1
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2024:10.1007/s00424-024-03037-5. [PMID: 39482558 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Griffith EC, West AE, Greenberg ME. Neuronal enhancers fine-tune adaptive circuit plasticity. Neuron 2024; 112:3043-3057. [PMID: 39208805 DOI: 10.1016/j.neuron.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
3
|
Jiang S, Yuan C, Zou T, Koh JH, Basabrain M, Chen Q, Liu J, Heng BC, Lim LW, Wang P, Zhang C. An Injectable Hydrogel Loaded with GMSCs-Derived Neural Lineage Cells Promotes Recovery after Stroke. Tissue Eng Part A 2024; 30:563-576. [PMID: 38756085 DOI: 10.1089/ten.tea.2023.0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low in vitro expansion capacity. This study aimed (1) use small molecules (SM) to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells in vitro, and (2) use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke in vivo. Neural induction was carried out with a SM cocktail-based one-step culture protocol over a period of 24 h. The induced cells were analyzed for expression of neural markers with immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). The Sprague-Dawley (SD) rats (n = 100) were subjected to the middle cerebral artery occlusion (MCAO) reperfusion ischemic stroke model. Then, after 8 days post-MCAO, the modeled rats were randomly assigned to six study groups (n = 12 per group): (1) GMSCs, (2) GMSCs-derived neural lineage cells, (3) HA and GMSCs-derived neural lineage cells, (4) HA, (5) PBS, and (6) sham transplantation control, and received their respective transplantation. Evaluation of post-stroke recovery were performed by behavioral tests and histological assessments. The morphologically altered nature of neural lineages has been observed of the GMSCs treated with SMs compared to the untreated controls. As shown by the qRT-PCR and immunocytochemistry, SMs further significantly enhanced the expression level of neural markers of GMSCs as compared with the untreated controls (all p < 0.05). Intracerebral injection of self-assembling HA hydrogel carrying GMSCs-derived neural lineage cells promoted the recovery of neural function and reduced ischemic damage in rats with ischemic stroke, as demonstrated by histological examination and behavioral assessments (all p < 0.05). In conclusion, the SM cocktail significantly enhanced the differentiation of GMSCs into neural lineage cells. The HA hydrogel was found to facilitate the proliferation and differentiation of GMSCs-derived neural lineage cells. Furthermore, HA hydrogel seeded with GMSCs-derived neural lineage cells could promote tissue repair and functional recovery in rats with ischemic stroke and may be a promising alternative treatment modality for stroke.
Collapse
Affiliation(s)
- Shan Jiang
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Changyong Yuan
- The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ting Zou
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Jun Hao Koh
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
| | - Mohammed Basabrain
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
| | - Qixin Chen
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Penglai Wang
- The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chengfei Zhang
- Faculty of Dentistry, Restorative Dental Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Dando O, McQueen J, Burr K, Kind PC, Chandran S, Hardingham GE, Qiu J. A comparison of basal and activity-dependent exon splicing in cortical-patterned neurons of human and mouse origin. Front Mol Neurosci 2024; 17:1392408. [PMID: 39268251 PMCID: PMC11390650 DOI: 10.3389/fnmol.2024.1392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Rodent studies have shown that alternative splicing in neurons plays important roles in development and maturity, and is regulatable by signals such as electrical activity. However, rodent-human similarities are less well explored. We compared basal and activity-dependent exon splicing in cortical-patterned human ESC-derived neurons with that in cortical mouse ESC-derived neurons, primary mouse cortical neurons at two developmental stages, and mouse hippocampal neurons, focussing on conserved orthologous exons. Both basal exon inclusion levels and activity-dependent changes in splicing showed human-mouse correlation. Conserved activity regulated exons are enriched in RBFOX, SAM68, NOVA and PTBP targets, and centered on cytoskeletal organization, mRNA processing, and synaptic signaling genes. However, human-mouse correlations were weaker than inter-mouse comparisons of neurons from different brain regions, developmental stages and origin (ESC vs. primary), suggestive of some inter-species divergence. The set of genes where activity-dependent splicing was observed only in human neurons were dominated by those involved in lipid biosynthesis, signaling and trafficking. Study of human exon splicing in mouse Tc1 neurons carrying human chromosome-21 showed that neuronal basal exon inclusion was influenced by cis-acting sequences, although may not be sufficient to confer activity-responsiveness in an allospecific environment. Overall, these comparisons suggest that neuronal alternative splicing should be confirmed in a human-relevant system even when exon structure is evolutionarily conserved.
Collapse
Affiliation(s)
- Owen Dando
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Kind
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Giles E Hardingham
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing Qiu
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Cuttoli RDD, Issler O, Yakubov B, Jahan N, Abid A, Kasparov S, Granizo K, Ahmed S, Russo SJ, Nestler EJ, Sweis BM. Sex differences in change-of-mind neuroeconomic decision-making is modulated by LINC00473 in medial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592609. [PMID: 39005412 PMCID: PMC11244910 DOI: 10.1101/2024.05.08.592609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Changing one's mind is a complex cognitive phenomenon involving a continuous re-appraisal of the trade-off between past costs and future value. Recent work modeling this behavior across species has established associations between aspects of this choice process and their contributions to altered decision-making in psychopathology. Here, we investigated the actions in medial prefrontal cortex (mPFC) neurons of long intergenic non-coding RNA, LINC00473, known to induce stress resilience in a striking sex-dependent manner, but whose role in cognitive function is unknown. We characterized complex decision-making behavior in male and female mice longitudinally in our neuroeconomic foraging paradigm, Restaurant Row, following virus-mediated LINC00473 expression in mPFC neurons. On this task, mice foraged for their primary source of food among varying costs (delays) and subjective value (flavors) while on a limited time-budget during which decisions to accept and wait for rewards were separated into discrete stages of primary commitments and secondary re-evaluations. We discovered important differences in decision-making behavior between female and male mice. LINC00473 expression selectively influenced multiple features of re-evaluative choices, without affecting primary decisions, in female mice only. These behavioral effects included changing how mice (i) cached the value of the passage of time and (ii) weighed their history of economically disadvantageous choices. Both processes were uniquely linked to change-of-mind decisions and underlie the computational bases of distinct aspects of counterfactual thinking. These findings reveal a key bridge between a molecular driver of stress resilience and psychological mechanisms underlying sex-specific decision-making proclivities.
Collapse
|
6
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
7
|
Carrese AM, Vitale R, Turco M, Masola V, Aniello F, Vitale E, Donizetti A. Sustained Depolarization Induces Gene Expression Pattern Changes Related to Synaptic Plasticity in a Human Cholinergic Cellular Model. Mol Neurobiol 2024:10.1007/s12035-024-04262-w. [PMID: 38941065 DOI: 10.1007/s12035-024-04262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/25/2024] [Indexed: 06/29/2024]
Abstract
Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.
Collapse
Affiliation(s)
- Anna Maria Carrese
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Rossella Vitale
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy
| | - Valeria Masola
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy.
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy.
| |
Collapse
|
8
|
Salerno JA, Rehen S. Human pluripotent stem cells as a translational toolkit in psychedelic research in vitro. iScience 2024; 27:109631. [PMID: 38628967 PMCID: PMC11019282 DOI: 10.1016/j.isci.2024.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Psychedelics, recognized for their impact on perception, are resurging as promising treatments with rapid onset for mood and substance use disorders. Despite increasing evidence from clinical trials, questions persist about the cellular and molecular mechanisms and their precise correlation with treatment outcomes. Murine neurons and immortalized non-neural cell lines harboring overexpressed constructs have shed light on neuroplastic changes mediated by the serotonin 2A receptor (5-HT2AR) as the primary mechanism. However, limitations exist in capturing human- and disease-specific traits. Here, we discuss current accomplishments and prospects for incorporating human pluripotent stem cells (PSCs) to complement these models. PSCs can differentiate into various brain cell types, mirroring endogenous expression patterns and cell identities to recreate disease phenotypes. Brain organoids derived from PSCs resemble cell diversity and patterning, while region-specific organoids simulate circuit-level phenotypes. PSC-based models hold significant promise to illuminate the cellular and molecular substrates of psychedelic-induced phenotypic recovery in neuropsychiatric disorders.
Collapse
Affiliation(s)
- José Alexandre Salerno
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Morphological Sciences, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Usona Institute, Fitchburg, WI, USA
- Promega Corporation, Madison, WI, USA
| |
Collapse
|
9
|
Ma RK, Tsai PY, Farghli AR, Shumway A, Kanke M, Gordan JD, Gujral TS, Vakili K, Nukaya M, Noetzli L, Ronnekleiv-Kelly S, Broom W, Barrow J, Sethupathy P. DNAJB1-PRKACA fusion protein-regulated LINC00473 promotes tumor growth and alters mitochondrial fitness in fibrolamellar carcinoma. PLoS Genet 2024; 20:e1011216. [PMID: 38512964 PMCID: PMC11020935 DOI: 10.1371/journal.pgen.1011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/16/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.
Collapse
Affiliation(s)
- Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Alaa R. Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandria Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John D. Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, United States of America
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Leila Noetzli
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Sean Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wendy Broom
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Beletskiy A, Zolotar A, Fortygina P, Chesnokova E, Uroshlev L, Balaban P, Kolosov P. Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin. Cells 2024; 13:383. [PMID: 38474347 DOI: 10.3390/cells13050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.
Collapse
Affiliation(s)
- Alexander Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anastasia Zolotar
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Leonid Uroshlev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Yan J, Wang YM, Hellwig A, Bading H. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med 2024; 5:101413. [PMID: 38325382 PMCID: PMC10897598 DOI: 10.1016/j.xcrm.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Toxic signaling by extrasynaptic NMDA receptors (eNMDARs) is considered an important promoter of amyotrophic lateral sclerosis (ALS) disease progression. To exploit this therapeutically, we take advantage of TwinF interface (TI) inhibition, a pharmacological principle that, contrary to classical NMDAR pharmacology, allows selective elimination of eNMDAR-mediated toxicity via disruption of the NMDAR/TRPM4 death signaling complex while sparing the vital physiological functions of synaptic NMDARs. Post-disease onset treatment of the SOD1G93A ALS mouse model with FP802, a modified TI inhibitor with a safe pharmacology profile, stops the progressive loss of motor neurons in the spinal cord, resulting in a reduction in the serum biomarker neurofilament light chain, improved motor performance, and an extension of life expectancy. FP802 also effectively blocks NMDA-induced death of neurons in ALS patient-derived forebrain organoids. These results establish eNMDAR toxicity as a key player in ALS pathogenesis. TI inhibitors may provide an effective treatment option for ALS patients.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Caglayan E, Ayhan F, Liu Y, Vollmer RM, Oh E, Sherwood CC, Preuss TM, Yi SV, Konopka G. Molecular features driving cellular complexity of human brain evolution. Nature 2023; 620:145-153. [PMID: 37468639 PMCID: PMC11161302 DOI: 10.1038/s41586-023-06338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.
Collapse
Affiliation(s)
- Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiang Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rachael M Vollmer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emily Oh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Ghaffari LT, Trotti D, Haeusler AR. Differential response of C9orf72 transcripts following neuronal depolarization. iScience 2023; 26:106959. [PMID: 37332610 PMCID: PMC10272498 DOI: 10.1016/j.isci.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The (G4C2)n nucleotide repeat expansion (NRE) mutation in C9orf72 is the most common genetic cause of ALS and FTD. The biological functions of C9orf72 are becoming understood, but it is unclear if this gene is regulated in a neural-specific manner. Neuronal activity is a crucial modifier of biological processes in health and neurodegenerative disease contexts. Here, we show that prolonged membrane depolarization in healthy human iPSC-cortical neurons leads to a significant downregulation of a transcript variant 3 (V3) of C9orf72, with a concomitant increase in variant 2 (V2), which leads to total C9orf72 RNA transcript levels remaining unchanged. However, the same response is not observed in cortical neurons derived from patients with the C9-NRE mutation. These findings reveal the impact of depolarization on C9orf72 transcripts, and how this response diverges in C9-NRE-carriers, which may have important implications in the underlying unique clinical associations of C9-NRE transcripts and disease pathogenesis.
Collapse
Affiliation(s)
- Layla T. Ghaffari
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
15
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
16
|
Long-term plasticity of astrocytic phenotypes and their control by neurons in health and disease. Essays Biochem 2023; 67:39-47. [PMID: 36695493 PMCID: PMC10011399 DOI: 10.1042/ebc20220090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The brain is a complex organ even when viewed from a cell biological perspective. Neuronal networks are embedded in a dense milieu of diverse and specialised cell types, including several types of vascular, immune, and macroglial cells. To view each cell as a small cog in a highly complex machine is itself an oversimplification. Not only are they functionally coupled to enable the brain to operate, each cell type's functions are themselves influenced by each other, in development, maturity, and also in disease. Astrocytes are a type of macroglia that occupy a significant fraction of the human forebrain. They play a critical role in sustaining functional neuronal circuits across the lifespan through myriad homeostatic functions including the maintenance of redox balance, ionic gradients, neurotransmitter clearance, and bioenergetic support. It is becoming apparent that astrocytes' capacity to carry out these and other neurosupportive roles is not fixed, but is regulated by signals coming from the neurons themselves, both in the healthy brain but also in response to neuron-derived disease pathology. Here, we review mechanisms by which neurons control the properties of astrocytes long term in order to alter their homeostatic capacity both in development and maturity. Our working hypothesis is that these signals are designed to change and maintain the homeostatic capacity of local astrocytes to suit the needs of nearby neurons. Knowledge of the external signals that can control core aspects of a healthy astrocytic phenotype are being uncovered, raising the question as to whether this knowledge can be harnessed to promote astrocyte-mediated neurosupport in brain disorders.
Collapse
|
17
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Fröhlich A, Olde Heuvel F, Rehman R, Krishnamurthy SS, Li S, Li Z, Bayer D, Conquest A, Hagenston AM, Ludolph A, Huber-Lang M, Boeckers T, Knöll B, Morganti-Kossmann MC, Bading H, Roselli F. Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. J Neuroinflammation 2022; 19:279. [PMCID: PMC9675197 DOI: 10.1186/s12974-022-02634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI. Methods We used AAV vectors to express the genetically encoded and nuclear-targeted calcium buffer parvalbumin (PV.NLS.mCherry) or the calcium/calmodulin buffer CaMBP4.mCherry in neurons only. Upon TBI, the extent of neuroinflammation, neuronal death and synaptic loss were assessed by immunohistochemistry and targeted transcriptome analysis. Modulation of the overall level of neuronal activity was achieved by PSAM/PSEM chemogenetics targeted to parvalbumin interneurons. The functional impact of neuronal nuclear calcium buffering in TBI was assessed by quantification of spontaneous whisking. Results Buffering neuronal nuclear calcium unexpectedly resulted in a massive and long-lasting increase in the recruitment of reactive microglia to the injury site, which was characterized by a disease-associated and phagocytic phenotype. This effect was accompanied by a substantial surge in synaptic loss and significantly reduced whisking activity. Transcriptome analysis revealed a complex effect of TBI in the context of neuronal nuclear calcium buffering, with upregulation of complement factors, chemokines and interferon-response genes, as well as the downregulation of synaptic genes and epigenetic regulators compared to control conditions. Notably, nuclear calcium buffering led to a substantial loss in neuronal osteoprotegerin (OPG), whereas stimulation of neuronal firing induced OPG expression. Viral re-expression of OPG resulted in decreased microglial recruitment and synaptic loss. OPG upregulation was also observed in the CSF of human TBI patients, underscoring its translational value. Conclusion Neuronal nuclear calcium signals regulate the degree of microglial recruitment and reactivity upon TBI via, among others, osteoprotegerin signals. Our findings support a model whereby neuronal activity altered after TBI exerts a powerful impact on the neuroinflammatory cascade, which in turn contributes to the overall loss of synapses and functional impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02634-4.
Collapse
Affiliation(s)
- Albrecht Fröhlich
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Rida Rehman
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Sruthi Sankari Krishnamurthy
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Shun Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Zhenghui Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,Dept. of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - David Bayer
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Alison Conquest
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
| | - Anna M. Hagenston
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Albert Ludolph
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute for Clinical and Experimental Trauma Immunology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bernd Knöll
- grid.6582.90000 0004 1936 9748Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Maria Cristina Morganti-Kossmann
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia ,grid.134563.60000 0001 2168 186XDepartment of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ USA
| | - Hilmar Bading
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,Present Address: Center for Biomedical Research, Helmholtzstrasse 8, 89081 Ulm, Germany
| |
Collapse
|
19
|
Pré D, Wooten AT, Biesmans S, Hinckley S, Zhou H, Sherman SP, Kakad P, Gearhart J, Bang AG. Development of a platform to investigate long-term potentiation in human iPSC-derived neuronal networks. Stem Cell Reports 2022; 17:2141-2155. [PMID: 35985330 PMCID: PMC9481914 DOI: 10.1016/j.stemcr.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Impairment of long-term potentiation (LTP) is a common feature of many pre-clinical models of neurological disorders; however, studies in humans are limited by the inaccessibility of the brain. Human induced pluripotent stem cells (hiPSCs) provide a unique opportunity to study LTP in disease-specific genetic backgrounds. Here we describe a multi-electrode array (MEA)-based assay to investigate chemically induced LTP (cLTP) across entire networks of hiPSC-derived midbrain dopaminergic (DA) and cortical neuronal populations that lasts for days, allowing studies of the late phases of LTP and enabling detection of associated molecular changes. We show that cLTP on midbrain DA neuronal networks is largely independent of the N-methyl-D-aspartate receptor (NMDAR) and partially dependent on brain-derived neurotrophic factor (BDNF). Finally, we describe activity-regulated gene expression induced by cLTP. This cLTP-MEA assay platform will enable phenotype discovery and higher-throughput analyses of synaptic plasticity on hiPSC-derived neurons.
Collapse
Affiliation(s)
- Deborah Pré
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander T Wooten
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steven Biesmans
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sandy Hinckley
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Priyanka Kakad
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine on Contract to USAF School of Aerospace Medicine, Wright-Patterson AFB, Dayton, OH 45433, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Ibarra IL, Ratnu VS, Gordillo L, Hwang I, Mariani L, Weinand K, Hammarén HM, Heck J, Bulyk ML, Savitski MM, Zaugg JB, Noh K. Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements. Mol Syst Biol 2022; 18:e10473. [PMID: 35996956 PMCID: PMC9396287 DOI: 10.15252/msb.202110473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
Neuronal stimulation induced by the brain-derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF-specific chromatin-to-gene expression programs. Enhancer activation is an early event in the regulatory control of BDNF-treated neurons, where the bZIP motif-binding Fos protein pioneered chromatin opening and cooperated with co-regulatory transcription factors (Homeobox, EGRs, and CTCF) to induce transcription. Deleting cis-regulatory sequences affect BDNF-mediated Arc expression, a regulator of synaptic plasticity. BDNF-induced accessible regions are linked to preferential exon usage by neurodevelopmental disorder-related genes and the heritability of neuronal complex traits, which were validated in human iPSC-derived neurons. Thus, we provide a comprehensive view of BDNF-mediated genome regulatory features using comparative genomic approaches to dissect mammalian neuronal stimulation.
Collapse
Affiliation(s)
- Ignacio L Ibarra
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
- Institute of Computational BiologyHelmholtz Center MunichOberschleißheimGermany
| | - Vikram S Ratnu
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Lucia Gordillo
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - In‐Young Hwang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Luca Mariani
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Kathryn Weinand
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Henrik M Hammarén
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jennifer Heck
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Martha L Bulyk
- Division of Genetics, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mikhail M Savitski
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Kyung‐Min Noh
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
21
|
Ateaque S, Merkouris S, Wyatt S, Allen ND, Xie J, DiStefano PS, Lindsay RM, Barde YA. Selective activation and down-regulation of Trk receptors by neurotrophins in human neurons co-expressing TrkB and TrkC. J Neurochem 2022; 161:463-477. [PMID: 35536742 PMCID: PMC9321069 DOI: 10.1111/jnc.15617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
In the central nervous system, most neurons co-express TrkB and TrkC, the tyrosine kinase receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). As NT3 can also activate TrkB, it has been difficult to understand how NT3 and TrkC can exert unique roles in the assembly of neuronal circuits. Using neurons differentiated from human embryonic stem cells expressing both TrkB and TrkC, we compared Trk activation by BDNF and NT3. To avoid the complications resulting from TrkB activation by NT3, we also generated neurons from stem cells engineered to lack TrkB. We found that NT3 activates TrkC at concentrations lower than those of BDNF needed to activate TrkB. Downstream of Trk activation, the changes in gene expression caused by TrkC activation were found to be similar to those resulting from TrkB activation by BDNF, including a number of genes involved in synaptic plasticity. At high NT3 concentrations, receptor selectivity was lost as a result of TrkB activation. In addition, TrkC was down-regulated, as was also the case with TrkB at high BDNF concentrations. By contrast, receptor selectivity as well as reactivation were preserved when neurons were exposed to low neurotrophin concentrations. These results indicate that the selectivity of NT3/TrkC signalling can be explained by the ability of NT3 to activate TrkC at concentrations lower than those needed to activate TrkB. They also suggest that in a therapeutic perspective, the dosage of Trk receptor agonists will need to be taken into account if prolonged receptor activation is to be achieved.
Collapse
Affiliation(s)
- Sarah Ateaque
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Sean Wyatt
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Jia Xie
- The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
22
|
Sanchez-Priego C, Hu R, Boshans LL, Lalli M, Janas JA, Williams SE, Dong Z, Yang N. Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs. Cell Rep 2022; 39:110877. [PMID: 35649373 PMCID: PMC9219592 DOI: 10.1016/j.celrep.2022.110877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with psychiatric diseases, yet there is a lack of understanding of disease pathophysiology. Common risk variants can shed light on the underlying molecular mechanisms; however, identifying causal variants remains challenging. We map cis-regulatory elements in human neurons derived from pluripotent stem cells. This system allows us to determine enhancers that activate the transcription of neuronal activity-regulated gene programs, which are thought to be critical for synaptic plasticity and are not possible to identify from postmortem tissues. Using the activity-by-contact model, we create variant-to-gene maps to interpret the function of GWAS variants. Our work nominates a subset of variants to elucidate the molecular mechanisms involving GWAS-significant loci. It also highlights that in vitro human cellular models are a powerful platform for identifying and mechanistic studies of human trait-associated genetic variants in cell states that are inaccessible from other types of human samples.
Collapse
Affiliation(s)
- Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Williams
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Fischer S, Strobel B, Weinmann J, Gillardon F. Two engineered AAV capsid variants for efficient transduction of human cortical neurons directly converted from iPSC. J Neurosci Methods 2021; 368:109457. [PMID: 34953937 DOI: 10.1016/j.jneumeth.2021.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recombinant adeno-associated virus (AAV) is the most widely used vector for gene therapy in clinical trials. To increase transduction efficiency and specificity, novel engineered AAV variants with modified capsid sequences are evaluated in human cell cultures and non-human primates. METHODS We tested two novel AAV capsid variants, AAV2-NNPTPSR and AAV9-NVVRSSS, in human cortical neurons, which were directly converted from human induced pluripotent stem cells and cocultured with rat primary astrocytes. RESULTS AAV2-NNPTPSR variant efficiently transduced both induced human cortical glutamatergic neurons and induced human cortical GABAergic interneurons. By contrast, AAV9-NVVRSSS variant transduced both induced human cortical neurons and cocultured rat primary astrocytes. High viral titers (1E+5 viral genomes per cell) caused a significant decrease in viability of induced human cortical neurons. Low viral titers (1E+4 viral genomes per cell) led to a significant increase in the neuronal activity marker c-Fos in transduced human neurons following treatment with a potassium channel blocker. CONCLUSIONS We identified two engineered AAV capsid variants that efficiently transduce induced human cortical neurons. The threefold higher percentage of c-Fos positive, transduced human neurons may indicate functional alterations induced by viral transduction and/or transgene expression.
Collapse
Affiliation(s)
- Sandra Fischer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Benjamin Strobel
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Jonas Weinmann
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
24
|
Ruden JB, Dixit M, Zepeda JC, Grueter BA, Dugan LL. Robust Expression of Functional NMDA Receptors in Human Induced Pluripotent Stem Cell-Derived Neuronal Cultures Using an Accelerated Protocol. Front Mol Neurosci 2021; 14:777049. [PMID: 34899184 PMCID: PMC8661903 DOI: 10.3389/fnmol.2021.777049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Mrinalini Dixit
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, TN, United States
| |
Collapse
|
25
|
Bauersachs HG, Bengtson CP, Weiss U, Hellwig A, García-Vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H. N-methyl-d-aspartate Receptor-mediated Preconditioning Mitigates Excitotoxicity in Human induced Pluripotent Stem Cell-derived Brain Organoids. Neuroscience 2021; 484:83-97. [DOI: 10.1016/j.neuroscience.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
26
|
Loe AKH, Francis R, Seo J, Du L, Wang Y, Kim JE, Hakim SW, Kim JE, He HH, Guo H, Kim TH. Uncovering the dosage-dependent roles of Arid1a in gastric tumorigenesis for combinatorial drug therapy. J Exp Med 2021; 218:211950. [PMID: 33822841 PMCID: PMC8034383 DOI: 10.1084/jem.20200219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most common deadly cancers in the world. Although patient genomic data have identified AT-rich interaction domain 1A (ARID1A), a key chromatin remodeling complex subunit, as the second most frequently mutated gene after TP53, its in vivo role and relationship to TP53 in gastric tumorigenesis remains unclear. Establishing a novel mouse model that reflects the ARID1A heterozygous mutations found in the majority of human GC cases, we demonstrated that Arid1a heterozygosity facilitates tumor progression through a global loss of enhancers and subsequent suppression of the p53 and apoptosis pathways. Moreover, mouse genetic and single-cell analyses demonstrated that the homozygous deletion of Arid1a confers a competitive disadvantage through the activation of the p53 pathway, highlighting its distinct dosage-dependent roles. Using this unique vulnerability of Arid1a mutated GC cells, our combined treatment with the epigenetic inhibitor, TP064, and the p53 agonist, Nutlin-3, inhibited growth of Arid1a heterozygous tumor organoids, providing a novel therapeutic option for GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roshane Francis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jieun Seo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shaheed W Hakim
- St. Joseph's Health Centre, Unity Health Toronto, Toronto, Ontario, Canada
| | - Jung-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Haiyang Guo
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Reid DA, Reed PJ, Schlachetzki JCM, Nitulescu II, Chou G, Tsui EC, Jones JR, Chandran S, Lu AT, McClain CA, Ooi JH, Wang TW, Lana AJ, Linker SB, Ricciardulli AS, Lau S, Schafer ST, Horvath S, Dixon JR, Hah N, Glass CK, Gage FH. Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science 2021; 372:91-94. [PMID: 33795458 PMCID: PMC9179101 DOI: 10.1126/science.abb9032] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Neurons are the longest-lived cells in our bodies and lack DNA replication, which makes them reliant on a limited repertoire of DNA repair mechanisms to maintain genome fidelity. These repair mechanisms decline with age, but we have limited knowledge of how genome instability emerges and what strategies neurons and other long-lived cells may have evolved to protect their genomes over the human life span. A targeted sequencing approach in human embryonic stem cell-induced neurons shows that, in neurons, DNA repair is enriched at well-defined hotspots that protect essential genes. These hotspots are enriched with histone H2A isoforms and RNA binding proteins and are associated with evolutionarily conserved elements of the human genome. These findings provide a basis for understanding genome integrity as it relates to aging and disease in the nervous system.
Collapse
Affiliation(s)
- Dylan A. Reid
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.,Corresponding author. (D.A.R.); (F.H.G.)
| | - Patrick J. Reed
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Johannes C. M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0651, USA
| | - Ioana I. Nitulescu
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Grace Chou
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Enoch C. Tsui
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Jeffrey R. Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Sahaana Chandran
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claire A. McClain
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Jean H. Ooi
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Tzu-Wen Wang
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Addison J. Lana
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0651, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Anthony S. Ricciardulli
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Shong Lau
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Simon T. Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Biostatistics, School of Public Health, University of of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse R. Dixon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Nasun Hah
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0651, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.,Corresponding author. (D.A.R.); (F.H.G.)
| |
Collapse
|
28
|
A human stem cell-derived test system for agents modifying neuronal N-methyl-D-aspartate-type glutamate receptor Ca 2+-signalling. Arch Toxicol 2021; 95:1703-1722. [PMID: 33713149 PMCID: PMC8113295 DOI: 10.1007/s00204-021-03024-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neuroepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profiling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-d-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell-derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intracellular free calcium ion concentration ([Ca2+]i) were measured by fluorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range. MCC responded to kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and a subpopulation of 50% had functional NMDA-R. The receptor was modulated by Mg2+, Zn2+ and Pb2+ in the expected ways, and various toxicologically relevant agonists (quinolinic acid, ibotenic acid, domoic acid) triggered [Ca2+]i responses in MCC. Antagonists, such as phencyclidine, ketamine and dextromethorphan, were also readily identified. Thus, the MCC developed here may fill an important gap in the panel of test systems available to characterize the effects of chemicals on neurotransmitter receptors.
Collapse
|
29
|
Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nat Neurosci 2021; 24:437-448. [PMID: 33542524 PMCID: PMC7933108 DOI: 10.1038/s41593-020-00786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Neuronal activity-dependent gene expression is essential for brain development. Although transcriptional and epigenetic effects of neuronal activity have been explored in mice, such an investigation is lacking in humans. Because alterations in GABAergic neuronal circuits are implicated in neurological disorders, we conducted a comprehensive activity-dependent transcriptional and epigenetic profiling of human induced pluripotent stem cell-derived GABAergic neurons similar to those of the early developing striatum. We identified genes whose expression is inducible after membrane depolarization, some of which have specifically evolved in primates and/or are associated with neurological diseases, including schizophrenia and autism spectrum disorder (ASD). We define the genome-wide profile of human neuronal activity-dependent enhancers, promoters and the transcription factors CREB and CRTC1. We found significant heritability enrichment for ASD in the inducible promoters. Our results suggest that sequence variation within activity-inducible promoters of developing human forebrain GABAergic neurons contributes to ASD risk.
Collapse
|
30
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
31
|
Li L, Zhang X, Liu N, Chen X, Peng C. LINC00473: A novel oncogenic long noncoding RNA in human cancers. J Cell Physiol 2020; 236:4174-4183. [PMID: 33222224 DOI: 10.1002/jcp.30176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been found to play essential roles in the occurrence and development of multiple human cancers. Accumulating evidence has shown that LINC00473, an oncogenic lncRNA, is upregulated in various human malignancies and related to poor clinical outcomes. Besides, LINC00473 overexpression can promote cell proliferation, migration, and invasion through multiple potential mechanisms, indicating that it may serve as a novel prognostic biomarker and therapeutic target for human cancers. Here, we reviewed the biological functions, molecular mechanisms, and clinical implications of LINC00473 in human cancers.
Collapse
Affiliation(s)
- Lingfeng Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Xu H, Brown AN, Waddell NJ, Liu X, Kaplan GJ, Chitaman JM, Stockman V, Hedinger RL, Adams R, Abreu K, Shen L, Neve R, Wang Z, Nestler EJ, Feng J. Role of Long Noncoding RNA Gas5 in Cocaine Action. Biol Psychiatry 2020; 88:758-766. [PMID: 32711952 PMCID: PMC7584769 DOI: 10.1016/j.biopsych.2020.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a class of transcribed RNA molecules greater than 200 nucleotides in length. Although lncRNAs do not encode proteins, they play numerous functional roles in gene expression regulation. lncRNAs are notably abundant in brain; however, their neural functions remain largely unknown. METHODS We examined the expression of the lncRNA Gas5 in nucleus accumbens (NAc), a key brain reward region, of adult male mice after cocaine administration. We then performed viral-mediated overexpression of Gas5 in NAc neurons to determine its role in addiction-related behaviors. We also carried out RNA sequencing to investigate Gas5-mediated transcriptomic changes. RESULTS We demonstrated that repeated short-term or long-term cocaine administration decreased expression of Gas5 in NAc. Viral-mediated overexpression of Gas5 in NAc neurons decreased cocaine-induced conditioned place preference. Likewise, Gas5 overexpression led to decreased cocaine intake, decreased motivation, and compulsive-like behavior to acquire cocaine, and it facilitated extinction of cocaine-seeking behavior. Transcriptome profiling identified numerous Gas5-mediated gene expression changes that are enriched in relevant neural function categories. Interestingly, these Gas5-regulated gene expression changes significantly overlap with chronic cocaine-induced transcriptome alterations, suggesting that Gas5 may serve as an important regulator of transcriptional responses to cocaine. CONCLUSIONS Altogether, our study demonstrates a novel lncRNA-based molecular mechanism of cocaine action.
Collapse
Affiliation(s)
- Haiyang Xu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306;,Program in Neuroscience, Florida State University, FL 32306
| | - Amber N. Brown
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
| | - Nicholas J. Waddell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
| | - Xiaochuan Liu
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Graham J. Kaplan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306;,Program in Neuroscience, Florida State University, FL 32306
| | - Javed M. Chitaman
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306;,Program in Neuroscience, Florida State University, FL 32306
| | - Victoria Stockman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rachel L. Hedinger
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306;,Program in Neuroscience, Florida State University, FL 32306
| | - Ryan Adams
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
| | - Kristen Abreu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rachael Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139
| | - Zuoxin Wang
- Program in Neuroscience, Florida State University, FL 32306;,Department of Psychology, Florida State University, Tallahassee, FL 32306
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jian Feng
- Department of Biological Science, Florida State University, Tallahassee, Florida; Program in Neuroscience, Florida State University, Tallahassee, Florida.
| |
Collapse
|
33
|
LINC00473 as an Immediate Early Gene under the Control of the EGR1 Transcription Factor. Noncoding RNA 2020; 6:ncrna6040046. [PMID: 33198374 PMCID: PMC7712511 DOI: 10.3390/ncrna6040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Immediate early genes play an essential role in cellular responses to different stimuli. Many of them are transcription factors that regulate the secondary response gene expression. Non-coding RNAs may also be involved in this regulatory cascade. In fact, they are emerging as key actors of gene expression regulation, and evidence suggests that their dysregulation may underly pathological states. We previously took a snapshot of both coding and long non-coding RNAs differentially expressed in neuronal cells after brain-derived neurotrophic factor stimulation. Among these, the transcription factor EGR1 (a well-known immediate early gene) and LINC00473 (a primate-specific long non-coding RNA) that has emerged as an interesting RNA candidate involved in neuronal function and in cancer. In this work, we demonstrated that LINC00473 gene expression kinetics resembled that of immediate early genes in SH-SY5Y and HEK293T cells under different cell stimulation conditions. Moreover, we showed that the expression of LINC00473 is under the control of the transcription factor EGR1, providing evidence for an interesting functional relationship in neuron function.
Collapse
|
34
|
LINC00473 regulated apoptosis, proliferation and migration but could not reverse cell cycle arrest of human bone marrow mesenchymal stem cells induced by a high-dosage of dexamethasone. Stem Cell Res 2020; 48:101954. [DOI: 10.1016/j.scr.2020.101954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
|
35
|
Liu Y, Konopka G. An integrative understanding of comparative cognition: lessons from human brain evolution. Integr Comp Biol 2020; 60:991-1006. [PMID: 32681799 PMCID: PMC7608741 DOI: 10.1093/icb/icaa109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A comprehensive understanding of animal cognition requires the integration of studies on behavior, electrophysiology, neuroanatomy, development, and genomics. Although studies of comparative cognition are receiving increasing attention from organismal biologists, most current studies focus on the comparison of behaviors and anatomical structures to understand their adaptative values. However, to understand the most potentially complex cognitive program of the human brain a greater synthesis of a multitude of disciplines is needed. In this review, we start with extensive neuroanatomic comparisons between humans and other primates. One likely specialization of the human brain is the expansion of neocortex, especially in regions for high-order cognition (e.g., prefrontal cortex). We then discuss how such an expansion can be linked to heterochrony of the brain developmental program, resulting in a greater number of neurons and enhanced computational capacity. Furthermore, alteration of gene expression in the human brain has been associated with positive selection in DNA sequences of gene regulatory regions. These results not only imply that genes associated with brain development are a major factor in the evolution of cognition, but also that high-quality whole-genome sequencing and gene manipulation techniques are needed for an integrative and functional understanding of comparative cognition in non-model organisms.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
36
|
In Vitro Differentiated Human Stem Cell-Derived Neurons Reproduce Synaptic Synchronicity Arising during Neurodevelopment. Stem Cell Reports 2020; 15:22-37. [PMID: 32559460 PMCID: PMC7363884 DOI: 10.1016/j.stemcr.2020.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Neurons differentiated from induced pluripotent stem cells (iPSCs) typically show regular spiking and synaptic activity but lack more complex network activity critical for brain development, such as periodic depolarizations including simultaneous involvement of glutamatergic and GABAergic neurotransmission. We generated human iPSC-derived neurons exhibiting spontaneous oscillatory activity after cultivation of up to 6 months, which resembles early oscillations observed in rodent neurons. This behavior was found in neurons generated using a more “native” embryoid body protocol, in contrast to a “fast” protocol based on NGN2 overexpression. A comparison with published data indicates that EB-derived neurons reach the maturity of neurons of the third trimester and NGN2-derived neurons of the second trimester of human gestation. Co-culturing NGN2-derived neurons with astrocytes only led to a partial compensation and did not reliably induce complex network activity. Our data will help selection of the appropriate iPSC differentiation assay to address specific questions related to neurodevelopmental disorders. Spontaneous oscillatory activity in iPSC-derived neurons after 4–6 months in culture The activity resembled early oscillations seen in rodent neurons during development Cell growth affects developmental changes of neuronal excitability Biological age of neurons is determined based on electrophysiological activity
Collapse
|
37
|
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YHE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020; 106:912-926.e5. [PMID: 32304628 PMCID: PMC7305959 DOI: 10.1016/j.neuron.2020.03.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Behavior, Animal
- Depression/genetics
- Depression/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Down-Regulation
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Neurons/metabolism
- Prefrontal Cortex/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Resilience, Psychological
- Sex Factors
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Young Adult
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong-Hwee E Loh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia E Duffy
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Ross PJ, Mok RSF, Smith BS, Rodrigues DC, Mufteev M, Scherer SW, Ellis J. Modeling neuronal consequences of autism-associated gene regulatory variants with human induced pluripotent stem cells. Mol Autism 2020; 11:33. [PMID: 32398033 PMCID: PMC7218542 DOI: 10.1186/s13229-020-00333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.
Collapse
Affiliation(s)
- P Joel Ross
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Rebecca S F Mok
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon S Smith
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Tran KV, Brown EL, DeSouza T, Jespersen NZ, Nandrup-Bus C, Yang Q, Yang Z, Desai A, Min SY, Rojas-Rodriguez R, Lundh M, Feizi A, Willenbrock H, Larsen TJ, Severinsen MCK, Malka K, Mozzicato AM, Deshmukh AS, Emanuelli B, Pedersen BK, Fitzgibbons T, Scheele C, Corvera S, Nielsen S. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab 2020; 2:397-412. [PMID: 32440655 PMCID: PMC7241442 DOI: 10.1038/s42255-020-0205-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human thermogenic adipose tissue mitigates metabolic disease, raising much interest in understanding its development and function. Here, we show that human thermogenic adipocytes specifically express a primate-specific long non-coding RNA, LINC00473 which is highly correlated with UCP1 expression and decreased in obesity and type-2 diabetes. LINC00473 is detected in progenitor cells, and increases upon differentiation and in response to cAMP. In contrast to other known adipocyte LincRNAs, LINC00473 shuttles out of the nucleus, colocalizes and can be crosslinked to mitochondrial and lipid droplet proteins. Up- or down- regulation of LINC00473 results in reciprocal alterations in lipolysis, respiration and transcription of genes associated with mitochondrial oxidative metabolism. Depletion of PLIN1 results in impaired cAMP-responsive LINC00473 expression and lipolysis, indicating bidirectional interactions between PLIN1, LINC00473 and mitochondrial oxidative functions. Thus, we suggest that LINC00473 is a key regulator of human thermogenic adipocyte function, and reveals a role for a LincRNA in inter-organelle communication and human energy metabolism.
Collapse
Affiliation(s)
- Khanh-Van Tran
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Naja Zenius Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Nandrup-Bus
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - So Yun Min
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Amir Feizi
- Novo Nordisk Research Centre Oxford, University of Oxford, Oxford, UK
| | - Hanni Willenbrock
- Novo Nordisk A/S, Discovery Biology & Technology Boinformatics, Maaloev, Denmark
| | - Therese Juhlin Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mai Charlotte Krogh Severinsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kimberly Malka
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony M Mozzicato
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Fitzgibbons
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Wang X, Li XD, Fu Z, Zhou Y, Huang X, Jiang X. Long non‑coding RNA LINC00473/miR‑195‑5p promotes glioma progression via YAP1‑TEAD1‑Hippo signaling. Int J Oncol 2019; 56:508-521. [PMID: 31894297 PMCID: PMC6959464 DOI: 10.3892/ijo.2019.4946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an urgent need to identify novel potential therapeutic targets for diagnosis and treatment of glioma, a common primary tumor in brain, due to its high-level invasiveness. Long non-coding RNA (lncRNA) LINC00473 has been reported as potentially critical regulators in various types of cancer tumorigenesis. However, the effects of LINC00473 on glioma cells is unclear. The present study aimed to investigate the clinical significance, effects and mechanism of LINC00437 on glioma tumorigenesis. In the present study, LINC00473 was significantly increased in glioma tissues and in cell models, and predicted a poor prognosis in patients with glioma. Notably, LINC00473 knockdown not only suppressed cell proliferation, invasion and migration of glioma cells, but also blocked cell cycle progression and induced apoptosis. Subcutaneous xenotransplanted tumor model experiments revealed that reduced LINC00473 expression was able to suppress in vivo glioma growth. Mechanistically, LINC00473 functioned as a competing endogenous (ce)RNA to decrease microRNA (miR)-195-5p expression. Moreover, Yes-associated protein 1 (YAP1) and TEA domain family member 1 (TEAD1) were identified as downstream targets of miR-195-5p, whose expression levels were inhibited by miR-195-5p. LINC00473 knockdown suppressed glioma progression through the decrease of miR-195-5p and subsequent increase of YAP1 and TEAD1 expression levels. These results indicated LINC00473 might act as a ceRNA to sponge miR-195-5p, thus promoting YAP1 and TEAD1 expressions, and shedding light on the underlying mechanisms of LINC00473-induced glioma progression.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xu Dong Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenyuan Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
42
|
Mimicking Age-Associated Gadd45γ Dysregulation Results in Memory Impairments in Young Adult Mice. J Neurosci 2019; 40:1197-1210. [PMID: 31826946 DOI: 10.1523/jneurosci.1621-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023] Open
Abstract
Age-related memory loss is observed across multiple mammalian species and preferentially affects hippocampus-dependent memory. Memory impairments are characterized by accelerated decay of spatial memories. Nevertheless, the molecular mechanisms underlying these deficits are still largely unknown. Here, we investigated the expression and function of the growth arrest DNA damage (Gadd45) family during aging and cognition, respectively. We report that aging impairs the expression of Gadd45γ in the hippocampus of cognitively impaired male mice. Mimicking this decrease in young adult male mice led to age-like memory deficits in hippocampus-dependent memory tasks. Gadd45γ reduction impaired the activity of key components of the mitogen-activated protein kinase (MAPK) pathway (p38 and JNK) in mouse hippocampal cultures. Furthermore, we found that activation of downstream targets, such as ATF-2, c-Jun, and CREB (cAMP response element-binding protein), was disrupted. Finally, we showed that Gadd45γ is required for induction of key early- and late-response genes that have been associated with aging. Together, these findings indicate that Gadd45γ expression regulates cognitive abilities and synapse-to-nucleus communication and suggest Gadd45γ dysfunction as a potential mechanism contributing to age-related cognitive impairments.SIGNIFICANCE STATEMENT A high percentage of subjects experience age-related memory loss that burdens daily performance. Although many advances have been made, the precise changes in the brain governing these deficits are unclear. Identifying molecular processes that are required for cognition and are altered during old age is crucial to develop preventive or therapeutic strategies. Here, we show that baseline and learning-induced expression of the growth arrest DNA damage (Gadd45) γ is selectively impaired in the hippocampus of aged mice with cognitive deficits. Next, we show that modeling this impairment in young adult mice with normal cognitive performance disrupts long- and short-term memories in an age-like manner. Finally, we demonstrate that Gadd45γ regulates synapse-to-nucleus communication processes that are needed for plasticity-associated gene expression.
Collapse
|
43
|
Green MV, Pengo T, Raybuck JD, Naqvi T, McMullan HM, Hawkinson JE, Marron Fernandez de Velasco E, Muntean BS, Martemyanov KA, Satterfield R, Young SM, Thayer SA. Automated Live-Cell Imaging of Synapses in Rat and Human Neuronal Cultures. Front Cell Neurosci 2019; 13:467. [PMID: 31680875 PMCID: PMC6811609 DOI: 10.3389/fncel.2019.00467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 01/10/2023] Open
Abstract
Synapse loss and dendritic damage correlate with cognitive decline in many neurodegenerative diseases, underlie neurodevelopmental disorders, and are associated with environmental and drug-induced CNS toxicities. However, screening assays designed to measure loss of synaptic connections between live cells are lacking. Here, we describe the design and validation of automated synaptic imaging assay (ASIA), an efficient approach to label, image, and analyze synapses between live neurons. Using viral transduction to express fluorescent proteins that label synapses and an automated computer-controlled microscope, we developed a method to identify agents that regulate synapse number. ASIA is compatible with both confocal and wide-field microscopy; wide-field image acquisition is faster but requires a deconvolution step in the analysis. Both types of images feed into batch processing analysis software that can be run on ImageJ, CellProfiler, and MetaMorph platforms. Primary analysis endpoints are the number of structural synapses and cell viability. Thus, overt cell death is differentiated from subtle changes in synapse density, an important distinction when studying neurodegenerative processes. In rat hippocampal cultures treated for 24 h with 100 μM 2-bromopalmitic acid (2-BP), a compound that prevents clustering of postsynaptic density 95 (PSD95), ASIA reliably detected loss of postsynaptic density 95-enhanced green fluorescent protein (PSD95-eGFP)-labeled synapses in the absence of cell death. In contrast, treatment with 100 μM glutamate produced synapse loss and significant cell death, determined from morphological changes in a binary image created from co-expressed mCherry. Treatment with 3 mM lithium for 24 h significantly increased the number of fluorescent puncta, showing that ASIA also detects synaptogenesis. Proof of concept studies show that cell-specific promoters enable the selective study of inhibitory or principal neurons and that alternative reporter constructs enable quantification of GABAergic or glutamatergic synapses. ASIA can also be used to study synapse loss between human induced pluripotent stem cell (iPSC)-derived cortical neurons. Significant synapse loss in the absence of cell death was detected in the iPSC-derived neuronal cultures treated with either 100 μM 2-BP or 100 μM glutamate for 24 h, while 300 μM glutamate produced synapse loss and cell death. ASIA shows promise for identifying agents that evoke synaptic toxicities and screening for compounds that prevent or reverse synapse loss.
Collapse
Affiliation(s)
- Matthew V. Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Thomas Pengo
- Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan D. Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tahmina Naqvi
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, United States
| | - Hannah M. McMullan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jon E. Hawkinson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, United States
| | | | - Brian S. Muntean
- Department of Neuroscience, Scripps Research Institute, Jupiter, FL, United States
| | | | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
44
|
Joshi VV, Patel ND, Rehan MA, Kuppa A. Mysterious Mechanisms of Memory Formation: Are the Answers Hidden in Synapses? Cureus 2019; 11:e5795. [PMID: 31728242 PMCID: PMC6827877 DOI: 10.7759/cureus.5795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022] Open
Abstract
After decades of research on memory formation and retention, we are still searching for the definite concept and process behind neuroplasticity. This review article will address the relationship between synapses, memory formation, and memory retention and their genetic correlations. In the last six decades, there have been enormous improvements in the neurochemistry domain, especially in the area of neural plasticity. In the central nervous system, the complexity of the synapses between neurons allows communication among them. It is believed that each time certain types of sensory signals pass through sequences of synapses, these synapses can transmit the same signals more efficiently the following time. The concept of Hebb synapse has provided revolutionary thinking about the nature of neural mechanisms of learning and memory formation. To improve the local circuitry for memory formation and behavioral change and stabilization in the mammalian central nervous system, long-term potentiation and long-term depression are the crucial components of Hebbian plasticity. In this review, we will be discussing the role of glutamatergic synapses, engram cells, cytokines, neuropeptides, neurosteroids and many aspects, covering the synaptic basis of memory. Lastly, we have tried to cover the etiology of neurodegenerative disorders due to synaptic dysfunction. To enhance pharmacological interventions for neurodegenerative diseases, we need more research in this direction. With the help of technology, and a better understanding of the disease etiology, not only can we identify the missing pieces of synaptic functions, but we might also cure or even prevent serious neurodegenerative diseases like Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Viraj V Joshi
- Neuropsychiatry, California Instititute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Nishita D Patel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad Awais Rehan
- Miscellenous, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Annapurna Kuppa
- Internal Medicine and Gastroenterology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
45
|
Yap EL, Greenberg ME. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 2019; 100:330-348. [PMID: 30359600 DOI: 10.1016/j.neuron.2018.10.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective niches, transcription further allows mature cells to interact dynamically with their external environment while reliably retaining fundamental information about past experiences. In this Review, we provide an overview of the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper understanding of how activity-dependent transcription promotes the refinement and plasticity of neural circuits for cognitive function.
Collapse
Affiliation(s)
- Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Pruunsild P, Bading H. Shaping the human brain: evolutionary cis-regulatory plasticity drives changes in synaptic activity-controlled adaptive gene expression. Curr Opin Neurobiol 2019; 59:34-40. [PMID: 31102862 DOI: 10.1016/j.conb.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
Abstract
Neuronal activity-induced gene expression programs involved in synaptic structure- and plasticity-related functions are similar in mice and humans, yet bear distinct features. These include gains or losses of activity-responsiveness of certain genes and differences in gene induction profiles. Here, we discuss a possible origin of dissimilarities in activity-regulated transcription between species. We highlight that while synapse-to-nucleus signalling pathways are evolutionarily conserved, cis-regulatory plasticity has been driving species-specific remodelling of the activity-controlled enhancer landscape, thereby affecting gene regulation. In particular, evolutionary rearrangements of transcription factor binding site placements together with potential species-dependent developmental stage- and/or cell type-specific epigenetic and other trans-acting mechanisms are most likely at least in part accountable for between-species diversity in activity-regulated transcription. It is conceivable that cis-regulatory plasticity may have equipped the synaptic activity-driven adaptive gene program in human neurons with unique, species-specific qualities.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci 2019; 22:556-564. [PMID: 30911184 PMCID: PMC6475597 DOI: 10.1038/s41593-019-0365-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Heterozygous loss-of-function mutations in SHANK2 are associated with autism spectrum disorder (ASD). We generated cortical neurons from induced pluripotent stem cells (iPSC) derived from neurotypic and ASD-affected donors. We developed Sparse coculture for Connectivity (SparCon) assays where SHANK2 and control neurons were differentially labeled and sparsely seeded together on a lawn of unlabeled control neurons. We observed increases in dendrite length, dendrite complexity, synapse number, and frequency of spontaneous excitatory postsynaptic currents. These findings were phenocopied in gene-edited homozygous SHANK2 knockout cells and rescued by gene correction of an ASD SHANK2 mutation. Dendrite length increases were exacerbated by IGF1, TG003, or BDNF, and suppressed by DHPG treatment. The transcriptome in isogenic SHANK2 neurons was perturbed in synapse, plasticity, and neuronal morphogenesis gene sets and ASD gene modules, and activity-dependent dendrite extension was impaired. Our findings provide evidence for hyperconnectivity and altered transcriptome in SHANK2 neurons derived from ASD subjects.
Collapse
|
48
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
49
|
Corti A, Sota R, Dugo M, Calogero RA, Terragni B, Mantegazza M, Franceschetti S, Restelli M, Gasparini P, Lecis D, Chrzanowska KH, Delia D. DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients. Sci Rep 2019; 9:651. [PMID: 30679601 PMCID: PMC6346060 DOI: 10.1038/s41598-018-36912-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Raina Sota
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Raffaele A Calogero
- Universita' degli Studi di Torino, Bioinformatics and Genomics Unit, Molecular Biotechnology Centre, Via Nizza 52, 10126, Torino, Italy
| | - Benedetta Terragni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC) LabEx ICST, CNRS UMR7275, Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France.,University Côte d'Azur, 660 Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France
| | - Silvana Franceschetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Michela Restelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Patrizia Gasparini
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via G Venezian 1, 20133, Milano, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy. .,IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy.
| |
Collapse
|
50
|
Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, Shieh AW, Haney J, Parhami S, Belmont J, Kim M, Losada PM, Khan Z, Mleczko J, Xia Y, Dai R, Wang D, Yang YT, Xu M, Fish K, Hof PR, Warrell J, Fitzgerald D, White K, Jaffe AE, Peters MA, Gerstein M, Liu C, Iakoucheva LM, Pinto D, Geschwind DH. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018; 362:eaat8127. [PMID: 30545856 PMCID: PMC6443102 DOI: 10.1126/science.aat8127] [Citation(s) in RCA: 694] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
Collapse
Affiliation(s)
- Michael J. Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Evi Hadjimichael
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca L. Walker
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao Chen
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Hyejung Won
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongjun Wang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Annie W. Shieh
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jillian Haney
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Sepideh Parhami
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Judson Belmont
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minsoo Kim
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patricia Moran Losada
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna Mleczko
- Departments of Medicine and Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xia
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Rujia Dai
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Daifeng Wang
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Yucheng T. Yang
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Min Xu
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Kenneth Fish
- Departments of Medicine and Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick R. Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Dominic Fitzgerald
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kevin White
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago IL 60637
- Tempus Labs, Inc. Chicago IL 60654
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mette A. Peters
- CNS Data Coordination group, Sage Bionetworks, Seattle, WA 98109, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Chunyu Liu
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Dalila Pinto
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel H. Geschwind
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|