1
|
Zhao H, Zhou Y, Gu Q, Lin Y, Lan M. An explore method for quick screening biomarkers based on effective enrichment capacity and data mining. J Chromatogr A 2024; 1736:465413. [PMID: 39368193 DOI: 10.1016/j.chroma.2024.465413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.
Collapse
Affiliation(s)
- Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yifan Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
2
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
3
|
Chen HJ, Zhao L, Wang L, Wang ZG, Pang DW, Liu SL. Simultaneous Mapping of the Nanoscale Organization and Redox State of Extracellular Space in Living Brain Tissue. ACS NANO 2024; 18:22245-22256. [PMID: 39116272 DOI: 10.1021/acsnano.4c06059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The spatial organization characteristics and redox status of the extracellular space (ECS) are crucial in the development of brain diseases. However, it remains a challenge to simultaneously capture dynamic changes in microstructural features and redox states at the submicron level within the ECS. Here, we developed a reversible glutathione (GSH)-responsive nanoprobe (RGN) for mapping the spatial organization features and redox status of the ECS in brain tissues with nanoscale resolution. The RGN is composed of polymer nanoparticles modified with GSH-responsive molecules and amino-functionalized methoxypoly(ethylene glycol), which exhibit exceptional single-particle brightness and excellent free diffusion capability in the ECS of brain tissues. Tracking single RGNs in acute brain slices allowed us to dynamically map spatial organizational features and redox levels within the ECS of brain tissues in disease models. This provides a powerful super-resolution imaging method that offers a potential opportunity to study the dynamic changes in the ECS microenvironment and to understand the physiological and pathological roles of the ECS in vivo.
Collapse
Affiliation(s)
- Hua-Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Wang L, Chen HJ, Wang ZG, Ning D, Zhao W, Rat V, Lamb DC, Pang DW, Liu SL. Mapping Extracellular Space Features of Viral Encephalitis to Evaluate the Proficiency of Anti-Viral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311457. [PMID: 38243660 DOI: 10.1002/adma.202311457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Virgile Rat
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol 2024; 14:1340634. [PMID: 38332915 PMCID: PMC10850336 DOI: 10.3389/fimmu.2023.1340634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM.
Collapse
Affiliation(s)
- Wei Du
- Department of Targeting Therapy and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayun Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mirhashemi M, Sadeghi M, Ghazi N, Saghravanian N, Dehghani M, Aminian A. Prognostic value of CD44 expression in oral squamous cell carcinoma: A meta-analysis. Ann Diagn Pathol 2023; 67:152213. [PMID: 37856951 DOI: 10.1016/j.anndiagpath.2023.152213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
CD44 as a marker of cancer stem cells (CSCs) may be correlated with tumor growth, cell migration, metastasis and chemo-radiotherapy resistance of cancers. However, the prognostic value of CD44 in oral squamous cell carcinoma(OSCC) remains controversial. Therefore, the purpose of the current study was to evaluate the correlation of CD44 expression with the prognosis of OSCC through a meta-analysis. We systematically searched PubMed, Scopus, ISI Web of Science, Embase and Cochrane Central databases for relevant studies up to November 2022. We included 11 articles with immunohistochemistry (IHC) method involving 1084 OSCC patients. Hazard ratios (HRs) with 95 % confidence intervals (95 % CIs) were calculated to assess the association between CD44 expression and overall survival (OS) and disease-free survival (DFS). Results showed that high expression of CD44 was a poor prognostic marker for OS in OSCC patients (HR: 1.71, 95 % CI: 1.18-2.47). Also results for DFS demonstrated that in patients with high CD44 expression who received treatment, the probability of tumor recurrence or death was 1.66 times and in the worst case this ratio can reach 2.39 (HR: 1.66, 95 % CI: 1.15-2.39). High CD44 expression associated with metastasis to lymph nodes and distant metastasis, poorer survival of the patients, tumor recurrence, higher tumor stage and grade and aggressive clinicopathological features. Therefore CD44 can be used as a valuable independent marker in predicting the prognosis of OSCC patients.
Collapse
Affiliation(s)
- Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of medical Sciences, Mashhad, Iran
| | - Narges Ghazi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nasrollah Saghravanian
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Dehghani
- Department of Epidemiology, Faculty of Health, Mashhad University of medical Sciences, Mashhad, Iran
| | - Amin Aminian
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
9
|
Berdiaki A, Thrapsanioti LN, Giatagana EM, K Karamanos N, C Savani R, N Tzanakakis G, Nikitovic D. RHAMM/hyaluronan inhibit β-catenin degradation, enhance downstream signaling, and facilitate fibrosarcoma cell growth. Mol Biol Rep 2023; 50:8937-8947. [PMID: 37710072 DOI: 10.1007/s11033-023-08763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. β-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/β-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/β-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/β-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key β-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of β-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/β-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding β-catenin and Axin-2 at different cellular compartments to increase β-catenin expression, transcriptional activity, and fibrosarcoma growth.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | | | - Rashmin C Savani
- Department of Pediatrics, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100296, Gainesville, FL, USA
| | - George N Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
10
|
Skandalis SS. CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers (Basel) 2023; 15:5041. [PMID: 37894408 PMCID: PMC10605500 DOI: 10.3390/cancers15205041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
CD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology. The present review aims to highlight the contribution of the CD44 short cytoplasmic tail, which is devoid of any enzymatic activity, in the extraordinary functional diversity of the receptor. The interactions of CD44 with cytoskeletal proteins through specific structural motifs within its intracellular domain drives cytoskeleton rearrangements and affects the distribution of organelles and transport of molecules. Moreover, the CD44 intracellular domain specifically interacts with various cytoplasmic effectors regulating cell-trafficking machinery, signal transduction pathways, the transcriptome, and vital cell metabolic pathways. Understanding the cell type- and context-specificity of these interactions may unravel the high complexity of CD44 functions and lead to novel improved therapeutic interventions.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
11
|
Gao J, Wang A, Bu X, Jia W. Acute murine cytomegalovirus infection boosts cell-type specific response and lipid metabolism changes in the liver of infant mice. Front Immunol 2023; 14:1169869. [PMID: 37638012 PMCID: PMC10449610 DOI: 10.3389/fimmu.2023.1169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) infection in infants can lead to severe diseases, including neonatal hepatitis. The single-cell dimensional changes in immune cells after the initial CMV infection remain elusive, as do the effects of CMV infection on hepatic lipid metabolism. Methods We employed single-cell RNA-sequencing to investigate the changes in liver cell types and immune responses in infant mice following murine CMV (MCMV) infection. Additionally, we examined alterations in protein expression profiles related to lipid metabolism in hepatocytes and the role of the key transcription factor PPAR-γ in hepatocytes during CMV infection. Results Our study revealed that MCMV infects most liver cell types in infant mice, leading to an increase in the proportion of proliferating CD8 effector T cells and a subset of Nos2+ monocytes, potentially playing an essential role in early anti-viral responses. Furthermore, MCMV infection resulted in altered protein expression of lipid metabolism in hepatocytes. Knocking down the transcription factor PPAR-γ in hepatocytes effectively inhibited CMV infection. Discussion Our findings underscore the immune system's response to early-stage MCMV infection and the subsequent impact on hepatic lipid metabolism in infant mice. This research provides new insights into the mechanisms of CMV infection and could pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Juanzi Gao
- Department of Hepatic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Anmin Wang
- Institute of Immunology, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiangyi Bu
- Department of Hepatic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weidong Jia
- Department of Hepatic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| |
Collapse
|
12
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
13
|
Chen S, Zhang S, Chen S, Ma F. The prognostic value and immunological role of CD44 in pan-cancer study. Sci Rep 2023; 13:7011. [PMID: 37117249 PMCID: PMC10147611 DOI: 10.1038/s41598-023-34154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
To investigate the correlation between cluster of differentiation-44 (CD44) expression and immunotherapy response and identify its possible predictive value in pan-cancer. Datasets of 33 cancer types from The Cancer Genome Atlas (TCGA) database were applied to investigate the relationship of CD44 expression with prognosis, tumor mutational burden (TMB), and microsatellite instability (MSI), and determine its potential prognostic value in pan-cancer. Patients were split into high-risk and low-risk cancer groups based on the survival outcomes of various cancer types. Additionally, the underlying mechanisms of CD44 in the tumor microenvironment (TME) were analyzed using ESTIMATE and CIBERSORT algorithms and Gene Set Enrichment Analysis (GSEA). Subsequently, the biological role of CD44 at single-cell level was investigated using CancerSEA database. Variable expression levels of CD44 between tumor and adjacent normal tissues were identified in pan-cancer datasets, further survival analysis revealed that CD44 expression was associated with multiple clinical annotations and survival indicators. Besides, the expression of CD44 was significantly associated with TMB and MSI in 10 types and 6 types of cancer, respectively, indicating it could be exploited as a potential biomarker predicting immunotherapy outcomes. Meanwhile, CD44 could influence several crucial immune cell-related pathways. and the results revealed by CancerSEA database denoted the correlation of CD44 with malignant phenotype and functional states, further indicating it can serve as a potential therapeutic target in cancer management. Our study demonstrated that CD44 shows great promise as a prognostic biomarker in numerous cancers, which will assist in developing new strategies in cancer management.
Collapse
Affiliation(s)
- Shaoyong Chen
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Siqin Zhang
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shaohua Chen
- Guangxi Medical University, Nanning, Guangxi, China.
| | - Fei Ma
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Xu J, Chen S, Yang J, Nie Z, He J, Zhao Y, Liu X, Zhang J, Zhao Y. Hyaluronidase-trigger nanocarriers for targeted delivery of anti-liver cancer compound. RSC Adv 2023; 13:11160-11170. [PMID: 37056973 PMCID: PMC10086574 DOI: 10.1039/d3ra00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy is recognized as one of the significant treatment methods for liver cancer. The compound celastrol (CSL) could effectively inhibit the proliferation, migration, and invasion of liver cancer cells, which is regarded as a promising candidate to become a mainstream anti-liver cancer drug. However, the application of CSL in liver cancer chemotherapy is limited due to its systemic toxicity, poor water solubility, multidrug resistance, premature degradation, and lack of tumor targeting. Meanwhile, in order to comply with the current concept of precision medicine, precisely targeted delivery of the anti-liver compound CSL was desired. This paper takes into account that liver cancer cells were equipped with hyaluronic acid (HA) receptors (CD44) on their surface and overexpressed. Hyaluronidase (HAase) capable of degrading HA, HAase-responsive nanocarriers (NCs), named HA/(MI)7-β-CD NCs, were prepared based on the electrostatic interaction between HA and imidazole moieties modified β-cyclodextrin (MI)7-β-CD. HA/(MI)7-β-CD NCs showed disassembly properties under HAase stimuli, which was utilized to trap, deliver, and the controllable release of the anti-liver cancer compound CSL. Furthermore, cytotoxicity assay experiments revealed that CSL-trapped HA/(MI)7-β-CD NCs not only reduced cytotoxicity for normal cells but also effectively inhibited the survival for five tumor cells, and even the apoptotic effect of CSL-trapped NCs with a concentration of 5 μg mL-1 on tumor cells (SMMC-7721) was consistent with free CSL. Cell uptake experiments demonstrated HA/(MI)7-β-CD NCs possessed the capability of targeted drug delivery to cancerous cells. HA/(MI)7-β-CD NCs exhibited site-specific and controllable release performance, which is anticipated to proceed further in precision-targeted drug delivery systems.
Collapse
Affiliation(s)
- Junxin Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Siling Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Zhengquan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yong Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Xiaoqing Liu
- Shenzhen Kewode Technology Co., Ltd Shenzhen 518028 People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China
| |
Collapse
|
15
|
Pandit R, Ipinmoroti AO, Crenshaw BJ, Li T, Matthews QL. Canine Coronavirus Infection Modulates the Biogenesis and Composition of Cell-Derived Extracellular Vesicles. Biomedicines 2023; 11:976. [PMID: 36979955 PMCID: PMC10046050 DOI: 10.3390/biomedicines11030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Coronavirus (CoV) has persistently become a global health concern causing various diseases in a wide variety of hosts, including humans, birds, and companion animals. However, the virus-mediated responses in animal hosts have not been studied extensively due to pathogenesis complexity and disease developments. Extracellular vesicles (EVs) are widely explored in viral infections for their intercellular communication, nanocarrier, and immunomodulatory properties. We proposed that coronavirus hijacks the host exosomal pathway and modulates the EV biogenesis, composition, and protein trafficking in the host. In the present study, Crandell-Rees feline kidney (CRFK) cells were infected with canine coronavirus (CCoV) in an exosome-free medium at the multiplicity of infection (MOI) of 400 infectious units (IFU) at various time points. The cell viability was significantly decreased over time, as determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Post-infection EVs were isolated, and transmission electron microscopy (TEM) showed the presence of small EVs (sEVs) after infection. NanoSight particle tracking analysis (NTA) revealed that EV sizes averaged between 100 and 200 nm at both incubation times; however, the mean size of infection-derived EVs was significantly decreased at 48 h when compared to uninfected control EVs. Quantitative analysis of protein levels performed by dot blot scanning showed that the expression levels of ACE-2, annexin-V, flotillin-1, TLR-7, LAMP, TNF-α, caspase-1, caspase-8, and others were altered in EVs after infection. Our findings suggested that coronavirus infection impacts cell viability, modulates EV biogenesis, and alters cargo composition and protein trafficking in the host, which could impact viral progression and disease development. Future experiments with different animal CoVs will provide a detailed understanding of host EV biology in infection pathogenesis and progression. Hence, EVs could offer a diagnostic and therapeutic tool to study virus-mediated host responses that could be extended to study the interspecies jump of animal CoVs to cause infection in humans.
Collapse
Affiliation(s)
- Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ting Li
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
16
|
Role of Hyaluronic Acid in Selected Malignant Neoplasms in Women. Biomedicines 2023; 11:biomedicines11020304. [PMID: 36830841 PMCID: PMC9953106 DOI: 10.3390/biomedicines11020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid (HA) is a significant glycosaminoglycan component of the extracellular matrix, playing an essential role in cell localization and proliferation. However, high levels of HA may also correlate with multidrug resistance of tumor cells, an increased tendency to metastasize, or cancer progression, and thus represent a very unfavorable prognosis for cancer patients. The purpose of this review article is to summarize the results of studies describing the relationship between HA, the main ligand of the CD44 receptor, or other components of the HA signaling pathway. In addition, we review the course of selected female malignancies, i.e., breast, cervical, endometrial, and ovarian cancer, with the main focus on the mechanisms oriented to CD44. We also analyze reports on the beneficial use of HA-containing preparations in adjuvant therapy among patients with these types of cancer. Data from the literature suggest that HA and its family members may be critical prognostic biomarkers of selected malignancies among women. Nevertheless, the results of the available studies are inconclusive, and the actual clinical significance of HA expression analysis is still quite enigmatic. In our opinion, the HA-CD44 signaling pathway should be an attractive target for future research related to targeted therapy in gynecological cancers.
Collapse
|
17
|
Karalis T, Heldin P, Skandalis SS. In Vitro Investigation of Hyaluronan/CD44 Network. Methods Mol Biol 2023; 2619:169-186. [PMID: 36662470 DOI: 10.1007/978-1-0716-2946-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hyaluronan is one of the most influential components of the extracellular matrix. It is involved in the regulation of normal tissue function and architecture, while its metabolism is perturbed in a multitude of human diseases like inflammation, cancer, and viral infection. Given the implication of hyaluronan in a vast array of diseases, we describe here assays that can be utilized to study the quantity, size, subcellular localization, and binding capacity of hyaluronan by cells as well as its interactions with its major cellular receptor, CD44. Hopefully, these protocols will provide researchers with useful tools to study the complex hyaluronan biology.
Collapse
Affiliation(s)
- Theodore Karalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| |
Collapse
|
18
|
Babst N, Isbell LK, Rommel F, Tura A, Ranjbar M, Grisanti S, Tschuch C, Schueler J, Doostkam S, Reinacher PC, Duyster J, Kakkassery V, von Bubnoff N. CXCR4, CXCR5 and CD44 May Be Involved in Homing of Lymphoma Cells into the Eye in a Patient Derived Xenograft Homing Mouse Model for Primary Vitreoretinal Lymphoma. Int J Mol Sci 2022; 23:11757. [PMID: 36233057 PMCID: PMC9569795 DOI: 10.3390/ijms231911757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Primary vitreoretinal lymphoma (PVRL), a rare malignancy of the eye, is strongly related to primary central nervous system lymphoma (PCNSL). We hypothesized that lymphoma cells disseminate to the CNS and eye tissue via distinct homing receptors. The objective of this study was to test expression of CXCR4, CXCR5, CXCR7 and CD44 homing receptors on CD20 positive B-lymphoma cells on enucleated eyes using a PCNSL xenograft mouse model. Methods: We used indirect immunofluorescence double staining for CD20/CXCR4, CD20/CXCR5, CD20/CXCR7 and CD20/CD44 on enucleated eyes of a PCNSL xenograft mouse model with PVRL phenotype (PCNSL group) in comparison to a secondary CNS lymphoma xenograft mouse model (SCNSL group). Lymphoma infiltration was evaluated with an immunoreactive score (IRS). Results: 11/13 paired eyes of the PCNSL but none of the SCNSL group were infiltrated by CD20-positive cells. Particularly the choroid and to a lesser extent the retina of the PCNSL group were infiltrated by CD20+/CXCR4+, CD20+/CXCR5+, few CD20+/CD44+ but no CD20+/CXCR7+ cells. Expression of CXCR4 (p = 0.0205), CXCR5 (p = 0.0004) and CD44 (p < 0.0001) was significantly increased in the PCNSL compared to the SCNSL group. Conclusions: CD20+ PCNSL lymphoma cells infiltrating the eye co-express distinct homing receptors such as CXCR4 and CXCR5 in a PVRL homing mouse model. These receptors may be involved in PVRL homing into the eye.
Collapse
Affiliation(s)
- Neele Babst
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Lisa K. Isbell
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Felix Rommel
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Aysegul Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Cordula Tschuch
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Julia Schueler
- Charles River Discovery Research Services GmbH, 79108 Freiburg, Germany
| | - Soroush Doostkam
- Institute for Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vinodh Kakkassery
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
19
|
Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: A therapeutic perspective. Bull Cancer 2022; 109:960-971. [DOI: 10.1016/j.bulcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
|
20
|
Cao L, Fang H, Yan D, Wu XM, Zhang J, Chang MX. CD44a functions as a regulator of p53 signaling, apoptosis and autophagy in the antibacterial immune response. Commun Biol 2022; 5:889. [PMID: 36042265 PMCID: PMC9427754 DOI: 10.1038/s42003-022-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection. Zebrafish CD44a deficiency inhibits cell growth and proliferation, impairs cell growth and death pathways, and regulates the expression levels of many genes involved in p53 signaling, apoptosis and autophagy. In addition, CD44a gene disruption in zebrafish leads to inhibition of apoptosis and induction of autophagy, with the increased susceptibility to E. piscicida infection. Furthermore, we show that zebrafish CD44a variants including CD44a_tv1 and CD44a_tv2 promote the translocation of p53 from the nucleus to the cytoplasm and interact with p53 in the cytoplasm. Mechanistically, zebrafish CD44a_tv1 mediates the beneficial effect for larvae survival infected with E. piscicida is depending on the CASP8-mediated apoptosis. However, the antibacterial effect of zebrafish CD44a_tv2 depends on the cytoplasmic p53-mediated inhibition of autophagy. Collectively, our results identify that different mechanisms regulate CD44a variants-mediated antibacterial responses.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. Int J Mol Sci 2022; 23:ijms23158616. [PMID: 35955749 PMCID: PMC9368984 DOI: 10.3390/ijms23158616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.
Collapse
|
22
|
CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence. Cancers (Basel) 2022; 14:cancers14153747. [PMID: 35954411 PMCID: PMC9367353 DOI: 10.3390/cancers14153747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.
Collapse
|
23
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
24
|
Enemark MB, Hybel TE, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d’Amore F, Ludvigsen M. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14051316. [PMID: 35267625 PMCID: PMC8909114 DOI: 10.3390/cancers14051316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Histological transformation (HT) remains the leading cause of mortality in follicular lymphoma (FL), underlining the need to identify reliable transformation predictors. The hyaluronic acid receptors CD44 and the receptor for hyaluronan mediated motility (RHAMM, also known as HMMR and CD168), have been shown to be involved in the pathogeneses of both solid tumors and hematological malignancies. In an attempt to improve risk stratification, expression of RHAMM and CD44 were evaluated by immunohistochemistry and digital image analysis in pre-therapeutic tumor-tissue biopsies from FL patients, either without (nt-FL, n = 34), or with (st-FL, n = 31) subsequent transformation, and in paired biopsies from the transformed lymphomas (tFL, n = 31). At the time of initial diagnosis, samples from st-FL patients had a higher expression of RHAMM compared with samples from nt-FL patients (p < 0.001). RHAMM expression further increased in tFL samples following transformation (p < 0.001). Evaluation of CD44 expression showed no differences in expression comparing nt-FL, st-FL, and tFL samples. Shorter transformation-free survival was associated with high tumoral and intrafollicular RHAMM expression, as well as with low intrafollicular CD44 expression (p = 0.002, p < 0.001, and p = 0.034, respectively). Our data suggest that high tumor-tissue RHAMM expression predicts the risk of shorter transformation-free survival in FL patients already at initial diagnosis.
Collapse
Affiliation(s)
- Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Stephen Hamilton-Dutoit
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark; (K.L.L.); (S.H.-D.)
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
25
|
Zhu Y, Fu F, Wang Z, Qiu F, Deng T, Du B, Zhu Y, Xi X. Polyphyllin VII is a Potential Drug Targeting CD44 Positive Colon Cancer Cells. Curr Cancer Drug Targets 2022; 22:426-435. [DOI: 10.2174/1568009622666220304110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Background:
Current therapies for colon cancer are hindered by treatment failure and recurrence mainly due to colon cancer stem cells (CSCs). Thus, treatment using drugs targeting CSCs should be effective in eliminating colon cancer cells and impeding cancer recurrence.
Objective:
To test if PPVII can a potent drug candidate for the treatment of colon cancer by targeting CD44 positive colon cancer cells.
Methods:
In this study, we first demonstrated that CD44 is highly expressed in colon cancer tissues by TCGA/GTEX database analysis and immunohistochemical staining.
Results:
In this study, we first demonstrated that CD44 is highly expressed in colon cancer tissues by TCGA/GTEX database analysis. CD44 had high accuracy as a diagnostic and predictive index for colorectal cancer through Receiver operating characteristic curve (ROC) analysis. At the same time, survival curve analysis also showed that the high expression of CD44 was associated with poor prognosis in patients with colon cancer. CD44 higher expression in colon cancer tissues was further confirmed by immunohistochemical staining, the positive rate of CD44 expression was 87.95%. Then, one of the constituents that derives from the root of Paris polyphylla, Polyphyllin VII (PPVII) has been confirmed to inhibit the migration of colon cancer cells. Our results also demonstrated that PPVII could inhibit the sphere-forming ability of colon cancer cells. Further experiment results showed that PPVII could downregulate the expression of CD44 in colon cancer cells. In addition, PPVII was proved to have inhibitory effects against CD44 positive colon cancer cells.
Conclusion:
Therefore, PPVII might be a potent candidate reagent for the treatment of colon cancer by targeting CD44 positive colon cancer cells.
Collapse
Affiliation(s)
- Ye Zhu
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Fei Fu
- Renmin Hospital, Hubei University of Medicine
| | - Zhongyu Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine
| | - Ting Deng
- Institute of Basic Medical Sciences, Hubei University of Medicine
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Renmin Hospital, Hubei University of Medicine
- Hubei Key laboratory of Wudang Local Chinese Medicine Research
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine.
- Renmin Hospital, Hubei University of Medicine.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine
| |
Collapse
|
26
|
Oligosaccharides Ameliorate Acute Kidney Injury by Alleviating Cluster of Differentiation 44-Mediated Immune Responses in Renal Tubular Cells. Nutrients 2022; 14:nu14040760. [PMID: 35215410 PMCID: PMC8877265 DOI: 10.3390/nu14040760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden episode of kidney damage that commonly occurs in patients admitted to hospitals. To date, no ideal treatment has been developed to reduce AKI severity. Oligo-fucoidan (FC) interferes with renal tubular cell surface protein cluster of differentiation 44 (CD44) to prevent renal interstitial fibrosis; however, the influence of oligosaccharides on AKI remains unknown. In this study, FC, galacto-oligosaccharide (GOS), and fructo-oligosaccharide (FOS) were selected to investigate the influence of oligosaccharides on AKI. All three oligosaccharides have been proven to be partially absorbed by the intestine. We found that the oligosaccharides dose-dependently reduced CD44 antigenicity and suppressed the hypoxia-induced expression of CD44, phospho-JNK, MCP-1, IL-1β, and TNF-α in NRK-52E renal tubular cells. Meanwhile, CD44 siRNA transfection and JNK inhibitor SP600125 reduced the hypoxia-induced expression of phospho-JNK and cytokines. The ligand of CD44, hyaluronan, counteracted the influence of oligosaccharides on CD44 and phospho-JNK. At 2 days post-surgery for ischemia–reperfusion injury, oligosaccharides reduced kidney inflammation, serum creatine, MCP-1, IL-1β, and TNF-α in AKI mice. At 7 days post-surgery, kidney recovery was promoted. These results indicate that FC, GOS, and FOS inhibit the hypoxia-induced CD44/JNK cascade and cytokines in renal tubular cells, thereby ameliorating AKI and kidney inflammation in AKI mice. Therefore, oligosaccharide supplementation is a potential healthcare strategy for patients with AKI.
Collapse
|
27
|
Identification of Chicken CD44 as a Novel B Lymphocyte Receptor for Infectious Bursal Disease Virus. J Virol 2022; 96:e0011322. [PMID: 35107370 DOI: 10.1128/jvi.00113-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV), which targets bursa B lymphocytes, causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. To date, the functional receptor for IBDV binding and entry into host cells remains unclear. This study used mass spectrometry to screen host proteins of chicken bursal lymphocytes interacting with VP2. The chicken transmembrane protein cluster of differentiation 44 (chCD44) was identified and evaluated for its interaction with IBDV VP2, the major capsid protein. Overexpression and knockdown experiments showed that chCD44 promotes replication of IBDV. Furthermore, soluble chCD44 and the anti-chCD44 antibody blocked virus binding. The results of receptor reconstitution indicated that chCD44 overexpression conferred viral binding capability in non-permissive cells. More important, although we found that IBDV could not replicate in the chCD44-overexpressed non-permissive cells, the virus could enter non-permissive cells using chCD44. Our finding reveals that chCD44 is a cellular receptor for IBDV, facilitating virus binding and entry in target cells by interacting with the IBDV VP2 protein. IMPORTANCE IBDV causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. However, the specific mechanism of IBDV invading host cells of IBDV was not very clear. This study shed light on which cellular protein component IBDV is used to bind and/or enter B lymphocytes. The results of our study revealed that chCD44 could promote both the binding and entry ability of IBDV in B lymphocytes, acting as a cellular receptor for IBDV. Besides, this is the first report about chicken CD44 function in viral replication. Our study impacts the understanding of the IBDV binding and entry process and sets the stage for further elucidation of the infection mechanism of IBDV.
Collapse
|
28
|
Ma B, Huang XT, Zou GJ, Hou WY, Du XH. Relationship between Ki-67 and CD44 expression and microvascular formation in gastric stromal tumor tissues. World J Clin Cases 2022; 10:469-476. [PMID: 35097071 PMCID: PMC8771385 DOI: 10.12998/wjcc.v10.i2.469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A gastric stromal tumor (GST) is a mesenchymal tumor that occurs in the gastrointestinal tract; its biological characteristics are highly complex. Clinically, the severity of a GST is often evaluated by factors such as risk classification, tumor size, and mitotic figures. However, these indicators are not very accurate. Even patients classified as low risk are also at risk of metastasis and recurrence. Therefore, more accurate and objective clinical biological behavior evaluations are urgently needed.
AIM To determine the relationship between Ki-67 and CD44 expression in GSTs and microvessel formation and prognosis.
METHODS Eighty-six GST tissue specimens from our hospital were selected for this study. The immunohistochemical staining technique was used to detect Ki-67, CD44, and microvessel density (MVD) in the collected samples to analyze the different risk grades and mitotic figures. In addition, this approach was used to determine the differences in the expression of Ki-67 and CD44 in GST tissues with varying lesion diameters.
RESULTS In GSTs with positive expression of the Ki-67 protein, the proportions of patients with medium-to-high risk and more than five mitotic counts were 24.07% and 38.89%, respectively. In GSTs with positive expression of the CD44 protein, the proportions of patients with medium-to-high risk and more than five mitotic counts were 23.73% and 38.98%, respectively. In GSTs with negative expression of the Ki-67 protein, these values were relatively high (3.70% and 11.11%, respectively). The MVD in GSTs with positive and negative expression of the CD44 protein was 15.92 ± 2.94 and 13.86 ± 2.98/Hp, respectively; the difference between the two groups was significant (P < 0.05).
CONCLUSION Ki-67 and CD44 expression in GSTs is correlated with the grade of tumor risk and mitotic figures. CD44 expression is correlated with microvessel formation in tumor tissues.
Collapse
Affiliation(s)
- Bing Ma
- Department of General Surgery, The PLA General Hospital, Beijing 100853, China
| | - Xiao-Tian Huang
- Department of General Surgery, The PLA General Hospital, Beijing 100853, China
| | - Gui-Jun Zou
- Department of General Surgery, The PLA General Hospital, Beijing 100853, China
| | - Wen-Yu Hou
- Department of General Surgery, The PLA General Hospital, Beijing 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, The PLA General Hospital, Beijing 100853, China
| |
Collapse
|
29
|
Ying Q, Liu G, Zhou W, Lan J, Du J, Tang X, Xu X. The rs13347 Polymorphism of the CD44 Gene Is Associated with the Risk of Kidney Stones Disease in the Chinese Han Population of Northeast Sichuan, China. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6481260. [PMID: 35069788 PMCID: PMC8776438 DOI: 10.1155/2022/6481260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To investigate the association between the rs13347 polymorphism of the CD44 gene and the risk of kidney stone disease (KSD) in the Han population of northeast Sichuan, China, so as to provide a theoretical basis for the treatment of KSD. METHODS We used PCR-restriction fragment length polymorphism (RFLP) technique to perform genotyping at rs13347 locus of the CD44 gene in the KSD group and the gontrol group. SNP Hardy-Weinberg equilibrium (HWE) testing was used to confirm the balance of genetic inheritance. Multivariate logistic regression analysis was used for the assessment of rs13347 polymorphism and the risk of developing KSD and to compare the relationship between the polymorphism of rs13347 and clinical characteristics of patients with KSD. RESULTS Genotypic results of rs13347 locus of the CD44 gene in the two groups were consistent with the SNP-HWE test, indicating the genetic balance. At the same time, multivariate logistic regression analysis indicated that subjects with CT and TT genotypes at rs13347 in the CD44 gene were more likely to have KSD, and there was a higher prevalence rate in males. Furthermore, carrying allele T at rs13347 was also a risk factor for KSD. In addition, people carrying CT and TT genotypes at rs13347 also have a significantly increased risk of relapsing KSD. CONCLUSION The rs13347 polymorphism of the CD44 gene may be associated with the risk of KSD in the Han population of northeast Sichuan in China, and the recurrence rate of KSD in the carriers of CT and TT genotypes is higher.
Collapse
Affiliation(s)
- Qiao Ying
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| | - Guixi Liu
- Department of Urology, The Third Hospital of Mianyang (Sichuan Mental Health Center), No. 190, East Section of Jiannan Road, Mianyang City, Sichuan Province 621000, China
| | - Wenjun Zhou
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| | - Jianhua Lan
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| | - Jianhui Du
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| | - Xianfu Tang
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| | - Xiaohan Xu
- Department of Urology, People's Hospital of Guang'an City (West China-Guang'an Hospital, Sichuan University), No.1, Section 4, Binhe Road, Guang'an District, Guang'an City, Sichuan Province 638000, China
| |
Collapse
|
30
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
31
|
Li Y, Li J, Wang X, Wu Q, Yang Q. Role of intestinal extracellular matrix-related signaling in porcine epidemic diarrhea virus infection. Virulence 2021; 12:2352-2365. [PMID: 34515624 PMCID: PMC8451458 DOI: 10.1080/21505594.2021.1972202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is emerging as a major threat to the global swine industry. Clinical PEDV infection is associated with severe intestinal lesions, resulting in absorptive dysfunction and high mortality rates in suckling piglets. The extracellular matrix (ECM) is an important component of intestinal tissue, providing a structural framework and conveying tissue-specific signals to nearby enterocytes. In this study, we investigated the extensive ECM remodeling observed in intestinal epithelial cells infected with PEDV and elucidated the associated activated ECM receptor-related pathways. Protein-protein interaction network analysis revealed two significantly differentially expressed genes (cluster of differentiation 44 [CD44] and serpin family E member 1 [SERPINE1]) associated with the ECM. At the transcriptional level, both genes exhibited significant positive correlation with the extent of PEDV replication. Similarly, the expression of CD44 and PAI-1 (encoded by SERPINE1) was also increased in the intestines of piglets during viral infection. Furthermore, CD44 exhibited antiviral activity by enhancing the expression of antiviral cytokines (e.g., interleukin [IL]-6, IL-18, IL-11, and antimicrobial peptide beta-defensin 1) by activating nuclear factor-κB signaling. Conversely, PAI-1 was found to promote the release of progeny virions during PEDV infection, despite a decreased intracellular viral load. Nevertheless, the underlying mechanisms are still unclear. Taken together, our results highlighted the biological roles of specific ECM-regulated genes, i.e., CD44 and SERPINE1 in suppressing and promoting PEDV infection, thereby providing a theoretical foundation for the role of the ECM in intestinal infections and identifying potential therapeutic targets for PEDV.
Collapse
Affiliation(s)
- Yuchen Li
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Jianda Li
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Xiuyu Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qingxin Wu
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qian Yang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| |
Collapse
|
32
|
Donlan AN, Sutherland TE, Marie C, Preissner S, Bradley BT, Carpenter RM, Sturek JM, Ma JZ, Moreau GB, Donowitz JR, Buck GA, Serrano MG, Burgess SL, Abhyankar MM, Mura C, Bourne PE, Preissner R, Young MK, Lyons GR, Loomba JJ, Ratcliffe SJ, Poulter MD, Mathers AJ, Day AJ, Mann BJ, Allen JE, Petri WA. IL-13 is a driver of COVID-19 severity. JCI Insight 2021; 6:150107. [PMID: 34185704 PMCID: PMC8410056 DOI: 10.1172/jci.insight.150107] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here, we report that elevated IL-13 was associated with the need for mechanical ventilation in 2 independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab, a mAb that blocks IL-13 and IL-4 signaling, had less severe disease. In SARS-CoV-2-infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, hyaluronan synthase 1 (Has1) was the most downregulated gene, and accumulation of the hyaluronan (HA) polysaccharide was decreased in the lung. In patients with COVID-19, HA was increased in the lungs and plasma. Blockade of the HA receptor, CD44, reduced mortality in infected mice, supporting the importance of HA as a pathogenic mediator. Finally, HA was directly induced in the lungs of mice by administration of IL-13, indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and HA has important implications for therapy of COVID-19 and, potentially, other pulmonary diseases. IL-13 levels were elevated in patients with severe COVID-19. In a mouse model of the disease, IL-13 neutralization reduced the disease and decreased lung HA deposition. Administration of IL-13-induced HA in the lung. Blockade of the HA receptor CD44 prevented mortality, highlighting a potentially novel mechanism for IL-13-mediated HA synthesis in pulmonary pathology.
Collapse
Affiliation(s)
- Alexandra N. Donlan
- Division of Infectious Diseases and International Health, Department of Medicine and
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tara E. Sutherland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Chelsea Marie
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Saskia Preissner
- Department Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Benjamin T. Bradley
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Rebecca M. Carpenter
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Jeffrey M. Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Jennie Z. Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - G. Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Jeffrey R. Donowitz
- Division of Infectious Diseases and International Health, Department of Medicine and
- Division of Pediatric Infectious Diseases, Children’s Hospital of Richmond and
| | - Gregory A. Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Cameron Mura
- School of Data Science and Department of Biomedical Engineering University of Virginia, Charlottesville, Virginia, USA
| | - Philip E. Bourne
- School of Data Science and Department of Biomedical Engineering University of Virginia, Charlottesville, Virginia, USA
| | - Robert Preissner
- Science-IT and Institute of Physiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mary K. Young
- Division of Infectious Diseases and International Health, Department of Medicine and
| | - Genevieve R. Lyons
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Sarah J. Ratcliffe
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Melinda D. Poulter
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy J. Mathers
- Division of Infectious Diseases and International Health, Department of Medicine and
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anthony J. Day
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Barbara J. Mann
- Division of Infectious Diseases and International Health, Department of Medicine and
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine and
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Diao S, Xiao M, Chen C. The role of hyaluronan in myelination and remyelination after white matter injury. Brain Res 2021; 1766:147522. [PMID: 34010609 DOI: 10.1016/j.brainres.2021.147522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Hyaluronan is one of the major components of the neural extracellular matrix (ECM) and provides structural support in physiological conditions. Altered hyaluronan regulation is implicated in the pathogenesis of white matter injury (WMI), such as perinatal WMI, multiple sclerosis (MS), traumatic brain injury (TBI). Early research reported diverse central nervous system (CNS) insults led to accumulated high-molecular-weight (HMW) hyaluronan in hypomyelinating/demyelinating lesions. Furthermore, recent findings have shown an elevated production of hyaluronan fragments in WMI, possibly resulting from HMW hyaluronan degradation. Subsequent in vitro studies identified bioactive hyaluronan fragments with a specific molecular weight (around 2x105 Da) regulating oligodendrocyte precursor cells (OPCs) maturation and myelination/remyelination in WMI. However, it is unclear about the effective hyaluronidases in generating bioactive hyaluronan fragments. Several hyaluronidases are proposed recently. Although PH20 is shown to block OPCs maturation by generating bioactive hyaluronan fragments in vitro, it seems unlikely to play a primary role in WMI with negligible expression levels in vivo. The role of other hyaluronidases on OPCs maturation and myelination/remyelination is still unknown. Other than hyaluronidases, CD44 and Toll-like receptors 2 (TLR2) are also implicated in HMW hyaluronan degradation in WMI. Moreover, recent studies elucidated bioactive hyaluronan fragments interact with TLR4, initiating signaling cascades to mediate myelin basic protein (MBP) transcription. Identifying key factors in hyaluronan actions may provide novel therapeutic targets to promote OPCs maturation and myelination/remyelination in WMI.
Collapse
Affiliation(s)
- Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
34
|
Donlan AN, Sutherland TE, Marie C, Preissner S, Bradley BT, Carpenter RM, Sturek JM, Ma JZ, Moreau GB, Donowitz JR, Buck GA, Serrano MG, Burgess SL, Abhyankar MM, Mura C, Bourne PE, Preissner R, Young MK, Lyons GR, Loomba JJ, Ratcliffe SJ, Poulter MD, Mathers AJ, Day A, Mann BJ, Allen JE, Petri WA. IL-13 is a driver of COVID-19 severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.06.18.20134353. [PMID: 33688686 PMCID: PMC7941663 DOI: 10.1101/2020.06.18.20134353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here we report that elevated interleukin-13 (IL-13) was associated with the need for mechanical ventilation in two independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab had less severe disease. In SARS-CoV-2 infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, in the lung, hyaluronan synthase 1 (Has1) was the most downregulated gene and hyaluronan accumulation was decreased. Blockade of the hyaluronan receptor, CD44, reduced mortality in infected mice, supporting the importance of hyaluronan as a pathogenic mediator, and indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and hyaluronan has important implications for therapy of COVID-19 and potentially other pulmonary diseases.
Collapse
Affiliation(s)
- Alexandra N. Donlan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Tara E. Sutherland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom
| | - Chelsea Marie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Saskia Preissner
- Department Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ben T. Bradley
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98109 USA
| | - Rebecca M. Carpenter
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Jeffrey M. Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Jennie Z. Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - G. Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Jeffrey R. Donowitz
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
- Division of Pediatric Infectious Diseases, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond VA 23298 USA
| | - Gregory A. Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA 23298 USA
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA 23298 USA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Cameron Mura
- School of Data Science and Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22904
| | - Philip E. Bourne
- School of Data Science and Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22904
| | - Robert Preissner
- Science-IT and Institute of Physiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany
| | - Mary K. Young
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Genevieve R. Lyons
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Johanna J. Loomba
- Integrated Translational Health Research Institute (iTHRIV), University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Sarah J Ratcliffe
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Melinda D. Poulter
- Department of Pathology University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Amy J. Mathers
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
- Department of Pathology University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Anthony Day
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, United Kingdom
| | - Barbara J. Mann
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, United Kingdom
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville VA 22908 USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville VA 22908 USA
- Department of Pathology University of Virginia School of Medicine, Charlottesville VA 22908 USA
| |
Collapse
|
35
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Chen CG, Gubbiotti MA, Kapoor A, Han X, Yu Y, Linhardt RJ, Iozzo RV. Autophagic degradation of HAS2 in endothelial cells: A novel mechanism to regulate angiogenesis. Matrix Biol 2020; 90:1-19. [PMID: 32084457 DOI: 10.1016/j.matbio.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hyaluronan plays a key role in regulating inflammation and tumor angiogenesis. Of the three transmembrane hyaluronan synthases, HAS2 is the main pro-angiogenic enzyme responsible for excessive hyaluronan production. We discovered that HAS2 was degraded in vascular endothelial cells via autophagy evoked by nutrient deprivation, mTOR inhibition, or pro-autophagic proteoglycan fragments endorepellin and endostatin. Using live-cell and super-resolution confocal microscopy, we found that protracted autophagy evoked a dynamic interaction between HAS2 and ATG9A, a key transmembrane autophagic protein. This regulatory axis of HAS2 degradation occurred in various cell types and species and in vivo upon nutrient deprivation. Inhibiting in vivo autophagic flux via chloroquine showed increased levels of HAS2 in the heart and aorta. Functionally, autophagic induction via endorepellin or mTOR inhibition markedly suppressed extracellular hyaluronan production in vascular endothelial cells and inhibited ex vivo angiogenic sprouting. Thus, we propose autophagy as a novel catabolic mechanism regulating hyaluronan production in endothelial cells and demonstrate a new link between autophagy and angiogenesis that could lead to potential therapeutic modalities for angiogenesis.
Collapse
Affiliation(s)
- Carolyn G Chen
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria A Gubbiotti
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yanglei Yu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|