1
|
Gunawardene CD, Wong LYR. Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. J Virol 2025:e0135324. [PMID: 39760492 DOI: 10.1128/jvi.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection. Previous studies have shown that the I proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus suppress type I interferon production by distinct mechanisms. In this review, we summarize the current knowledge on the I proteins of betacoronaviruses from different subgenera, with emphasis on its function and role in pathogenesis.
Collapse
Affiliation(s)
- Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lok-Yin Roy Wong
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
2
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
3
|
Park J, Choi W, Seong DY, Jeong S, Lee JY, Park HJ, Chung DS, Yi K, Kim U, Yoon GY, Kim H, Kim T, Ko S, Min EJ, Cho HS, Cho NH, Hong D. Accurate predictions of SARS-CoV-2 infectivity from comprehensive analysis. eLife 2024; 13:RP99833. [PMID: 39717902 DOI: 10.7554/elife.99833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region. We detected an increased frequency of amino acid substitutions to lysine (K) and arginine (R) in variants of concern (VOCs). As the virus evolved to Omicron, commonly occurring mutations became fixed components of the new viral sequence. Furthermore, at specific positions of VOCs, only one type of amino acid substitution and a notable absence of mutations at D467 were detected. We found that the binding affinity of SARS-CoV-2 lineages to the ACE2 receptor was impacted by amino acid substitutions. Based on our discoveries, we developed APESS, an evaluation model evaluating infectivity from biochemical and mutational properties. In silico evaluation using real-world sequences and in vitro viral entry assays validated the accuracy of APESS and our discoveries. Using Machine Learning, we predicted mutations that had the potential to become more prominent. We created AIVE, a web-based system, accessible at https://ai-ve.org to provide infectivity measurements of mutations entered by users. Ultimately, we established a clear link between specific viral properties and increased infectivity, enhancing our understanding of SARS-CoV-2 and enabling more accurate predictions of the virus.
Collapse
Affiliation(s)
- Jongkeun Park
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - WonJong Choi
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Do Young Seong
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungpil Jeong
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju Young Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo Jeong Park
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Sun Chung
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute and Technology, Daejeon, Republic of Korea
| | - Uijin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ga-Yeon Yoon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyeran Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taehoon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sooyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eun Jeong Min
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dongwan Hong
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
- INNOONE, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kaushal P, Ummadi MR, Jang GM, Delgado Y, Makanani SK, Alba K, Winters DM, Blanc SF, Xu J, Polacco B, Zhou Y, Stevenson E, Eckhardt M, Zuliani-Alvarez L, Kaake R, Swaney DL, Krogan NJ, Bouhaddou M. Protocol for mapping differential protein-protein interaction networks using affinity purification-mass spectrometry. STAR Protoc 2024; 5:103286. [PMID: 39488835 PMCID: PMC11567037 DOI: 10.1016/j.xpro.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Proteins congregate into complexes to perform diverse cellular functions. Protein complexes are remodeled by protein-coding mutations or cellular signaling changes, driving phenotypic outcomes in health and disease. We present an affinity purification-mass spectrometry (AP-MS) proteomics protocol to express affinity-tagged "bait" proteins in mammalian cells, identify and quantify purified protein interactors, and visualize differential protein-protein interaction networks between pairwise conditions. Our protocol possesses general applicability to various cell types and biological areas. For complete details on the use and execution of this protocol, please refer to Bouhaddou et al.1.
Collapse
Affiliation(s)
- Prashant Kaushal
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Manisha R Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yennifer Delgado
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Kareem Alba
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Declan M Winters
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sophie F Blanc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Robyn Kaake
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Lee JS, Dittmar M, Miller J, Li M, Ayyanathan K, Ferretti M, Hulahan J, Whig K, Etwebi Z, Griesman T, Schultz DC, Cherry S. Pressure to evade cell-autonomous innate sensing reveals interplay between mitophagy, IFN signaling, and SARS-CoV-2 evolution. Cell Rep 2024; 44:115115. [PMID: 39708319 DOI: 10.1016/j.celrep.2024.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
SARS-CoV-2 emerged, and continues to evolve, to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling occurring only in bystander cells. How the virus continues to evolve in the face of innate responses has important consequences, but the pathways involved are incompletely understood. Here, we find that autophagy genes regulate innate immune signaling, impacting the basal set point of interferons and, thus, permissivity to infection. Mechanistically, autophagy (mitophagy) genes negatively regulate MAVS, and this low basal level of MAVS is efficiently antagonized by SARS-CoV-2 ORF9b, blocking interferon activation in infected cells. However, loss of autophagy increased MAVS and overcomes ORF9b-mediated antagonism. This has driven the evolution of SARS-CoV-2 to express more ORF9b, allowing SARS-CoV-2 to replicate under conditions of increased MAVS signaling. Altogether, we find a critical role of mitophagy in the regulation of innate immunity and uncover an evolutionary trajectory of SARS-CoV-2 ORF9b to overcome host defenses.
Collapse
Affiliation(s)
- Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minghua Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kanupriya Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Griesman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2024:e0001623. [PMID: 39699237 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Fan H, Tian M, Liu S, Ye C, Li Z, Wu K, Zhu C. Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective. Pathogens 2024; 13:1117. [PMCID: PMC11677916 DOI: 10.3390/pathogens13121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/05/2025] Open
Abstract
By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host. While battling the host’s immune responses, SARS-CoV-2 has established many countermeasures to evade attack and clearance. As the exploration of SARS-CoV-2 continues, substantial evidence has revealed that the 29 proteins synthesized by the SARS-CoV-2 genome are integral to the viral infection process. They not only facilitate viral replication and transmission, but also assist SARS-CoV-2 in escaping the host’s immune defenses, positioning them as promising therapeutic targets that have attracted considerable attention in recent studies. This review summarizes the manner in which SARS-CoV-2 interfaces with the innate immune system, with a particular focus on the continuous evolution of SARS-CoV-2 and the implications of mutations.
Collapse
Affiliation(s)
- Hong Fan
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.T.); (S.L.); (K.W.)
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.F.); (C.Y.); (Z.L.)
| |
Collapse
|
8
|
Goldstein SA, Feeley TM, Babler KM, Hilbert ZA, Downhour DM, Moshiri N, Elde NC. Hidden evolutionary constraints dictate the retention of coronavirus accessory genes. Curr Biol 2024; 34:5685-5696.e3. [PMID: 39566499 DOI: 10.1016/j.cub.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Coronaviruses exhibit many mechanisms of genetic innovation, including the acquisition of accessory genes that originate by capture of cellular genes or through duplication of existing viral genes. Accessory genes influence viral host range and cellular tropism, but little is known about how selection acts on these variable regions of virus genomes. We used experimental evolution of mouse hepatitis virus (MHV) encoding a cellular AKAP7 phosphodiesterase and an inactive native phosphodiesterase, NS2, to model the evolutionary fate of accessory genes. After courses of serial infection, the gene encoding inactive NS2, ORF2, unexpectedly remained intact, suggesting it is under cryptic constraint uncoupled from the function of NS2. By contrast, AKAP7 was retained under strong selection but rapidly lost under relaxed selection. Experimental evolution also led to altered viral replication in a cell-type-specific manner and changed the relative proportions of subgenomic viral RNA in plaque-purified viral isolates, revealing additional mechanisms of adaptation. Guided by the retention of MHV ORF2 and similar patterns in related betacoronaviruses, we analyzed ORF8 of SARS-CoV-2, which is proposed to have arisen via gene duplication and contains premature stop codons in several globally successful lineages. As with MHV ORF2, the coding-defective SARS-CoV-2 ORF8 gene remained largely intact in these lineages, mirroring patterns observed during MHV experimental evolution, challenging assumptions on the dynamics of gene loss in virus genomes, and extending these findings to viruses currently adapting to humans.
Collapse
Affiliation(s)
- Stephen A Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Teagan M Feeley
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kristina M Babler
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zoë A Hilbert
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Diane M Downhour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
9
|
Huuskonen S, Liu X, Pöhner I, Redchuk T, Salokas K, Lundberg R, Maljanen S, Belik M, Reinholm A, Kolehmainen P, Tuhkala A, Tripathi G, Laine P, Belanov S, Auvinen P, Vartiainen M, Keskitalo S, Österlund P, Laine L, Poso A, Julkunen I, Kakkola L, Varjosalo M. The comprehensive SARS-CoV-2 'hijackome' knowledge base. Cell Discov 2024; 10:125. [PMID: 39653747 PMCID: PMC11628605 DOI: 10.1038/s41421-024-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sini Huuskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Taras Redchuk
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Antti Tuhkala
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Garima Tripathi
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sergei Belanov
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and disease. Cell 2024; 187:6501-6517. [PMID: 39547210 DOI: 10.1016/j.cell.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The identification of individual protein-protein interactions (PPIs) began more than 40 years ago, using protein affinity chromatography and antibody co-immunoprecipitation. As new technologies emerged, analysis of PPIs increased to a genome-wide scale with the introduction of intracellular tagging methods, affinity purification (AP) followed by mass spectrometry (MS), and co-fractionation MS (CF-MS). Now, combining the resulting catalogs of interactions with complementary methods, including crosslinking MS (XL-MS) and cryogenic electron microscopy (cryo-EM), helps distinguish direct interactions from indirect ones within the same or between different protein complexes. These powerful approaches and the promise of artificial intelligence applications like AlphaFold herald a future where PPIs and protein complexes, including energy-driven protein machines, will be understood in exquisite detail, unlocking new insights in the contexts of both basic biology and disease.
Collapse
Affiliation(s)
- Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Bruce M Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
11
|
Landete P, Caliman-Sturdza OA, Lopez-Martin JA, Preotescu L, Luca MC, Kotanidou A, Villares P, Iglesias SP, Guisado-Vasco P, Saiz-Lou EM, del Carmen Farinas-Alvarez M, de Lucas EM, Perez-Alba E, Cisneros JM, Estrada V, Hidalgo-Tenorio C, Poulakou G, Torralba M, Fortun J, Garcia-Ocana P, Lemaignen A, Marcos-Martin M, Molina M, Paredes R, Perez-Rodriguez MT, Raev D, Ryan P, Meira F, Gomez J, Torres N, Lopez-Mendoza D, Jimeno J, Varona JF. A Phase III Randomized Controlled Trial of Plitidepsin, a Marine-Derived Compound, in Hospitalized Adults With Moderate COVID-19. Clin Infect Dis 2024; 79:910-919. [PMID: 39182994 PMCID: PMC11478586 DOI: 10.1093/cid/ciae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plitidepsin has shown potent preclinical activity against severe acute respiratory syndrome coronavirus 2 and was generally well tolerated in a phase I trial of hospitalized patients with coronavirus disease 2019 (COVID-19). NEPTUNO, a phase III, multicenter, randomized, controlled trial, was designed to evaluate the efficacy and safety of plitidepsin in the management of moderate COVID-19 in hospitalized adult patients. METHODS Included patients had documented severe acute respiratory syndrome coronavirus 2 infection, required oxygen therapy, and had adequate organ function. The planned sample size was 609 patients. Patients were randomized 1:1:1 to at least 3 days of dexamethasone plus either plitidepsin (1.5 mg/day or 2.5 mg/day, for 3 days) or standard of care (control). The primary endpoint was the time to sustained withdrawal of supplemental oxygen. Secondary endpoints included time to sustained hospital discharge, clinical status, duration of oxygen support, percentage of patients requiring admission to the intensive care unit, and safety. RESULTS After randomizing 205 patients, NEPTUNO was discontinued due to a notable drop in COVID-19-related hospitalizations. Available data suggest a 2-day improvement in the median time to sustained oxygen therapy discontinuation (5 vs 7 days) favoring both plitidepsin arms (hazard ratio, 1.37; 95% confidence interval, .96-1.96; P = .08 for plitidepsin 1.5 mg vs control; hazard ratio, 1.06; 95% confidence interval, .73-1.53; P = .78 for plitidepsin 2.5 mg vs control). Plitidepsin was generally well tolerated. CONCLUSIONS Despite the trial limitations, these results suggest that plitidepsin may have a positive benefit-risk ratio in the management of patients requiring oxygen therapy. Further studies with plitidepsin, including those in immunosuppressed patients, are warranted.Results from this phase III trial suggest that plitidepsin, a first-in-class antiviral, may have a positive benefit-risk ratio in the management of hospitalized patients requiring oxygen therapy for moderate COVID-19.
Collapse
Affiliation(s)
- Pedro Landete
- Pneumology Department, Hospital Universitario La Princesa, Madrid, Spain
- Research Laboratory, Instituto de Investigación La Princesa (IIS Princesa), Madrid, Spain
- Department of Pneumology, Hospital Enfermera Isabel Zendal, Madrid SARS CoV2 Unit, Madrid, Spain
- Department of Pneumology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Olga-Adriana Caliman-Sturdza
- Department of Infectious Diseases, Judetean de Urgenta "Sf. Ioan cel Nou", Suceava, Romania
- Deparment of Internal Medicine, University of Suceava, Suceava, Romania
| | | | - Liliana Preotescu
- Department of Internal Mecicine, Institutul National De Boli Infectioase "Prof. Dr. Matei Bals", Bucharest, Romania
- Department of Internal Mecicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Mihaela-Catalina Luca
- Department of Internal Medicine, Spitalul Clinic De Boli Infecţioase "Sf. Paraschev", Iasi, Romania
- Department of Internal Medicine, "Grigore T. Popa" University, Iasi, Romania
| | - Anastasia Kotanidou
- Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Pulmonary and Critical Care, Evagelismos General Hospital, Athens, Greece
| | - Paula Villares
- Internal Medicine, Hospital Universitario HM Sanchinarro, HM Hospitales Group, Madrid, Spain
| | | | - Pablo Guisado-Vasco
- Internal Medicine, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Medical Research Center, Universidad Europea, Madrid, Spain
| | | | - Maria del Carmen Farinas-Alvarez
- Infectious Diseases Department, Hospital Universitario ‘Marqués de Valdecilla’, Santander, Spain
- Department of Internal Medicine, Valdecilla Research Institute (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, Universidad de Cantabria, Research Center, Santander, Spain
| | - Esperanza Merino de Lucas
- Unit of Infectious Diseases, Alicante General University Hospital, Alicante, Spain
- Department of Infectious Disease, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Eduardo Perez-Alba
- Infectology Department, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico
- Department of Infectious Diseases, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jose-Miguel Cisneros
- Department of Research, Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Department of Infectious Diseases, Virgen del Rocío’ University Hospital, Seville, Spain
| | - Vicente Estrada
- Infectious Diseases Unit, Hospital Universitario "San Carlos", Madrid, Spain
| | | | - Garyfallia Poulakou
- 3rd Department of Internal Medicine and Laboratory, National Sotiria General Hospital, Athens, Greece
| | - Miguel Torralba
- Internal Medicine, Guadalajara University Hospital, Guadalajara, Spain
| | - Jesus Fortun
- Infectious Diseases Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Paula Garcia-Ocana
- Infectious Diseases Unit, Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | - Adrien Lemaignen
- Department of Infectious Diseases, Centre Hospitalier Regional et Universitaire de Tours (CHRU Tours)—Hopital Bretonneaut, Tours, France
| | | | - Maria Molina
- ILD Unit-Respiratory Department, University Hospital of Bellvitge, Barcelona, Spain
- Bellvitge Institute for Biomedical Reseach, IDIBELL, Barcelona, Spain
- Department of Research Center, CIBERES, Barcelona, Spain
| | - Roger Paredes
- Infectious Diseases Department, Hospital Universitari Germans Trial I Pujol, Badalona, Spain
- Department of Infectious Diseases, IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Maria Teresa Perez-Rodriguez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo. Vigo, Spain
| | - Dimitar Raev
- Cardiology and Internal Medicine, Internal Medicine Clinic, University Hospital UMHAT “Sveta Anna”, Sofia, Bulgaria
| | - Pablo Ryan
- Infectious Diseases Hospital Infanta Leonor, Madrid, Spain
| | | | - Javier Gomez
- Department of Biostatistics, PharmaMar, Madrid, Spain
| | - Nadia Torres
- Department of Data Management, PharmaMar, Madrid, Spain
| | | | | | - Jose-Felipe Varona
- Department of Internal Medicine, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo Jose Cela, Madrid, Spain
| |
Collapse
|
12
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
14
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Jenkins F, Mapulanga T, Thapa G, da Costa KAS, Temperton NJ. Conference Report: LPMHealthcare Emerging Viruses 2023 (EVOX23): Pandemics-Learning from the Past and Present to Prepare for the Future. Pathogens 2024; 13:679. [PMID: 39204279 PMCID: PMC11357271 DOI: 10.3390/pathogens13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of SARS-CoV-2 has meant that pandemic preparedness has become a major focus of the global scientific community. Gathered in the historic St Edmund Hall college in Oxford, the one-day LPMHealthcare conference on emerging viruses (6 September 2023) sought to review and learn from past pandemics-the current SARS-CoV-2 pandemic and the Mpox outbreak-and then look towards potential future pandemics. This includes an emphasis on monitoring the "traditional" reservoirs of viruses with zoonotic potential, as well as possible new sources of spillover events, e.g., bats, which we are coming into closer contact with due to climate change and the impacts of human activities on habitats. Continued vigilance and investment into creative scientific solutions is required for issues including the long-term physical and psychological effects of COVID-19, i.e., long COVID. The evaluation of current systems, including environmental monitoring, communication (with the public, regulatory authorities, and governments), and training; assessment of the effectiveness of the technologies/assays we have in place currently; and lobbying of the government and the public to work with scientists are all required in order to build trust moving forward. Overall, the SARS-CoV-2 pandemic has shown how many sectors can work together to achieve a global impact in times of crisis.
Collapse
Affiliation(s)
| | - Tobias Mapulanga
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Gauri Thapa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Kelly A. S. da Costa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Nigel J. Temperton
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| |
Collapse
|
16
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
17
|
Adams SK, Ducharme GE, Loveday EK. All the single cells: if you like it then you should put some virus on it. J Virol 2024; 98:e0127323. [PMID: 38904395 PMCID: PMC11324023 DOI: 10.1128/jvi.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Across a rich 70-year history, single-cell virology has revealed the impact of host and pathogen heterogeneity during virus infections. Recent technological innovations have enabled higher-resolution analyses of cellular and viral heterogeneity. Furthermore, single-cell analysis has revealed extreme phenotypes and provided additional insights into host-pathogen dynamics. Using a single-cell approach to explore fundamental virology questions, contemporary researchers have contributed to a revival of interest in single-cell virology with increased insights and enthusiasm.
Collapse
Affiliation(s)
- Sophia K. Adams
- Department of
Chemistry and Biochemistry, Montana State
University, Bozeman,
Montana, USA
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
| | - Grace E. Ducharme
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| | - Emma K. Loveday
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| |
Collapse
|
18
|
Yin X, Pu Y, Yuan S, Pache L, Churas C, Weston S, Riva L, Simons LM, Cisneros WJ, Clausen T, De Jesus PD, Kim HN, Fuentes D, Whitelock J, Esko J, Lord M, Mena I, García-Sastre A, Hultquist JF, Frieman MB, Ideker T, Pratt D, Martin-Sancho L, Chanda SK. Global siRNA Screen Reveals Critical Human Host Factors of SARS-CoV-2 Multicycle Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602835. [PMID: 39026801 PMCID: PMC11257544 DOI: 10.1101/2024.07.10.602835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Pu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christopher Churas
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Laura Riva
- Calibr-Skaggs at Scripps Research Institute, La Jolla, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - William J. Cisneros
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, USA
| | - Paul D. De Jesus
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Daniel Fuentes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - John Whitelock
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, USA
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ignacio Mena
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA; The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, USA
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Laura Martin-Sancho
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| |
Collapse
|
19
|
Liu Q, Lu Y, Cai C, Huang Y, Zhou L, Guan Y, Fu S, Lin Y, Yan H, Zhang Z, Li X, Yang X, Yang H, Guo H, Lan K, Chen Y, Hou SC, Xiong Y. A broad neutralizing nanobody against SARS-CoV-2 engineered from an approved drug. Cell Death Dis 2024; 15:458. [PMID: 38937437 PMCID: PMC11211474 DOI: 10.1038/s41419-024-06802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.
Collapse
Affiliation(s)
- Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | | | - Yanyan Huang
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Yanbin Guan
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Shiying Fu
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Youyou Lin
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhang
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Xiang Li
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China.
| | - Yu Chen
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| | | | - Yi Xiong
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China.
- Bayray Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
20
|
Xavier MS, Araujo-Pereira M, de Oliveira QM, Sant’Anna FM, Ridolfi FM, de Andrade AMS, Figueiredo MC, Sterling TR, Gordhan BG, Kana BD, Andrade BB, Rolla VC, Gomes-Silva A. The effect of previous SARS-CoV-2 infection on systemic immune responses in individuals with tuberculosis. Front Immunol 2024; 15:1357360. [PMID: 38994357 PMCID: PMC11236595 DOI: 10.3389/fimmu.2024.1357360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background The impact of previous SARS-CoV-2 infection on the systemic immune response during tuberculosis (TB) disease has not been explored. Methods An observational, cross-sectional cohort was established to evaluate the systemic immune response in persons with pulmonary tuberculosis with or without previous SARS-CoV-2 infection. Those participants were recruited in an outpatient referral clinic in Rio de Janeiro, Brazil. TB was defined as a positive Xpert-MTB/RIF Ultra and/or a positive culture of Mycobacterium tuberculosis from sputum. Stored plasma was used to perform specific serology to identify previous SARS-CoV-2 infection (TB/Prex-SCoV-2 group) and confirm the non- infection of the tuberculosis group (TB group). Plasmatic cytokine/chemokine/growth factor profiling was performed using Luminex technology. Tuberculosis severity was assessed by clinical and laboratory parameters. Participants from TB group (4.55%) and TB/Prex-SCoV-2 (0.00%) received the complete COVID-19 vaccination. Results Among 35 participants with pulmonary TB, 22 were classified as TB/Prex-SCoV-2. The parameters associated with TB severity, together with hematologic and biochemical data were similar between the TB and TB/Prex-SCoV-2 groups. Among the signs and symptoms, fever and dyspnea were significantly more frequent in the TB group than the TB/Prex-SCoV-2 group (p < 0,05). A signature based on lower amount of plasma EGF, G-CSF, GM-CSF, IFN-α2, IL-12(p70), IL-13, IL-15, IL-17, IL-1β, IL-5, IL-7, and TNF-β was observed in the TB/Prex-SCoV-2 group. In contrast, MIP-1β was significantly higher in the TB/Prex-SCoV-2 group than the TB group. Conclusion TB patients previously infected with SARS-CoV-2 had an immunomodulation that was associated with lower plasma concentrations of soluble factors associated with systemic inflammation. This signature was associated with a lower frequency of symptoms such as fever and dyspnea but did not reflect significant differences in TB severity parameters observed at baseline.
Collapse
Affiliation(s)
- Mariana S. Xavier
- Pós-graduação em Pesquisa Clínica em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariana Araujo-Pereira
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, FIOCRUZ, Bahia, Brazil
- Curso de Medicina, Faculdade ZARNS, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Bahia, Brazil
| | - Quezia M. de Oliveira
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Flavia M. Sant’Anna
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Felipe M. Ridolfi
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alice M. S. de Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Bahia, Brazil
| | - Marina C. Figueiredo
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases, Nashville, TN, United States
| | - Timothy R. Sterling
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Diseases, Nashville, TN, United States
| | - Bhavna G. Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D. Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bruno B. Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, FIOCRUZ, Bahia, Brazil
- Curso de Medicina, Faculdade ZARNS, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Bahia, Brazil
| | - Valeria C. Rolla
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Caobi A, Saeed M. Upping the ante: enhanced expression of interferon-antagonizing ORF6 and ORF9b proteins by SARS-CoV-2 variants of concern. Curr Opin Microbiol 2024; 79:102454. [PMID: 38518551 PMCID: PMC11162932 DOI: 10.1016/j.mib.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
SARS-CoV-2 exhibits a remarkable capability to subvert the host antiviral innate immune system. This adeptness is orchestrated by viral proteins, which initially attempt to obstruct the activation of the antiviral immune program and then act as a fail-safe mechanism to mitigate the downstream effects of the activated immune response. This dual strategy leads to delayed expression and enfeebled action of type-I and -III interferons at the infection site, enabling the virus to replicate extensively in the lungs and subsequently disseminate to other organs. Throughout the course of the COVID-19 pandemic, SARS-CoV-2 has undergone evolution, giving rise to several variants of concern, some with exceedingly higher transmission and virulence. These improved features have been linked, at least in part, to the heightened expression or activity of specific viral proteins involved in circumventing host defense mechanisms. In this review, we aim to provide a concise summary of two SARS-CoV-2 proteins, ORF6 and ORF9b, which provided selective advantage to certain variants, affecting their biology and pathogenesis.
Collapse
Affiliation(s)
- Allen Caobi
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Mohsan Saeed
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA.
| |
Collapse
|
22
|
Hoenigsperger H, Sivarajan R, Sparrer KM. Differences and similarities between innate immune evasion strategies of human coronaviruses. Curr Opin Microbiol 2024; 79:102466. [PMID: 38555743 DOI: 10.1016/j.mib.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
So far, seven coronaviruses have emerged in humans. Four recurring endemic coronaviruses cause mild respiratory symptoms. Infections with epidemic Middle East respiratory syndrome-related coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-1 are associated with high mortality rates. SARS-CoV-2 is the causative agent of the coronavirus disease 2019 pandemic. To establish an infection, coronaviruses evade restriction by human innate immune defenses, such as the interferon system, autophagy and the inflammasome. Here, we review similar and distinct innate immune manipulation strategies employed by the seven human coronaviruses. We further discuss the impact on pathogenesis, zoonotic emergence and adaptation. Understanding the nature of the interplay between endemic/epidemic/pandemic coronaviruses and host defenses may help to better assess the pandemic potential of emerging coronaviruses.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
23
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Kaushal P, Ummadi MR, Jang GM, Delgado Y, Makanani SK, Blanc SF, Winters DM, Xu J, Polacco B, Zhou Y, Stevenson E, Eckhardt M, Zuliani-Alvarez L, Kaake R, Swaney DL, Krogan N, Bouhaddou M. Mapping Differential Protein-Protein Interaction Networks using Affinity Purification Mass Spectrometry. ARXIV 2024:arXiv:2405.09699v1. [PMID: 38800652 PMCID: PMC11118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteins congregate into complexes to perform fundamental cellular functions. Phenotypic outcomes, in health and disease, are often mechanistically driven by the remodeling of protein complexes by protein-coding mutations or cellular signaling changes in response to molecular cues. Here, we present an affinity purification-mass spectrometry (APMS) proteomics protocol to quantify and visualize global changes in protein-protein interaction (PPI) networks between pairwise conditions. We describe steps for expressing affinity-tagged "bait" proteins in mammalian cells, identifying purified protein complexes, quantifying differential PPIs, and visualizing differential PPI networks. Specifically, this protocol details steps for designing affinity-tagged "bait" gene constructs, transfection, affinity purification, mass spectrometry sample preparation, data acquisition, database search, data quality control, PPI confidence scoring, cross-run normalization, statistical data analysis, and differential PPI visualization. Our protocol discusses caveats and limitations with applicability across cell types and biological areas. For complete details on the use and execution of this protocol, please refer to Bouhaddou et al. 20231.
Collapse
Affiliation(s)
- Prashant Kaushal
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Technical Contact
| | - Manisha R. Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M. Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yennifer Delgado
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara K. Makanani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sophie F. Blanc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Decan M. Winters
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Robyn Kaake
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Technical Contact
- Lead Contact
| |
Collapse
|
25
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|
26
|
Li K, Xia Y, Ye H, Sun X, Shi B, Wu J. Effectiveness and safety of immune response to SARS‑CoV‑2 vaccine in patients with chronic kidney disease and dialysis: A systematic review and meta‑analysis. Biomed Rep 2024; 20:78. [PMID: 38590946 PMCID: PMC10999903 DOI: 10.3892/br.2024.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/02/2024] [Indexed: 04/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) vaccination is the most effective way to prevent COVID-19. However, for chronic kidney disease patients on long-term dialysis, there is a lack of evidence regarding the efficacy and safety of the immune response to the vaccine. The present meta-analysis explores the efficacy and safety of COVID-19 vaccine in the immune response of patients with chronic kidney disease (CKD) undergoing dialysis. PubMed, Web of Science, Science Direct, and Cochrane Library databases were systematically searched from January 1, 2020, to December 31, 2022. Data analysis was performed using REVMAN 5.1s and Stata14 software. Baseline data and endpoint events were extracted, mainly including age, sex, dialysis vintage, body mass index (BMI), vaccine type and dose, history of COVID-19 infection, seropositivity rate, antibody titer, pain at injection site, headache and other safety events. The meta-analysis included 33 trials involving 81,348 patients. The immune efficacy of patients with CKD and dialysis was 80% (95 CI, 73-87%). The seropositivity rate of individuals without COVID-19 infection was 76.48% (3,824/5,000), while the seropositivity rate of individuals with COVID-19 infection was 80.82% (1,858/2,299). The standard mean difference of antibody titers in CKD and dialysis patients with or without COVID-19 infection was 27.73 (95% CI, -19.58-75.04). A total of nine studies reported the most common adverse events: Pain at the injection site, accounting for 18% (95 CI, 6-29%), followed by fatigue and headache, accounting for 8 (95 CI, 4-13%) and 6% (95 CI, 2-9%), respectively. COVID-19 vaccine benefitted patients with CKD undergoing dialysis with seropositivity rate ≥80%. Adverse events such as fatigue, headache, and pain at the injection site may occur after COVID-19 vaccination but the incidence is low.
Collapse
Affiliation(s)
- Kejia Li
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Yang Xia
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Hua Ye
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Xian Sun
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Bairu Shi
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Jiajun Wu
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| |
Collapse
|
27
|
Tanneti NS, Patel AK, Tan LH, Marques AD, Perera RAPM, Sherrill-Mix S, Kelly BJ, Renner DM, Collman RG, Rodino K, Lee C, Bushman FD, Cohen NA, Weiss SR. Comparison of SARS-CoV-2 variants of concern in primary human nasal cultures demonstrates Delta as most cytopathic and Omicron as fastest replicating. mBio 2024; 15:e0312923. [PMID: 38477472 PMCID: PMC11005367 DOI: 10.1128/mbio.03129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anant K. Patel
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D. Marques
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ranawaka A. P. M. Perera
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Rodino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Lee
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Haque A, Pant AB. The coevolution of Covid-19 and host immunity. EXPLORATION OF MEDICINE 2024:167-184. [DOI: 10.37349/emed.2024.00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 01/05/2025] Open
Abstract
The dynamic of the virus-host interaction is subject to constant
evolution, which makes it difficult to predict when the SARS-CoV-2 pandemic
will become endemic. Vaccines in conjunction with efforts around masking and
social distancing have reduced SARS-CoV-2 infection rates, however, there
are still significant challenges to contend with before the pandemic shifts
to endemic, such as the coronavirus acquiring mutations that allow the virus
to dodge the immunity acquired by hosts. SARS-CoV-2 variants deploy
convergent evolutionary mechanisms to sharpen their ability to impede the
host’s innate immune response. The continued emergence of variants and
sub-variants poses a significant hurdle to reaching endemicity. This
underscores the importance of continued public health measures to control
SARS-CoV-2 transmission and the need to develop better second-generation
vaccines and effective treatments that would tackle current and future
variants. We hypothesize that the hosts’ immunity to the virus is also
evolving, which is likely to abet the process of reaching
endemicity.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Geisel School of
Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|
29
|
Le Pen J, Rice CM. The antiviral state of the cell: lessons from SARS-CoV-2. Curr Opin Immunol 2024; 87:102426. [PMID: 38795501 PMCID: PMC11260430 DOI: 10.1016/j.coi.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
In this review, we provide an overview of the intricate host-virus interactions that have emerged from the study of SARS-CoV-2 infection. We focus on the antiviral mechanisms of interferon-stimulated genes (ISGs) and their modulation of viral entry, replication, and release. We explore the role of a selection ISGs, including BST2, CD74, CH25H, DAXX, IFI6, IFITM1-3, LY6E, NCOA7, PLSCR1, OAS1, RTP4, and ZC3HAV1/ZAP, in restricting SARS-CoV-2 infection and discuss the virus's countermeasures. By synthesizing the latest research on SARS-CoV-2 and host antiviral responses, this review aims to provide a deeper understanding of the antiviral state of the cell under SARS-CoV-2 and other viral infections, offering insights for the development of novel antiviral strategies and therapeutics.
Collapse
Affiliation(s)
- Jérémie Le Pen
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Planas D, Staropoli I, Michel V, Lemoine F, Donati F, Prot M, Porrot F, Guivel-Benhassine F, Jeyarajah B, Brisebarre A, Dehan O, Avon L, Bolland WH, Hubert M, Buchrieser J, Vanhoucke T, Rosenbaum P, Veyer D, Péré H, Lina B, Trouillet-Assant S, Hocqueloux L, Prazuck T, Simon-Loriere E, Schwartz O. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat Commun 2024; 15:2254. [PMID: 38480689 PMCID: PMC10938001 DOI: 10.1038/s41467-024-46490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France.
- Vaccine Research Institute, Créteil, France.
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Frederic Lemoine
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Paris, France
| | - Flora Donati
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Francoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Banujaa Jeyarajah
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Angela Brisebarre
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Océane Dehan
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Léa Avon
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - William Henry Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibault Vanhoucke
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Pierre Rosenbaum
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sophie Trouillet-Assant
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Thierry Prazuck
- CHU d'Orléans, Service de Maladies Infectieuses, Orléans, France
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France.
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France.
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France.
- Vaccine Research Institute, Créteil, France.
| |
Collapse
|
31
|
Wu N, Chen Z, Zha G, Deng Z, Huang W, Cai D, Peng M, Hu P, Tang L, Ren H. Clinical and immunological features of COVID-19 in patients with anti-MDA5 dermatomyositis during the omicron wave in Chongqing, China. J Med Virol 2024; 96:e29493. [PMID: 38436114 DOI: 10.1002/jmv.29493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Patients with anti-melanoma differentiation-associated gene 5 (anti-MDA5) dermatomyositis (DM) have a higher risk of coronavirus disease 2019 (COVID-19) infection. In this longitudinal observational study, we aimed to investigate the clinical and immunological features of these patients after COVID-19 infection. A total of 73 patients with anti-MDA5 DM were recruited from the Second Affiliated Hospital of Chongqing Medical University during the Omicron wave epidemic. Clinical data were collected by questionnaire survey and electronic medical records. Blood samples were used to determine the immunity responses. From December 9, 2022 to March 31, 2023, 67 patients were eligible for final analysis; 68.7% of them were infected with COVID-19. The most common symptoms observed in COVID-19 were upper respiratory symptoms, most cases were mild or moderate (97.8%). The clinical laboratory indexes were relativity stable in patients after infection (all p > 0.05). Vaccination is not a protective factor against the Omicron infection (odds ratio: 2.69, 95% confidence interval: 0.81-8.93, p = 0.105). Both wildtype (WT) neutralizing antibodies titer and BA.5-specific immunoglobulin G titer were significantly enhanced after infection (all p < 0.01), which was as high as healthy controls (HCs). The memory B-cell responses were similar between the patients with anti-MDA5 DM and HCs (p > 0.05). However, both the WT-specific CD8+ T cells and CD4+ T cells were reduced in patients with anti-MDA5 DM (all p < 0.05). In conclusion, patients with anti-MDA5 DM did not deteriorate the COVID-19, in turn, COVID-19 infection did not increase the risk of anti-MDA5 DM exacerbation. The humoral responses were robust but the cellular responses were weakened after COVID-19 infection.
Collapse
Affiliation(s)
- Na Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guanhua Zha
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiling Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Chen L, He Y, Liu H, Shang Y, Guo G. Potential immune evasion of the severe acute respiratory syndrome coronavirus 2 Omicron variants. Front Immunol 2024; 15:1339660. [PMID: 38464527 PMCID: PMC10924305 DOI: 10.3389/fimmu.2024.1339660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.
Collapse
Affiliation(s)
- Luyi Chen
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ying He
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Hongye Liu
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
33
|
Planas D, Staropoli I, Michel V, Lemoine F, Donati F, Prot M, Porrot F, Guivel-Benhassine F, Jeyarajah B, Brisebarre A, Dehan O, Avon L, Boland WH, Hubert M, Buchrieser J, Vanhoucke T, Rosenbaum P, Veyer D, Péré H, Lina B, Trouillet-Assant S, Hocqueloux L, Prazuck T, Simon-Loriere E, Schwartz O. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567873. [PMID: 38045308 PMCID: PMC10690205 DOI: 10.1101/2023.11.20.567873] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Frederic Lemoine
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Paris, France
| | - Flora Donati
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Francoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Banujaa Jeyarajah
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Angela Brisebarre
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Océane Dehan
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Léa Avon
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - William Henry Boland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibault Vanhoucke
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Pierre Rosenbaum
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sophie Trouillet-Assant
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | | | - Thierry Prazuck
- CHU d’Orléans, Service de Maladies Infectieuses, Orléans, France
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
34
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
35
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Reuschl AK, Thorne LG, Whelan MVX, Ragazzini R, Furnon W, Cowton VM, De Lorenzo G, Mesner D, Turner JLE, Dowgier G, Bogoda N, Bonfanti P, Palmarini M, Patel AH, Jolly C, Towers GJ. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat Microbiol 2024; 9:451-463. [PMID: 38228858 PMCID: PMC10847042 DOI: 10.1038/s41564-023-01588-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.
Collapse
Affiliation(s)
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, St Mary's Medical School, Imperial College London, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L E Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Giulia Dowgier
- Division of Infection and Immunity, University College London, London, UK
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Nathasha Bogoda
- Division of Infection and Immunity, University College London, London, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | | | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
37
|
Ulrichs T, Rolland M, Wu J, Nunes MC, El Guerche-Séblain C, Chit A. Changing epidemiology of COVID-19: potential future impact on vaccines and vaccination strategies. Expert Rev Vaccines 2024; 23:510-522. [PMID: 38656834 DOI: 10.1080/14760584.2024.2346589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION COVID-19 was an unprecedented challenge worldwide; however, disease epidemiology has evolved, and COVID-19 no longer constitutes a public health emergency of international concern. Nonetheless, COVID-19 remains a global threat and uncertainties remain, including definition of the end of the pandemic and transition to endemicity, and understanding true rates of SARS-CoV-2 infection/transmission. AREAS COVERED Six international experts convened (April 2023) to interpret changing COVID-19 epidemiology and public health challenges. We report the panel's recommendations and knowledge gaps in COVID-19 epidemiology, SARS-CoV-2 evolution, and future vaccination strategies, informed by peer-reviewed publications, surveillance data, health authority assessments, and clinical experience. EXPERT OPINION High population SARS-CoV-2 immunity indicates the likely end to the pandemic's acute phase. Continued emergence of variants/sublineages that can evade the vaccine-induced antibody response are likely, but widespread immunity reduces the risk of disease severity. Continued surveillance is required to capture transition to endemicity, seasonality, and emergence of novel variants/sublineages, to inform future vaccination strategies. COVID-19 vaccination should be integrated into routine vaccination programs throughout life. Co-circulation with other respiratory viruses should be monitored to avoid a combined peak, which could overrun healthcare systems. Effective, combined vaccines and improved education may help overcome vaccine hesitancy/booster fatigue and increase vaccination uptake.
Collapse
Affiliation(s)
- Timo Ulrichs
- Department of Global Health, Akkon University for Human Sciences, Berlin, Germany
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Genomics Section & Systems Serology Core Laboratory, Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jianhong Wu
- York Emergency Mitigation, Engagement, Response, and Governance Institute, York University, Toronto, Canada
| | - Marta C Nunes
- Université Claude Bernard Lyon, Lyon, France
- University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
38
|
Foxman EF. Double-take: SARS-CoV-2 has evolved to evade human innate immunity, twice. Trends Immunol 2024; 45:1-3. [PMID: 38143224 DOI: 10.1016/j.it.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Sequential replacement of the dominant SARS-CoV-2 virus by new variants has been a striking feature of the COVID-19 pandemic. In two recent articles, Bouhaddou et al. and Kehrer et al. demonstrate that, like the original virus, the SARS-CoV-2 omicron strain has progressively evolved to evade host innate immune defenses.
Collapse
Affiliation(s)
- Ellen F Foxman
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|