1
|
Ferreccio A, Byeon S, Cornell M, Oses-Prieto J, Deshpande A, Weiss LA, Burlingame A, Yadav S. TAOK2 Drives Opposing Cilia Length Deficits in 16p11.2 Deletion and Duplication Carriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617069. [PMID: 39416068 PMCID: PMC11482803 DOI: 10.1101/2024.10.07.617069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.2 deletion and duplication exhibit several common behavioral and social impairments, yet, show opposing brain structural changes and body mass index. To determine cellular mechanisms that might contribute to these opposing phenotypes, we performed quantitative tandem mass tag (TMT) proteomics on human dorsal forebrain neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSC) derived from 16p11.2 CNV carriers. Differentially phosphorylated proteins between unaffected individuals and 16p11.2 CNV carriers were significantly enriched for centrosomal and cilia proteins. Deletion patient-derived NPCs show increased primary cilium length compared to unaffected individuals, while stunted cilium growth was observed in 16p11.2 duplication NPCs. Through cellular shRNA and overexpression screens in human iPSC derived NPCs, we determined the contribution of genes within the 16p11.2 locus to cilium length. TAOK2, a serine threonine protein kinase, and PPP4C, a protein phosphatase, were found to regulate primary cilia length in a gene dosage-dependent manner. We found TAOK2 was localized at centrosomes and the base of the primary cilium, and NPCs differentiated from TAOK2 knockout iPSCs had longer cilia. In absence of TAOK2, there was increased pericentrin at the basal body, and aberrant accumulation of IFT88 at the ciliary distal tip. Further, pharmacological inhibition of TAO kinase activity led to increased ciliary length, indicating that TAOK2 negatively controls primary cilium length through its catalytic activity. These results implicate aberrant cilia length in the pathophysiology of 16p11.2 CNV, and establish the role of TAOK2 kinase as a regulator of primary cilium length.
Collapse
Affiliation(s)
- Amy Ferreccio
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
| | - Moira Cornell
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Aditi Deshpande
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Lauren A Weiss
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106
| |
Collapse
|
2
|
Rajabi P, Noori AS, Sargolzaei J. Autism spectrum disorder and various mechanisms behind it. Pharmacol Biochem Behav 2024; 245:173887. [PMID: 39378931 DOI: 10.1016/j.pbb.2024.173887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental condition characterized by a range of social, communicative, and behavioral challenges. This comprehensive review delves into key aspects of ASD. Clinical Overview and genetic features provide a foundational understanding of ASD, highlighting the clinical presentation and genetic underpinnings that contribute to its complexity. We explore the intricate neurobiological mechanisms at play in ASD, including structural and functional differences that may underlie the condition's hallmark traits. Emerging research has shed light on the role of the immune system and neuroinflammation in ASD. This section investigates the potential links between immunological factors and ASD, offering insights into the condition's pathophysiology. We examine how atypical functional connectivity and alterations in neurotransmitter systems may contribute to the unique cognitive and behavioral features of ASD. In the pursuit of effective interventions, this section reviews current therapeutic strategies, ranging from behavioral and educational interventions to pharmacological approaches, providing a glimpse into the diverse and evolving landscape of ASD treatment. This holistic exploration of mechanisms in ASD aims to contribute to our evolving understanding of the condition and to guide the development of more targeted and personalized interventions for individuals living with ASD.
Collapse
Affiliation(s)
- Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
3
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024:S0002-9297(24)00301-X. [PMID: 39332410 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Pizzella A, Penna E, Abate N, Frenna E, Canafoglia L, Ragona F, Russo R, Chambery A, Perrone-Capano C, Cappello S, Crispino M, Di Giaimo R. Pathological Deficit of Cystatin B Impairs Synaptic Plasticity in EPM1 Human Cerebral Organoids. Mol Neurobiol 2024; 61:4318-4334. [PMID: 38087165 PMCID: PMC11236866 DOI: 10.1007/s12035-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 07/11/2024]
Abstract
Cystatin B (CSTB) is a small protease inhibitor protein being involved in cell proliferation and neuronal differentiation. Loss-of-function mutations in CSTB gene cause progressive myoclonic epilepsy 1 (EPM1). We previously demonstrated that CSTB is locally synthesized in synaptic nerve terminals from rat brain and secreted into the media, indicating its role in synaptic plasticity. In this work, we have further investigated the involvement of CSTB in synaptic plasticity, using synaptosomes from human cerebral organoids (hCOs) as well as from rodents' brain. Our data demonstrate that CSTB is released from synaptosomes in two ways: (i) as a soluble protein and (ii) in extracellular vesicles-mediated pathway. Synaptosomes isolated from hCOs are enriched in pre-synaptic proteins and contain CSTB at all developmental stages analyzed. CSTB presence in the synaptic territories was also confirmed by immunostaining on human neurons in vitro. To investigate if the depletion of CSTB affects synaptic plasticity, we characterized the synaptosomes from EPM1 hCOs. We found that the levels of presynaptic proteins and of an initiation factor linked to local protein synthesis were both reduced in EPM1 hCOs and that the extracellular vesicles trafficking pathway was impaired. Moreover, EPM1 neurons displayed anomalous morphology with longer and more branched neurites bearing higher number of intersections and nodes, suggesting connectivity alterations. In conclusion, our data strengthen the idea that CSTB plays a critical role in the synapse physiology and reveal that pathologically low levels of CSTB may affect synaptic plasticity, leading to synaptopathy and altered neuronal morphology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elisa Frenna
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | | | - Silvia Cappello
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Naples, Italy.
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
6
|
van Boven MA, Mestroni M, Zwijnenburg PJG, Verhage M, Cornelisse LN. A de novo missense mutation in synaptotagmin-1 associated with neurodevelopmental disorder desynchronizes neurotransmitter release. Mol Psychiatry 2024; 29:1798-1809. [PMID: 38321119 PMCID: PMC11371641 DOI: 10.1038/s41380-024-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maaike A van Boven
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marta Mestroni
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
8
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
9
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
10
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
11
|
Sun J, Noss S, Banerjee D, Das M, Girirajan S. Strategies for dissecting the complexity of neurodevelopmental disorders. Trends Genet 2024; 40:187-202. [PMID: 37949722 PMCID: PMC10872993 DOI: 10.1016/j.tig.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.
Collapse
Affiliation(s)
- Jiawan Sun
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Serena Noss
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Deepro Banerjee
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Maitreya Das
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Santhosh Girirajan
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Sarieva K, Kagermeier T, Khakipoor S, Atay E, Yentür Z, Becker K, Mayer S. Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. Mol Psychiatry 2023; 28:5077-5089. [PMID: 36878967 PMCID: PMC9986664 DOI: 10.1038/s41380-023-01997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Maternal immune activation (MIA) during critical windows of gestation is correlated with long-term neurodevelopmental deficits in the offspring, including increased risk for autism spectrum disorder (ASD) in humans. Interleukin 6 (IL-6) derived from the gestational parent is one of the major molecular mediators by which MIA alters the developing brain. In this study, we establish a human three-dimensional (3D) in vitro model of MIA by treating induced pluripotent stem cell-derived dorsal forebrain organoids with a constitutively active form of IL-6, Hyper-IL-6. We validate our model by showing that dorsal forebrain organoids express the molecular machinery necessary for responding to Hyper-IL-6 and activate STAT signaling upon Hyper-IL-6 treatment. RNA sequencing analysis reveals the upregulation of major histocompatibility complex class I (MHCI) genes in response to Hyper-IL-6 exposure, which have been implicated with ASD. We find a small increase in the proportion of radial glia cells after Hyper-IL-6 treatment through immunohistochemistry and single-cell RNA-sequencing. We further show that radial glia cells are the cell type with the highest number of differentially expressed genes, and Hyper-IL-6 treatment leads to the downregulation of genes related to protein translation in line with a mouse model of MIA. Additionally, we identify differentially expressed genes not found in mouse models of MIA, which might drive species-specific responses to MIA. Finally, we show abnormal cortical layering as a long-term consequence of Hyper-IL-6 treatment. In summary, we establish a human 3D model of MIA, which can be used to study the cellular and molecular mechanisms underlying the increased risk for developing disorders such as ASD.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Shokoufeh Khakipoor
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ezgi Atay
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany.
| |
Collapse
|
13
|
Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:16768. [PMID: 38069091 PMCID: PMC10706722 DOI: 10.3390/ijms242316768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with symptoms that affect the whole personality and all aspects of life. Although there is a high degree of heterogeneity in both its etiology and its characteristic behavioral patterns, the disorder is well-captured along the autistic triad. Currently, ASD status can be confirmed following an assessment of behavioral features, but there is a growing emphasis on conceptualizing autism as a spectrum, which allows for establishing a diagnosis based on the level of support need, free of discrete categories. Since ASD has a high genetic predominance, the number of genetic variations identified in the background of the condition is increasing exponentially as genetic testing methods are rapidly evolving. However, due to the huge amount of data to be analyzed, grouping the different DNA variations is still challenging. Therefore, in the present review, a multidimensional classification scheme was developed to accommodate most of the currently known genetic variants associated with autism. Genetic variations have been grouped according to six criteria (extent, time of onset, information content, frequency, number of genes involved, inheritance pattern), which are themselves not discrete categories, but form a coherent continuum in line with the autism spectrum approach.
Collapse
Affiliation(s)
- Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
14
|
Kostic M, Raymond JJ, Freyre CAC, Henry B, Tumkaya T, Khlghatyan J, Dvornik J, Li J, Hsiao JS, Cheon SH, Chung J, Sun Y, Dolmetsch RE, Worringer KA, Ihry RJ. Patient Brain Organoids Identify a Link between the 16p11.2 Copy Number Variant and the RBFOX1 Gene. ACS Chem Neurosci 2023; 14:3993-4012. [PMID: 37903506 PMCID: PMC10655044 DOI: 10.1021/acschemneuro.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.
Collapse
Affiliation(s)
- Milos Kostic
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Joseph J. Raymond
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Christophe A. C. Freyre
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Beata Henry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Tayfun Tumkaya
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Jivan Khlghatyan
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jill Dvornik
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jingyao Li
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jack S. Hsiao
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Seon Hye Cheon
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jonathan Chung
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Yishan Sun
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Ricardo E. Dolmetsch
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Kathleen A. Worringer
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Robert J. Ihry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| |
Collapse
|
15
|
Arioka Y, Okumura H, Sakaguchi H, Ozaki N. Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of iPS cell technology. Psychiatry Clin Neurosci 2023; 77:308-314. [PMID: 36929185 PMCID: PMC11488641 DOI: 10.1111/pcn.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Collapse
Affiliation(s)
- Yuko Arioka
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Center for Advanced Medicine and Clinical ResearchNagoya University HospitalNagoyaJapan
| | - Hiroki Okumura
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Hospital PharmacyNagoya University HospitalNagoyaJapan
| | - Hideya Sakaguchi
- BDR‐Otsuka Pharmaceutical Collaboration Center, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityNagoyaJapan
| |
Collapse
|
16
|
Paranjape N, Lin YHT, Flores-Ramirez Q, Sarin V, Johnson AB, Chu J, Paredes M, Wiita AP. A CRISPR-engineered isogenic model of the 22q11.2 A-B syndromic deletion. Sci Rep 2023; 13:7689. [PMID: 37169815 PMCID: PMC10175260 DOI: 10.1038/s41598-023-34325-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition. However, patient-derived iPS cells may harbor underlying genetic heterogeneity that can confound analysis. Furthermore, almost all available models reflect the commonly-found ~ 3 Mb "A-D" deletion at this locus. The ~ 1.5 Mb "A-B" deletion, a variant of the 22q11.2 deletion which may lead to different syndromic features, and is much more frequently inherited than the A-D deletion, remains under-studied due to lack of relevant models. Here we leveraged a CRISPR-based strategy to engineer isogenic iPS models of the 22q11.2 "A-B" deletion. Differentiation to excitatory neurons with subsequent characterization by transcriptomics and cell surface proteomics identified deletion-associated alterations in proliferation and adhesion. To illustrate in vivo applications of this model, we further implanted neuronal progenitor cells into the cortex of neonatal mice and found potential alterations in neuronal maturation. The isogenic models generated here will provide a unique resource to study this less-common variant of the 22q11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Neha Paranjape
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Quetzal Flores-Ramirez
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Vishesh Sarin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda Brooke Johnson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Mercedes Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
18
|
Antony I, Narasimhan M, Shen R, Prakasam R, Kaushik K, Chapman G, Kroll KL. Duplication Versus Deletion Through the Lens of 15q13.3: Clinical and Research Implications of Studying Copy Number Variants Associated with Neuropsychiatric Disorders in Induced Pluripotent Stem Cell-Derived Neurons. Stem Cell Rev Rep 2023; 19:639-650. [PMID: 36370261 PMCID: PMC10115185 DOI: 10.1007/s12015-022-10475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants (CNVs), involving duplication or deletion of susceptible intervals of the human genome, underlie a range of neurodevelopmental and neuropsychiatric disorders. As accessible in vivo animal models of these disorders often cannot be generated, induced pluripotent stem cell (iPSC) models derived from patients carrying these CNVs can reveal alterations of brain development and neuronal function that contribute to these disorders. CNVs involving deletion versus duplication of a particular genomic interval often result both in distinct clinical phenotypes and in differential phenotypic penetrance. This review initially focuses on CNVs at 15q13.3, which contribute to autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Like most CNVs, deletions at 15q13.3 usually cause severe clinical phenotypes, while duplications instead result in highly variable penetrance, with some carriers exhibiting no clinical phenotype. Here, we describe cellular and molecular phenotypes seen in iPSC-derived neuronal models of 15q13.3 duplication and deletion, which may contribute both to the differential clinical consequences and phenotypic penetrance. We then relate this work to many other CNVs involving both duplication and deletion, summarizing findings from iPSC studies and their relationship to clinical phenotype. Together, this work highlights how CNVs involving duplication versus deletion can differentially alter neural development and function to contribute to neuropsychiatric disorders. iPSC-derived neuronal models of these disorders can be used both to understand the underlying neurodevelopmental alterations and to develop pharmacological or molecular approaches for phenotypic rescue that may suggest leads for patient intervention. Top: Deletion versus duplication of the same genomic interval results in different clinical phenotypes and degrees of phenotypic penetrance. Example findings schematized. Bottom: iPSC-derived neurons from individuals with these CNVs involving deletion versus duplication likewise often differential phenotypes (increases or decreases) in the categories shown. Figure created with BioRender.com.
Collapse
Affiliation(s)
- Irene Antony
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mishka Narasimhan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Renata Shen
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Fetit R, Barbato MI, Theil T, Pratt T, Price DJ. 16p11.2 deletion accelerates subpallial maturation and increases variability in human iPSC-derived ventral telencephalic organoids. Development 2023; 150:dev201227. [PMID: 36826401 PMCID: PMC10110424 DOI: 10.1242/dev.201227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
Inhibitory interneurons regulate cortical circuit activity, and their dysfunction has been implicated in autism spectrum disorder (ASD). 16p11.2 microdeletions are genetically linked to 1% of ASD cases. However, few studies investigate the effects of this microdeletion on interneuron development. Using ventral telencephalic organoids derived from human induced pluripotent stem cells, we have investigated the effect of this microdeletion on organoid size, progenitor proliferation and organisation into neural rosettes, ganglionic eminence marker expression at early developmental timepoints, and expression of the neuronal marker NEUN at later stages. At early stages, deletion organoids exhibited greater variations in size with concomitant increases in relative neural rosette area and the expression of the ventral telencephalic marker COUPTFII, with increased variability in these properties. Cell cycle analysis revealed an increase in total cell cycle length caused primarily by an elongated G1 phase, the duration of which also varied more than normal. At later stages, deletion organoids increased their NEUN expression. We propose that 16p11.2 microdeletions increase developmental variability and may contribute to ASD aetiology by lengthening the cell cycle of ventral progenitors, promoting premature differentiation into interneurons.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Michela Ilaria Barbato
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David J. Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
20
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
21
|
Yang Y, Booker SA, Clegg JM, Quintana-Urzainqui I, Sumera A, Kozic Z, Dando O, Martin Lorenzo S, Herault Y, Kind PC, Price DJ, Pratt T. Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion. BMC Neurosci 2023; 24:5. [PMID: 36658491 PMCID: PMC9850541 DOI: 10.1186/s12868-022-00771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2+/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2+/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2+/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2+/- rats.
Collapse
Affiliation(s)
- Yifei Yang
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom
| | - Sam A Booker
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - James M Clegg
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Anna Sumera
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Sandra Martin Lorenzo
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Yann Herault
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Peter C Kind
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom. .,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.
| |
Collapse
|
22
|
Zhao HH, Haddad GG. Alzheimer's disease like neuropathology in Down syndrome cortical organoids. Front Cell Neurosci 2022; 16:1050432. [PMID: 36568886 PMCID: PMC9773144 DOI: 10.3389/fncel.2022.1050432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Down syndrome (DS) is a genetic disorder with an extra copy of chromosome 21 and DS remains one of the most common causes of intellectual disabilities in humans. All DS patients have Alzheimer's disease (AD)-like neuropathological changes including accumulation of plaques and tangles by their 40s, much earlier than the onset of such neuropathological changes in AD patients. Due to the lack of human samples and appropriate techniques, our understanding of DS neuropathology during brain development or before the clinical onset of the disease remains largely unexplored at the cellular and molecular levels. Methods: We used induced pluripotent stem cell (iPSC) and iPSC-derived 3D cortical organoids to model Alzheimer's disease in Down syndrome and explore the earliest cellular and molecular changes during DS fetal brain development. Results: We report that DS iPSCs have a decreased growth rate than control iPSCs due to a decreased cell proliferation. DS iPSC-derived cortical organoids have a much higher immunoreactivity of amyloid beta (Aß) antibodies and a significantly higher amount of amyloid plaques than control organoids. Although Elisa results did not detect a difference of Aß40 and Aß42 level between the two groups, the ratio of Aß42/Aß40 in the detergent-insoluble fraction of DS organoids was significantly higher than control organoids. Furthermore, an increased Tau phosphorylation (pTau S396) in DS organoids was confirmed by immunostaining and Western blot. Elisa data demonstrated that the ratio of insoluble Tau/total Tau in DS organoids was significantly higher than control organoids. Conclusion: DS iPSC-derived cortical organoids mimic AD-like pathophysiologyical phenotype in vitro, including abnormal Aß and insoluble Tau accumulation. The molecular neuropathologic signature of AD is present in DS much earlier than predicted, even in early fetal brain development, illustrating the notion that brain organoids maybe a good model to study early neurodegenerative conditions.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States,Department of Neurosciences, University of California San Diego, La Jolla, CA, United States,The Rady Children’s Hospital, San Diego, CA, United States,*Correspondence: Gabriel G. Haddad
| |
Collapse
|
23
|
Parnell E, Culotta L, Forrest MP, Jalloul HA, Eckman BL, Loizzo DD, Horan KKE, Dos Santos M, Piguel NH, Tai DJC, Zhang H, Gertler TS, Simkin D, Sanders AR, Talkowski ME, Gejman PV, Kiskinis E, Duan J, Penzes P. Excitatory Dysfunction Drives Network and Calcium Handling Deficits in 16p11.2 Duplication Schizophrenia Induced Pluripotent Stem Cell-Derived Neurons. Biol Psychiatry 2022:S0006-3223(22)01718-8. [PMID: 36581494 PMCID: PMC10166768 DOI: 10.1016/j.biopsych.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold. METHODS To dissect the contribution of induced excitatory neurons (iENs) versus GABAergic (gamma-aminobutyric acidergic) neurons (iGNs) to SCZ pathophysiology, we induced iNs from CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 isogenic and SCZ patient-derived induced pluripotent stem cells and analyzed SCZ-related phenotypes in iEN monocultures and iEN/iGN cocultures. RESULTS In iEN/iGN cocultures, neuronal firing and synchrony were reduced at later, but not earlier, stages of in vitro development. These were fully recapitulated in iEN monocultures, indicating a primary role for iENs. Moreover, isogenic iENs showed reduced dendrite length and deficits in calcium handling. iENs from 16p11.2 duplication-carrying patients with SCZ displayed overlapping deficits in network synchrony, dendrite outgrowth, and calcium handling. Transcriptomic analysis of both iEN cohorts revealed molecular markers of disease related to the glutamatergic synapse, neuroarchitecture, and calcium regulation. CONCLUSIONS Our results indicate the presence of 16p11.2 duplication-dependent alterations in SCZ patient-derived iENs. Transcriptomics and cellular phenotyping reveal overlap between isogenic and patient-derived iENs, suggesting a central role of glutamatergic, morphological, and calcium dysregulation in 16p11.2 duplication-mediated pathogenesis. Moreover, excitatory dysfunction during early neurodevelopment is implicated as the basis of SCZ pathogenesis in 16p11.2 duplication carriers. Our results support network synchrony and calcium handling as outcomes directly linked to this genetic risk variant.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Lorenza Culotta
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Hiba A Jalloul
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Blair L Eckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Daniel D Loizzo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Katherine K E Horan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Nicolas H Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Derek J C Tai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H Lurie Childrens Hospital of Chicago, Chicago, Illinois; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dina Simkin
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Evangelos Kiskinis
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
24
|
Langlie J, Mittal R, Finberg A, Bencie NB, Mittal J, Omidian H, Omidi Y, Eshraghi AA. Unraveling pathological mechanisms in neurological disorders: the impact of cell-based and organoid models. Neural Regen Res 2022; 17:2131-2140. [PMID: 35259819 PMCID: PMC9083150 DOI: 10.4103/1673-5374.335836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell-based models are a promising tool in deciphering the molecular mechanisms underlying the pathogenesis of neurological disorders as well as aiding in the discovery and development of future drug therapies. The greatest challenge is creating cell-based models that encapsulate the vast phenotypic presentations as well as the underlying genotypic etiology of these conditions. In this article, we discuss the recent advancements in cell-based models for understanding the pathophysiology of neurological disorders. We reviewed studies discussing the progression of cell-based models to the advancement of three-dimensional models and organoids that provide a more accurate model of the pathophysiology of neurological disorders in vivo. The better we understand how to create more precise models of the neurological system, the sooner we will be able to create patient-specific models and large libraries of these neurological disorders. While three-dimensional models can be used to discover the linking factors to connect the varying phenotypes, such models will also help to understand the early pathophysiology of these neurological disorders and how they are affected by their environment. The three-dimensional cell models will allow us to create more specific treatments and uncover potentially preventative measures in neurological disorders such as autism spectrum disorder, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jake Langlie
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ariel Finberg
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B Bencie
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami; Department of Biomedical Engineering, University of Miami, Coral Gables; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
26
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
27
|
Connacher R, Williams M, Prem S, Yeung PL, Matteson P, Mehta M, Markov A, Peng C, Zhou X, McDermott CR, Pang ZP, Flax J, Brzustowicz L, Lu CW, Millonig JH, DiCicco-Bloom E. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Reports 2022; 17:1380-1394. [PMID: 35623351 PMCID: PMC9214070 DOI: 10.1016/j.stemcr.2022.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.
Collapse
Affiliation(s)
- Robert Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Madeline Williams
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Percy L Yeung
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Anna Markov
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Cynthia Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Courtney R McDermott
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Judy Flax
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - Che-Wei Lu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
28
|
Lim ET, Chan Y, Dawes P, Guo X, Erdin S, Tai DJC, Liu S, Reichert JM, Burns MJ, Chan YK, Chiang JJ, Meyer K, Zhang X, Walsh CA, Yankner BA, Raychaudhuri S, Hirschhorn JN, Gusella JF, Talkowski ME, Church GM. Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nat Commun 2022; 13:3243. [PMID: 35688811 PMCID: PMC9187732 DOI: 10.1038/s41467-022-30968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Cerebral organoids can be used to gain insights into cell type specific processes perturbed by genetic variants associated with neuropsychiatric disorders. However, robust and scalable phenotyping of organoids remains challenging. Here, we perform RNA sequencing on 71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework (Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to 16p11.2 deletions and 15q11-13 duplications, two loci associated with autism spectrum disorder, to identify immature neurons and intermediate progenitor cells as critical cell types for 16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our work presents a quantitative phenotyping framework to integrate multi-transcriptomic datasets for the identification of cell types and cell type-specific co-expressed driver genes associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Elaine T Lim
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Yingleong Chan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Xiaoge Guo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Songlei Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Julia M Reichert
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mannix J Burns
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ying Kai Chan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Jessica J Chiang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Katharina Meyer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.,The Grossman Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Christopher A Walsh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce A Yankner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Rheumatology and Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Joel N Hirschhorn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - James F Gusella
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Aglinskas A, Hartshorne JK, Anzellotti S. Contrastive machine learning reveals the structure of neuroanatomical variation within autism. Science 2022; 376:1070-1074. [PMID: 35653486 DOI: 10.1126/science.abm2461] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is highly heterogeneous. Identifying systematic individual differences in neuroanatomy could inform diagnosis and personalized interventions. The challenge is that these differences are entangled with variation because of other causes: individual differences unrelated to ASD and measurement artifacts. We used contrastive deep learning to disentangle ASD-specific neuroanatomical variation from variation shared with typical control participants. ASD-specific variation correlated with individual differences in symptoms. The structure of this ASD-specific variation also addresses a long-standing debate about the nature of ASD: At least in terms of neuroanatomy, individuals do not cluster into distinct subtypes; instead, they are organized along continuous dimensions that affect distinct sets of regions.
Collapse
Affiliation(s)
- Aidas Aglinskas
- Department of Psychology and Neuroscience, Boston College, Boston, MA 02467, USA
| | - Joshua K Hartshorne
- Department of Psychology and Neuroscience, Boston College, Boston, MA 02467, USA
| | - Stefano Anzellotti
- Department of Psychology and Neuroscience, Boston College, Boston, MA 02467, USA
| |
Collapse
|
30
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2022:S0920-9964(22)00156-6. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
31
|
Rigby MJ, Orefice NS, Lawton AJ, Ma M, Shapiro SL, Yi SY, Dieterich IA, Frelka A, Miles HN, Pearce RA, Yu JPJ, Li L, Denu JM, Puglielli L. Increased expression of SLC25A1/CIC causes an autistic-like phenotype with altered neuron morphology. Brain 2022; 145:500-516. [PMID: 35203088 PMCID: PMC9014753 DOI: 10.1093/brain/awab295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder, suggesting that aberrant cytosolic-to-endoplasmic reticulum flux of acetyl-CoA can be a mechanistic driver for the development of autism spectrum disorder. We therefore generated a SLC25A1 neuron transgenic mouse with overexpression specifically in the forebrain neurons. The mice displayed autistic-like behaviours with a jumping stereotypy. They exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia and altered synaptic plasticity and morphology. Finally, quantitative proteomic and acetyl-proteomic analyses revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosolic-to-endoplasmic reticulum acetyl-CoA flux and the development of an autistic-like phenotype.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alexis J Lawton
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Min Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue Y Yi
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Inca A Dieterich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N Miles
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John M Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA,Correspondence to: Luigi Puglielli University of Wisconsin-Madison, Waisman Center 1500 Highland Ave, Madison, WI 53705, USA E-mail:
| |
Collapse
|
32
|
Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, Futerman AH, Sive H. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience 2022; 25:103551. [PMID: 34984324 PMCID: PMC8693007 DOI: 10.1016/j.isci.2021.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/23/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
The complex 16p11.2 deletion syndrome (16pdel) is accompanied by neurological disorders, including epilepsy, autism spectrum disorder, and intellectual disability. We demonstrated that 16pdel iPSC differentiated neurons from affected people show augmented local field potential activity and altered ceramide-related lipid species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B contributes to changes in neuronal activity and function in 16pdel syndrome through a crucial role for the gene in lipid metabolism.
Collapse
Affiliation(s)
| | - Jiyoon L. Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yara Khodour
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Maya Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21.1 deletion and duplication syndrome. Mol Psychiatry 2022; 27:819-830. [PMID: 34112971 PMCID: PMC9054650 DOI: 10.1038/s41380-021-01182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Copy Number Variation (CNV) at the 1q21.1 locus is associated with a range of neurodevelopmental and psychiatric disorders in humans, including abnormalities in head size and motor deficits. Yet, the functional consequences of these CNVs (both deletion and duplication) on neuronal development remain unknown. To determine the impact of CNV at the 1q21.1 locus on neuronal development, we generated induced pluripotent stem cells from individuals harbouring 1q21.1 deletion or duplication and differentiated them into functional cortical neurons. We show that neurons with 1q21.1 deletion or duplication display reciprocal phenotype with respect to proliferation, differentiation potential, neuronal maturation, synaptic density and functional activity. Deletion of the 1q21.1 locus was also associated with an increased expression of lower cortical layer markers. This difference was conserved in the mouse model of 1q21.1 deletion, which displayed altered corticogenesis. Importantly, we show that neurons with 1q21.1 deletion and duplication are associated with differential expression of calcium channels and demonstrate that physiological deficits in neurons with 1q21.1 deletion or duplication can be pharmacologically modulated by targeting Ca2+ channel activity. These findings provide biological insight into the neuropathological mechanism underlying 1q21.1 associated brain disorder and indicate a potential target for therapeutic interventions.
Collapse
|
34
|
Li R, Walsh P, Truong V, Petersen A, Dutton JR, Hubel A. Differentiation of Human iPS Cells Into Sensory Neurons Exhibits Developmental Stage-Specific Cryopreservation Challenges. Front Cell Dev Biol 2021; 9:796960. [PMID: 34970550 PMCID: PMC8712858 DOI: 10.3389/fcell.2021.796960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Differentiation of human induced pluripotent stem cells (hiPSCs) generates cell phenotypes valuable for cell therapy and personalized medicine. Successful translation of these hiPSC-derived therapeutic products will rely upon effective cryopreservation at multiple stages of the manufacturing cycle. From the perspective of cryobiology, we attempted to understand how the challenge of cryopreservation evolves between cell phenotypes along an hiPSC-to-sensory neuron differentiation trajectory. Cells were cultivated at three different stages to represent intermediate, differentiated, and matured cell products. All cell stages remained ≥90% viable in a dimethyl sulfoxide (DMSO)-free formulation but suffered ≥50% loss in DMSO before freezing. Raman spectroscopy revealed higher sensitivity to undercooling in hiPSC-derived neuronal cells with lower membrane fluidity and higher sensitivity to suboptimal cooling rates in stem cell developmental stages with larger cell bodies. Highly viable and functional sensory neurons were obtained following DMSO-free cryopreservation. Our study also demonstrated that dissociating adherent cultures plays an important role in the ability of cells to survive and function after cryopreservation.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Patrick Walsh
- Anatomic Incorporated, Minneapolis, MN, United States
| | | | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Allison Hubel
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Modenato C, Martin-Brevet S, Moreau CA, Rodriguez-Herreros B, Kumar K, Draganski B, Sønderby IE, Jacquemont S. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review. Biol Psychiatry 2021; 90:596-610. [PMID: 34509290 DOI: 10.1016/j.biopsych.2021.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023]
Abstract
Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
Collapse
Affiliation(s)
- Claudia Modenato
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique UMR 3571, Department of Neuroscience, Université de Paris, Institut Pasteur, Paris, France
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et Apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Nakazawa T. Modeling schizophrenia with iPS cell technology and disease mouse models. Neurosci Res 2021; 175:46-52. [PMID: 34411680 DOI: 10.1016/j.neures.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology, which enables the direct analysis of neuronal cells with the same genetic background as patients, has recently garnered significant attention in schizophrenia research. This technology is important because it enables a comprehensive interpretation using mice and human clinical research and cross-species verification. Here I review recent advances in modeling schizophrenia using iPSC technology, alongside the utility of disease mouse models.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
37
|
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F, Bonni A, Maloney SE, Turner TN, Huettner JE, Constantino JN, Kroll KL. Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biol 2021; 19:147. [PMID: 34320968 PMCID: PMC8317352 DOI: 10.1186/s12915-021-01080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| |
Collapse
|
38
|
Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports 2021; 16:1446-1457. [PMID: 33861989 PMCID: PMC8190574 DOI: 10.1016/j.stemcr.2021.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.
Collapse
Affiliation(s)
- Nickesha C Anderson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Fang Chen
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wardiya Afshar Saber
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nat Commun 2021; 12:2897. [PMID: 34006844 PMCID: PMC8131375 DOI: 10.1038/s41467-021-23113-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.
Collapse
|
40
|
Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proc Natl Acad Sci U S A 2021; 118:2005483118. [PMID: 33833053 DOI: 10.1073/pnas.2005483118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.
Collapse
|
41
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
43
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, Antaki D, Amar M, Chau K, Pramod AB, Diedrich J, Tejwani L, Romero S, Sebat J, Yates III JR, Muotri AR, Iakoucheva LM. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry 2021; 26:7560-7580. [PMID: 34433918 PMCID: PMC8873019 DOI: 10.1038/s41380-021-01243-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022]
Abstract
Reciprocal deletion and duplication of the 16p11.2 region is the most common copy number variation (CNV) associated with autism spectrum disorders. We generated cortical organoids from skin fibroblasts of patients with 16p11.2 CNV to investigate impacted neurodevelopmental processes. We show that organoid size recapitulates macrocephaly and microcephaly phenotypes observed in the patients with 16p11.2 deletions and duplications. The CNV dosage affects neuronal maturation, proliferation, and synapse number, in addition to its effect on organoid size. We demonstrate that 16p11.2 CNV alters the ratio of neurons to neural progenitors in organoids during early neurogenesis, with a significant excess of neurons and depletion of neural progenitors observed in deletions. Transcriptomic and proteomic profiling revealed multiple pathways dysregulated by the 16p11.2 CNV, including neuron migration, actin cytoskeleton, ion channel activity, synaptic-related functions, and Wnt signaling. The level of the active form of small GTPase RhoA was increased in both, deletions and duplications. Inhibition of RhoA activity rescued migration deficits, but not neurite outgrowth. This study provides insights into potential neurobiological mechanisms behind the 16p11.2 CNV during neocortical development.
Collapse
Affiliation(s)
- Jorge Urresti
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Pan Zhang
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Patricia Moran-Losada
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Nam-Kyung Yu
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Priscilla D. Negraes
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Cleber A. Trujillo
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Danny Antaki
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA
| | - Megha Amar
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kevin Chau
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Akula Bala Pramod
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Jolene Diedrich
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Leon Tejwani
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Sarah Romero
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Jonathan Sebat
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242University of California San Diego, Beyster Center for Psychiatric Genomics, La Jolla, CA USA
| | - John R. Yates III
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA USA ,Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA USA
| | - Lilia M. Iakoucheva
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
45
|
Madison JM, Duong K, Vieux EF, Udeshi ND, Iqbal S, Requadt E, Fereshetian S, Lewis MC, Gomes AS, Pierce KA, Platt RJ, Zhang F, Campbell AJ, Lal D, Wagner FF, Clish CB, Carr SA, Sheng M, Scolnick EM, Cottrell JR. Regulation of purine metabolism connects KCTD13 to a metabolic disorder with autistic features. iScience 2020; 24:101935. [PMID: 33409479 PMCID: PMC7773955 DOI: 10.1016/j.isci.2020.101935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.
Collapse
Affiliation(s)
- Jon M Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen Duong
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ellen F Vieux
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Namrata D Udeshi
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sumaiya Iqbal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elise Requadt
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shaunt Fereshetian
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael C Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Antonio S Gomes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kerry A Pierce
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Randall J Platt
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Feng Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edward M Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
46
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
47
|
Oliva-Teles N, de Stefano MC, Gallagher L, Rakic S, Jorge P, Cuturilo G, Markovska-Simoska S, Borg I, Wolstencroft J, Tümer Z, Harwood AJ, Kodra Y, Skuse D. Rare Pathogenic Copy Number Variation in the 16p11.2 (BP4-BP5) Region Associated with Neurodevelopmental and Neuropsychiatric Disorders: A Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9253. [PMID: 33321999 PMCID: PMC7763014 DOI: 10.3390/ijerph17249253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
Copy number variants (CNVs) play an important role in the genetic underpinnings of neuropsychiatric/neurodevelopmental disorders. The chromosomal region 16p11.2 (BP4-BP5) harbours both deletions and duplications that are associated in carriers with neurodevelopmental and neuropsychiatric conditions as well as several rare disorders including congenital malformation syndromes. The aim of this article is to provide a review of the current knowledge of the diverse neurodevelopmental disorders (NDD) associated with 16p11.2 deletions and duplications reported in published cohorts. A literature review was conducted using the PubMed/MEDLINE electronic database limited to papers published in English between 1 January 2010 and 31 July 2020, describing 16p11.2 deletions and duplications carriers' cohorts. Twelve articles meeting inclusion criteria were reviewed from the 75 articles identified by the search. Of these twelve papers, eight described both deletions and duplications, three described deletions only and one described duplications only. This study highlights the heterogeneity of NDD descriptions of the selected cohorts and inconsistencies concerning accuracy of data reporting.
Collapse
Affiliation(s)
- Natália Oliva-Teles
- Centro de Genética Médica Doutor Jacinto Magalhães/Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto (UMIB/ICBAS/UP), 4050-313 Porto, Portugal
| | - Maria Chiara de Stefano
- Italian National Transplant Center, Italian National Institute of Health, 00161 Rome, Italy;
| | - Louise Gallagher
- Trinity Institute of Neurosciences, Trinity College Dublin, University of Dublin, 152-160 Dublin, Ireland;
| | - Severin Rakic
- Public Health Institute of Republic of Srpska, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães/Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto (UMIB/ICBAS/UP), 4050-313 Porto, Portugal
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Medical Genetics, University Children’s Hospital, Tirsova 10, 11000 Belgrade, Serbia
| | | | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Medical Genetics Unit, Mater Dei Hospital, MSD 2090 L-Imsida, Malta
| | - Jeanne Wolstencroft
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.W.); (D.S.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhangen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Adrian J. Harwood
- Neuroscience and Mental Health Research Institute (NMHRI), & School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK;
| | - Yllka Kodra
- National Centre for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - David Skuse
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.W.); (D.S.)
| |
Collapse
|
48
|
Roth JG, Muench KL, Asokan A, Mallett VM, Gai H, Verma Y, Weber S, Charlton C, Fowler JL, Loh KM, Dolmetsch RE, Palmer TD. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. eLife 2020; 9:58178. [PMID: 33169669 PMCID: PMC7695459 DOI: 10.7554/elife.58178] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.
Collapse
Affiliation(s)
- Julien G Roth
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Kristin L Muench
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Aditya Asokan
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Victoria M Mallett
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Hui Gai
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Yogendra Verma
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Stephen Weber
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Carol Charlton
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Jonas L Fowler
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Kyle M Loh
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Ricardo E Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Theo D Palmer
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
49
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
50
|
Rein B, Yan Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci 2020; 43:886-901. [PMID: 32993859 DOI: 10.1016/j.tins.2020.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Copy number variations (CNVs) of the human 16p11.2 genetic locus are associated with a range of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and epilepsy. In this review, we delineate genetic information and diverse phenotypes in individuals with 16p11.2 CNVs, and synthesize preclinical findings from transgenic mouse models of 16p11.2 CNVs. Mice with 16p11.2 deletions or duplications recapitulate many core behavioral phenotypes, including social and cognitive deficits, and exhibit altered synaptic function across various brain areas. Mechanisms of transcriptional dysregulation and cortical maldevelopment are reviewed, along with potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Benjamin Rein
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|