1
|
Zhang T, Lin H, Ren T, He M, Zheng W, Tong Y, Jin B, Xie K, Deng A, Liu S, Chen Y, Xu G, Chen T, Pan W, Xiao Z. ROCK1 is a multifunctional factor maintaining the primordial follicle reserve and follicular development in mice. Am J Physiol Cell Physiol 2024; 326:C27-C39. [PMID: 37661919 PMCID: PMC11192470 DOI: 10.1152/ajpcell.00019.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
The follicle is the basic structural and functional unit of the ovary in female mammals. The excessive depletion of follicles will lead to diminished ovarian reserve or even premature ovarian failure, resulting in diminished ovarian oogenesis and endocrine function. Excessive follicular depletion is mainly due to loss of primordial follicles. Our analysis of published human ovarian single-cell sequencing results by others revealed a significant increase in rho-associated protein kinase 1 (ROCK1) expression during primordial follicle development. However, the role of ROCK1 in primordial follicle development and maintenance is not clear. This study revealed a gradual increase in ROCK1 expression during primordial follicle activation. Inhibition of ROCK1 resulted in reduced primordial follicle activation, decreased follicular reserve, and delayed development of growing follicles. This effect may be achieved through the HIPPO pathway. The present study indicates that ROCK1 is a key molecule for primordial follicular reserve and follicular development.NEW & NOTEWORTHY ROCK1, one of the Rho GTPases, plays an important role in primordial follicle reserve and follicular development. ROCK1 was primarily expressed in the cytoplasm of oocytes and granulosa cell in mice. Inhibition of ROCK1 significantly reduced the primordial follicle reserve and delayed growing follicle development. ROCK1 regulates primordial follicular reserve and follicle development through the HIPPO signaling pathway. These findings shed new lights on the physiology of sustaining female reproduction.
Collapse
Affiliation(s)
- Tuo Zhang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huan Lin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Tianhe Ren
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Meina He
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Wenying Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Bangming Jin
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Kaiyun Xie
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Ankang Deng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Shiyu Liu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yuqian Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Guoqiang Xu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Tengxiang Chen
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
2
|
Ghosh S, Keretsu S, Cho SJ. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR. PeerJ 2021; 9:e11951. [PMID: 34434664 PMCID: PMC8359802 DOI: 10.7717/peerj.11951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q 2 = 0.774, r 2 = 0.965, ONC = 6, and r p r e d 2 = 0.703) and CoMSIA (q 2 = 0.676, r 2 = 0.949, ONC = 6, and r p r e d 2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea.,Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| |
Collapse
|
3
|
Mertsch S, Neumann I, Rose C, Schargus M, Geerling G, Schrader S. The effect of Rho Kinase inhibition on corneal nerve regeneration in vitro and in vivo. Ocul Surf 2021; 22:213-223. [PMID: 34419637 DOI: 10.1016/j.jtos.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Impairment of corneal nerves can lead to neurotrophic keratopathy accompanied with severe ocular surface damage, which due to limited treatment options, can result in severe visual deterioration. This study evaluates a possible new treatment by enhancing the corneal nerve regeneration using a Rho Kinase inhibitor (Y27632). ROCK is known to play an important role in regulating cell morphology, adhesion and motility but little is known about its role in corneal nerve regeneration. METHODS Effects of ROCK inhibition on murine peripheral nerves was assessed in single cell- and wound healing assays as well as a 3D in vitro model. Furthermore, Sholl analysis evaluating neuronal branching and life-death assays evaluating toxicity of the inhibitor were performed. An in vivo mouse model was established, with monitoring weekly corneal nerve regrowth using confocal microscopy. Additionally, corneal nerve fiber length was evaluated by immunofluorescence staining. Underlying pathways were examined by qrtPCR. RESULTS ROCK inhibition leads to a significant enhancement of fiber growth in vitro. Sholl analysis revealed a higher degree of branching of treated fibers. Cytotoxicity assay showed no influence of Y27632 on cellular survival. In vivo measurement revealed significant enhanced regeneration after injury in the treated group. QrtPCR of trigeminal ganglia confirmed ROCK knock-down as well as altered pathways. CONCLUSION The inhibition of ROCK after corneal nerve injury resulted in an enhanced regrowth of fibers in vitro and in vivo. This might be a step towards a new therapeutic concept for the treatment of impaired corneal nerves in diseases such as neurotrophic keratopathy.
Collapse
Affiliation(s)
- Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany.
| | - Inga Neumann
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Cosima Rose
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Marc Schargus
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany; Department of Ophthalmology, Asklepios Hospital Nord-Heidberg, Hamburg, Germany
| | - Gerd Geerling
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
4
|
Huang Q, Zhou Z, Yan F, Dong Q, Wang L, Sha W, Xu Q, Zhu X, Zhao L. Low-dose X-ray irradiation induces morphological changes and cytoskeleton reorganization in osteoblasts. Exp Ther Med 2020; 20:283. [PMID: 33209127 PMCID: PMC7668146 DOI: 10.3892/etm.2020.9413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/15/2020] [Indexed: 01/22/2023] Open
Abstract
Recently, research into the biological effects of low dose X-ray irradiation (LDI) has been a focus of interest. Numerous studies have suggested that cells exhibit different responses and biological effects to LDI compared with high doses. Preliminary studies have demonstrated that LDI may promote osteoblast proliferation and differentiation in vitro, thereby accelerating fracture healing in mice. However, the exact mechanism of action by which LDI exerts its effects remains unclear. Previous studies using microarrays revealed that LDI promoted the expression of genes associated with the cytoskeleton. In the current study, the effect of X-ray irradiation (0.5 and 5 Gy) on the morphology of MC3T3-E1 cells and fiber actin organization was investigated. Osteoblasts were treated with 0, 0.5 and 5 Gy X- ray irradiation, following which changes in the actin cytoskeleton were observed. The levels of RhoA, ROCK, cofilin and phosphorylated-cofilin were measured by reverse transcription-quantitative PCR and western blotting. Subsequently, osteoblasts were pretreated with ROCK specific inhibitor Y27632 to observe the changes of actin skeleton after X-ray irradiation. The results demonstrated that the cellular morphological changes were closely associated with radiation dose and exposure time. Furthermore, the gene expression levels of small GTPase RhoA and its effectors were increased following LDI. These results indicated that the RhoA/Rho-associated kinase pathway may serve a significant role in regulating LDI-induced osteoblast cytoskeleton reorganization.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Liming Wang
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Qin Xu
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Xianwei Zhu
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Lei Zhao
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
5
|
Arp2/3-Branched Actin Maintains an Active Pool of GTP-RhoA and Controls RhoA Abundance. Cells 2019; 8:cells8101264. [PMID: 31623230 PMCID: PMC6830327 DOI: 10.3390/cells8101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
Small GTPases regulate cytoskeletal dynamics, cell motility, and division under precise spatiotemporal control. Different small GTPases exhibit cross talks to exert feedback response or to act in concert during signal transduction. However, whether and how specific cytoskeletal components' feedback to upstream signaling factors remains largely elusive. Here, we report an intriguing finding that disruption of the Arp2/3-branched actin specifically reduces RhoA activity but upregulates its total protein abundance. We further dissect the mechanisms underlying these circumstances and identify the altered cortactin/p190RhoGAP interaction and weakened CCM2/Smurf1 binding to be involved in GTP-RhoA reduction and total RhoA increase, respectively. Moreover, we find that cytokinesis defects induced by Arp2/3 inhibition can be rescued by activating RhoA. Our study reveals an intricate feedback from the actin cytoskeleton to the small GTPase. Our work highlights the role of Arp2/3-branched actin in signal transduction aside from its function in serving as critical cytoskeletal components to maintain cell morphology and motility.
Collapse
|
6
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
7
|
Stefani I, Asnaghi M, Cooper-White J, Mantero S. A double chamber rotating bioreactor for enhanced tubular tissue generation from human mesenchymal stem cells: a promising tool for vascular tissue regeneration. J Tissue Eng Regen Med 2017; 12:e42-e52. [DOI: 10.1002/term.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Affiliation(s)
- I. Stefani
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
| | - M.A. Asnaghi
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Departments of Surgery and of Biomedicine; University Hospital Basel, University of Basel; Basel 4031 Switzerland
| | - J.J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
- School of Chemical Engineering; The University of Queensland; QLD 4072 Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO; Clayton VIC 3169 Australia
| | - S. Mantero
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
| |
Collapse
|
8
|
Yang H, Peng Z, Da Z, Li X, Cheng Y, Tan B, Xiang X, Zheng H, Li Y, Chen L, Mo N, Yan X, Li X, Hu X. MicroRNA-148a Acts as a Tumor Suppressor in Osteosarcoma via Targeting Rho-Associated Coiled-Coil Kinase. Oncol Res 2017; 25:1231-1243. [PMID: 28117029 PMCID: PMC7841117 DOI: 10.3727/096504017x14850134190255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRs) have been demonstrated to be involved in the development and progression of osteosarcoma (OS), but the molecular mechanism still remains to be fully investigated. The present study investigated the function of miR-148a in OS, as well as its underlying mechanism. Our data showed that miR-148a was significantly downregulated in OS tissues compared to their matched adjacent normal tissues, and also in OS cell lines compared to normal human osteoblast cells. Low expression of miR-148a was significantly associated with tumor progression and a poor prognosis for OS patients. Rho-associated coiled-coil kinase 1 (ROCK1) was then identified as a target of miR-148a in Saos-2 and U2OS cells, and the expression of ROCK1 was significantly increased in OS tissues and cell lines. Moreover, the protein expression of ROCK1 was markedly reduced in miR-148a-overexpressing Saos-2 and U2OS cells, but significantly increased in miR-148a-downregulated Saos-2 and U2OS cells. Further investigation indicated that miR-148a had a suppressive effect on the proliferative, migratory, and invasive capacities of Saos-2 and U2OS cells. Moreover, overexpression of ROCK1 attenuated the inhibitory effects of miR-148a upregulation on the malignant phenotypes of Saos-2 and U2OS cells. In addition, overexpression of miR-148a significantly inhibited the tumor growth of U2OS cells in nude mice. Taken together, these data demonstrate that miR-148a acts as a tumor suppressor in OS, at least partly, via targeting ROCK1. Therefore, the miR-148a/ROCK1 axis may become a potential therapeutic target for OS.
Collapse
|
9
|
Priya R, Liang X, Teo JL, Duszyc K, Yap AS, Gomez GA. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell 2016; 28:12-20. [PMID: 28035042 PMCID: PMC5221615 DOI: 10.1091/mbc.e16-04-0262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
ROCK1 is the prominent isoform responsible for molecular organization of epithelial zonula adherens (ZA) and its contractile properties. ROCK1 selectively localizes NMIIA to ZA and supports cortical tension and GTP-Rho at the ZA. NMIIA, in a feedback loop, promotes cortical localization of ROCK1. Rho kinases (ROCK1 and ROCK2) function downstream of the small GTPase RhoA to drive actomyosin cytoskeletal remodeling. It has often been believed that ROCK1 and ROCK2 may be functionally redundant, as they share a highly conserved kinase domain. However, in this study, we report differential functional effects for these ROCKs at the epithelial zonula adherens (ZA). Using specific siRNA, we found that ROCK1 depletion disrupted cadherin organization at the ZA, accompanied by loss of F-actin and NMIIA, whereas ROCK2 knockdown had no significant effect. Further, ROCK1, but not ROCK2, was necessary to stabilize GTP-RhoA at the ZA, thereby sustaining junctional tension and inhibiting intraepithelial cell movement. We also found that nonmuscle myosin IIA is a major determinant of ROCK1 cortical stability. Thus, despite sharing the catalytic domain with ROCK2, ROCK1 appears to be the dominant kinase essential for junctional integrity and contractile tension at epithelial ZA.
Collapse
Affiliation(s)
- Rashmi Priya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jessica L Teo
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kinga Duszyc
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Abstract
Neural tube closure is an important morphogenetic event that involves dramatic reshaping of both neural and non-neural tissues. Rho GTPases are key cytoskeletal regulators involved in cell motility and in several developmental processes, and are thus expected to play pivotal roles in neurulation. Here, we discuss 2 recent studies that shed light on the roles of distinct Rho GTPases in different tissues during neurulation. RhoA plays an essential role in regulating actomyosin dynamics in the neural epithelium of the elevating neural folds, while Rac1 is required for the formation of cell protrusions in the non-neural surface ectoderm during neural fold fusion.
Collapse
Affiliation(s)
- Ana Rolo
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Sarah Escuin
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Nicholas D E Greene
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Andrew J Copp
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
11
|
Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion. Sci Rep 2016; 6:29416. [PMID: 27388816 PMCID: PMC4937405 DOI: 10.1038/srep29416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 01/28/2023] Open
Abstract
Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.
Collapse
|
12
|
Palmer E, Drobek A, Stepanek O. Opposing effects of actin signaling and LFA-1 on establishing the affinity threshold for inducing effector T-cell responses in mice. Eur J Immunol 2016; 46:1887-901. [PMID: 27188212 DOI: 10.1002/eji.201545909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Abstract
Mature CD8(+) T cells use a narrow antigen affinity threshold to generate tissue-infiltrating cytotoxic effector T cells and induce autoimmune pathology, but the mechanisms that establish this antigen affinity threshold are poorly understood. Only antigens with affinities above the threshold induce stable contacts with APCs, polarization of a T cell, and asymmetric T-cell division. Previously published data indicate that LFA-1 inside-out signaling might be involved in establishing the antigen affinity threshold. Here, we show that subthreshold antigens weakly activate all major distal TCR signaling pathways. Low-affinity antigens are more dependent on LFA-1 than suprathreshold antigens. Moreover, augmenting the inside-out signaling by hyperactive Rap1 does not increase responses to the subthreshold antigens. Thus, LFA-1 signaling does not contribute to the affinity-based antigen discrimination. However, we found that subthreshold antigens do not induce actin rearrangement toward an APC, mediated by Rho-family GTPases, Cdc42, and Rac. Our data suggest that Rac and Cdc42 contribute to the establishment of the antigen affinity threshold in CD8(+) T cells by enhancing responses to high-affinity antigens, or by reducing the responses to low-affinity antigens.
Collapse
Affiliation(s)
- Ed Palmer
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Zhao H, Jiao Y, Zhang Z. Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15582-15590. [PMID: 26884827 PMCID: PMC4730040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| | - Yan Jiao
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| | - Zuncheng Zhang
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| |
Collapse
|
14
|
Huang J, Shi Y, Li H, Yang M, Liu G. MicroRNA-144 acts as a tumor suppressor by targeting Rho-associated coiled-coil containing protein kinase 1 in osteosarcoma cells. Mol Med Rep 2015; 12:4554-4559. [PMID: 26081423 DOI: 10.3892/mmr.2015.3937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/15/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRs) have been demonstrated to be associated with multiple processes in the development and progression of human malignancies. Previous studies have observed aberrant downregulation of miR‑144 in several types of cancer, including osteosarcoma. However, the function of miR‑144 and the underlying mechanism in osteosarcoma remain to be elucidated. The present study indicated that miR‑144 was markedly downregulated in osteosarcoma tissues and cell lines compared with that in the normal controls. Restoration of miR‑144 significantly inhibited cell proliferation, migration and invasion of MG‑63 osteosarcoma cells. In addition, Rho‑associated coiled‑coil containing protein kinase 1 (ROCK1) was identified as a novel target of miR‑144 in MG‑63 osteosarcoma cells. Furthermore, knockdown of ROCK1 suppressed the proliferation, migration and invasion of MG‑63 osteosarcoma cells to a similar extent to the effects of miR‑144 overexpression. In addition, the mRNA expression of ROCK1 was increased in osteosarcoma tissues and was negatively correlated with the expression of miR‑144. In conclusion, the results of the present study suggested that miR‑144 acts as a tumor suppressor by targeting ROCK1 in osteosarcoma.
Collapse
Affiliation(s)
- Jianjun Huang
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ying Shi
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hui Li
- Department of Immunology Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Meisongzhu Yang
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Guohong Liu
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
15
|
Escuin S, Vernay B, Savery D, Gurniak CB, Witke W, Greene NDE, Copp AJ. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. J Cell Sci 2015; 128:2468-81. [PMID: 26040287 PMCID: PMC4510849 DOI: 10.1242/jcs.164574] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure. Summary: Actomyosin assembly and myosin ATPase activity are not essential for mouse spinal neurulation. However, the ROCK–LIMK–cofilin pathway, which controls actin turnover and actomyosin disassembly, is necessary.
Collapse
Affiliation(s)
- Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, WC1N 1EH, UK
| | - Bertrand Vernay
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, WC1N 1EH, UK
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, WC1N 1EH, UK
| | - Christine B Gurniak
- Cell Migration Unit, Institut für Genetik, Universität Bonn, 53115 Bonn, Germany
| | - Walter Witke
- Cell Migration Unit, Institut für Genetik, Universität Bonn, 53115 Bonn, Germany
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, WC1N 1EH, UK
| |
Collapse
|
16
|
Giehl K, Keller C, Muehlich S, Goppelt-Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS One 2015; 10:e0121589. [PMID: 25816094 PMCID: PMC4376694 DOI: 10.1371/journal.pone.0121589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022] Open
Abstract
Morphological alterations of cells can lead to modulation of gene expression. An essential link is the MKL1-dependent activation of serum response factor (SRF), which translates changes in the ratio of G- and F-actin into mRNA transcription. SRF activation is only partially characterized in non-transformed epithelial cells. Therefore, the impact of GTPases of the Rho family and changes in F-actin structures were analyzed in renal proximal tubular epithelial cells. Activation of SRF signaling was compared to the regulation of a known MKL1/SRF target gene, connective tissue growth factor (CTGF). In the human proximal tubular cell line HKC-8 overexpression of two actin mutants either favoring or preventing the formation of F-actin fibers regulated SRF-mediated transcription as well as CTGF expression. Only overexpression of constitutively active RhoA activated SRF-dependent gene expression whereas no effect was detected upon overexpression of Rac1 mutants. To elucidate the functional role of Rho kinases as downstream mediators of RhoA, pharmacological inhibition and genetic inhibition by transient siRNA knock down were compared. Upon stimulation with lysophosphatidic acid (LPA) Rho kinase inhibitors partially suppressed SRF-mediated transcription, whereas interference with Rho kinase expression by siRNA reduced activation of SRF, but barely affected CTGF expression. Together with the partial inhibition of CTGF expression by the pharmacological inhibitors Y27432 and H1154, Rho kinases seem to be less important in mediating RhoA signaling related to CTGF expression in HKC-8 epithelial cells. Short term pharmacological inhibition of Rac1 activity by EHT1864 reduced SRF-dependent CTGF expression in HKC-8 cells, but was overcome by a stimulatory effect after prolonged incubation after 4-6 h. Similarly, human primary cells of proximal but not of distal tubular origin showed inhibitory as well as stimulatory effects of Rac1 inhibition. Thus, RhoA signaling activates MKL1-SRF-mediated CTGF expression in proximal tubular cells, whereas Rac1 signaling is more complex with adaptive cellular responses.
Collapse
Affiliation(s)
- Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christof Keller
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Muehlich
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
17
|
Ma S, Deng J, Li B, Li X, Yan Z, Zhu J, Chen G, Wang Z, Jiang H, Miao L, Li J. Development of Second-Generation Small-Molecule RhoA Inhibitors with Enhanced Water Solubility, Tissue Potency, and Significant in vivo Efficacy. ChemMedChem 2014; 10:193-206. [DOI: 10.1002/cmdc.201402386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/24/2022]
|
18
|
Bottino J, Gelaleti GB, Maschio LB, Jardim-Perassi BV, de Campos Zuccari DAP. Immunoexpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem 2014; 116:1367-73. [PMID: 25218053 DOI: 10.1016/j.acthis.2014.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common tumor in women and it has high mortality mainly due to the occurrence of tumor metastasis. Both the processes of cell migration and anchorage to the substrate are essential for the development of metastasis. These processes occur by rearrangements of the actin cytoskeleton, regulated by Rho-associated protein kinase 1 (ROCK-1). The degradation of the extracellular matrix, influenced by metalloproteinase 9 (MMP-9) also exerts greater cell invasiveness. The present study evaluated the ROCK-1 and MMP-9 proteins using an immunohistochemical method through the selection of invasive ductal breast carcinoma. The protein expression was correlated to clinicopathological parameters and overall survival of the patients. High expression of the ROCK-1 protein was correlated statistically to the status of lymph nodes (p=0.007) and showed variable expression in different clinical stages of the tumor. MMP-9 showed a strong immunostaining in patients with metastasis that had died, whereas there was no marker in normal breast tissues. In addition, 46.6% of patients classified as poor prognosis showed high expression of ROCK-1 and MMP-9 protein and another 40.0% just showed high expression of MMP-9. Thus, the differential expression of ROCK-1 and MMP-9 proteins suggests their potential use as prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Jenifer Bottino
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil
| | - Gabriela Bottaro Gelaleti
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Larissa Bazela Maschio
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Debora Aparecida Pires de Campos Zuccari
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil.
| |
Collapse
|
19
|
Knockdown of Rho-associated protein kinase 1 suppresses proliferation and invasion of glioma cells. Tumour Biol 2014; 36:421-8. [PMID: 25266804 DOI: 10.1007/s13277-014-2673-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 10/25/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a serine/threonine protein kinase, affects cell invasion and migration by changing the status of the cytoskeleton. In recent years, ROCK1 was found to be overexpressed in a variety of tumors. However, the information of ROCK1 in glioma still remains elusive. In our study, the expression of ROCK1 in glioma tissues was examined by real-time PCR and the relationship between ROCK1 expression and clinical characteristics of patients with glioma was also analyzed. With the inhibition of ROCK1 expression by RNAi, the effects of ROCK1 on biological behaviors of glioma cells including cell viability, cell cycle, and cell invasion were probed in the U251 cell line by methyl thiazolyl tetrazolium (MTT) assay, flow cytometer analysis, and Transwell invasion experiment. In addition, the effects of ROCK1 on the regulation of Ki67, cyclin D1, matrix metalloproteinases 9 (MMP9), and E-cadherin were also investigated. The results indicated that ROCK1 messenger RNA (mRNA) was increased significantly compared to that in the adjacent normal tissue (P < 0.05) and the expression level of ROCK1 mRNA in high-grade malignant glioma tissue was significantly higher than that in low-grade malignant glioma tissue (P < 0.05). MTT assay and flow cytometer analysis revealed that the cell viability and cell proliferation in the ROCK1 small interfering RNA (siRNA) transfection group were markedly lower than those in the blank or negative control group (P < 0.05), and no obvious differences were found between the blank group and negative control group. The Transwell invasion experiments showed that the invasive ability of U251 cells in the ROCK1 siRNA transfection group was obviously lower than that in the blank or negative control group (P < 0.05), and there were no visible differences between the blank group and negative control group. Western blot demonstrated that the protein levels of Ki67, cyclin D1, and MMP9 in the ROCK1 siRNA transfection group were distinctly lower than those in the blank or negative control group (P < 0.05) and that the protein level of E-cadherin displayed an opposite variation (P < 0.05). In summary, the expressions of ROCK1 in glioma tissue were visibly upregulated and the increase of ROCK1 had a positive correlation with the malignant grade of glioma. The results implied that the proliferation and metastasis of the glioma cell could be inhibited by suppressing the expression of ROCK1, and our findings would provide a new target for intervention and treatment of glioma.
Collapse
|
20
|
Joshi AR, Bobylev I, Zhang G, Sheikh KA, Lehmann HC. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Exp Neurol 2014; 263:28-38. [PMID: 25261755 DOI: 10.1016/j.expneurol.2014.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 09/14/2014] [Indexed: 11/29/2022]
Abstract
The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.
Collapse
Affiliation(s)
- Abhijeet R Joshi
- Department of Neurology, University of Cologne, Germany; Center for Molecular Medicine Cologne, Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, University of Cologne, Germany; Center for Molecular Medicine Cologne, Cologne, Germany
| | - Gang Zhang
- Department of Neurology, University of Texas Health Sciences Centre, Houston, TX, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Health Sciences Centre, Houston, TX, USA
| | - Helmar C Lehmann
- Department of Neurology, University of Cologne, Germany; Center for Molecular Medicine Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Cui Q, Zhang Y, Chen H, Li J. Rho kinase: A new target for treatment of cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:1180-9. [PMID: 25206412 PMCID: PMC4107606 DOI: 10.3969/j.issn.1673-5374.2013.13.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/20/2013] [Indexed: 01/08/2023] Open
Abstract
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Qinghong Cui
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hui Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
22
|
Wan X, Cheng Q, Peng R, Ma Z, Chen Z, Cao Y, Jiang B. ROCK1, a novel target of miR-145, promotes glioma cell invasion. Mol Med Rep 2014; 9:1877-82. [PMID: 24573110 DOI: 10.3892/mmr.2014.1982] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/07/2014] [Indexed: 12/13/2022] Open
Abstract
Malignant glioma is the most common type of cancer in the central nervous system, with highly invasive characteristics. The Rho-associated protein kinase (ROCK1) has been found to act as key regulator of actin cytoskeleton reorganization, a process closely associated with cancer cell invasion. microRNA-145 (miRNA-145) has been recently shown to act as a suppressor in several types of tumor, including glioma. However, the exact regulatory mechanism by which miR-145 inhibits glioma still remains to be uncovered. In this study, we report that the miR-145 level was significantly reduced in glioma tissues and in the human glioma cell lines U87 and U251, as compared to matched adjacent and normal brain tissues. We then identified the ROCK1 gene as a novel target of miR-145. The expression of ROCK1 was markedly upregulated in glioma tissues, as well as in U87 and U251 cells. Moreover, miR-145 significantly inhibited ROCK1 protein expression in U87 cells. We further show that miR-145 transfection considerably reduced the invasive ability of U87 cells, and was accompanied by the downregulation of matrix metalloproteinase 2 and 9, an effect which could be attenuated by overexpression of ROCK1. In conclusion, the present study suggests that miR-145 can inhibit U87 glioma cell invasion, at least partially via downregulation of the RhoA/ROCK1 pathway. In conclusion, this is the first study to report that ROCK1, as a novel target of miR-145, acts as a positive regulator of glioma cell invasion. Therefore, ROCK1 may constitute a promising target for glioma treatment.
Collapse
Affiliation(s)
- Xin Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Ma
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zigui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiqiang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bing Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 2014; 35:1857-68. [DOI: 10.1016/j.biomaterials.2013.11.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
|
24
|
Murk K, Blanco Suarez EM, Cockbill LMR, Banks P, Hanley JG. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology. J Cell Sci 2013; 126:3873-83. [PMID: 23843614 PMCID: PMC3757329 DOI: 10.1242/jcs.125146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 01/22/2023] Open
Abstract
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
Collapse
Affiliation(s)
- Kai Murk
- School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Elena M. Blanco Suarez
- School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Louisa M. R. Cockbill
- School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Banks
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jonathan G. Hanley
- School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
25
|
microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One 2013; 8:e69478. [PMID: 23936026 PMCID: PMC3720724 DOI: 10.1371/journal.pone.0069478] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022] Open
Abstract
Background The extraordinary invasive capability is a major cause of treatment failure and tumor recurrence in glioma, however, the molecular and cellular mechanisms governing glioma invasion remain poorly understood. Evidence in other cell systems has implicated the regulatory role of microRNA in cell motility and invasion, which promotes us to investigate the biological functions of miR-124 in glioma in this regard. Results We have found that miR-124 is dramatically downregulated in clinical specimen of glioma and is negatively correlated with the tumor pathological grading in the current study. The cells transfected by miR-124 expression vector have demonstrated retarded cell mobility. Using a bioinformatics analysis approach, rho-associated coiled-coil containing protein kinase 1 (ROCK1), a well-known cell mobility-related gene, has been identified as the target of miR-124. A dual-luciferase reporter assay was used to confirm that miR-124 targeted directly the 3′UTR of ROCK1 gene and repressed the ROCK1 expression in U87MG human glioma cell line. Furthermore, experiments have shown that the decreased cell mobility was due to the actin cytoskeleton rearrangements and the reduced cell surface ruffle in U87MG glioma cells. These results are similar to the cellular responses of U87MG glioma cells to the treatment of Y-27632, an inhibitor of ROCK protein. Moreover, a constitutively active ROCK1 in miR-124 over-expressed glioma cells reversed the effects of miR-124. Our results revealed a novel mechanism that miR-124 inhibits glioma cells migration and invasion via ROCK1 downregulation. Conclusions These results suggest that miR-124 may function as anti-migration and anti-invasion influence in glioma and provides a potential approach for developing miR-124-based therapeutic strategies for malignant glioma therapy.
Collapse
|
26
|
Tange S, Zhou Y, Nagakui-Noguchi Y, Imai T, Nakanishi A. Initiation of human astrovirus type 1 infection was blocked by inhibitors of phosphoinositide 3-kinase. Virol J 2013; 10:153. [PMID: 23680019 PMCID: PMC3750554 DOI: 10.1186/1743-422x-10-153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/23/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Upon initial contact with a virus, host cells activate a series of cellular signaling cascades that facilitate viral entry and viral propagation within the cell. Little is known about how the human astrovirus (HAstV) exploits signaling cascades to establish an infection in host cells. Recent studies showed that activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is important for HAstV infection, though the involvement of other signaling cascades remains unclear. METHODS A panel of kinase blockers was used to search for cellular signaling pathways important for HAstV1 infection. To determine their impact on the infectious process, we examined viral gene expression, RNA replication, and viral RNA and capsid protein release from host cells. RESULTS Inhibitors of phosphoinositide 3-kinase (PI3K) activation interfered with the infection, independent of their effect on ERK 1/2 activation. Activation of the PI3K signaling cascade occurred at an early phase of the infection, judging from the timeframe of Akt phosphorylation. PI3K inhibition at early times, but not at later times, blocked viral gene expression. However, inhibiting the downstream targets of PI3K activation, Akt and Rac1, did not block infection. Inhibition of protein kinase A (PKA) activation was found to block a later phase of HAstV1 production. CONCLUSIONS Our results reveal a previously unknown, essential role of PI3K in the life cycle of HAstV1. PI3K participates in the early stage of infection, possibly during the viral entry process. Our results also reveal the role of PKA in viral production.
Collapse
Affiliation(s)
- Shoichiro Tange
- Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, 35, Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | |
Collapse
|
27
|
Suppression of the Rho/Rho-kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit. Transl Stroke Res 2013; 4:368-74. [PMID: 23658597 PMCID: PMC3644406 DOI: 10.1007/s12975-012-0247-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 12/19/2022]
Abstract
The Rho/Rho-kinase pathway is considered important in the pathogenesis of sustained smooth muscle cell contraction during cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The aims of this study were to investigate whether combination treatment, with pitavastatin as an inhibitor of RhoA and fasudil as an inhibitor of Rho-kinase, prevents the cerebral vasospasm. SAH was simulated using the double-hemorrhage rabbit model, and pitavastatin, or fasudil, or both (combination treatment) were administrated. The basilar artery (BA) cross-sectional area only in the combination treatment group was statistically larger than in the SAH group (p < 0.05). BA Rho-kinase, as measured by ELISA, was statistically reduced only in the combination treatment group compared with the SAH group (p < 0.05). In the other two treatment groups, pitavastatin or fasudil treatment group showed larger BA cross-sectional areas and lower value for BA Rho-kinase, but there were no statistically significant differences compared with the SAH group. The expression of endothelial nitric oxide synthase (eNOS), evaluated by immunohistochemistry in the pitavastatin group and the combination group, was higher than in the SAH group. Results indicate that combination treatment could extensively prevent cerebral vasospasm due to the synergic effect of combining pitavastatin and fasudil on the Rho/Rho-kinase pathway and on eNOS.
Collapse
|
28
|
Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Chiyomaru T, Fukuhara S, Tanaka Y, Deng G, Tabatabai ZL, Dahiya R. MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer. PLoS One 2012; 7:e46743. [PMID: 23056431 PMCID: PMC3464246 DOI: 10.1371/journal.pone.0046743] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/30/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding sequences that can function as oncogenes or tumor suppressor genes. This study documents the tumor suppressor role of miR-1280 in bladder cancer. Quantitative real-time PCR and in situ hybridization analyses showed that miR-1280 is significantly down-regulated in bladder cancer cell lines and tumors compared to a non-malignant cell line or normal tissue samples. To decipher the functional significance of miR-1280 in bladder cancer, we ectopically over-expressed miR-1280 in bladder cancer cell lines. Over-expression of miR-1280 had antiproliferative effects and impaired colony formation of bladder cancer cell lines. FACS (fluorescence activated cell sorting) analysis revealed that re-expression of miR-1280 in bladder cancer cells induced G2-M cell cycle arrest and apoptosis. Our results demonstrate that miR-1280 inhibited migration and invasion of bladder cancer cell lines. miR-1280 also attenuated ROCK1 and RhoC protein expression. Luciferase reporter assays demonstrated that oncogene ROCK1 is a direct target of miR-1280 in bladder cancer. This study also indicates that miR-1280 may be of diagnostic and prognostic importance in bladder cancer. For instance, ROC analysis showed that miR-1280 expression can distinguish between malignant and normal bladder cancer cases and Kaplan-Meier analysis revealed that patients with miR-1280 high expression had higher overall survival compared to those with low miR-1280 expression. In conclusion, this is the first study to document that miR-1280 functions as a tumor suppressor by targeting oncogene ROCK1 to invasion/migration and metastasis. Various compounds are currently being used as ROCK1 inhibitors; therefore restoration of tumor suppressor miR-1280 might be therapeutically useful either alone or in combination with these compounds in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Altaf A. Dar
- Research Institute, California Pacific Medical Center, San Francisco, California, United States of America
| | - Sharanjot Saini
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Sumit Arora
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Mohd Saif Zaman
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Inik Chang
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Takeshi Chiyomaru
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Shinichiro Fukuhara
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Guoren Deng
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Z. Laura Tabatabai
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, Liu Y, Atalay M, Kiess W, James AL, Rivadeneira F, Uitterlinden AG, Palmer CNA, Doney ASF, Willemsen G, Smit JH, Campbell S, Polasek O, Bonnycastle LL, Hercberg S, Dimitriou M, Bolton JL, Fowkes GR, Kovacs P, Lindström J, Zemunik T, Bandinelli S, Wild SH, Basart HV, Rathmann W, Grallert H, Maerz W, Kleber ME, Boehm BO, Peters A, Pramstaller PP, Province MA, Borecki IB, Hastie ND, Rudan I, Campbell H, Watkins H, Farrall M, Stumvoll M, Ferrucci L, Waterworth DM, Bergman RN, Collins FS, Tuomilehto J, Watanabe RM, de Geus EJC, Penninx BW, Hofman A, Oostra BA, Psaty BM, Vollenweider P, Wilson JF, Wright AF, Hovingh GK, Metspalu A, Uusitupa M, Magnusson PKE, Kyvik KO, Kaprio J, Price JF, Dedoussis GV, Deloukas P, Meneton P, Lind L, Boehnke M, Shuldiner AR, van Duijn CM, Morris AD, Toenjes A, Peyser PA, Beilby JP, Körner A, Kuusisto J, Laakso M, Bornstein SR, Schwarz PEH, Lakka TA, Rauramaa R, Adair LS, Smith GD, Spector TD, Illig T, de Faire U, Hamsten A, Gudnason V, Kivimaki M, Hingorani A, Keinanen-Kiukaanniemi SM, Saaristo TE, Boomsma DI, Stefansson K, van der Harst P, Dupuis J, Pedersen NL, Sattar N, Harris TB, Cucca F, Ripatti S, Salomaa V, Mohlke KL, Balkau B, Froguel P, Pouta A, Jarvelin MR, Wareham NJ, Bouatia-Naji N, McCarthy MI, Franks PW, Meigs JB, Teslovich TM, Florez JC, Langenberg C, Ingelsson E, Prokopenko I, Barroso I. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44:991-1005. [PMID: 22885924 PMCID: PMC3433394 DOI: 10.1038/ng.2385] [Citation(s) in RCA: 637] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Collapse
Affiliation(s)
- Robert A Scott
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|