1
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025:10.1038/s41574-024-01071-y. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
2
|
Zhu K, Liu S, Huang Y, Zhang B, Houssein N, Wu J. Chrna2-driven CRE Is Expressed in Beige Adipocytes. Endocrinology 2024; 166:bqae153. [PMID: 39540707 PMCID: PMC11630559 DOI: 10.1210/endocr/bqae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Significant research interest has been focused on beige adipocytes, the activation of which improves glucose and lipid homeostasis, therefore representing new therapeutic opportunities for metabolic diseases. Various Cre/Lox-based strategies have been used to investigate the developmental history of beige adipocytes and how these cells adapt to environmental changes. Despite the significant advancement of our understanding of beige adipocyte biology, much of the molecular insights of the beige adipocyte, including its origin and cell type-specific function, remain to be further illustrated. It has previously been shown that Chrna2 (cholinergic receptor nicotinic alpha 2 subunit) has selective functionality in beige adipocytes. In this study, we explore the Chrna2-Cre-driven reporter expression in mouse beige adipocytes in vivo and in vitro. Our findings indicate that Chrna2-Cre expression is present selectively in multiple locular beige adipocytes in subcutaneous inguinal white adipose tissue (iWAT) and differentiated stromal vascular fraction from iWAT. Chrna2-Cre expression was detected in iWAT of young pups and mice after cold exposure where a significant number of beige adipocytes are present. Chrna2-Cre-driven reporter expression is permanent in iWAT postlabeling and can be detected in the iWAT of adult mice or mice that have been housed extensively at thermoneutrality after cold exposure, even though only "inactive dormant" beige adipocytes are present in these mice. Chrna2-Cre expression can also be increased by rosiglitazone treatment and β-adrenergic activation. This research, therefore, introduces the Chrna2-Cre line as a valuable tool for tracking the development of beige adipocytes and investigating beige fat function.
Collapse
Affiliation(s)
- Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biyang Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nadia Houssein
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Traynor S, Bhattacharya S, Batmanov K, Cheng L, Weller A, Moore N, Flesher C, Merrick D. Developmental regulation of dermal adipose tissue by BCL11b. Genes Dev 2024; 38:772-783. [PMID: 39266447 PMCID: PMC11444185 DOI: 10.1101/gad.351907.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including Bcl11b + cells, that regulate the development of dermal white adipose tissue (dWAT). We discovered that BCL11b expression modulates the Wnt signaling microenvironment to enable adipogenic differentiation in the dermal compartment. Subcutaneous and visceral adipose arises from a distinct population of Nefl + cells during embryonic organogenesis, whereas Pi16 + /Dpp4 + fibroadipogenic progenitors support obesity-stimulated hypertrophic expansion in the adult. Together, these results highlight the unique regulatory pathways used by anatomically distinct adipose depots, with important implications for human metabolic disease.
Collapse
Affiliation(s)
- Sarah Traynor
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shashwati Bhattacharya
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kirill Batmanov
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lan Cheng
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Angela Weller
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Natalie Moore
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carmen Flesher
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
5
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
6
|
Kolska M, Agier J, Kozłowska E. Evaluation of preadipocyte factor-1 (Pref-1) level in cord blood of newborns born by mothers with gestational diabetes mellitus (GDM). BMC Pregnancy Childbirth 2024; 24:313. [PMID: 38664725 PMCID: PMC11044594 DOI: 10.1186/s12884-024-06517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common metabolic complication, which leads to short and long-term consequences in both mother and fetus exposed to hyperglycemia. The aetiology of this condition is proposed to be based on the dysfunction of the adipose tissue, which is characterised by the aberrant generation of adipokines. One of them is preadipocyte factor-1 (Pref-1), which could mediate controlling the adaptation of the maternal metabolism to pregnancy. AIMS The study aims to examine the level of Pref-1 in the cord blood of healthy pregnant women's neonates and fetuses born to mothers with GDM. MATERIALS AND METHODS Cord blood samples were collected from 30 newborns of mothers with GDM and 40 newborns of healthy pregnant women. Pref-1 concentrations were measured with an ELISA kit. RESULTS Fetal Pref-1 concentrations were significantly lower in newborns of mothers with GDM compared to the normal pregnancy group children (5.32 ± 0.29 vs. 7.38 ± 0.53; p < 0.001). Mothers with GDM had a significantly higher index of BMI before pregnancy, maternal gestational weight gain, and maternal fasting glucose. In-depth analysis through multiple variant linear regression revealed a significant association between fetal serum Pref-1 levels, exposure to GDM, and gestational age. CONCLUSION These findings contribute valuable insights into maternal-fetal health and pave the way for more targeted and effective clinical interventions.
Collapse
Affiliation(s)
- Monika Kolska
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland.
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland
| |
Collapse
|
7
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
9
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
10
|
Wang B, Du M. Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism. Crit Rev Food Sci Nutr 2023; 64:10608-10625. [PMID: 37427553 PMCID: PMC10776826 DOI: 10.1080/10408398.2023.2227258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Zhao L, Jia D, Tan Z, Jiang H. Association of growth hormone deficiency with an increased number of preadipocytes in subcutaneous fat. Front Endocrinol (Lausanne) 2023; 14:1199589. [PMID: 37305046 PMCID: PMC10250704 DOI: 10.3389/fendo.2023.1199589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
The inhibitory effect of growth hormone (GH) on adipose tissue growth is well known, but the underlying mechanism is not fully understood. In this study, we determined the possibility that GH inhibits adipose tissue growth by inhibiting adipogenesis, the process of formation of adipocytes from stem cells, in the lit/lit mice. The lit/lit mice are GH deficient because of a spontaneous mutation to the GH releasing hormone receptor (ghrhr) gene, and they have more subcutaneous fat despite being smaller than the lit/+ mice at the same age. We found that cells of the stromal vascular fraction (SVF) of subcutaneous fat from the lit/lit mice had greater adipogenic potential than those from the lit/+ mice, as evidenced by forming greater numbers of lipid droplets-containing adipocytes and having greater expression of adipocyte marker genes during induced adipocyte differentiation in culture. However, addition of GH to the culture did not reverse the superior adipogenic potential of subcutaneous SVF from the lit/lit mice. Through florescence-activated cell sorting and quantification of mRNAs of preadipocyte markers, including CD34, CD29, Sca-1, CD24, Pref-1, and PPARγ, we found that subcutaneous SVF from the lit/lit mice contained more preadipocytes than that from the lit/+ mice. These results support the notion that GH inhibits adipose tissue growth in mice at least in part by inhibiting adipogenesis. Furthermore, these results suggest that GH inhibits adipogenesis in mice not by inhibiting the terminal differentiation of preadipocytes into adipocytes, rather by inhibiting the formation of preadipocytes from stem cells or the recruitment of stem cells to the fat depot.
Collapse
|
12
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience 2023; 26:106289. [PMID: 36968079 PMCID: PMC10030912 DOI: 10.1016/j.isci.2023.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Preadipocyte determination expanding the pool of preadipocytes is a vital process in adipocyte hyperplasia, but the molecular mechanisms underlying this process are yet to be elucidated. Herein, SRY-related HMG box transcription factor 4 (SOX4) was identified as a critical target in response to BMP4- and TGFβ-regulated preadipocyte determination. SOX4 deficiency is sufficient to promote preadipocyte determination in mesenchymal stem cells (MSCs) and acquisition of preadipocyte properties in nonadipogenic lineages, while its overexpression impairs the adipogenic capacity of preadipocytes and converts them into nonadipogenic lineages. Mechanism studies indicated that SOX4 activates and cooperates with LEF1 to retain the nuclear localization of β-catenin, thus mediating the crosstalk between TGFβ/BMP4 signaling pathway and Wnt signaling pathway to regulate the preadipocyte determination. In vivo studies demonstrated that SOX4 promotes the adipogenic-nonadipogenic conversion and suppresses the adipocyte hyperplasia. Together, our findings highlight the importance of SOX4 in regulating the adipocyte hyperplasia in obesity.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Fuan Xie
- Xiamen University Research Center of Retroperitoneal, Tumor Committee of Oncology Society of Chinese Medical Association, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiming Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Zehang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Qingsong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Corresponding author
| |
Collapse
|
14
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
15
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Zhao L, Liu X, Gomez NA, Gao Y, Son JS, Chae SA, Zhu MJ, Du M. Stage-specific nutritional management and developmental programming to optimize meat production. J Anim Sci Biotechnol 2023; 14:2. [PMID: 36597116 PMCID: PMC9809060 DOI: 10.1186/s40104-022-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock. However, the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnormalities, impairing meat quality and processing functionality. Early stages of animal development set the long-term growth trajectory of offspring. However, due to the seasonal reproductive cycles of ruminant livestock, gestational nutrient deficiencies caused by seasonal variations, frequent droughts, and unfavorable geological locations negatively affect fetal development and their subsequent production efficiency and meat quality. Therefore, enrolling livestock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest. These crucial early developmental stages include embryonic, fetal, and postnatal stages, which have stage-specific effects on subsequent offspring development, body composition, and meat quality. This review summarizes contemporary research in the embryonic, fetal, and neonatal development, and the impacts of maternal nutrition on the early development and programming effects on the long-term growth performance of livestock. Understanding the developmental and metabolic characteristics of skeletal muscle, adipose, and fibrotic tissues will facilitate the development of stage-specific nutritional management strategies to optimize production efficiency and meat quality.
Collapse
Affiliation(s)
- Liang Zhao
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, PR China ,grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Xiangdong Liu
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Noe A Gomez
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Yao Gao
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Jun Seok Son
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA ,grid.411024.20000 0001 2175 4264Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, MD 21201 Baltimore, USA
| | - Song Ah Chae
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Mei-Jun Zhu
- grid.30064.310000 0001 2157 6568School of Food Science, Washington State University, WA Pullman, USA
| | - Min Du
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| |
Collapse
|
17
|
Vitamin C attenuates predisposition to high-fat diet-induced metabolic dysregulation in GLUT10-deficient mouse model. GENES & NUTRITION 2022; 17:10. [PMID: 35842612 PMCID: PMC9288715 DOI: 10.1186/s12263-022-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
Background The development of type 2 diabetes mellitus (T2DM) is highly influenced by complex interactions between genetic and environmental (dietary and lifestyle) factors. While vitamin C (ascorbic acid, AA) has been suggested as a complementary nutritional treatment for T2DM, evidence for the significance and beneficial effects of AA in T2DM is thus far inconclusive. We suspect that clinical studies on the topic might need to account for combination of genetic and dietary factors that could influence AA effects on metabolism. In this study, we tested this general idea using a mouse model with genetic predisposition to diet-induced metabolic dysfunction. In particular, we utilized mice carrying a human orthologous GLUT10G128E variant (GLUT10G128E mice), which are highly sensitive to high-fat diet (HFD)-induced metabolic dysregulation. The genetic variant has high relevance to human populations, as genetic polymorphisms in glucose transporter 10 (GLUT10) are associated with a T2DM intermediate phenotype in nondiabetic population. Results We investigated the impacts of AA supplementation on metabolism in wild-type (WT) mice and GLUT10G128E mice fed with a normal diet or HFD. Overall, the beneficial effects of AA on metabolism were greater in HFD-fed GLUT10G128E mice than in HFD-fed WT mice. At early postnatal stages, AA improved the development of compromised epididymal white adipose tissue (eWAT) in GLUT10G128E mice. In adult animals, AA supplementation attenuated the predisposition of GLUT10G128E mice to HFD-triggered eWAT inflammation, adipokine dysregulation, ectopic fatty acid accumulation, metabolic dysregulation, and body weight gain, as compared with WT mice. Conclusions Taken together, our findings suggest that AA has greater beneficial effects on metabolism in HFD-fed GLUT10G128E mice than HFD-fed WT mice. As such, AA plays an important role in supporting eWAT development and attenuating HFD-induced metabolic dysregulation in GLUT10G128E mice. Our results suggest that proper WAT development is essential for metabolic regulation later in life. Furthermore, when considering the usage of AA as a complementary nutrition for prevention and treatment of T2DM, individual differences in genetics and dietary patterns should be taken into account. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-022-00713-y.
Collapse
|
18
|
Zhang Q, Shan B, Guo L, Shao M, Vishvanath L, Elmquist G, Xu L, Gupta RK. Distinct functional properties of murine perinatal and adult adipose progenitor subpopulations. Nat Metab 2022; 4:1055-1070. [PMID: 35982290 PMCID: PMC9940036 DOI: 10.1038/s42255-022-00613-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Adult white adipose tissue (WAT) harbors distinct mesenchymal stromal cell subpopulations that differentially affect WAT function and plasticity. Here we unveil the cellular landscape of the perinatal epididymal WAT primordium using single-cell transcriptomics in male mice. We reveal that adipocyte precursor cells and fibro-inflammatory progenitors (FIPs) emerge as functionally distinct PDGFRβ+ subpopulations within the epididymal WAT anlagen prior to adipocyte accrual. We further identify important molecular and functional differences between perinatal and adult FIPs, including differences in their pro-inflammatory response, adipogenic capacity and anti-adipogenic behavior. Notably, we find that transient overexpression of Pparg in PDGFRβ+ cells only during postnatal days 0.5 to 7.5 in male mice leads to hyperplastic WAT development, durable progenitor cell reprogramming, and protection against pathologic WAT remodeling and glucose intolerance in adult-onset obesity. Thus, factors that alter the adipogenic capacity of perinatal adipose progenitors can have long-lasting effects on progenitor plasticity, tissue expandability and metabolic health into adulthood.
Collapse
Affiliation(s)
- Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Elmquist
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Hernandez M, Shin S, Muller C, Attané C. The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer Metastasis Rev 2022; 41:589-605. [PMID: 35708800 DOI: 10.1007/s10555-022-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Bone marrow adipose tissues (BMATs) and their main cellular component, bone marrow adipocytes (BMAds), are found within the bone marrow (BM), which is a niche for the development of hematological malignancies as well as bone metastasis from solid tumors such as breast and prostate cancers. In humans, BMAds are present within the hematopoietic or "red" BMAT and in the "yellow" BMAT where they are more densely packed. BMAds are emerging as new actors in tumor progression; however, there are many outstanding questions regarding their precise role. In this review, we summarized our current knowledge regarding the development, distribution, and regulation by external stimuli of the BMATs in mice and humans and addressed how obesity could affect these traits. We then discussed the specific metabolic phenotype of BMAds that appear to be different from "classical" white adipocytes, since they are devoid of lipolytic function. According to this characterization, we presented how tumor cells affect the in vitro and in vivo phenotype of BMAds and the signals emanating from BMAds that are susceptible to modulate tumor behavior with a specific emphasis on their metabolic crosstalk with cancer cells. Finally, we discussed how obesity could affect this crosstalk. Deciphering the role of BMAds in tumor progression would certainly lead to the identification of new targets in oncology in the near future.
Collapse
Affiliation(s)
- Marine Hernandez
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France
| | - Sauyeun Shin
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France.
| | - Camille Attané
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France.
| |
Collapse
|
20
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
21
|
Dang TN, Tiongco RP, Brown LM, Taylor JL, Lyons JM, Lau FH, Floyd ZE. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer 2022; 22:300. [PMID: 35313831 PMCID: PMC8939188 DOI: 10.1186/s12885-022-09379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. METHODS Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. RESULTS Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. CONCLUSIONS These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - Rafael P Tiongco
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Loren M Brown
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - John M Lyons
- Our Lady of the Lake Medical Center, Baton Rouge, Louisiana, 70808, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA.
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
22
|
Wen Q, Xie X, Ren Q, Du Y. Polybrominated diphenyl ether congener 99 (PBDE 99) promotes adipocyte lineage commitment of C3H10T1/2 mesenchymal stem cells. CHEMOSPHERE 2022; 290:133312. [PMID: 34919914 DOI: 10.1016/j.chemosphere.2021.133312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Obesogens are defined as chemicals that trigger obesity partially by stimulating adipogenesis. Adipogenesis consists of two successive processes: the adipocyte lineage commitment of pluripotent stem cells and the differentiation of preadipocytes. Compared with the differentiation of preadipocytes, the effects of most environmental obesogens on adipocyte lineage commitment remain largely unknown. In this study, investigations are performed to explore the influences of PBDE 99 on the adipocyte lineage commitment based on C3H10T1/2, which has been widely used as a mesenchymal stem cell (MSC) model. Our results indicated that exposure to PBDE 99 during commitment stage resulted in significant up-regulation of subsequent adipogenesis in C3H10T1/2 MSCs. Interestingly, PBDE 99 did not affect the osteogenesis of C3H10T1/2 MSCs, although the adipogenesis and osteogenesis of MSCs are typically reciprocal. PBDE 99 was further demonstrated to significantly decrease the expression of Pref1, the marker of very early adipose mesenchymal precursor, and its downstream effector, Sox9. This result strongly suggested that PBDE 99 facilitated adipocyte commitment to exert adipogenic effect on C3H10T1/2 MSCs. Mechanistic studies revealed that PBDE 99 efficiently inhibited Hedgehog signaling transduction, a conserved negative regulator of the adipocyte lineage commitment. Furthermore, the effects of PBDE 99 on adipogenesis were abrogated by the co-treatment with SAG, a specific Hedgehog signaling activator, suggesting inhibition of Hedgehog signaling is responsible for the effect of PBDE 99 on adipocyte commitment. Taking together, these results strongly suggested enhanced adipocyte lineage commitment was involved in potential obesogenic effect of PBDE 99, presumably through repressing Hedgehog signalling during commitment stage. Moreover, the results of this study indicated that C3H10T1/2 can be used as a feasible MSCs cell model to evaluate the capabilities of potential obesogens on adipocyte commitment.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
23
|
Bruder J, Fromme T. Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Front Endocrinol (Lausanne) 2022; 13:849877. [PMID: 35250892 PMCID: PMC8892685 DOI: 10.3389/fendo.2022.849877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
Collapse
Affiliation(s)
- Johanna Bruder
- Else Kröner-Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich, Freising, Germany
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- *Correspondence: Tobias Fromme,
| |
Collapse
|
24
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
25
|
Paeschke S, Winter K, Bechmann I, Klöting N, Blüher M, Baum P, Kosacka J, Nowicki M. Leptin Receptor-Deficient db/db Mice Show Significant Heterogeneity in Response to High Non-heme Iron Diet. Front Nutr 2021; 8:741249. [PMID: 34646852 PMCID: PMC8503537 DOI: 10.3389/fnut.2021.741249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recent studies have shown an association between iron homeostasis, obesity and diabetes. In this work, we investigated the differences in the metabolic status and inflammation in liver, pancreas and visceral adipose tissue of leptin receptor-deficient db/db mice dependent on high iron concentration diet. 3-month-old male BKS-Leprdb/db/JOrlRj (db/db) mice were divided into two groups, which were fed with different diets containing high iron (29 g/kg, n = 57) or standard iron (0.178 g/kg; n = 42) concentrations for 4 months. As anticipated, standard iron-fed db/db mice developed obesity and diabetes. However, high iron-fed mice exhibited a wide heterogeneity. By dividing into two subgroups at the diabetes level, non-diabetic subgroup 1 (<13.5 mmol/l, n = 30) significantly differed from diabetic subgroup two (>13.5 mmol/l, n = 27). Blood glucose concentration, HbA1c value, inflammation markers interleukin six and tumor necrosis factor α and heme oxygenase one in visceral adipose tissue were reduced in subgroup one compared to subgroup two. In contrast, body weight, C-peptide, serum insulin and serum iron concentrations, pancreatic islet and signal ratio as well as cholesterol, LDL and HDL levels were enhanced in subgroup one. While these significant differences require further studies and explanation, our results might also explain the often-contradictory results of the metabolic studies with db/db mice.
Collapse
Affiliation(s)
- Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum Munchen at the University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum Munchen at the University of Leipzig, Leipzig, Germany.,Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra Baum
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Leipzig, Germany.,Applied Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Demir Çaltekin M, Caniklioğlu A. Maternal Serum Delta-Like 1 and Nesfatin-1 Levels in Gestational Diabetes Mellitus: A Prospective Case-Control Study. Cureus 2021; 13:e17001. [PMID: 34540403 PMCID: PMC8423317 DOI: 10.7759/cureus.17001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Delta-like 1 (DLK1) and nesfatin-1 are adipokines that have been shown to affect glucose metabolism. We aimed to search serum DLK1 and nesfatin-1 concentrations at 24-28 weeks of pregnancy in women newly defined with gestational diabetes mellitus (GDM) and investigate the relationship of these adipokines with various metabolic parameters. Methods Serum levels of DLK1 and nesfatin-1 were evaluated in 44 women with GDM, and in 40 healthy pregnant women by enzyme-linked immunosorbent assay (ELISA) kits. While performing oral glucose tolerance test (OGTT) for GDM diagnosis at 24-28 weeks of pregnancy, homeostasis model assessment of insulin resistance (HOMA-IR), lipid profiles, glycosylated hemoglobin (HbA1c) were also measured. Results Maternal serum DLK1 and nesfatin-1 concentrations were found lower in pregnant women with GDM compared with healthy pregnant women (418.4±282.6 vs. 586.7±303 ng/L, p=0.002; 12.2±7.6 vs. 26.7±16.4 ng/ml, p<0.001, respectively). Maternal serum DLK1 levels correlated positively with HOMA-IR and fasting insulin (r=0.395, p=0.008; r=0.374, p=0.012, respectively). Conclusion We determined that DLK1 and nesfatin-1 levels were lower in GDM. Based on this study, it may be considered that DLK1 could be culpable for metabolic disorders in GDM.
Collapse
Affiliation(s)
- Melike Demir Çaltekin
- Obstetrics and Gynecology, Yozgat Bozok University, Faculty of Medicine, Yozgat, TUR
| | - Ayşen Caniklioğlu
- Biochemistry, Yozgat Bozok University, Faculty of Medicine, Yozgat, TUR
| |
Collapse
|
27
|
Lepanto P, Levin-Ferreyra F, Koziol U, Malacrida L, Badano JL. Insights into in vivo adipocyte differentiation through cell-specific labeling in zebrafish. Biol Open 2021; 10:271875. [PMID: 34409430 PMCID: PMC8443861 DOI: 10.1242/bio.058734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
White adipose tissue hyperplasia has been shown to be crucial for handling excess energy in healthy ways. Though adipogenesis mechanisms have been underscored in vitro, we lack information on how tissue and systemic factors influence the differentiation of new adipocytes. While this could be studied in zebrafish, adipocyte identification currently relies on neutral lipid labeling, thus precluding access to cells in early stages of differentiation. Here we report the generation and analysis of a zebrafish line with the transgene fabp4a(-2.7):EGFPcaax. In vivo confocal microscopy of the pancreatic and abdominal visceral depots of transgenic larvae, revealed the presence of labeled mature adipocytes as well as immature cells in earlier stages of differentiation. Through co-labeling for blood vessels, we observed a close interaction of differentiating adipocytes with endothelial cells through cell protrusions. Finally, we implemented hyperspectral imaging and spectral phasor analysis in Nile Red-labeled transgenic larvae and revealed the lipid metabolic transition towards neutral lipid accumulation of differentiating adipocytes. Altogether our work presents the characterization of a novel adipocyte-specific label in zebrafish and uncovers previously unknown aspects of in vivo adipogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Analysis of the differentiation of adipocytes in vivo through cell-specific labeling in zebrafish, revealed their early interaction with blood vessels as well as early lipid metabolic changes.
Collapse
Affiliation(s)
- Paola Lepanto
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| | - Florencia Levin-Ferreyra
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Igua 4225, CP11400, Uruguay
| | - Leonel Malacrida
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo and Universidad de la República, Montevideo, Mataojo 2020, CP11400, Uruguay.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Av. Italia s/n, CP11600, Uruguay
| | - José L Badano
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| |
Collapse
|
28
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
29
|
Griesel BA, Matsuzaki S, Batushansky A, Griffin TM, Humphries KM, Olson AL. PFKFB3-dependent glucose metabolism regulates 3T3-L1 adipocyte development. FASEB J 2021; 35:e21728. [PMID: 34110658 PMCID: PMC8205188 DOI: 10.1096/fj.202100381rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
Proliferation and differentiation of preadipocytes, and other cell types, is accompanied by an increase in glucose uptake. Previous work showed that a pulse of high glucose was required during the first 3 days of differentiation in vitro, but was not required after that. The specific glucose metabolism pathways required for adipocyte differentiation are unknown. Herein, we used 3T3-L1 adipocytes as a model system to study glucose metabolism and expansion of the adipocyte metabolome during the first 3 days of differentiation. Our primary outcome measures were GLUT4 and adiponectin, key proteins associated with healthy adipocytes. Using complete media with 0 or 5 mM glucose, we distinguished between developmental features that were dependent on the differentiation cocktail of dexamethasone, insulin, and isobutylmethylxanthine alone or the cocktail plus glucose. Cocktail alone was sufficient to activate the capacity for 2-deoxglucose uptake and glycolysis, but was unable to support the expression of GLUT4 and adiponectin in mature adipocytes. In contrast, 5 mM glucose in the media promoted a transient increase in glucose uptake and glycolysis as well as a significant expansion of the adipocyte metabolome and proteome. Using genetic and pharmacologic approaches, we found that the positive effects of 5 mM glucose on adipocyte differentiation were specifically due to increased expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulator of glycolysis and the ancillary glucose metabolic pathways. Our data reveal a critical role for PFKFB3 activity in regulating the cellular metabolic remodeling required for adipocyte differentiation and maturation.
Collapse
Affiliation(s)
- Beth A Griesel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | - Timothy M Griffin
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kenneth M Humphries
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ann Louise Olson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
30
|
Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol 2021; 22:465-482. [PMID: 33837369 DOI: 10.1038/s41580-021-00357-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/02/2023]
Abstract
Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.
Collapse
Affiliation(s)
- Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
31
|
Nguyen HP, Lin F, Yi D, Xie Y, Dinh J, Xue P, Sul HS. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell 2021; 56:1437-1451.e3. [PMID: 33878347 PMCID: PMC8137669 DOI: 10.1016/j.devcel.2021.03.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue mass and adiposity change throughout the lifespan. During aging, while visceral adipose tissue (VAT) tends to increase, peripheral subcutaneous adipose tissue (SAT) decreases significantly. Unlike VAT, which is linked to metabolic diseases, including type 2 diabetes, SAT has beneficial effects. However, the molecular details behind the aging-associated loss of SAT remain unclear. Here, by comparing scRNA-seq of total stromal vascular cells of SAT from young and aging mice, we identify an aging-dependent regulatory cell (ARC) population that emerges only in SAT of aged mice and humans. ARCs express adipose progenitor markers but lack adipogenic capacity; they secrete high levels of pro-inflammatory chemokines, including Ccl6, to inhibit proliferation and differentiation of neighboring adipose precursors. We also found Pu.1 to be a driving factor for ARC development. We identify an ARC population and its capacity to inhibit differentiation of neighboring adipose precursors, correlating with aging-associated loss of SAT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Frances Lin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle Yi
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Xie
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennie Dinh
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pengya Xue
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Muoio F, Panella S, Jossen V, Lindner M, Harder Y, Müller M, Eibl R, Tallone T. Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status. J Funct Biomater 2021; 12:jfb12020025. [PMID: 33923488 PMCID: PMC8167760 DOI: 10.3390/jfb12020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells' quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions.
Collapse
Affiliation(s)
- Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Valentin Jossen
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | | | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | | | - Regine Eibl
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
- Correspondence: ; Tel.: +41-91-805-38-85
| |
Collapse
|
33
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
34
|
Al Dow M, Silveira MAD, Poliquin A, Tribouillard L, Fournier É, Trébaol E, Secco B, Villot R, Tremblay F, Bilodeau S, Laplante M. Control of adipogenic commitment by a STAT3-VSTM2A axis. Am J Physiol Endocrinol Metab 2021; 320:E259-E269. [PMID: 33196296 PMCID: PMC8260376 DOI: 10.1152/ajpendo.00314.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
White adipose tissue (WAT) is a dynamic organ that plays crucial roles in controlling metabolic homeostasis. During development and periods of energy excess, adipose progenitors are recruited and differentiate into adipocytes to promote lipid storage capability. The identity of adipose progenitors and the signals that promote their recruitment are still incompletely characterized. We have recently identified V-set and transmembrane domain-containing protein 2A (VSTM2A) as a novel protein enriched in preadipocytes that amplifies adipogenic commitment. Despite the emerging role of VSTM2A in promoting adipogenesis, the molecular mechanisms regulating Vstm2a expression in preadipocytes are still unknown. To define the molecular mechanisms controlling Vstm2a expression, we have treated preadipocytes with an array of compounds capable of modulating established regulators of adipogenesis. Here, we report that Vstm2a expression is positively regulated by PI3K/mTOR and cAMP-dependent signaling pathways and repressed by the MAPK pathway and the glucocorticoid receptor. By integrating the impact of all the molecules tested, we identified signal transducer and activator of transcription 3 (STAT3) as a novel downstream transcription factor affecting Vstm2a expression. We show that activation of STAT3 increased Vstm2a expression, whereas its inhibition repressed this process. In mice, we found that STAT3 phosphorylation is elevated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression. Our findings identify STAT3 as a key transcription factor regulating Vstm2a expression in preadipocytes.NEW & NOTEWORTHY cAMP-dependent and PI3K-mTOR signaling pathways promote the expression of Vstm2a. STAT3 is a key transcription factor that controls Vstm2a expression in preadipocytes. STAT3 is activated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression.
Collapse
Affiliation(s)
- Manal Al Dow
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Maruhen Amir Datsch Silveira
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Audrée Poliquin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Laura Tribouillard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Éric Fournier
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
| | - Eva Trébaol
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Blandine Secco
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Romain Villot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Félix Tremblay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Steve Bilodeau
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
35
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
36
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
37
|
Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165760. [PMID: 32796696 PMCID: PMC7460846 DOI: 10.3390/ijms21165760] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose tissue is generally linked to excessive body fat, and it is well known that the female breast is rich in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM) and immune cells, with a significant role in the dynamics of breast changes throughout the life span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will discuss the importance of breast adipose tissue in breast development and its involvement in breast changes happening during pregnancy, lactation and involution. We will focus on understanding the biology of breast adipose tissue, with an overview on its involvement in the various steps of breast cancer development and progression. The interaction between the breast adipose tissue surrounding cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies and finding novel candidates to target breast cancer.
Collapse
Affiliation(s)
- Charu Kothari
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48508)
| |
Collapse
|
38
|
Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J 2020; 477:583-600. [PMID: 32026949 DOI: 10.1042/bcj20190467] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
A central function of adipose tissue is in the management of systemic energy homeostasis that is achieved through the co-ordinated regulation of energy storage and mobilization, adipokine release, and immune functions. With the dramatic increase in the prevalence of obesity and obesity-related metabolic disease over the past 30 years, there has been extensive interest in targeting adipose tissue for therapeutic benefit. However, in order for this goal to be achieved it is essential to establish a comprehensive atlas of adipose tissue cellular composition and define mechanisms of intercellular communication that mediate pathologic and therapeutic responses. While traditional methods, such as fluorescence-activated cell sorting (FACS) and genetic lineage tracing, have greatly advanced the field, these approaches are inherently limited by the choice of markers and the ability to comprehensively identify and characterize dynamic interactions among stromal cells within the tissue microenvironment. Single cell RNA sequencing (scRNAseq) has emerged as a powerful tool for deconvolving cellular heterogeneity and holds promise for understanding the development and plasticity of adipose tissue under normal and pathological conditions. scRNAseq has recently been used to characterize adipose stem cell (ASC) populations and has provided new insights into subpopulations of macrophages that arise during anabolic and catabolic remodeling in white adipose tissue. The current review summarizes recent findings that use this technology to explore adipose tissue heterogeneity and plasticity.
Collapse
|
39
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
40
|
Identification of distinct transcriptome signatures of human adipose tissue from fifteen depots. Eur J Hum Genet 2020; 28:1714-1725. [PMID: 32661330 PMCID: PMC7784683 DOI: 10.1038/s41431-020-0681-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
The functional and metabolic characteristics of specific adipose tissue (AT) depots seem to be determined by intrinsic mechanisms. We performed a comprehensive transcriptome profiling of human AT from distinct fat depots to unravel their unique features potentially explaining molecular mechanisms underlying AT distribution and their contribution to health and disease. Post-mortem AT samples of five body donors from 15 anatomical locations were collected. Global mRNA expression was measured by Illumina® Human HT-12 v4 Expression BeadChips. Data were validated using qPCR and Western Blot in a subset of ATs from seven additional body donors. Buccal and heel AT clearly separated from the “classical” subcutaneous AT depots, and perirenal and epicardial AT were distinct from visceral depots. Gene-set enrichment analyses pointed to an inflammatory environment and insulin resistance particularly in the carotid sheath AT depot. Moreover, the epicardial fat transcriptome was enriched for genes involved in extracellular matrix remodeling, inflammation, immune signaling, coagulation, thrombosis, beigeing, and apoptosis. Interestingly, a striking downregulation of the expression of leptin receptor was found in AT from heel compared with all other AT depots. The distinct gene expression patterns are likely to define fat depot specific AT functions in metabolism, energy storage, immunity, body insulation or as cushions. Improved knowledge of the gene expression profiles of various fat depots may strongly benefit studies aimed at better understanding of the genetics and the pathophysiology of obesity and adverse body fat composition.
Collapse
|
41
|
Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest 2020; 129:4032-4040. [PMID: 31498150 DOI: 10.1172/jci129192] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity's propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France
| | - Ana Letícia M Silveira
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís Bhering Martins
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Vm Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
42
|
Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 2020; 129:4022-4031. [PMID: 31573549 DOI: 10.1172/jci129191] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the "metabolically healthy" obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.
Collapse
|
43
|
Luo X, Li Y, Yang P, Chen Y, Wei L, Yu T, Xia J, Ruan XZ, Zhao L, Chen Y. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function. EBioMedicine 2020; 56:102797. [PMID: 32516742 PMCID: PMC7281849 DOI: 10.1016/j.ebiom.2020.102797] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Preadipocyte is closely related to obesity-induced inflammation. The impairment of autophagic flux by defective lysosomal function has been observed in adipose tissue from obese mice. While the fatty acid translocase CD36 is an important immuno-metabolic receptor, it remains unclear whether preadipocyte CD36 is involved in adipose tissue inflammation and whether CD36 regulates lysosomal function. Methods Using visceral adipose tissue from obese patients, a high-fat diet (HFD)-induced obese mice model, primary mouse preadipocytes and 3T3L1 cells we analyzed whether and how preadipocyte CD36 modulates lysosomal function and adipose tissue inflammation. Findings CD36 expression in preadipocytes is induced in obese patients and HFD-fed mice, accompanied with the disruption of lysosome function. CD36 knockout protects primary preadipocytes of HFD-fed mice from lysosomal impairment. In vitro, CD36 interacts with Fyn to phosphorylate and activate Inositol (1,4,5)-trisphosphate receptor 1 (IP3R1), causing excess calcium transport from endoplasmic reticulum (ER) to lysosome, which results in lysosomal impairment and inflammation. Moreover, IP3R inhibitor 2-aminoethoxydiphenyl borate (2APB) attenuates lysosomal impairment, inflammation and lipid accumulation in CD36-overexpressing preadipocytes. Interpretation Our data support that the abnormal upregulation of CD36 in preadipocytes may contribute to the development of adipose tissue inflammation. CD36/Fyn/IP3R1-mediated lysosomal calcium overload leads to lysosomal impairment and inflammation in preadipocyte. Thus targeting improving lysosomal calcium homeostasis may represent a novel strategy for treating obesity-induced inflammation.
Collapse
Affiliation(s)
- Xiaoxiao Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yao Chen
- Medical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yu
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xia
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Hanghai, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
44
|
Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond) 2020; 133:2107-2119. [PMID: 31654064 DOI: 10.1042/cs20190128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022]
Abstract
Adipose tissues collectively as an endocrine organ and energy storage are crucial for systemic metabolic homeostasis. The major cell type in the adipose tissue, the adipocytes or fat cells, are remarkably plastic and can increase or decrease their size and number to adapt to changes in systemic or local metabolism. Changes in adipocyte size occur through hypertrophy or atrophy, and changes in cell numbers mainly involve de novo generation of new cells or death of existing cells. Recently, dedifferentiation, whereby a mature adipocyte is reverted to an undifferentiated progenitor-like status, has been reported as a mechanism underlying adipocyte plasticity. Dedifferentiation of mature adipocytes has been observed under both physiological and pathological conditions. This review covers several aspects of adipocyte dedifferentiation, its relevance to adipose tissue function, molecular pathways that drive dedifferentiation, and the potential of therapeutic targeting adipocyte dedifferentiation in human health and metabolic diseases.
Collapse
|
45
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
46
|
The Impact of Lidocaine on Adipose-Derived Stem Cells in Human Adipose Tissue Harvested by Liposuction and Used for Lipotransfer. Int J Mol Sci 2020; 21:ijms21082869. [PMID: 32326070 PMCID: PMC7215560 DOI: 10.3390/ijms21082869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
The local anesthetic lidocaine, which has been used extensively during liposuction, has been reported to have cytotoxic effects and therefore would be unsuitable for use in autologous lipotransfer. We evaluated the effect of lidocaine on the distribution, number, and viability of adipose-derived stem cells (ASCs), preadipocytes, mature adipocytes, and leukocytes in the fatty and fluid portion of the lipoaspirate using antibody staining and flow cytometry analyses. Adipose tissue was harvested from 11 female patients who underwent liposuction. Abdominal subcutaneous fat tissue was infiltrated with tumescent local anesthesia, containing lidocaine on the left and lacking lidocaine on the right side of the abdomen, and harvested subsequently. Lidocaine had no influence on the relative distribution, cell number, or viability of ASCs, preadipocytes, mature adipocytes, or leukocytes in the stromal-vascular fraction. Assessing the fatty and fluid portions of the lipoaspirate, the fatty portions contained significantly more ASCs (p < 0.05), stem cells expressing the preadipocyte marker Pref-1 (p < 0.01 w/lidocaine, p < 0.05 w/o lidocaine), and mature adipocytes (p < 0.05 w/lidocaine, p < 0.01 w/o lidocaine) than the fluid portions. Only the fatty portion should be used for transplantation. This study found no evidence that would contraindicate the use of lidocaine in lipotransfer. Limitations of the study include the small sample size and the inclusion of only female patients.
Collapse
|
47
|
Taguchi K, Kajita K, Kitada Y, Fuwa M, Asano M, Ikeda T, Kajita T, Ishizaka T, Kojima I, Morita H. Role of small proliferative adipocytes: possible beige cell progenitors. J Endocrinol 2020; 245:65-78. [PMID: 31990671 PMCID: PMC7040459 DOI: 10.1530/joe-19-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.
Collapse
Affiliation(s)
- Koichiro Taguchi
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuo Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Correspondence should be addressed to K Kajita:
| | - Yoshihiko Kitada
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahide Ikeda
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tatsuo Ishizaka
- Department of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Itaru Kojima
- Laboratory of Cell Physiology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
48
|
SIRT1 induces the adipogenic differentiation of mouse embryonic stem cells by regulating RA-induced RAR expression via NCOR1 acetylation. Stem Cell Res 2020; 44:101771. [DOI: 10.1016/j.scr.2020.101771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 01/12/2023] Open
|
49
|
Zhang Y, Su X, Dong Y, Chen T, Zhang Y, Wu B, Li H, Sun X, Xia L, Zhang D, Wang H, Xu G. Cytological and functional characteristics of fascia adipocytes in rats: A unique population of adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158585. [DOI: 10.1016/j.bbalip.2019.158585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023]
|
50
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|