1
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
3
|
Carrillo GL, Su J, Cawley ML, Wei D, Gill SK, Blader IJ, Fox MA. Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection. J Neurochem 2024; 168:3365-3385. [PMID: 36683435 PMCID: PMC10363253 DOI: 10.1111/jnc.15770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mikel L. Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Derek Wei
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Simran K. Gill
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Department of Psychology, Roanoke College, Salem, Virginia, 24153, USA
- NeuroSURF Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, 14203, USA
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| |
Collapse
|
4
|
de Deus JL, Faborode OS, Nandi S. Synaptic Pruning by Microglia: Lessons from Genetic Studies in Mice. Dev Neurosci 2024:1-21. [PMID: 39265565 DOI: 10.1159/000541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Neural circuits are subjected to refinement throughout life. The dynamic addition and elimination (pruning) of synapses are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response. SUMMARY This review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically localized molecules, neuronally or glial-derived diffusible factors, and their respective cognate receptors in microglia provide critical evidence in support of a direct role of microglia in synaptic pruning. KEY MESSAGE We discuss microglial contact-dependent "eat-me," "don't-eat-me," and "find-me" signals, as well as recently identified noncontact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Sayan Nandi
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
5
|
He XF, Yang XF, Li G, Zhao Y, Luo J, Xu JH, Zheng HQ, Zhang LY, Hu XQ. Physical Exercise Improves the Neuronal Function in Ischemic Stroke Via Microglial CB 2R/P2Y12 Signaling. Mol Neurobiol 2024:10.1007/s12035-024-04391-2. [PMID: 39066973 DOI: 10.1007/s12035-024-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Physical exercise (PE) may be the single most important and accessible lifestyle habit throughout life, it inhibits the neuroinflammatory response and protects the brain against damage. As the innate cells in brain, microglia undergo morphological and functional changes to communicate with neurons protecting the neurons from injury. Herein, aiming at exploring the effects of PE on the communication between microglia-neuron during acute ischemic cerebral infarction, we carried out running wheel training before the conduction of transient middle cerebral artery occlusion (tMCAO) in C57BL/6 J and Cx3cr1-GFP mice. We found that microglial P2Y12 expression in the peri-infarct area was decreased, microglial dynamics and microglia-neuron communications were impaired, using in vivo two-photon imaging. PE up-regulated the microglial P2Y12 expression, increased the microglial dynamics, and promoted the contacts of microglia with neurons. As a result, PE inhibited neuronal Ca2+ overloads and protected against damage of the neuronal mitochondria in acute tMCAO. Mechanistically, PE increased the cannabinoid receptor 2 (CB2R) in microglia, promoted the phosphorylation of Nrf2 (NF-E2-related factor 2) at ser-344, increased the transcription factor level of Mafk, and up-regulated the level of P2Y12, whereby PE increased the levels of CB2R to promote microglia-neuron contacts to monitor and protect neuronal function.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
6
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
8
|
Escoubas CC, Molofsky AV. Microglia as integrators of brain-associated molecular patterns. Trends Immunol 2024; 45:358-370. [PMID: 38658221 DOI: 10.1016/j.it.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Microglia are brain-resident macrophages that play key roles in brain development and experience dependent plasticity. In this review we discuss recent findings regarding the molecular mechanisms through which mammalian microglia sense the unique molecular patterns of the homeostatic brain. We propose that microglial function is acutely controlled in response to 'brain-associated molecular patterns' (BAMPs) that function as indicators of neuronal activity and neural circuit remodeling. A further layer of regulation comes from instructive cytokine cues that define unique microglial functional states. A systematic investigation of the receptors and signaling pathways that mediate these two regulatory axes may begin to define a functional code for microglia-neuron interactions.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
You Y, An DD, Wan YS, Zheng BX, Dai HB, Zhang SH, Zhang XN, Wang RR, Shi P, Jin M, Wang Y, Jiang L, Chen Z, Hu WW. Cell-specific IL-1R1 regulates the regional heterogeneity of microglial displacement of GABAergic synapses and motor learning ability. Cell Mol Life Sci 2024; 81:116. [PMID: 38438808 PMCID: PMC10912170 DOI: 10.1007/s00018-023-05111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024]
Abstract
Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1β negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1β on synaptic displacement. This study demonstrates that IL-1β is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Shan Wan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bai-Xiu Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - She-Hong Zhang
- Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong-Rong Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Haruwaka K, Ying Y, Liang Y, Umpierre AD, Yi MH, Kremen V, Chen T, Xie T, Qi F, Zhao S, Zheng J, Liu YU, Dong H, Worrell GA, Wu LJ. Microglia enhance post-anesthesia neuronal activity by shielding inhibitory synapses. Nat Neurosci 2024; 27:449-461. [PMID: 38177340 PMCID: PMC10960525 DOI: 10.1038/s41593-023-01537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial β2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.
Collapse
Affiliation(s)
| | - Yanlu Ying
- Department of Anesthesiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tao Xie
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yong U Liu
- Department of Anesthesiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
You Y, Chen Z, Hu WW. The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets? Pharmacol Ther 2024; 255:108606. [PMID: 38346477 DOI: 10.1016/j.pharmthera.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Microglia play a crucial role in interacting with neuronal synapses and modulating synaptic plasticity. This function is particularly significant during postnatal development, as microglia are responsible for removing excessive synapses to prevent neurodevelopmental deficits. Dysregulation of microglial synaptic function has been well-documented in various pathological conditions, notably Alzheimer's disease and multiple sclerosis. The recent application of RNA sequencing has provided a powerful and unbiased means to decipher spatial and temporal microglial heterogeneity. By identifying microglia with varying gene expression profiles, researchers have defined multiple subgroups of microglia associated with specific pathological states, including disease-associated microglia, interferon-responsive microglia, proliferating microglia, and inflamed microglia in multiple sclerosis, among others. However, the functional roles of these distinct subgroups remain inadequately characterized. This review aims to refine our current understanding of the potential roles of heterogeneous microglia in regulating synaptic plasticity and their implications for various brain disorders, drawing from recent sequencing research and functional studies. This knowledge may aid in the identification of pathogenetic biomarkers and potential factors contributing to pathogenesis, shedding new light on the discovery of novel drug targets. The field of sequencing-based data mining is evolving toward a multi-omics approach. With advances in viral tools for precise microglial regulation and the development of brain organoid models, we are poised to elucidate the functional roles of microglial subgroups detected through sequencing analysis, ultimately identifying valuable therapeutic targets.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
12
|
Araki T, Hiragi T, Kuga N, Luo C, Andoh M, Sugao K, Nagata H, Sasaki T, Ikegaya Y, Koyama R. Microglia induce auditory dysfunction after status epilepticus in mice. Glia 2024; 72:274-288. [PMID: 37746760 DOI: 10.1002/glia.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cong Luo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Ren J, Zhang Y, Pan H, Shi R, Zhu H, Yang R, Zhang L, Chen B, Zhu T, Lu X, Huang C. Mobilization of the innate immune response by a specific immunostimulant β-glucan confers resistance to chronic stress-induced depression-like behavior by preventing neuroinflammatory responses. Int Immunopharmacol 2024; 127:111405. [PMID: 38118316 DOI: 10.1016/j.intimp.2023.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Pre-stimulation of the innate immune response is an effective strategy to prevent depression-like phenotypes in animals. However, the use of conventional immunostimulants may cause adverse effects. Therefore, the search for agents that stimulate the innate immune response but do not induce a pro-inflammatory response could be a new research direction for the prevention of depression. β-glucan is a polysaccharide from Saccharomyces cerevisiae with unique immunomodulatory activity in microglia without eliciting a pro-inflammatory response that could lead to tissue damage. This suggests that β-glucan may be a suitable drug that can be used to prevent depression-like phenotypes. Our results showed that a single injection of β-glucan 1 day before stress exposure at a dose of 10 or 20 mg/kg, but notat a dose of 5 mg/kg, prevented depression-like behavior in mice treated with chronic unpredictable stress (CUS). This effect of β-glucan disappeared when the time interval between β-glucan and stress was extended from 1 day or 5 days to 10 days, which was rescued by a second injection 10 days after the first injection or by a repeated injection (4×, once daily) 10 days before stress exposure. A single β-glucan injection (20 mg/kg) 1 day before stress exposure prevented the CUS-induced increase in brain pro-inflammatory cytokines, and inhibition of the innate immune response by minocycline (40 mg/kg) abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors and neuroinflammatory responses. These results suggest that β-glucan may prevent chronic stress-induced depression-like phenotypes and neuroinflammatory responses by stimulating the innate immune response.
Collapse
Affiliation(s)
- Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Taipa 999078, Macau
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shiji Dadao, Nantong 226007, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
14
|
Ji W, Zhu H, Xing B, Chu C, Ji T, Ge W, Wang J, Peng X. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116912. [PMID: 37451489 DOI: 10.1016/j.jep.2023.116912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum, Sanyeqing) has been used in the prevention and treatment of repetitive Febrile seizures (FS) over the centuries in China. AIM OF THE STUDY T. hemsleyanum exerts wide pharmacological action, which has been widely used for treating various diseases, including infantile febrile seizure. However, the systematic study on this herb's material basis and the functional mechanism is lacking. This study intended to systematically elucidate the mechanism of T. hemsleyanum against febrile seizures. MATERIALS AND METHODS The efficacy of T. hemsleyanum was estimated by using a hot bath as a model of FS, the onset and duration of seizure, morphological structure changes of hippocampal neurons as well as magnetoencephalography were applied to evaluate the effects. Meanwhile, the bioactive components of T. hemsleyanum responsible for the therapeutic effect of T. hemsleyanum on FS were identified by UPLC-MS/MS. Then we systematically elucidated the mechanism of T. hemsleyanum based on metabonomics, transcriptomics, network pharmacological and experimental validation. RESULTS In a hyperthermia-induced FS model of rats, T. hemsleyanum significantly increased the seizure latency and decreased seizure duration, alleviating the abnormal delta and gamma band activity during epileptic discharge. Furthermore, ten chemical components of ethanol extracts from T. hemsleyanum were identified by UPLC-MS/MS, including quercetin, kaempferol, and procyanidin B1 and so on, which was consistent with the network pharmacology prediction. The serum metabolomics indicated that T. hemsleyanum mainly acts on inflammation regulation and neuroprotection by the glycerophospholipid metabolism pathway. Ninety-two potential targets of T. hemsleyanum on FS were identified by network pharmacology, and TNF, IL-6, and IL-1β were considered the pivotal targets. In the hippocampus transcriptomics, 17 KEGG pathways were identified after T. hemsleyanum treatment compared with the FS model group, among which 15 pathways overlapped with those identified by network pharmacology, and the PKC-δ/caspase-1 signaling pathway was a critical node. Finally, in vivo experiments also verified T. hemsleyanum inhibited the activation of microglia and resulted in a significant reduction in the level of PKCδ, NLRC4, caspase-1, IL-1β, IL-6 and TNF-α in hippocampus of FS rats. CONCLUSIONS Our study suggested that the therapeutic effect of T. hemsleyanum on FS might be regulated by inhibiting the neuroinflammation, thus exerting an anticonvulsant effect in vivo, and the mechanism might be related to regulating the PKC-δ/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Huaqiang Zhu
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Bincong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, No. 666, Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, PR China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang Province, 310014, PR China.
| | - Tao Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Wen Ge
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Juan Wang
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, No. 819, Liyuan North Road, Ningbo, Zhejiang Province, 315100, PR China.
| |
Collapse
|
15
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
16
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
18
|
Pinto MJ, Ragozzino D, Bessis A, Audinat E. Microglial Modulation of Synaptic Maturation, Activity, and Plasticity. ADVANCES IN NEUROBIOLOGY 2024; 37:209-219. [PMID: 39207694 DOI: 10.1007/978-3-031-55529-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, which are the resident immune cells of the CNS, also have important functions in physiological conditions. In this chapter, we review the experimental evidence that microglia modulate neuronal and synaptic activity during normal development and in adults. We show that microglia can regulate the maturation and function of both inhibitory and excitatory synapses that can be stimulated or repressed. We further review the fact that these regulations occur in various brain regions, through soluble and membrane molecules, directly or through other cell partners. This review emphasizes the fact that microglia are genuine and highly context-dependent and thus adaptable regulators of neuronal activity.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Center for Neuroscience and Cell Biology (CNC), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Alain Bessis
- Institut de Biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
19
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Li H, Liu P, Deng S, Zhu L, Cao X, Bao X, Xia S, Xu Y, Zhang B. Pharmacological Upregulation of Microglial Lipid Droplet Alleviates Neuroinflammation and Acute Ischemic Brain Injury. Inflammation 2023; 46:1832-1848. [PMID: 37450211 PMCID: PMC10567859 DOI: 10.1007/s10753-023-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023]
Abstract
Lipid droplets (LDs) were reported to play an important role in the modulation of inflammation and various cellular processes among multiple cell types. However, LDs accumulation, its function and mechanisms of its formation during ischemic stroke remained poorly-identified. In this study, we observed increased LDs accumulation in microglia at the acute stage of ischemic stroke by immunofluorescence and flow cytometry. Transcriptomic analysis indicated that microglia accumulated with LDs were associated with inflammation and phagocytosis. Both inflammatory activation and phagocytosis of tissue debris in microglia could contribute to LDs formation. Moreover, through specific LDs depletion and overload experiments by pharmacological approaches, we proposed that LDs was critical for the maintenance of anti-inflammatory properties of microglia. Furthermore, Atglistatin, a specific adipose triglyceride lipase (ATGL) inhibitor, was shown to prevent proinflammatory cytokines production in primary microglia through decreased LDs lipolysis. After Atglistatin treatment, middle cerebral artery occlusion (MCAO) mice showed decreased infarct volume and improved neurobehavioral performance at the acute stage of stroke. Our findings provided a biological basis for microglial LDs regulation as a potential therapeutic strategy for acute ischemic stroke and uncovered the neuroprotective role of Atglistatin in the treatment of MCAO mice.
Collapse
Affiliation(s)
- Huiya Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shiji Deng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Liwen Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, 210008, China.
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210008, China.
- Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
21
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
22
|
Dai SJ, Shao YY, Zheng Y, Sun JY, Li ZS, Shi JY, Yan MQ, Qiu XY, Xu CL, Cho WS, Nishibori M, Yi S, Park SB, Wang Y, Chen Z. Inflachromene attenuates seizure severity in mouse epilepsy models via inhibiting HMGB1 translocation. Acta Pharmacol Sin 2023; 44:1737-1747. [PMID: 37076634 PMCID: PMC10462729 DOI: 10.1038/s41401-023-01087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/02/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is not well controlled by current anti-seizure drugs (ASDs). High mobility group box 1 (HMGB1) is a DNA-binding protein in the nucleus regulating transcriptional activity and maintaining chromatin structure and DNA repair. In epileptic brains, HMGB1 is released by activated glia and neurons, interacting with various receptors like Toll-like receptor 4 (TLR4) and downstream glutamatergic NMDA receptor, thus enhancing neural excitability. But there is a lack of small-molecule drugs targeting the HMGB1-related pathways. In this study we evaluated the therapeutic potential of inflachromene (ICM), an HMGB-targeting small-molecule inhibitor, in mouse epilepsy models. Pentylenetetrazol-, kainic acid- and kindling-induced epilepsy models were established in mice. The mice were pre-treated with ICM (3, 10 mg/kg, i.p.). We showed that ICM pretreatment significantly reduced the severity of epileptic seizures in all the three epilepsy models. ICM (10 mg/kg) exerted the most apparent anti-seizure effect in kainic acid-induced epileptic status (SE) model. By immunohistochemical analysis of brain sections from kainic acid-induced SE mice, we found that kainic acid greatly enhanced HMGB1 translocation in the hippocampus, which was attenuated by ICM pretreatment in subregion- and cell type-dependent manners. Notably, in CA1 region, the seizure focus, ICM pretreatment mainly inhibited HMGB1 translocation in microglia. Furthermore, the anti-seizure effect of ICM was related to HMGB1 targeting, as pre-injection of anti-HMGB1 monoclonal antibody (5 mg/kg, i.p.) blocked the seizure-suppressing effect of ICM in kainic acid-induced SE model. In addition, ICM pretreatment significantly alleviated pyramidal neuronal loss and granule cell dispersion in kainic acid-induced SE model. These results demonstrate that ICM is an HMGB-targeting small molecule with anti-seizure potential, which may help develop a potential drug for treating epilepsy.
Collapse
Affiliation(s)
- Si-Jie Dai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Ying Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin-Yi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Sheng Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Ying Shi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Qi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wan-Sang Cho
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
24
|
Yang X, Cao Q, Guo Y, He J, Xu D, Lin A. GSDMD knockdown attenuates phagocytic activity of microglia and exacerbates seizure susceptibility in TLE mice. J Neuroinflammation 2023; 20:193. [PMID: 37612735 PMCID: PMC10464294 DOI: 10.1186/s12974-023-02876-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is often characterized pathologically by severe neuronal loss in the hippocampus. Phagocytic activity of microglia is essential for clearing apoptotic neuronal debris, allowing for repair and regeneration. Our previous research has shown that gasdermin D (GSDMD)-mediated pyroptosis is involved in the pathogenesis of TLE. However, whether GSDMD-mediated pyroptosis influences the accumulation of apoptotic neurons remains unclear. Therefore, the present study was designed to investigate whether phagocytic activity of microglia is involved in GSDMD-mediated pyroptosis and the pathogenesis of TLE. METHODS To establish a TLE model, an intra-amygdala injection of kainic acid (KA) was performed. The Racine score and local field potential (LFP) recordings were used to assess seizure severity. Neuronal death in the bilateral hippocampus was assessed by Nissl staining and TUNEL staining. Microglial morphology and phagocytic activity were detected by immunofluorescence and verified by lipopolysaccharide (LPS) and the P2Y12R agonist 2MeSADP. RESULTS GSDMD knockdown augmented the accumulation of apoptotic neurons and seizure susceptibility in TLE mice. Microglia activated and transition to the M1 type with increased pro-inflammatory cytokines. Furthermore, GSDMD knockdown attenuated the migration and phagocytic activity of microglia. Of note, LPS-activated microglia attenuated seizure susceptibility and the accumulation of apoptotic neurons in TLE after GSDMD knockdown. A P2Y12R selective agonist, 2MeSADP, enhanced the migration and phagocytic activity of microglia. CONCLUSIONS Our results demonstrate that GSDMD knockdown exacerbates seizure susceptibility and the accumulation of apoptotic neurons by attenuating phagocytic activity of microglia. These findings suggest that GSDMD plays a protective role against KA-induced seizure susceptibility.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
| | - Qingqing Cao
- Department of Neurology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, No. 9 Shuangxing Road, Chongqing, 402760, China
| | - Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, 610072, Sichuan, China
| | - Jingchuan He
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, No.6 Jizhao Road Jinnan District, Tianjin, 300350, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1Youyi Road, Chongqing, 400016, China
| | - Aolei Lin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
| |
Collapse
|
25
|
Monet MC, Quan N. Complex Neuroimmune Involvement in Neurodevelopment: A Mini-Review. J Inflamm Res 2023; 16:2979-2991. [PMID: 37489149 PMCID: PMC10363380 DOI: 10.2147/jir.s410562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
It is increasingly evident that cells and molecules of the immune system play significant roles in neurodevelopment. As perinatal infection is associated with the development of neurodevelopmental disorders, previous research has focused on demonstrating that the induction of neuroinflammation in the developing brain is capable of causing neuropathology and behavioral changes. Recent studies, however, have revealed that immune cells and molecules in the brain can influence neurodevelopment without the induction of overt inflammation, identifying neuroimmune activities as integral parts of normal neurodevelopment. This mini-review describes the shift in literature that has moved from emphasizing the intrusion of inflammatory events as a main culprit of neurodevelopmental disorders to evaluating the deviation of the normal neuroimmune activities in neurodevelopment as a potential pathogenic mechanism.
Collapse
Affiliation(s)
- Marianne C Monet
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
| |
Collapse
|
26
|
Gibbs-Shelton S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. Glia 2023; 71:1699-1714. [PMID: 36951238 DOI: 10.1002/glia.24364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Gibbs-Shelton
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph O Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Yi Y, Zhong C, Wei-wei H. The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms. Front Cell Dev Biol 2023; 11:1186050. [PMID: 37305674 PMCID: PMC10248510 DOI: 10.3389/fcell.2023.1186050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Febrile seizures (FSs) are convulsions caused by a sudden increase in body temperature during a fever. FSs are one of the commonest presentations in young children, occurring in up to 4% of children between the ages of about 6 months and 5 years old. FSs not only endanger children's health, cause panic and anxiety to families, but also have many adverse consequences. Both clinical and animal studies show that FSs have detrimental effects on neurodevelopment, that cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However, the mechanisms of FSs in developmental abnormalities and disease occurrence during adulthood have not been determined. This article provides an overview of the association of FSs with neurodevelopmental outcomes, outlining both the underlying mechanisms and the possible appropriate clinical biomarkers, from histological changes to cellular molecular mechanisms. The hippocampus is the brain region most significantly altered after FSs, but the motor cortex and subcortical white matter may also be involved in the development disorders induced by FSs. The occurrence of multiple diseases after FSs may share common mechanisms, and the long-term role of inflammation and γ-aminobutyric acid (GABA) system are currently well studied.
Collapse
Affiliation(s)
- You Yi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hu Wei-wei
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Shelton-Gibbs S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531090. [PMID: 36945556 PMCID: PMC10028974 DOI: 10.1101/2023.03.04.531090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Shelton-Gibbs
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ronald P. Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A. Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Joseph O. Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H. Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N. Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B. Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Xiao MZ, Liu CX, Zhou LG, Yang Y, Wang Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review. Medicine (Baltimore) 2023; 102:e32991. [PMID: 36827061 PMCID: PMC11309669 DOI: 10.1097/md.0000000000032991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Postoperative delirium (POD) is an acute cognitive dysfunction that is mainly characterized by memory impairment and disturbances in consciousness. POD can prolong the hospital stay and increase the 1-month mortality rate of patients. The overall incidence of POD is approximately 23%, and its prevalence can go up to 50% in high-risk surgeries. Neuroinflammation is an important pathogenic mechanism of POD that mediates microglial activation and leads to synaptic remodeling. Neuroinflammation, as an indispensable pathogenesis of POD, can occur due to a variety of factors, including aseptic inflammation caused by surgery, effects of anesthetic drugs, disruption of the blood-brain barrier, and epigenetics. Understanding these factors and avoiding the occurrence of risk factors may help prevent POD in time. This review provides a brief overview of POD and neuroinflammation and summarizes various factors affecting POD development mediated by neuroinflammation, which may serve as future targets for the prevention and treatment of POD.
Collapse
Affiliation(s)
- M. Z. Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - C. X. Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - L. G. Zhou
- Department of Anatomy, Hengyang Medical College of University of South China, Hengyang, China
| | - Y. Yang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Y. Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
30
|
Andoh M, Koyama R. Microglia and GABA: Diverse functions of microglia beyond GABA-receiving cells. Neurosci Res 2023; 187:52-57. [PMID: 36152917 DOI: 10.1016/j.neures.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Neurotransmitters modulate intracellular signaling not only in neurons but also in glial cells such as astrocytes, which form tripartite synapses, and oligodendrocytes, which produce the myelin sheath on axons. Another major glial cell type, microglia, which are often referred to as brain-resident immune cells, also express receptors for neurotransmitters. Recent studies have mainly focused on excitatory neurotransmitters such as glutamate, and few have examined microglial responses to the inhibitory neurotransmitter GABA. Microglia can also structurally and functionally modulate inhibitory neuronal circuits, but the underlying molecular mechanisms remain largely unknown. Since the well-regulated balance of excitatory/inhibitory (E/I) neurotransmission is believed to be the basis of proper brain function, understanding how microglia regulate and respond to inhibitory neurotransmission will help us deepen our knowledge of neuron-glia interactions. In this review, we discuss the mechanisms by which GABA alters microglial behavior and the possibility that microglia are more than just GABA-receiving cells.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
31
|
Yu JM, Hu R, Mao Y, Tai Y, Qun S, Zhang Z, Chen D, Jin Y. Up-regulation of HCN2 channels in a thalamocortical circuit mediates allodynia in mice. Natl Sci Rev 2022; 10:nwac275. [PMID: 36846300 PMCID: PMC9945406 DOI: 10.1093/nsr/nwac275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic pain is a significant problem that afflicts individuals and society, and for which the current clinical treatment is inadequate. In addition, the neural circuit and molecular mechanisms subserving chronic pain remain largely uncharacterized. Herein we identified enhanced activity of a glutamatergic neuronal circuit that encompasses projections from the ventral posterolateral nucleus (VPLGlu) to the glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu), driving allodynia in mouse models of chronic pain. Optogenetic inhibition of this VPLGlu→S1HLGlu circuit reversed allodynia, whereas the enhancement of its activity provoked hyperalgesia in control mice. In addition, we found that the expression and function of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) were increased in VPLGlu neurons under conditions of chronic pain. Using in vivo calcium imaging, we demonstrated that downregulation of HCN2 channels in the VPLGlu neurons abrogated the rise in S1HLGlu neuronal activity while alleviating allodynia in mice with chronic pain. With these data, we propose that dysfunction in HCN2 channels in the VPLGlu→S1HLGlu thalamocortical circuit and their upregulation occupy essential roles in the development of chronic pain.
Collapse
Affiliation(s)
| | | | | | - Yingju Tai
- Department of Biophysics and Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | | | | | - Yan Jin
- Corresponding author. E-mail:
| |
Collapse
|
32
|
Yu Z, Sakai M, Fukushima H, Ono C, Kikuchi Y, Koyama R, Matsui K, Furuyashiki T, Kida S, Tomita H. Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia. Brain Res Bull 2022; 189:57-68. [PMID: 35987296 DOI: 10.1016/j.brainresbull.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Mai Sakai
- Department of Psychiatry Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Innate immune stimulation prevents chronic stress-induced depressive and anxiogenic-like behaviors in female mice. Int Immunopharmacol 2022; 111:109126. [PMID: 35973368 DOI: 10.1016/j.intimp.2022.109126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
Abstract
It has been reported that pre-stimulation of the innate immune system can prevent depressive and anxiogenic-like behaviors in chronically stressed male mice. However, it is unclear whether similar effects can be observed in female animals. In the present study, we investigated this question in female mice. Our results showed that a single injection of lipopolysaccharide (LPS; 100 μg/kg) one day before stress exposure prevented increased immobility time in the tail suspension test and forced swimming test and decreased sucrose intake in the sucrose preference test in chronic unpredictable stress (CUS)-treated female mice. The single LPS pre-injection (100 μg/kg) prevented the CUS-induced decrease in (i) time spent in open arms and number of entries into open arms in the elevated plus maze test, (ii) time spent in lit side in the light-dark test, and (iii) time spent in the central region of the open field in the open field test, along with no changes in locomotor activity. It was also found that the single LPS pre-injection in female mice prevented the CUS-induced increase in the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 mRNA in the hippocampus and medial prefrontal cortex. Inhibition of innate immune system stimulation by minocycline pretreatment abrogated the preventive effect of LPS on CUS-induced depressive and anxiogenic-like behaviors and neuroinflammatory responses in the hippocampus and medial prefrontal cortex in female mice. These results suggest that pre-stimulation of the innate immune system by LPS injection may prevent the development of behavioral abnormalities in female mice.
Collapse
|
34
|
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring. Microglia have emerged as critical regulators of synapse development and circuit formation in the healthy brain. To date, examination of microglia in such processes has largely been focused on excitatory synapses. Their roles, however, in the modulation of GABAergic interneuron synapses—particularly those targeting the axon initial segment (AIS)—during development remain enigmatic. Here, we identify a synaptogenic/growth-promoting role for microglia in regulating pyramidal neuron (PyN) AIS synapse formation by chandelier cells (ChCs), a unique interneuron subtype whose axonal terminals, called cartridges, selectively target the AIS. We show that a subset of microglia contacts PyN AISs and ChC cartridges and that such tripartite interactions, which rely on the unique AIS cytoskeleton and microglial GABAB1 receptors, are associated with increased ChC cartridge length and bouton number and AIS synaptogenesis. Conversely, microglia depletion or disease-induced aberrant microglia activation impairs the proper development and maintenance of ChC cartridges and boutons, as well as AIS synaptogenesis. These findings unveil key roles for homeostatic, AIS-associated microglia in regulating proper ChC axonal morphogenesis and synaptic connectivity in the neocortex.
Collapse
|
35
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Buchanan GF. Staving Off the Heat With Microglia. Epilepsy Curr 2021; 21:295-297. [PMID: 34690572 PMCID: PMC8512919 DOI: 10.1177/15357597211017138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microglial Displacement of GABAergic Synapses Is a Protective Event During
Complex Febrile Seizures Wan Y, Feng B, You Y, et al. Cell Reports. 2020;33(5):108346.
doi:10.1016/j.celrep.2020.108346 Complex febrile seizures (FSs) lead to a high risk of intractable temporal lobe
epilepsy during adulthood, yet the pathological process of complex FSs is largely
unknown. Here, we demonstrate that activated microglia extensively associated with
glutamatergic neuronal soma displace surrounding GABAergic presynapses in complex FSs.
Patch clamp electrophysiology establishes that the microglial displacement of
GABAergic presynapses abrogates a complex-FS-induced increase in GABAergic
neurotransmission and neuronal excitability, whereas GABA exerts an excitatory action
in this immature stage. Pharmacological inhibition of microglial displacement of
GABAergic presynapses or selective ablation of microglia in CD11bDTR mice
promotes the generation of complex FSs. Blocking or deleting the P2Y12
receptor (P2Y12R) reduces microglial displacement of GABAergic presynapses
and shortens the latency of complex FSs. Together, microglial displacement of
GABAergic presynapses, regulated by P2Y12R, reduces neuronal excitability
to mitigate the generation of complex FSs. Microglial displacement is a protective
event during the pathological process of complex FSs.
Collapse
|
37
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|