1
|
Krueger ABC, Zhu X, Siddiqi S, Whitehead EC, Tang H, Jordan KL, Lerman A, Lerman LO. Mesenchymal Stem/Stromal Cells Reverse Adipose Tissue Inflammation in Pigs with Metabolic Syndrome and Renovascular Hypertension. Cells 2025; 14:40. [PMID: 39791741 PMCID: PMC11720192 DOI: 10.3390/cells14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs. In the MSC-treated group, autologous adipose-derived MSCs (107 cells) were injected into the renal artery six weeks after RAS induction. After four weeks, fat volumes and inflammatory markers were assessed. MSC treatment reduced levels of pro-inflammatory cytokines (MCP-1, TNF-a, IL-6) in the renal vein blood and in perirenal fat. The MSCs also decreased fat fibrosis, restored adipocyte size, and altered adipogenesis-related gene expression, particularly in the perirenal fat. These effects were less pronounced in subcutaneous fat. The MSC therapy attenuated fat inflammation and improved metabolic outcomes in pigs with MetS + RAS, suggesting that adipose-derived MSCs may offer a promising therapeutic approach for metabolic disorders.
Collapse
Affiliation(s)
- Alexander B. C. Krueger
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Xiangyang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Sarosh Siddiqi
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Emma C. Whitehead
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Hui Tang
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Kyra L. Jordan
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| | - Lilach O. Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; (A.B.C.K.); (X.Z.); (E.C.W.); (H.T.); (K.L.J.)
| |
Collapse
|
2
|
Lawton SB, Wagner VA, Nakagawa P, Segar JL, Sigmund CD, Morselli LL, Grobe JL. Angiotensin in the Arcuate: Mechanisms Integrating Cardiometabolic Control: The 2022 COH Mid-Career Award for Research Excellence. Hypertension 2024; 81:2209-2217. [PMID: 39315447 PMCID: PMC11483214 DOI: 10.1161/hypertensionaha.124.20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The American Heart Association has identified obesity as a primary impediment to ongoing improvements in cardiovascular diseases, including hypertension. Although drugs, exercise, diets, and surgeries can each cause weight loss, few subjects maintain a reduced weight over the long term. Dysfunctional integrative control (ie, adaptation) of resting metabolic rate (RMR) appears to underlie this failed weight maintenance, yet the neurobiology of physiological and pathophysiological RMR control is poorly understood. Here, we review recent insights into the cellular and molecular control of RMR by Ang-II (angiotensin II) signaling within the arcuate nucleus of the hypothalamus. Within a unique subset of agouti-related peptide neurons, AT1R (Ang-II type 1 receptors) are implicated in the integrative control of RMR. Furthermore, a spontaneous G protein signal switch of AT1R within this neuron type appears to underlie the pathogenesis of RMR adaptation by qualitatively changing the cellular response to AT1R activation from a β-arrestin-1/Gαi (heterotrimeric G protein, α i subtype)-mediated inhibitory response to a Gαq (heterotrimeric G protein, α q subtype)-mediated stimulatory response. We conclude that therapeutic approaches to obesity are likely hampered by the plasticity of the signaling mechanisms that mediate the normal integrative control of energy balance. The same stimulus that would increase RMR in the normal physiological state may decrease RMR during obesity due to qualitative changes in second-messenger coupling. Understanding the mechanisms that regulate interactions between receptors such as AT1R and its various second messenger signaling cascades will provide novel insights into the pathogenesis of RMR adaptation and potentially point toward new therapeutic approaches for obesity and hypertension.
Collapse
Affiliation(s)
- Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Valerie A. Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lisa L. Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
3
|
Kalupahana NS, Moustaid-Moussa N. Beyond blood pressure, fluid and electrolyte homeostasis - Role of the renin angiotensin aldosterone system in the interplay between metabolic diseases and breast cancer. Acta Physiol (Oxf) 2024; 240:e14164. [PMID: 38770946 DOI: 10.1111/apha.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The classical renin angiotensin aldosterone system (RAAS), as well as the recently described counter-regulatory or non-canonical RAAS have been well characterized for their role in cardiovascular homeostasis. Moreover, extensive research has been conducted over the past decades on both paracrine and the endocrine roles of local RAAS in various metabolic regulations and in chronic diseases. Clinical evidence from patients on RAAS blockers as well as pre-clinical studies using rodent models of genetic manipulations of RAAS genes documented that this system may play important roles in the interplay between metabolic diseases and cancer, namely breast cancer. Some of these studies suggest potential therapeutic applications and repurposing of RAAS inhibitors for these diseases. In this review, we discuss the mechanisms by which RAAS is involved in the pathogenesis of metabolic diseases such as obesity and type-2 diabetes as well as the role of this system in the initiation, expansion and/or progression of breast cancer, especially in the context of metabolic diseases.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
McCalla G, Brown PD, Nwokocha C. Cadmium induces microcytosis and anisocytosis without anaemia in hypertensive rats. Biometals 2024; 37:519-526. [PMID: 38184813 DOI: 10.1007/s10534-023-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
Dietary cadmium (Cd2+) intake is implicated in the pathogenesis of hypertension and anaemia, but there is a paucity of information on the haematological changes in hypertensive conditions. This study, therefore, aims to evaluate the effects of Cd2+ on blood pressure (BP) and haematological indices in the Sprague-Dawley rat model. Three cohorts (n = 10 each) of control and Cd2+-fed male Sprague-Dawley rats were selected. Cd2+-exposed rats received 2.5 or 5 mg/kg b.w. cadmium chloride via gavage thrice-weekly for eight weeks, while control animals received tap water. BP and flow were measured non-invasively from rat tails twice-weekly using a CODA machine, while weights were measured thrice-weekly. Haematological indices were assessed using the Cell-Dyn Emerald Haematology Analyzer. Data were reported as mean ± SEM, and statistically analyzed using One-Way Analysis of Variance. Bonferroni post hoc test was used for multiple comparisons. Cd2+-exposure induced hypertension by significantly (p < 0.05) elevating systolic, diastolic, and mean arterial BPs, pulse pressure, and heart rate (HR), and increased (p < 0.05) blood flow. Mean cell volume (MCV) and haemoglobin (MCH) were significantly (p < 0.05) reduced, and red cell distribution width (RDW) significantly (p < 0.01) increased by exposure to 5 mg/kg b.w. Cd2+. Haemoglobin concentration (MCHC), haematocrit, haemoglobin, red blood cell, platelet, mean platelet volume, and white blood cell counts were unaffected by Cd2+-exposure. Cd2+ induced hypertension, microcytosis, hypochromicity, and anisocytosis without anaemia, which may be precursor to microcytic anaemia and coronary artery disease. This study is important in Cd2+-exposed environments and warrants further investigations.
Collapse
Affiliation(s)
- Garsha McCalla
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica.
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
5
|
Ziegler AA, Lawton SBR, Grobe CC, Reho JJ, Freudinger BP, Burnett CML, Nakagawa P, Grobe JL, Segar JL. Early-life sodium deprivation programs long-term changes in ingestive behaviors and energy expenditure in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R576-R592. [PMID: 37720996 PMCID: PMC10866575 DOI: 10.1152/ajpregu.00137.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Bonnie P Freudinger
- Engineering Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Balapattabi K, Yavuz Y, Jiang J, Deng G, Mathieu NM, Ritter ML, Opichka MA, Reho JJ, McCorvy JD, Nakagawa P, Morselli LL, Mouradian GC, Atasoy D, Cui H, Hodges MR, Sigmund CD, Grobe JL. Angiotensin AT 1A receptor signal switching in Agouti-related peptide neurons mediates metabolic rate adaptation during obesity. Cell Rep 2023; 42:112935. [PMID: 37540598 PMCID: PMC10530419 DOI: 10.1016/j.celrep.2023.112935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
8
|
Li Y, Zhai H, Kang L, Chu Q, Zhao X, Li R. Causal association between basal metabolic rate and risk of cardiovascular diseases: a univariable and multivariable Mendelian randomization study. Sci Rep 2023; 13:12487. [PMID: 37528130 PMCID: PMC10393961 DOI: 10.1038/s41598-023-39551-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Basal metabolic rate (BMR) is associated with cardiovascular health; however, the causal relationship between BMR and the risk of cardiovascular diseases (CVDs) remains unclear. This study aimed to investigate the potential causal relationship of BMR on common CVDs including aortic aneurysm (AA), atrial fibrillation and flutter (AFF), calcific aortic valvular stenosis (CAVS), heart failure (HF), and myocardial infarction (MI) by Mendelian randomization (MR). The univariable MR analysis using inverse variance weighted (IVW) model as the primary analysis method revealed that genetically predicted higher BMR causally increased the risk of AA [IVW odds ratio (OR) = 1.34, 95% confidence interval CI 1.09-1.65, p = 0.00527], AFF (IVW OR = 1.87, 95% CI 1.65-2.12, p = 1.697 × E-22), and HF (IVW OR = 1.35, 95% CI 1.20-1.51, p = 2.364 × E-07), while causally decreasing the risk of MI (IVW OR = 0.83, 95% CI 0.73-0.93, p = 0.00255). In the multivariable MR analysis, which controlled for common cardiovascular risk factors, direct effects of BMR on an increased risk of AA and AFF, as well as a decreased risk of MI, but an attenuated causal effect on HF, were observed. In conclusion, the current MR study provides evidence for a causal relationship between BMR and the risk of AA, AFF, HF, and MI.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiqi Zhai
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Kang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qingmin Chu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinjun Zhao
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Kim JY, Kim SH, Seok J, Bae SH, Hwang SG, Kim GJ. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:512-524. [PMID: 36865088 PMCID: PMC9970868 DOI: 10.1016/j.omtn.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea,Corresponding author Gi Jin Kim, Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
10
|
Oliveira V, Riedl RA, Claflin KE, Mathieu NM, Ritter ML, Balapattabi K, Wackman KK, Reho JJ, Brozoski DT, Morgan DA, Cui H, Rahmouni K, Burnett CML, Nakagawa P, Sigmund CD, Morselli LL, Grobe JL. Melanocortin MC 4R receptor is required for energy expenditure but not blood pressure effects of angiotensin II within the mouse brain. Physiol Genomics 2022; 54:196-205. [PMID: 35476598 PMCID: PMC9131927 DOI: 10.1152/physiolgenomics.00015.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ruth A Riedl
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
- Iowa City Veterans Affairs Health Care System, Iowa City, Iowa
| | - Colin M L Burnett
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lisa L Morselli
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
12
|
Chen H, Yu B, Guo X, Hua H, Cui F, Guan Y, Tian Y, Zhang X, Zhang Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Decreases High Blood Pressure by Stabilizing the Vascular Renin-Angiotensin System in Spontaneously Hypertensive Rats. Front Physiol 2021; 12:639454. [PMID: 33841179 PMCID: PMC8024534 DOI: 10.3389/fphys.2021.639454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aims Previous studies have demonstrated the anti-hypertensive effect of chronic intermittent hypobaric hypoxia (CIHH) in hypertensive rats. The present study investigated the anti-hypertensive effect of CIHH in spontaneously hypertensive rats (SHR) and the role of the renin-angiotensin system (RAS) in anti-hypertensive effect of CIHH. Methods Fifteen-week-old male SHR and WKY rats were divided into four groups: the SHR without CIHH treatment (SHR-CON), the SHR with CIHH treatment (SHR-CIHH), the WKY without CIHH treatment (WKY-CON), and the WKY with CIHH treatment (WKY-CIHH) groups. The SHR-CIHH and WKY-CIHH rats underwent 35-days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h per day. Arterial blood pressure and heart rate were recorded by biotelemetry, and angiotensin (Ang) II, Ang1–7, interleukin (IL)-6, tumor necrosis factor-alpha (TNF)-α, and IL-10 in serum and the mesenteric arteries were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The microvessel tension recording technique was used to determine the contraction and relaxation of the mesenteric arteries. Hematoxylin and eosin and Masson’s staining were used to observe vascular morphology and fibrosis. Western blot was employed to detect the expression of the angiotensin-converting enzyme (ACE), ACE2, AT1, and Mas proteins in the mesenteric artery. Results The biotelemetry result showed that CIHH decreased arterial blood pressure in SHR for 3–4 weeks (P < 0.01). The ELISA and immunohistochemistry results showed that CIHH decreased Ang II, but increased Ang1–7 in serum and the mesenteric arteries of SHR. In the CIHH-treated SHR, IL-6 and TNF-α decreased in serum and the mesenteric arteries, and IL-10 increased in serum (P < 0.05–0.01). The microvessel tension results revealed that CIHH inhibited vascular contraction with decreased Ang1–7 in the mesenteric arteries of SHR (P < 0.05–0.01). The staining results revealed that CIHH significantly improved vascular remodeling and fibrosis in SHR. The western blot results demonstrated that CIHH upregulated expression of the ACE2 and Mas proteins, and downregulated expression of the ACE and AT1 proteins (P < 0.05–0.01). Conclusion CIHH decreased high blood pressure in SHR, possibly by inhibiting RAS activity, downregulating the ACE-Ang II-AT1 axis and upregulating the ACE2-(Ang1-7)-Mas axis, which resulted in antagonized vascular remodeling and fibrosis, reduced inflammation, and enhanced vascular relaxation.
Collapse
Affiliation(s)
- Hua Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Cardiovascular Care Unit, Hebei General Hospital, Shijiazhuang, China
| | - Bin Yu
- Department of Cardiovascular Care Unit, Hebei General Hospital, Shijiazhuang, China.,Department of Emergency, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hong Hua
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Cui
- Department of Electron Microscope Experimental Centre, Hebei Medical University, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
13
|
de Sousa LGO, Marshall AG, Norman JE, Fuqua JD, Lira VA, Rutledge JC, Bodine SC. The effects of diet composition and chronic obesity on muscle growth and function. J Appl Physiol (1985) 2021; 130:124-138. [PMID: 33211595 PMCID: PMC7944928 DOI: 10.1152/japplphysiol.00156.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diet-induced obesity (DIO) is associated with glucose intolerance, insulin resistance (IR), and an increase in intramyocellular lipids (IMCL), which may lead to disturbances in glucose and protein metabolism. To this matter, it has been speculated that chronic obesity and elevated IMCL may contribute to skeletal muscle loss and deficits in muscle function and growth capacity. Thus, we hypothesized that diets with elevated fat content would induce obesity and insulin resistance, leading to a decrease in muscle mass and an attenuated growth response to increased external loading in adult male mice. Male C57BL/6 mice (8 wk of age) were subjected to five different diets, namely, chow, low-dat-diet (LFD), high-fat-diet (HFD), sucrose, or Western diet, for 28 wk. At 25 wk, HFD and Western diets induced a 60.4% and 35.9% increase in body weight, respectively. Interestingly, HFD, but not Western or sucrose, induced glucose intolerance and insulin resistance. Measurement of isometric torque (ankle plantar flexor and ankle dorsiflexor muscles) revealed no effect of DIO on muscle function. At 28 wk of intervention, muscle area and protein synthesis were similar across all diet groups, despite insulin resistance and increased IMCL being observed in HFD and Western diet groups. In response to 30 days of functional overload, an attenuated growth response was observed in only the HFD group. Nevertheless, our results show that DIO alone is not sufficient to induce muscle atrophy and contractile dysfunction in adult male C57BL/6 mice. However, diet composition does have an impact on muscle growth in response to increased external loading.NEW & NOTEWORTHY The effects of diet-induced obesity on skeletal muscle mass are complex and dependent on diet composition and diet duration. The present study results show that chronic exposure to high levels of fatty acids does not affect muscle mass, contractile function, or protein synthesis in obese C57BL/6 mice compared with the consumption of chow. Obesity did result in a delay in load-induced growth; however, only a 45% HFD resulted in attenuated growth following 30 days of functional overload.
Collapse
Affiliation(s)
- Luís G. O. de Sousa
- 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrea G. Marshall
- 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jennifer E. Norman
- 2Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Jordan D. Fuqua
- 3Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles (F.O.E.) Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa
| | - Vitor A. Lira
- 3Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles (F.O.E.) Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa
| | - John C. Rutledge
- 2Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Sue C. Bodine
- 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
14
|
Segar JL, Balapattabi K, Reho JJ, Grobe CC, Burnett CML, Grobe JL. Quantification of body fluid compartmentalization by combined time-domain nuclear magnetic resonance and bioimpedance spectroscopy. Am J Physiol Regul Integr Comp Physiol 2021; 320:R44-R54. [PMID: 33085913 PMCID: PMC7847054 DOI: 10.1152/ajpregu.00227.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
The measurement of fluid compartmentalization, or the distribution of fluid volume between extracellular (ECF) and intracellular (ICF) spaces, historically requires complicated, burdensome, and often terminal methodologies that do not permit repeated or longitudinal experiments. New technologies including time-domain nuclear magnetic resonance (TD-NMR)-based methods allow for highly accurate measurements of total body water (TBW) within minutes in a noninvasive manner, but do not permit dissection of ECF versus ICF reservoirs. In contrast, methods such as bioimpedance spectroscopy (BIS) allow dissection of ECF versus ICF reservoirs but are hampered by dependence on many nuanced details in data collection that undermine confidence in experimental results. Here, we present a novel combinatorial use of these two technologies (NMR/BIS) to improve the accuracy of BIS-based assessments of ECF and ICF, while maintaining the advantages of these minimally invasive methods. Briefly, mice undergo TD-NMR and BIS-based measures, and then fat masses as derived by TD-NMR are used to correct BIS outputs. Mice of the C57BL/6J background were studied using NMR/BIS methods to assess the effects of acute furosemide injection and diet-induced obesity on fluid compartmentalization, and to examine the influence of sex, body mass and composition, and diet on TBW, ECF, and ICF. We discovered that in mice, sex and body size/composition have substantial and interactive effects on fluid compartmentalization. We propose that the combinatorial use of NMR/BIS methods will enable a revisioning of the types of longitudinal, kinetic studies that can be performed to understand the impact of various interventions on body fluid homeostasis.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Colin M L Burnett
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
15
|
Pulakat L, Sumners C. Angiotensin Type 2 Receptors: Painful, or Not? Front Pharmacol 2020; 11:571994. [PMID: 33424587 PMCID: PMC7785813 DOI: 10.3389/fphar.2020.571994] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Pain in response to various types of acute injury can be a protective stimulus to prevent the organism from using the injured part and allow tissue repair and healing. On the other hand, neuropathic pain, defined as ‘pain caused by a lesion or disease of the somatosensory nervous system’, is a debilitating pathology. The TRPA1 neurons in the Dorsal Root Ganglion (DRG) respond to reactive oxygen species (ROS) and induce pain. In acute nerve injury and inflammation, macrophages infiltrating the site of injury undergo an oxidative burst, and generate ROS that promote tissue repair and induce pain via TRPA1. The latter discourages using the injured limb, with a lack of movement helping wound healing. In chronic inflammation caused by diabetes, cancer etc., ROS levels increase systemically and modulate TRPA1 neuronal functions and cause debilitating neuropathic pain. It is important to distinguish between drug targets that elicit protective vs. debilitating pain when developing effective drugs for neuropathic pain. In this context, the connection of the Angiotensin type 2 receptor (AT2R) to neuropathic pain presents an interesting dilemma. Several lines of evidence show that AT2R activation promotes anti-inflammatory and anti-nociceptive signaling, tissue repair, and suppresses ROS in chronic inflammatory models. Conversely, some studies suggest that AT2R antagonists are anti-nociceptive and therefore AT2R is a drug target for neuropathic pain. However, AT2R expression in nociceptive neurons is lacking, indicating that neuronal AT2R is not involved in neuropathic pain. It is also important to consider that Novartis terminated their phase II clinical trial (EMPHENE) to validate that AT2R antagonist EMA401 mitigates post-herpetic neuralgia. This trial, conducted in Australia, United Kingdom, and a number of European and Asian countries in 2019, was discontinued due to pre-clinical drug toxicity data. Moreover, early data from the trial did not show statistically significant positive outcomes. These facts suggest that may AT2R not be the proper drug target for neuropathic pain in humans and its inhibition can be harmful.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Kim DY, Choi MJ, Ko TK, Lee NH, Kim OH, Cheon HG. Angiotensin AT 1 receptor antagonism by losartan stimulates adipocyte browning via induction of apelin. J Biol Chem 2020; 295:14878-14892. [PMID: 32839272 DOI: 10.1074/jbc.ra120.013834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Tae Kyung Ko
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
17
|
Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 2020; 58:102887. [PMID: 32736307 PMCID: PMC7387269 DOI: 10.1016/j.ebiom.2020.102887] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19) may be envisaged as the dynamic interaction between four vicious feedback loops chained or happening at once. These are the viral loop, the hyperinflammatory loop, the non-canonical renin-angiotensin system (RAS) axis loop, and the hypercoagulation loop. Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 lights the wick by infecting alveolar epithelial cells (AECs) and downregulating the angiotensin converting enzyme-2 (ACE2)/angiotensin (Ang-1-7)/Mas1R axis. The viral feedback loop includes evading the host's innate response, uncontrolled viral replication, and turning on a hyperactive adaptative immune response. The inflammatory loop is composed of the exuberant inflammatory response feeding back until exploding in an actual cytokine storm. Downregulation of the ACE2/Ang-(1-7)/Mas1R axis leaves the lung without a critical defense mechanism and turns the scale to the inflammatory side of the RAS. The coagulation loop is a hypercoagulable state caused by the interplay between inflammation and coagulation in an endless feedback loop. The result is a hyperinflammatory and hypercoagulable state producing acute immune-mediated lung injury and eventually, adult respiratory distress syndrome.
Collapse
Affiliation(s)
- Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain.
| | - Isabel Mur
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
| | - Virginia Pomar
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
| | - Héctor Corominas
- Departments of Rheumatology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Casademont
- Internal Medicine, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natividad de Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
| |
Collapse
|
18
|
El-Hattab MY, Nagumo Y, Gourronc FA, Klingelhutz AJ, Ankrum JA, Sander EA. Human Adipocyte Conditioned Medium Promotes In Vitro Fibroblast Conversion to Myofibroblasts. Sci Rep 2020; 10:10286. [PMID: 32581231 PMCID: PMC7314785 DOI: 10.1038/s41598-020-67175-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Adipocytes and adipose tissue derived cells have been investigated for their potential to contribute to the wound healing process. However, the details of how these cells interact with other essential cell types, such as myofibroblasts/fibroblasts, remain unclear. Using a novel in-vitro 3D human adipocyte/pre-adipocyte spheroid model, we investigated whether adipocytes and their precursors (pre-adipocytes) secrete factors that affect human dermal fibroblast behavior. We found that both adipocyte and pre-adipocyte conditioned medium induced the migration of fibroblasts, but only adipocyte conditioned medium induced fibroblast differentiation into a highly contractile, collagen producing myofibroblast phenotype. Furthermore, adipocyte mediated myofibroblast induction occurred through a TGF-β independent mechanism. Our findings contribute to a better understanding on the involvement of adipose tissue in wound healing, and may help to uncover and develop fat-related wound healing treatments.
Collapse
Affiliation(s)
- Mariam Y El-Hattab
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Yoshiaki Nagumo
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
- Department of Plastic Surgery, Kindai University, Faculty of Medicine, Higashiosaka, Osaka, Japan
| | - Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Worker CJ, Li W, Feng CY, Souza LAC, Gayban AJB, Cooper SG, Afrin S, Romanick S, Ferguson BS, Feng Earley Y. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318:E765-E778. [PMID: 32228320 PMCID: PMC7272727 DOI: 10.1152/ajpendo.00406.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.
Collapse
Affiliation(s)
- Caleb J Worker
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | - Cheng-Yuan Feng
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Lucas A C Souza
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Sanzida Afrin
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Samantha Romanick
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Bradley S Ferguson
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Yumei Feng Earley
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| |
Collapse
|
20
|
Gourronc FA, Perdew GH, Robertson LW, Klingelhutz AJ. PCB126 blocks the thermogenic beiging response of adipocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8897-8904. [PMID: 31721030 PMCID: PMC7098842 DOI: 10.1007/s11356-019-06663-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/01/2019] [Indexed: 05/16/2023]
Abstract
Subcutaneous white adipose tissue is capable of becoming thermogenic in a process that is referred to as "beiging." Beiging is associated with activation of the uncoupling protein, UCP1, and is known to be important for preventing adipose hypertrophy and development of insulin resistance. Polychlorinated biphenyls (PCBs) accumulate in fat, and it is hypothesized that disruption of adipogenesis and adipocyte function by PCBs may be causative in the development of obesity and diabetes. We developed immortal human subcutaneous preadipocytes that, when differentiated, are capable of beiging. Preadipocytes that were treated with polychlorinated biphenyl congener 126 (PCB126), followed by differentiation, were suppressed for their ability to activate UCP1 upon β-adrenergic stimulation with norepinephrine (NE), demonstrating a block in the beiging response. Treatment of preadipocytes with another known endogenous AhR agonist, indoxyl sulfate (IS), followed by differentiation also blocked the NE-stimulated upregulation of UCP1. Knockdown of the aryl hydrocarbon receptor (AhR) caused the preadipocytes to be refractory to PCB126 and IS effects. The chemical AhR antagonist, CH223191, was effective at preventing the effects of PCB126 but not IS, indicating AhR ligand specificity of CH223191. Repression of NE-induced UCP1 upregulation was also observed when already-differentiated mature adipocytes were treated with PCB126 but not IS. These results indicate that exposure of preadipocytes to endogenous (IS) or exogenous (PCB126) AhR agonists is effective at blocking them from becoming functional adipocytes that are capable of the beiging response. Mature adipocytes may have differential responses. This finding suggests a mechanism by which dioxin-like PCBs such as PCB126 could lead to disruption in energy homeostasis, potentially leading to obesity and diabetes.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Gary H Perdew
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Larry W Robertson
- Department of Occupational & Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
The renin-angiotensin system in the arcuate nucleus controls resting metabolic rate. Curr Opin Nephrol Hypertens 2020; 28:120-127. [PMID: 30531199 DOI: 10.1097/mnh.0000000000000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Obesity represents the primary challenge to improving cardiovascular health, and suppression of resting metabolic rate (RMR) is implicated in the maintenance of obesity. Increasing evidence supports a major role for the renin-angiotensin system (RAS) within the brain in the control of RMR. RECENT FINDINGS The angiotensin II (ANG) Agtr1a receptor colocalizes with the leptin receptor (Lepr) primarily within cells of the arcuate nucleus (ARC) of the hypothalamus that also express Agouti-related peptide (Agrp). This sub-population of Agtr1a receptors is required for stimulation of thermogenic sympathetic nervous activity and RMR, but not the suppression of food intake or increasing blood pressure, in response to various stimuli including high-fat diet, deoxycorticosterone acetate and salt, and leptin. Agtr1a is localized to a specific subset (SST3) of Agrp neurons within the ARC. SUMMARY The RAS within the ARC is implicated specifically in RMR control, primarily through Agtr1a localized to the SST3 subset of Agrp neurons. Ongoing research is focused on understanding the unique anatomical projections, neurotransmitter utilization, and signal transduction pathways of Agtr1a within this subset of neurons. Understanding these projections and molecular mechanisms may identify therapeutic targets for RMR and thus obesity, independent of blood pressure and appetite.
Collapse
|
22
|
Nag S, Patel S, Mani S, Hussain T. Role of angiotensin type 2 receptor in improving lipid metabolism and preventing adiposity. Mol Cell Biochem 2019; 461:195-204. [PMID: 31414336 DOI: 10.1007/s11010-019-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
Abstract
Recent studies on mice with null mutation of the angiotensin type 2 receptor (AT2R) gene have implicated the involvement of AT2R in regulating adipocyte size and obesity, a major risk factor for metabolic syndrome. However, the outcome from these studies remains inconclusive. Therefore, current study was designed to test whether pharmacological activation of AT2R regulates adiposity and lipid metabolism. Male mice (5-weeks old) were pre-treated with vehicle or AT2R agonist (C21, 0.3 mg/kg, i.p., daily, for 4 days) and fed normal diet (ND). Then these animals were subdivided into ND and high-fat diet (HFD) regimen and concomitantly treated with vehicle or C21 through day 14. Vehicle-treated HFD-fed mice demonstrated an increase in epididymal white adipose tissue (eWAT) weight and adipocyte size, which were associated with increased eWAT expression of the lipogenic regulators, fatty acid binding protein and fatty acid synthase, decreased expression of adipose triglyceride lipase and increased expression of hormone-sensitive lipase. Interestingly, C21 pre-treatment altered HFD-induced changes in lipogenic and lipolytic regulators. C21 pre-treatment prevented decrease in expression of uncoupler protein-1 in brown adipose in HFD-fed mice, which was associated with increased core temperature. In addition, C21 pre-treatment ameliorated plasma-free fatty acids, triglycerides, insulin and tumor necrosis factor-α in HFD-fed mice. Ex-vivo study in isolated primary epididymal adipocytes revealed that C21 inhibits long chain fatty acid transporter, via a nitric oxide synthase/guanylate cyclase/protein kinase G-dependent pathway. Collectively, we propose pharmacological activation of AT2R regulates fatty acid metabolism and thermogenesis and prevents HFD-induced adiposity in mice.
Collapse
Affiliation(s)
- Sourashish Nag
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA
| | - Sanket Patel
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA
| | - Shailaja Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tahir Hussain
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA.
| |
Collapse
|
23
|
Adu EA, Obirikorang C, Acheampong E, Kwakye AS, Fokuoh F, Obirikorang Y, Anto EO, Batu EN, Amoah BY, Ansong PN. Lipid accumulation product (LAP) index as a potential risk assessment for cardiovascular risk stratification among type II diabetes mellitus in a Ghanaian population: A cross-sectional study. COGENT MEDICINE 2019. [DOI: 10.1080/2331205x.2019.1639880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Evans Asamoah Adu
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Aaron Siaw Kwakye
- Medical Laboratory Department, Eastern Regional Hospital, Koforidua, Ghana
| | - Foster Fokuoh
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaa Obirikorang
- Chemical Pathology Unit, Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Enoch Odame Anto
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Emmanuella Nsenbah Batu
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Patience N. Ansong
- Department of Nursing, Faculty of Health and Allied Sciences, Garden City University College (GCUC), Kenyasi, Kumasi, Ghana
| |
Collapse
|
24
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
25
|
Abstract
Purpose of Review Hypertension is related to impaired metabolic homeostasis and can be regarded as a metabolic disorder. This review presents possible mechanisms by which metabolic disorders increase blood pressure (BP) and discusses the importance of the gut as a novel modulator of BP. Recent Findings Obesity and high salt intake are major risk factors for hypertension. There is a hypothesis of “salt-induced obesity”; i.e., high salt intake may tie to obesity. Heightened sympathetic nervous system (SNS) activity, especially in the kidney and brain, increases BP in obese patients. Adipokines, including adiponectin and leptin, and renin-angiotensin-aldosterone system (RAAS) contribute to hypertension. Adiponectin induced by a high-salt diet may decrease sodium/glucose cotransporter (SGLT) 2 expression in the kidney, which results in reducing BP. High salt can change secretions of adipokines and RAAS-related components. Evidence has been accumulating linking the gastrointestinal tract to BP. Glucagon-like peptide-1 (GLP-1) and ghrelin decrease BP in both rodents and humans. The sweet taste receptor in enteroendocrine cells increases SGLT1 expression and stimulates sodium/glucose absorption. Roux-en-Y gastric bypass improves glycemic and BP control due to reducing the activity of SGLT1. Na/H exchanger isoform 3 (NHE3) increases BP by stimulating the intestinal absorption of sodium. Gastrin functions as an intestinal sodium taste sensor and inhibits NHE3 activity. Intestinal mineralocorticoid receptors also regulate sodium absorption and BP due to changing ENaC activity. Gastric sensing of sodium induces natriuresis, and gastric distension increases BP. Changes in the composition and function of gut microbiota contribute to hypertension. A high-salt/fat diet may disrupt the gut barrier, which results in systemic inflammation, insulin resistance, and increased BP. Gut microbiota regulates BP by secreting vasoactive hormones and short-chain fatty acids. BP-lowering effects of probiotics and antibiotics have been reported. Bariatric surgery improves metabolic disorders and hypertension due to increasing GLP-1 secretion, decreasing leptin secretion and SNS activity, and changing gut microbiome composition. Strategies targeting the gastrointestinal system may be therapeutic options for improving metabolic abnormalities and reducing BP in humans. Summary SNS, brain, adipocytes, RAAS, the kidney, the gastrointestinal tract, and microbiota play important roles in regulating BP. Most notably, the gut could be a novel target for treatment of hypertension as a metabolic disorder.
Collapse
|
26
|
Saito K, Davis KC, Morgan DA, Toth BA, Jiang J, Singh U, Berglund ED, Grobe JL, Rahmouni K, Cui H. Celastrol Reduces Obesity in MC4R Deficiency and Stimulates Sympathetic Nerve Activity Affecting Metabolic and Cardiovascular Functions. Diabetes 2019; 68:1210-1220. [PMID: 30894367 PMCID: PMC6610022 DOI: 10.2337/db18-1167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Leptin resistance is a hallmark of obesity with unclear etiology. Celastrol, a compound found in the roots of the Tripterygium wilfordii and known to reduce endoplasmic reticulum (ER) stress, has recently emerged as a promising candidate to treat obesity by improving leptin sensitivity. However, the underlying neural mechanisms by which celastrol reduces obesity remain unclear. Using three different mouse models of obesity-diet-induced obesity (DIO), leptin receptor (LepR)-null, and melanocortin 4 receptor (MC4R)-null mice-in this study, we show that systemic celastrol administration substantially reduces food intake and body weight in MC4R-null comparable to DIO, proving the MC4R-independent antiobesity effect of celastrol. Body weight reduction was due to decreases in both fat and lean mass, and modest but significant body weight reduction was also observed in nonobese wild-type and LepR-null mice. Unexpectedly, celastrol upregulated proinflammatory cytokines without affecting genes involved in ER stress. Importantly, celastrol steadily increased sympathetic nerve activity to the brown fat and kidney with concordant increases of resting metabolic rate and arterial pressure. Our results suggest a previously unappreciated mechanism of action of celastrol in the regulation of energy homeostasis and highlight the need for careful consideration of its development as a safe antiobesity medication.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kevin C Davis
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brandon A Toth
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jingwei Jiang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Uday Singh
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Eric D Berglund
- Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
27
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
28
|
Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 2018; 3:99403. [PMID: 30282823 DOI: 10.1172/jci.insight.99403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Donna A Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Matthew J Potthoff
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Gary L Pierce
- Department of Health & Human Physiology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center
| | - Katherine N Gibson-Corley
- Department of Pathology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,Fraternal Order of Eagles' Diabetes Research Center, and
| | - Curt D Sigmund
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Justin L Grobe
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
29
|
Gourronc FA, Robertson LW, Klingelhutz AJ. A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16481-16492. [PMID: 28699004 PMCID: PMC5764822 DOI: 10.1007/s11356-017-9676-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 05/10/2023]
Abstract
Inflammation in adipose tissue is recognized as a causative factor in the development of type II diabetes. Adipocyte hypertrophy as well as bacterial and environmental factors have been implicated in causing inflammation in mature adipocytes. Exposure to persistent organic pollutants such as polychlorinated biphenyls (PCBs) has been associated with the development of type II diabetes. We show here that PCB126, a dioxin-like PCB, activates a robust proinflammatory state in fat cell precursors (preadipocytes). The response was found to be dependent on aryl hydrocarbon receptor (AhR) activation, although induction of the response was delayed compared to upregulation of CYP1A1, a classic AhR-responsive gene. Treatment of preadipocytes with a nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) inhibitor partially attenuated the PCB126-induced inflammatory response and partly, but not completely, ameliorated disruption of adipogenesis caused by PCB126. Our results indicate a role for PCB126 in mediating an inflammatory response through AhR in preadipocytes that interferes with adipogenesis.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, 2202 MERF, 375 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
31
|
Klingelhutz AJ, Gourronc FA, Chaly A, Wadkins DA, Burand AJ, Markan KR, Idiga SO, Wu M, Potthoff MJ, Ankrum JA. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci Rep 2018; 8:523. [PMID: 29323267 PMCID: PMC5765134 DOI: 10.1038/s41598-017-19024-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.
Collapse
Affiliation(s)
- Aloysius J Klingelhutz
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Francoise A Gourronc
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna Chaly
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David A Wadkins
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Kathleen R Markan
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sharon O Idiga
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA.,High Throughput Screening Core Facility at University of Iowa (UIHTS), University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA
| | - Matthew J Potthoff
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
32
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
33
|
Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr Physiol 2017; 7:1137-1150. [PMID: 28915321 DOI: 10.1002/cphy.c160031] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The renin angiotensin system (RAS) is a major regulator of blood pressure, fluid, and electrolyte homeostasis. RAS precursor angiotensinogen (Agt) is cleaved into angiotensin I (Ang I) and II (Ang II) by renin and angiotensin converting enzyme (ACE), respectively. Major effects of Ang II, the main bioactive peptide of this system, is mediated by G protein coupled receptors, Angiotensin Type 1 (AGTR1, AT1R) and Type 2 (AGTR2, AT2R) receptors. Further, the discovery of additional RAS peptides such as Ang 1-7 generated by the action of another enzyme ACE2 identified novel functions of this complex system. In addition to the systemic RAS, several local RAS exist in organs such as the brain, kidney, pancreas, and adipose tissue. The expression and regulation of various components of RAS in adipose tissue prompted extensive research into the role of adipose RAS in metabolic diseases. Indeed, animal studies have shown that adipose-derived Agt contributes to circulating RAS, kidney, and blood pressure regulation. Further, mice overexpressing Agt have high blood pressure and increased adiposity characterized by inflammation, adipocyte hypertrophy, and insulin resistance, which can be reversed at least in part by RAS inhibition. These findings highlight the importance of this system in energy homeostasis, especially in the context of obesity. This overview article discusses the depot-specific functions of adipose RAS, genetic and pharmacological manipulations of RAS, and its applications to adipogenesis, thermogenesis, and overall energy homeostasis. © 2017 American Physiological Society. Compr Physiol 7:1137-1150, 2017.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA.,Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
34
|
Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, Weidemann BJ, Liu X, Walsh SA, Ponto LL, Rahmouni K, Grobe JL, Sigmund CD. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension 2017; 70:990-997. [PMID: 28874461 DOI: 10.1161/hypertensionaha.117.09923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-bNull mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-bNull mice are unknown. Fluid intake was similar in control and Ren-bNull mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-bNull mice, particularly after deoxycorticosterone acetate-salt. Ren-bNull and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-bNull mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-bNull mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-bNull mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Javier Gomez
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Donald A Morgan
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Nicole K Littlejohn
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Matthew D Folchert
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Benjamin J Weidemann
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Xuebo Liu
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Susan A Walsh
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Laura L Ponto
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Kamal Rahmouni
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Justin L Grobe
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.).
| |
Collapse
|
35
|
Bruce EB, de Kloet AD. The intricacies of the renin-angiotensin-system in metabolic regulation. Physiol Behav 2017; 178:157-165. [PMID: 27887998 PMCID: PMC5600901 DOI: 10.1016/j.physbeh.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Over recent years, the renin-angiotensin-system (RAS), which is best-known as an endocrine system with established roles in hydromineral balance and blood pressure control, has emerged as a fundamental regulator of many additional physiological and pathophysiological processes. In this manuscript, we celebrate and honor Randall Sakai's commitment to his trainees, as well as his contribution to science. Scientifically, Randall made many notable contributions to the recognition of the RAS's roles in brain and behavior. His interests, in this regard, ranged from its traditionally-accepted roles in hydromineral balance, to its less-appreciated functions in stress responses and energy metabolism. Here we review the current understanding of the role of the RAS in the regulation of metabolism. In particular, the opposing actions of the RAS within adipose tissue vs. its actions within the brain are discussed.
Collapse
Affiliation(s)
- Erin B Bruce
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, United States
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, United States.
| |
Collapse
|
36
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
37
|
Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CML, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL. Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest 2017; 127:1414-1424. [PMID: 28263184 DOI: 10.1172/jci88641] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.
Collapse
|
38
|
Thatcher SE. A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques. Methods Mol Biol 2017; 1614:1-19. [PMID: 28500591 DOI: 10.1007/978-1-4939-7030-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a complex system of enzymes, receptors, and peptides that help to control blood pressure and fluid homeostasis. Techniques in studying the RAAS can be difficult due to such factors as peptide/enzyme stability and receptor localization. This paper gives a brief account of the different components of the RAAS and current methods in measuring each component. There is also a discussion of different methods in measuring stem and immune cells by flow cytometry, hypertension, atherosclerosis, oxidative stress, energy balance, and other RAAS-activated phenotypes. While studies on the RAAS have been performed for over 100 years, new techniques have allowed scientists to come up with new insights into this system. These techniques are detailed in this Methods in Molecular Biology Series and give students new to studying the RAAS the proper controls and technical details needed to perform each procedure.
Collapse
Affiliation(s)
- Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Charles T. Wethington Bldg, 593, 900 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|