but not sham training. IMST was associated with regional increases in thorax lean mass (+4.4%, P = 0.06) and reductions in trunk fat mass (-4.8%, P = 0.04); however, peripheral muscle strength, muscle power, dexterity, and mobility were unchanged. CONCLUSIONS These data suggest that high-resistance IMST is an effective, time-efficient lifestyle intervention for improving exercise tolerance in healthy midlife and older adults.
Collapse
Affiliation(s)
- Daniel H. Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Kaitlin A. Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Thomas C. Heinbockel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Matthew J. Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Rachel A. Jackman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Narissa P. McCarty
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Lindsey R. Jankowski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - E. Fiona Bailey
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
49
|
Manning KM, Hall KS, Sloane R, Magistro D, Rabaglietti E, Lee CC, Castle S, Kopp T, Giffuni J, Katzel L, McDonald M, Miyamoto M, Pearson M, Jennings SC, Bettger JP, Morey MC. Longitudinal analysis of physical function in older adults: The effects of physical inactivity and exercise training. Aging Cell 2024; 23:e13987. [PMID: 37681737 PMCID: PMC10776115 DOI: 10.1111/acel.13987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Lack of exercise contributes to systemic inflammation and is a major cause of chronic disease. The long-term impact of initiating and sustaining exercise in late life, as opposed to sustaining a sedentary lifestyle, on whole-body health measures such as physical performance is not well known. This is an exploratory study to compare changes in physical performance among older adults initiating exercise late in life versus inactive older adults. Data from two observational cohorts were included in this analysis, representing two activity groups. The Active group cohort comprises older adults (n = 318; age 72.5 ± 7.2 years) enrolled in a supervised exercise program, "Gerofit." The inactive group comprises older adults (n = 146; age 74.5 ± 5.5 years) from the Italian study "Act on Ageing" (AOA) who self-reported being inactive. Participants in both groups completed physical performance battery at baseline and 1-year including: 6-min walk test, 30-s chair stand, and timed up-and-go. Two-sample t-tests measured differences between Gerofit and AOA at baseline and 1-year across all measures. Significant between-group effects were seen for all performance measures (ps = 0.001). The AOA group declined across all measures from baseline to 1 year (range -18% to -24% change). The Gerofit group experienced significant gains in function for all measures (range +10% to +31% change). Older adults who initiated routine, sustained exercise were protected from age-related declines in physical performance, while those who remained sedentary suffered cumulative deficits across strength, aerobic endurance, and mobility. Interventions to reduce sedentary behaviors and increase physical activity are both important to promote multi-system, whole-body health.
Collapse
Affiliation(s)
- Kenneth M. Manning
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
| | - Katherine S. Hall
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
- Department of Medicine, Center for the Study of Aging/Claude D. Pepper Older Americans Independence CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Richard Sloane
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
- Department of Medicine, Center for the Study of Aging/Claude D. Pepper Older Americans Independence CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | | | - Cathy C. Lee
- Geriatric Research, Education, and Clinical CenterVA Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Steven Castle
- Geriatric Research, Education, and Clinical CenterVA Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | | | - Jamie Giffuni
- Geriatric Research, Education and Clinical CenterVA Maryland Health Care SystemBaltimoreMarylandUSA
| | - Leslie Katzel
- Geriatric Research, Education and Clinical CenterVA Maryland Health Care SystemBaltimoreMarylandUSA
- School of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Michelle McDonald
- Geritaric Rehabilitation and Clinical CenterVA Pacific Health Care SystemHonoluluHawaiiUSA
| | - Miles Miyamoto
- Geritaric Rehabilitation and Clinical CenterVA Pacific Health Care SystemHonoluluHawaiiUSA
| | - Megan Pearson
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
| | - Stephen C. Jennings
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
| | - Janet Prvu Bettger
- Department of Orthopedic SurgeryDuke University Medical CenterDurhamNorth CarolinaUSA
- Roybal CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Miriam C. Morey
- Geriatric Research, Education, and Clinical CenterVA Health Care SystemDurhamNorth CarolinaUSA
- Department of Medicine, Center for the Study of Aging/Claude D. Pepper Older Americans Independence CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
50
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|