1
|
Meng X, Li J, Qu W, Wang W, Feng X, Wang J. Degradation of fluoride in groundwater by electrochemical fixed bed system with bauxite: performance and synergistic catalytic mechanism. RSC Adv 2024; 14:13711-13718. [PMID: 38681833 PMCID: PMC11044906 DOI: 10.1039/d4ra01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Fluoride pollution in water has garnered significant attention worldwide. The issue of fluoride removal remains challenging in areas not covered by municipal water systems. The industrial aluminum electrode and natural bauxite coordinated defluorination system (IE-BA) have been employed for fluoride removal. The experiment investigated the effects of pH, current density, and inter-electrode mineral layer thickness on the defluorination process of IE-BA. Additionally, the study examined the treatment efficiency of IE-BA for simulated water with varying F- concentrations and assessed its long-term performance. The results demonstrate that the defluorination efficiency can reach 98.4% after optimization. Moreover, irrespective of different fluoride concentrations, the defluorination rate exceeds 95.2%. After 72 hours of continuous operation, the defluorination rate reached 91.9%. The effluent exhibited weak alkalinity with a pH of around 8.0, and the voltage increased by 2.0 V compared to the initial moment. By analyzing the characterization properties of minerals and flocs, this study puts forward the possible defluorination mechanism of the IE-BA system. The efficacy of the IE-BA system in fluoride removal from water was ultimately confirmed, demonstrating its advantages in terms of defluorination ability under different initial conditions and resistance to complex interference. This study demonstrates that the IE-BA technology is a promising approach for defluorination.
Collapse
Affiliation(s)
- Xiangxu Meng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Xueting Feng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| |
Collapse
|
2
|
Ahmad A, van Genuchten CM. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment. WATER RESEARCH 2024; 249:120970. [PMID: 38064786 DOI: 10.1016/j.watres.2023.120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The co-precipitation of Fe(III) (oxyhydr)oxides with arsenic (As) is one of the most widespread approaches to treat As-contaminated groundwater in both low- and high-income settings. Fe-based co-precipitation of As occurs in a variety of conventional and decentralized treatment schemes, including aeration and sand filtration, ferric chloride addition and technologies based on controlled corrosion of Fe(0) (i.e., electrocoagulation). Despite its ease of deployment, Fe-based co-precipitation of As entails a complex series of chemical reactions that often occur simultaneously, including electron-transfer reactions, mineral nucleation, crystal growth, and As sorption. In recent years, the growing use of sophisticated synchrotron-based characterization techniques in water treatment research has generated new detailed and mechanistic insights into the reactions that govern As removal efficiency. The purpose of this critical review is to synthesize the current understanding of the molecular-scale reaction pathways of As co-precipitation with Fe(III), where the source of Fe(III) can be ferric chloride solutions or oxidized Fe(II) sourced from natural Fe(II) in groundwater, ferrous salts or controlled Fe(0) corrosion. We draw primarily on the mechanistic knowledge gained from spectroscopic and nano-scale investigations. We begin by describing the least complex reactions relevant in these conditions (Fe(II) oxidation, Fe(III) polymerization, As sorption in single-solute systems) and build to multi-solute systems containing common groundwater ions that can alter the pathways of As uptake during Fe(III) co-precipitation (Ca, Mg bivalent cations; P, Si oxyanions). We conclude the review by providing a perspective on critical knowledge gaps remaining in this field and new research directions that can further improve the understanding of As removal via Fe(III) co-precipitation.
Collapse
Affiliation(s)
- A Ahmad
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden; SIBELCO, Ankerpoort NV, Op de Bos 300, 6223 EP, Maastricht, the Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
3
|
Moed NM, Ku Y, Hsu TH. Regeneration of As(V)-loaded granular activated carbon through electrocoagulation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10988. [PMID: 38314946 DOI: 10.1002/wer.10988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
As(V)-loaded granular activated carbon was regenerated through electrocoagulation assisted by elution with NaCl. Adsorption of As(V) by activated carbon was highest at pH 6, and subsequent desorption in water was highest at pH 11, followed by pH 3. Lower initial pH improved arsenic removal during electrocoagulation, NaCl concentration was insignificant, but removal increased with current density. Adding Fe(II) before electrocoagulation led to an improved removal efficiency up to a concentration of 30 mg/L. Regeneration of As(V)-loaded activated carbon increased with current density and time up to a maximum of 85%. An increase in NaCl concentration to 6000 mg/L further improved regeneration to 92%. Regeneration at a lower current density only dropped slightly from 54% to 51% when doubling activated carbon concentration, demonstrating excellent scalability. Repeated adsorption-desorption tests were performed, where 81% and 69% regeneration were obtained after four regenerations with NaCl concentrations of 6000 and 750 mg/L, respectively. NaCl concentration in the tested range did not influence electrocoagulation but improved regeneration through elution. The combination of electrocoagulation and elution facilitated a higher regeneration efficiency, meanwhile removing As(V) from the solution through adsorption on iron hydroxide. PRACTITIONER POINTS: As(V)-loaded activated carbon was regenerated by electrocoagulation with elution. Regeneration increased with regeneration time and current density up to 85%. Addition of 6000 mg/L NaCl further increased regeneration to 93%. Regeneration of 82% was achieved after four regenerations. NaCl did not affect electrocoagulation but improved regeneration through elution.
Collapse
Affiliation(s)
- Niels Michiel Moed
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Young Ku
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Ting-Hsuan Hsu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Guo Q, Li Y, Zheng LW, Wei XY, Xu Y, Shen YW, Zhang KG, Yuan CG. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability. J Environ Sci (China) 2023; 128:213-223. [PMID: 36801036 DOI: 10.1016/j.jes.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/18/2023]
Abstract
A water-stable bimetallic Fe/Zr metal-organic framework [UiO-66(Fe/Zr)] for exceptional decontamination of arsenic in water was fabricated through a facile one-step strategy. The batch adsorption experiments revealed the excellent performances with ultrafast adsorption kinetics due to the synergistic effects of two functional centers and large surface area (498.33 m2/g). The absorption capacity of UiO-66(Fe/Zr) for arsenate [As(V)] and arsenite [As(III)] reached as high as 204.1 mg/g and 101.7 mg/g, respectively. Langmuir model was suitable to describe the adsorption behaviors of arsenic on UiO-66(Fe/Zr). The fast kinetics (adsorption equilibrium in 30 min, 10 mg/L As) and pseudo-second-order model implied the strong chemisorption between arsenic ions and UiO-66(Fe/Zr), which was further confirmed by DFT theoretical calculations. The results of FT-IR, XPS analysis and TCLP test demonstrated that arsenic was immobilized on the surface of UiO-66(Fe/Zr) through Fe/Zr-O-As bonds, and the leaching rates of the adsorbed As(III) and As(V) from the spent adsorbent were only 5.6% and 1.4%, respectively. UiO-66(Fe/Zr) can be regenerated for five cycles without obvious removal efficiency decrease. The original arsenic (1.0 mg/L) in lake and tap water was effectively removed in 2.0 hr [99.0% of As(III) and 99.8% of As(V)]. The bimetallic UiO-66(Fe/Zr) has great potentials in water deep purification of arsenic with fast kinetics and high capacity.
Collapse
Affiliation(s)
- Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Li-Wei Zheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiao-Yang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yan Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yi-Wen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Ke-Gang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
5
|
Sivagami K, Sharma P, Karim AV, Mohanakrishna G, Karthika S, Divyapriya G, Saravanathamizhan R, Kumar AN. Electrochemical-based approaches for the treatment of forever chemicals: Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160440. [PMID: 36436638 DOI: 10.1016/j.scitotenv.2022.160440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical based approaches for the treatment of recalcitrant water borne pollutants are known to exhibit superior function in terms of efficiency and rate of treatment. Considering the stability of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are designated as forever chemicals, which generating from various industrial activities. PFAS are contaminating the environment in small concentrations, yet exhibit severe environmental and health impacts. Electro-oxidation (EO) is a recent development that treats PFAS, in which different reactive species generates at anode due to oxidative reaction and reductive reactions at the cathode. Compared to water and wastewater treatment methods those being implemented, electrochemical approaches demonstrate superior function against PFAS. EO completely mineralizes (almost 100 %) non-biodegradable organic matter and eliminate some of the inorganic species, which proven as a robust and versatile technology. Electrode materials, electrolyte concentration pH and the current density applying for electrochemical processes determine the treatment efficiency. EO along with electrocoagulation (EC) treats PFAS along with other pollutants from variety of industries showed highest degradation of 7.69 mmol/g of PFAS. Integrated approach with other processes was found to exhibit improved efficiency in treating PFAS using several electrodes boron-doped diamond (BDD), zinc, titanium and lead based with efficiency the range of 64 to 97 %.
Collapse
Affiliation(s)
- K Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Pranshu Sharma
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Ansaf V Karim
- Environmental Science and Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubli 580031, India.
| | - S Karthika
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - G Divyapriya
- Swiss Government Excellence Postdoctoral Scholar, Multi-Scale Robotics Lab (MSRL), Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - R Saravanathamizhan
- Department of Chemical Engineering, A.C. College of Technology, Anna University, India
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Safwat SM, Mohamed NY, El-Seddik MM. Performance evaluation and life cycle assessment of electrocoagulation process for manganese removal from wastewater using titanium electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116967. [PMID: 36493542 DOI: 10.1016/j.jenvman.2022.116967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Excess manganese (Mn) concentrations can pose environmental and health risks. Currently, research on Mn removal by electrocoagulation (EC) using transition metal electrodes and the determination of its potential environmental impacts is limited. This study aims to assess the electrocoagulation process's performance with a titanium electrode as a sacrificial anode while also performing a life cycle assessment (LCA) of the process. The initial pH, current density (CD), electrode spacings, electrolyte types, concentrations, and electrode arrangement were all examined. For synthetic wastewater, most of the experiments used a concentration of Mn of 2 mg/L and sodium chloride as a supporting electrolyte at a concentration of 1 g/L. LCA software (OpenLCA 1.11) was used to assess the potential environmental impacts. Optimal operating conditions within the experimental range were as follows: initial pH = 7, CD = 10 mA/cm2, gap distance = 2 cm, and 1 g/L NaCl. Under these conditions, the maximum Mn removal efficiency was 96.5% after 60 min. There was an improvement of 2% rise after 60 min when the temperature increased from 20 °C to 40 °C. For real wastewater, the highest removal efficiencies for Mn and chemical oxygen demand after 60 min were 91.3% and 92%, respectively. The pseudo second order model provides the highest coefficient of determination for expressing the experimental data. Global warming, human non-carcinogenic toxicity, and terrestrial ecotoxicity were the most important categories of impact examined in this work according to the LCA (0.00064 kg CO2 eq, 0.00018 kg 1,4-DCB, and 0.00028 kg 1,4-DCB, respectively). To effectively remove Mn using EC with Ti electrodes, it appears that a period of electrolysis of 10 min would be sufficient under most of the conditions investigated in this study. The reduction in the electrolysis time will lead to a reduction in the operating costs of the system.
Collapse
Affiliation(s)
- Safwat M Safwat
- Sanitary & Environmental Engineering Division, Public Works Department, Faculty of Engineering, Cairo University, Giza, 12316, Egypt.
| | | | - Mostafa M El-Seddik
- Sanitary and Environmental Engineering, Civil Engineering Department, Institute of Aviation Engineering & Technology, Giza, 12815, Egypt
| |
Collapse
|
7
|
Shaker OA, Safwat SM, Matta ME. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26650-26662. [PMID: 36369444 PMCID: PMC9995524 DOI: 10.1007/s11356-022-24101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Economically feasible approaches are needed for wastewater treatment. Electrocoagulation (EC) is an electrochemical treatment method that removes various pollutants from wastewater. It has grown in popularity over conventional treatment methods, especially in industrial wastewater, due to its high performance and the ability to remove toxic compounds. However, it is crucial to reduce the costs associated with EC for widespread implementation. It is also important to decrease nickel (Ni) concentrations in wastewater to prevent potential health and environmental problems. Therefore, this study investigates Ni removal from synthetic and real wastewater using electrocoagulation. Zinc, as a novel electrode, was used as the sacrificial anode. Several operating conditions were assessed, including current density, initial pH, electrolysis time, and spacing between electrodes. The maximum Ni removal efficiency, after 90 min, reached 99.9% at a current density of 10 mA/cm2 when the pH was 9.2 and the gap distance was 4 cm. The Ni removal rate reached 94.4% and 94.9% at a 2- and 6-cm spacing, respectively, after 90 min. Anode morphology, kinetic modeling, electrical energy consumption, and cost analysis were also investigated. The type of corrosion was uniform, which is easily predicted compared to pitting corrosion. The comparison between chemical coagulation and electrocoagulation was also reported. Experimental results indicated that the maximum Ni removal rates reached 99.89% after 90 min. The optimum spacing between electrodes was 4 cm, and the optimum current density was 10 mA/cm2. Additionally, the kinetic data were best represented through the second-order Lagergren model. The results demonstrated that the electrocoagulation performance was better than that of chemical coagulation for Ni removal. The maximum electrical energy consumption was 23.79 KWh/m3 for Ni removal.
Collapse
Affiliation(s)
- Omar A Shaker
- Sanitary & Environmental Engineering Division, Public Works Department, Faculty of Engineering, Cairo University, Giza, 12316, Egypt
| | - Safwat M Safwat
- Sanitary & Environmental Engineering Division, Public Works Department, Faculty of Engineering, Cairo University, Giza, 12316, Egypt.
| | - Minerva E Matta
- Sanitary & Environmental Engineering Division, Public Works Department, Faculty of Engineering, Cairo University, Giza, 12316, Egypt
| |
Collapse
|
8
|
ALSamman MT, Sotelo S, Sánchez J, Rivas BL. Arsenic oxidation and its subsequent removal from water: An overview. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Yasasve M, Manjusha M, Manojj D, Hariharan NM, Sai Preethi P, Asaithambi P, Karmegam N, Saravanan M. Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation - A review. CHEMOSPHERE 2022; 307:136017. [PMID: 35977566 DOI: 10.1016/j.chemosphere.2022.136017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The need of the hour relies on finding new but sustainable ways to curb rising pollution levels. The accelerated levels of urbanization and increase in population deplete the finite resources essential for human sustenance. In this aspect, water is one of the non-renewable sources that is running out very fast and is polluted drastically day by day. One way of tackling the problem is to reduce the pollution levels by decreasing the usage of chemicals in the process, and the other is to find ways to reuse or reduce the contaminants in the effluent by treatment methods. Most of the available water recycling or treatment methods are not sustainable. Some of them even use toxic chemicals in the processing steps. Treatment of organic wastes from industries is a challenging task as they are hard to remove. Electrocoagulation is one of the emerging water treatment technologies that is highly sustainable and has a comparatively cheaper operating cost. Being a broad-spectrum treatment process, it is suitable for treating the most common water pollutants ranging from oils, bacteria, heavy metals, and others. The process is also straightforward, where electrical current is used to coagulate the contaminates. The presence of carcinogens in these waste water increases the need for its treatment towards further use. The present investigation is made as an extensive analysis of the emerging carcinogens and their various sources from process industries, especially in the form of organic waste and their removal by electrocoagulation and its coupled techniques. The paper also aims to ascertain why the electrocoagulation technique may be a better alternative compared with other methods for the removal of carcinogens in organic wastewater, an analysis which has not been explored before.
Collapse
Affiliation(s)
- Madhavan Yasasve
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - Muralidharan Manjusha
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, 603203, Tamil Nadu, India
| | - Dhinakaran Manojj
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India.
| | - P Sai Preethi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
AlJaberi FY, Alardhi SM, Ahmed SA, Salman AD, Juzsakova T, Cretescu I, Le PC, Chung WJ, Chang SW, Nguyen DD. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? ENVIRONMENTAL RESEARCH 2022; 214:113890. [PMID: 35870500 DOI: 10.1016/j.envres.2022.113890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical technologies or conventional methods for effective removal of different pollutants with less cost and sometimes over shorter durations of operation. It has also been observed that the hybrid effects besides increasing the removal efficiency can overcome the disadvantages of using electrocoagulation alone, such as less sludge formation, high cost of operation and increased life of the used electrodes, and stable flux of water with longer periods of operation. More than 20 types of other technologies have been combined efficiently with electrocoagulation.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Gheorghe Asachi Technical University of Iasi, Romania
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Vietnam.
| |
Collapse
|
11
|
Nidheesh PV, Khan FM, Kadier A, Akansha J, Bote ME, Mousazadeh M. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process. CHEMOSPHERE 2022; 307:135756. [PMID: 35917977 DOI: 10.1016/j.chemosphere.2022.135756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
| | - Farhan M Khan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - J Akansha
- School of Civil Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632 014, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Milad Mousazadeh
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
Goyal H, Mondal P. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study. CHEMOSPHERE 2022; 304:135243. [PMID: 35679977 DOI: 10.1016/j.chemosphere.2022.135243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
The human health-related issues originating from the consumption of arsenic and fluoride-containing drinking water are major challenges worldwide. Amongst the different technologies available, electrocoagulation and adsorption are two promising technologies for simultaneous remediation of contaminants from groundwater. The present study evaluates and compares the environmental impacts of aluminium hydroxide/oxide nanoparticles (AHNP) adsorption and aluminium electrode electrocoagulation processes by performing their LCA. The Environmental impacts of both technologies were evaluated using Gabi software with the help of two mid-point methods (CML 2001 and TRACI). Evaluations are based on the treatment of 720 L of arsenic(III) and fluoride contaminated water from initial concentrations of 0.5 and 10 mg/L, respectively, to their WHO permissible limits. The management of spent materials has been considered for environmental impacts. The LCA analysis has shown that dissolution of aluminium electrode and electricity consumption in the electrochemical process are the significant contributors to environmental impacts in GWP, AP, ODP, ADP fossil, FAETP and HTP categories. Adsorption (GWP 35.2 kg CO2 eq.) has almost eight times higher environmental impacts than electrocoagulation (GWP 4.5 kg CO2 eq.) because in-situ generated coagulant has higher adsorption capacity than pre-precipitated adsorbents. The scenario analysis was performed with four different sources of electricity. The economic evaluation concludes that the combined cost of material and energy involved in the adsorption process (INR 0.7 per litre) is almost seven times higher than that of the electrocoagulation process (INR 0.1 per litre). Hence electrocoagulation is a more environment-friendly, low-cost technology to treat groundwater for community purposes.
Collapse
Affiliation(s)
- Hemant Goyal
- Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Prasenjit Mondal
- Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India.
| |
Collapse
|
13
|
Fil BA, Günaslan S. Electrooxidation treatment of slaughterhouse wastewater: investigation of efficiency of Ti/Pt anode. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Baybars Ali Fil
- Department of Environmental Engineering, Faculty of Engineering, Balikesir Universitesi, Balıkesir, Turkey
| | - Sermin Günaslan
- Department of Environmental Engineering, Faculty of Engineering, Balikesir Universitesi, Balıkesir, Turkey
| |
Collapse
|
14
|
Fil BA, Günaslan S. Treatment of Slaughterhouse Wastewaters with Ti/IrO2/RuO2 Anode and Investigation of Energy Consumption. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Kausley SB, Desai KS, Patil RA, Malhotra CP, Pandit AB. Comparative study of lime softening, soda ash process, and electrocoagulation for the removal of hardness from groundwater. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Roy M, van Genuchten CM, Rietveld L, van Halem D. Groundwater-native Fe(II) oxidation prior to aeration with H 2O 2 to enhance As(III) removal. WATER RESEARCH 2022; 223:119007. [PMID: 36044797 DOI: 10.1016/j.watres.2022.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Groundwater contaminated with arsenic (As) must be treated prior to drinking, as human exposure to As at toxic levels can cause various diseases including cancer. Conventional aeration-filtration applied to anaerobic arsenite (As(III)) contaminated groundwater can remove As(III) by co-oxidizing native iron (Fe(II)) and As(III) with oxygen (O2). However, the As(III) removal efficiency of conventional aeration can be low, in part, because of incomplete As(III) oxidation to readily-sorbed arsenate (As(V)). In this work, we investigated a new approach to enhance As(III) co-removal with native Fe(II) by the anaerobic addition of hydrogen peroxide (H2O2) prior to aeration. Experiments were performed to co-oxidize Fe(II) and As(III) with H2O2 (anaerobically), O2 (aerobically), and by sequentially adding of H2O2 and O2. Aqueous As(III) and As(V) measurements after the reaction were coupled with solid-phase speciation by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that complete anaerobic oxidation of 100 µM Fe(II) with 100 µM H2O2 resulted in co-removal of 95% of 7 µM As(III) compared to 44% with 8.0-9.0 mg/L dissolved O2. Furthermore, we found that with 100 µM Fe(II), the initial Fe(II):H2O2 ratio was a critical parameter to remove 7 µM As(III) to below the 10 µg/L (0.13 µM) WHO guideline, where ratios of 1:4 (mol:mol) Fe(II):H2O2 led to As(III) removal matching that of 7 µM As(V). The improved As(III) removal with H2O2 was found to occur partly because of the well-established enhanced efficiency of As(III) oxidation in Fe(II)+H2O2 systems relatively to Fe(II)+O2 systems. However, the XAS results unambiguously demonstrated that a large factor in the improved As(III) removal was also due to a systematic decrease in crystallinity, and thus increase in specific surface area, of the generated Fe(III) (oxyhydr)oxides from lepidocrocite in the Fe(II)+O2 system to poorly-ordered Fe(III) precipitates in the Fe(II)+H2O2 system. The combined roles of H2O2 (enhanced As(III) oxidation and structural modification) can be easily overlooked when only aqueous species are measured, but this dual impact must be considered for accurate predictions of As removal in groundwater treatment.
Collapse
Affiliation(s)
- Mrinal Roy
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft CN 2628, the Netherlands.
| | - Case M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen DK 1350, Denmark
| | - Luuk Rietveld
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft CN 2628, the Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft CN 2628, the Netherlands
| |
Collapse
|
17
|
Gong C, Zhang J, Ren X, He C, Han J, Zhang Z. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater. CHEMOSPHERE 2022; 303:135249. [PMID: 35691397 DOI: 10.1016/j.chemosphere.2022.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Electrocoagulation (EC) using iron (Fe), zinc (Zn) and aluminum (Al) electrodes was comparatively applied in the treatment of selenium (Se) in flour production (FP) wastewater. It was indicated that EC treatment with Fe anode obtained highest removal efficiency (79.1%) for Se in the 90 min treatment in the comparative study, which could be attributed to the superior adsorption capacity of in-situ generated iron flocs. Removal of Se resulted from electrodeposition and adsorption to in-situ generated flocs in EC treatment, and the operational conditions significantly influenced the Se removal performance in this work. The results showed the acidic condition and higher current density favored EC treatment on Se removal, EC removed up to 97.8% of Se at pH 4 under 15 mA cm-2, whereas it obtained 83.5% and 50.4% of removal efficiency at pH 7 and 10, respectively. There was competitive adsorption in the process of selenium removal, as the in-situ generated flocs effectively removed 35.6% of humic acid-like (HA-like) substance in FP wastewater after 90 min treatment. The FTIR results showed that HA-like substance mainly contained the protein water hydrogen bond, carboxylate COO antisymmetric stretching and other functional groups. Through the analysis of existence of Se in flocs and wastewater, it can be found that approximately 2.8%-3.92% of Se was removed by electrodeposition process. This study illustrated the Se removal mechanism and provided constructive suggestion for food manufacturing to the metal removal and utilization of advanced treatment.
Collapse
Affiliation(s)
- Chenhao Gong
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
| | - Jian Zhang
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Xiaojing Ren
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Can He
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Junxing Han
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Zhongguo Zhang
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
| |
Collapse
|
18
|
On the specific limitations of titanium electrodes in the electrocoagulation process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Aghapour AA, Ebrahimi I, bargeshadi R, Khorsandi H. Removal of arsenite using conventional and enhanced electrocoagulation with aeration and hydrogen peroxide up to drinking water quality standards. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Licona-Aguilar ÁI, Torres-Huerta AM, Domínguez-Crespo MA, Palma-Ramírez D, Conde-Barajas E, Negrete-Rodríguez MXL, Rodríguez-Salazar AE, García-Zaleta DS. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154883. [PMID: 35358521 DOI: 10.1016/j.scitotenv.2022.154883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The high levels of heavy metals contained in residual water and the pollution generated by a large amount of unexploited agro-industrial waste are a serious problem for the environment and mankind. Therefore, in the present work, with the aim of treating and reducing the pollution caused by heavy metal ions (Pb, Cd, Zn and Cu), activated carbons (ACs) were synthesized from sugarcane bagasse (SCB) and orange peel (OP) by means of physical - chemical activation method in an acid medium (H3PO4, 85 wt%) followed by an activation at high temperature (500 and 700 °C). Thereafter, these materials were used to produce carbon foams (CF) by the replica method and to evaluate their adsorbent capacity for the removal of heavy metals from synthetic water. XRD, FTIR, DLS, BET, Zeta Potential (ζ), SEM-EDS and AAS were used to investigate their structures, surface area, pore size, morphology, and adsorption capacity. The results show that as-prepared CF have a second level mesoporous structure and AC present a micro-mesoporous structure with a pore diameter between 3 and 4 nm. The experimental adsorption capacities of heavy metals showed that the CF from OP present a better elimination of heavy metals compared to the AC; exhibiting a removal capacity of 95.2 ± 3.96% (Pb) and 94.7 ± 4.88% (Cu) at pH = 5. The adsorption values showed that the optimal parameters to reach a high metal removal are pH values above 5. In the best of cases, the minimum remaining concentration of lead and copper were 2.4 and 2.6 mg L-1, respectively. The experimental data for carbon adsorbents are in accordance with the Langmuir and BET isotherms, with R2 = 0.99 and the maximum homogenous biosorption capacity for lead and copper was Qmax = 968.72 and 754.14 mg g-1, respectively. This study showed that agro-industrial wastes can be effectively retrieved to produce adsorbents materials for wastewater treatment applications.
Collapse
Affiliation(s)
- Á I Licona-Aguilar
- Instituto Politécnico Nacional, CICATA-Altamira, CIAMS. km 14.5 carretera Tampico-Puerto Industrial Altamira, Mexico
| | - A M Torres-Huerta
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - M A Domínguez-Crespo
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - D Palma-Ramírez
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, la Laguna Ticomán, C.P. 07340 México City, Mexico
| | - E Conde-Barajas
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - M X L Negrete-Rodríguez
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - A E Rodríguez-Salazar
- Instituto Politécnico Nacional, CICATA Querétaro, Cerro Blanco 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - D S García-Zaleta
- Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco, Km. 27 +000 s/n Ranchería Ribera Alta, C.P. 86205, Tabasco, Mexico
| |
Collapse
|
21
|
Luo L, Li M, Luo S, Kumar Awasthi M, Lin X, Liao X, Peng C, Yan B. Enhanced removal of humic acid from piggery digestate by combined microalgae and electric field. BIORESOURCE TECHNOLOGY 2022; 347:126668. [PMID: 34998925 DOI: 10.1016/j.biortech.2021.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microalgae technology is a promising method for treating piggery digestate, while its removal ability of humic acids (HAs) is poor. Here, an electric field-microalgae system (EFMS) was used to improve the removal of HAs from the piggery digestate. Results indicated that the removal of HAs by EFMS relied on the initial concentration of HAs, electrical intensity, the initial inoculation concentration of microalgae and pH. Values of these parameters were optimized as electrical intensity of 1.2 V/cm, microalgae initial inoculation concentration of 0.1 g/L and pH 5.0. The HAs removal efficiency by EFMS (55.38%) was 13% and 38% higher than that by single electric field and microalgal technology. It was observed that oxidation, coagulation and assimilation contributed to the removal of HAs, suggesting that EFMS could serve as an attractive and cost-effective technique for the removal of HAs from the piggery digestate.
Collapse
Affiliation(s)
- Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Miao Li
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoai Lin
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Liao
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
22
|
Goren AY, Kobya M, Khataee A. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152135. [PMID: 34864021 DOI: 10.1016/j.scitotenv.2021.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) occurrence in water resources has become one of the most critical environmental problems worldwide. The detrimental health impacts on humans have been reported due to the consumption of As-contaminated groundwater resources. Consumption of As-containing water over the long term can cause arsenicosis and chronic effects on human health due to its toxicity. Several treatment processes are available for As removals such as coagulation, ion exchange, adsorption, and membrane technologies but they have various major drawbacks. In the present work, therefore, an aerated electrocoagulation (EC) system with aluminum anodes was operated for simultaneous arsenate (As(V)) and arsenite (As(III)) removal to overcome the disadvantages of other processes such as, sludge formation, difficulties in operation, high operating costs, high energy consumption, and the requirement of pre-treatment process and to enhance the conventional EC process. The combined effects of the applied current (0.075-0.3 A), aeration rate (0-6 L/min), pH (6.5-8.5), and As speciation (As(V)-As(III)) were studied on As removal efficiency. The findings revealed that As removal mostly depended on the airflow rate and the applied current in the EC system. The highest As removal efficiency (99.1%) was obtained at an airflow rate of 6 L/min, a pH of 6.5, an initial As (V) concentration of 200 μg/L, and a current of 0.3 A, with an energy consumption of 2.85 kWh/m3 and an operating cost of 0.66 $/m3. The human health risk assessment of treated water was also examined to understand the performance of the EC system. At most of the experimental runs, the chronic toxic risk (CTR) and carcinogenic risk (CR) of As were within the permissible limits except for an airflow rate of 0-2 L/min, an initial pH of 8.5, and a current of 0.075-0.15 A for high initial As (III) concentrations. Overall, the As removal performance and groundwater risk assessment show that the EC process is a promising option for industrial applications.
Collapse
Affiliation(s)
- Aysegül Yagmur Goren
- Izmir Institute of Technology, Department of Environmental Engineering, 35430 Izmir, Turkey
| | - Mehmet Kobya
- Gebze Technical University, Department of Environmental Engineering, 41400 Kocaeli, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, 720000 Bishkek, Kyrgyzstan
| | - Alireza Khataee
- Gebze Technical University, Department of Environmental Engineering, 41400 Kocaeli, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
23
|
The Effect of Fe(II), Fe(III), Al(III), Ca(II) and Mg(II) on Electrocoagulation of As(V). WATER 2022. [DOI: 10.3390/w14020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction between metal chlorides and electrocoagulation was tested. Precipitation of As(V) was found to be optimal at pH 4.9 using FeCl2, 2.6 for FeCl3, 3.8 using AlCl3, 11.6 using CaCl2 and 8.6 using MgCl2. As(V) removal through electrocoagulation went down as initial pH (pHi) of the solution increased. Addition of FeCl2 increased removal of As(V) at all pHi but was not able to achieve full removal at pHi 7. FeCl3 had a similar effect but a lower Fe(III) concentration of 30 mg/L was not sufficient for full removal at pHi 5 either. AlCl3 addition reduced removal efficiency at pHi 3 but removed all or most As(V) through precipitation at pHi 5 and 7, with complete removal followed through electrocoagulation. The addition of CaCl2 and MgCl2 resulted in nearly identical behavior. Addition of either at pHi 3 had no influence, but at pHi 5 and 7 caused complete removal to take place.
Collapse
|
24
|
Zhang J, Li J, Ma C, Yi L, Gu T, Wang J. High-efficiency and energy-saving alternating pulse current electrocoagulation to remove polyvinyl alcohol in wastewater. RSC Adv 2021; 11:40085-40099. [PMID: 35494124 PMCID: PMC9044541 DOI: 10.1039/d1ra08093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Conventional direct current electrocoagulation (DC-EC) has disadvantages such as easy passivation of electrodes, high energy consumption, and large sludge production, which limit its use in polyvinyl alcohol (PVA) wastewater. Therefore, alternating pulse current electrocoagulation (APC-EC) has been developed to overcome these problems. In this study, the influencing factors and energy consumption of PVA treatment by APC-EC and DC-EC were explored, and the best operating conditions of APC-EC were obtained via the response surface method (RSM). The best process conditions for APC-EC were determined to be the electrode type of Fe/Fe, current density of 1.0 mA cm−2, initial pH of 7, electrode distance of 2.0 cm, supporting electrolyte of 0.08 mol L−1 NaCl, initial PVA concentration of 150 mg L−1, duty cycle of 30%, and frequency of 500 Hz. In addition, the floc properties of APC-EC and DC-EC were compared to explore the basic mechanism for the removal of PVA. Adsorption and co-precipitation with hydroxide iron complexes are the main methods for removing PVA from wastewater in the APC-EC process. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency. This study provides a new strategy and method for the PVA removal from wastewater by APC-EC with low cost and high efficiency, showing broad prospect for the applications of the APC-EC in removing PVA. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency.![]()
Collapse
Affiliation(s)
- Jiepei Zhang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Junfeng Li
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Chengxiao Ma
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Tiantian Gu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Jiankang Wang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| |
Collapse
|
25
|
Inam MA, Khan R, Lee KH, Akram M, Ahmed Z, Lee KG, Wie YM. Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies. Molecules 2021; 26:7046. [PMID: 34834136 PMCID: PMC8624347 DOI: 10.3390/molecules26227046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using the adsorption models, ζ-potential, X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) analysis. The results indicate that the sorption kinetics of pentavalent and trivalent As species closely followed the pseudo-second-order model, and the adsorption rates of both toxicants were remarkably governed by pH as well as the quantity of FHO in suspension. Notably, the FHO formation was directly related to the amount of ferric chloride (FC) coagulant added in the solution. The sorption isotherm results show a better maximum sorption capacity for pentavalent As ions than trivalent species, with the same amount of FHO in the suspensions. The thermodynamic study suggests that the sorption process was spontaneously exothermic with increased randomness. The ζ-potential, FT-IR and XRD analyses confirm that a strong Fe-O bond with As(V) and the closeness of the surface potential of the bonded complex to the point of zero charge (pHzpc) resulted in the higher adsorption affinity of pentavalent As species than trivalent ions in most aquatic conditions. Moreover, the presence of sulfates, phosphates, and humic and salicylic acid significantly affected the As(III, V) sorption performance by altering the surface properties of Fe precipitates. The combined effect of charge neutralization, complexation, oxidation and multilayer chemisorption was identified as a major removal mechanism. These findings may provide some understanding regarding the fate, transport and adsorption properties onto FHO of As oxyanions in a complex water environment.
Collapse
Affiliation(s)
- Muhammad Ali Inam
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST) H-12 Campus, Islamabad 44000, Pakistan;
| | - Rizwan Khan
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah 67480, Pakistan; (R.K.); (Z.A.)
| | - Kang Hoon Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Seongdong-gu, Seoul 04763, Korea
| | - Muhammad Akram
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| | - Zameer Ahmed
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah 67480, Pakistan; (R.K.); (Z.A.)
| | - Ki Gang Lee
- Department of Materials Engineering, Kyonggi University, Suwon 16227, Korea; (K.G.L.); (Y.M.W.)
| | - Young Min Wie
- Department of Materials Engineering, Kyonggi University, Suwon 16227, Korea; (K.G.L.); (Y.M.W.)
| |
Collapse
|
26
|
Lu J, Zhang P, Li J. Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113259. [PMID: 34256295 DOI: 10.1016/j.jenvman.2021.113259] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Water shortage and quality deterioration are plaguing people all over the world. Providing sustainable and affordable treatment solutions to these problems is a need of the hour. Electrocoagulation (EC) technology is a burgeoning alternative for effective water treatment, which offers the virtues such as compact equipment, easy operation, and low sludge production. Compared to other water purification technologies, EC shows excellent removal efficacy for a wide range of contaminants in water and has great potential for addressing limitations of conventional water purification technologies. This review summarizes the latest development of principle, characteristics, and reactor design of EC. The design of key parameters including reactor shape, power supply type, current density, as well as electrode configuration is further elaborated. In particular, typical water treatment systems powered by renewable energy (solar photovoltaic and wind turbine systems) are proposed. Further, this review provides an overview on expanded application of EC in the removal of some newly concerned pollutants in recent years, including arsenite, perfluorinated compounds, pharmaceuticals, oil, bacteria, and viruses. The removal efficiency and mechanisms of these pollutants are also discussed. Finally, future research trend and focus are further recommended. This review can bridge the large knowledge gap for the EC application that is beneficial for environmental researchers and engineers.
Collapse
Affiliation(s)
- Jianbo Lu
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China.
| | - Peng Zhang
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Jie Li
- School of Economics and Management, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
27
|
Glade S, Bandaru SR, Nahata M, Majmudar J, Gadgil A. Adapting a drinking water treatment technology for arsenic removal to the context of a small, low-income California community. WATER RESEARCH 2021; 204:117595. [PMID: 34543977 DOI: 10.1016/j.watres.2021.117595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Small, low-income, and rural communities across the United States are disproportionately exposed to arsenic contaminated drinking water because existing treatment solutions are too expensive and difficult to operate. This paper describes efforts to overcome some barriers and limitations of conventional iron electrocoagulation (Fe-EC) to enable its use in the rural Californian (U.S.) context. Barriers and limitations of Fe-EC's application in rural California considered in this work include: 1) Frequent labor intensive electrode cleaning is required to overcome rust accumulation, 2) Electrolysis durations are long, reducing throughput for a given system size, and 3) Waste needs compliance with California standards. We report results from an investigation for overcoming these limitations via a field trial on a farm in Allensworth, a small, low-income, rural community in California. Our strategies to overcome each of the above barriers and limitations are respectively, 1) operating the Fe-EC reactor at high current density to result in sustained Fe production, 2) operating at high charge dosage rate with external H2O2, and 3) characterization of the arsenic-laden waste, and are discussed further in the paper. Main findings are: (1) Fe-EC removed arsenic consistently below the federal (and state) standard of 10 µg/L, (2) high current density failed to sustain Fe production whereas low current density did not, (3) electrolysis time decreased from > 1 hour to < 2 min with H2O2 dosing of 5 mg/L at higher charge dosage rates, (4) dilution of As-sludge is required to comply with State's non-hazardous waste status, and (5) discrepancies were observed between lab and field results in using current density to overcome labor-intensive electrode cleanings. Finally, implications of overcoming limitations to scale-up of Fe-EC in relevant California communities are discussed.
Collapse
Affiliation(s)
- Sara Glade
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Siva Rs Bandaru
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Mohit Nahata
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Jay Majmudar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Ashok Gadgil
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States.
| |
Collapse
|
28
|
Inam MA, Khan R, Lee KH, Wie YM. Removal of Arsenic Oxyanions from Water by Ferric Chloride-Optimization of Process Conditions and Implications for Improving Coagulation Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189812. [PMID: 34574737 PMCID: PMC8465526 DOI: 10.3390/ijerph18189812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
The chronic ingestion of arsenic (As) contaminated water has raised significant health concerns worldwide. Iron-based coagulants have been widely used to remove As oxyanions from drinking water sources. In addition, the system’s ability to lower As within the maximum acceptable contamination level (MCL) is critical for protecting human health from its detrimental effects. Accordingly, the current study comprehensively investigates the performance of As removal under various influencing factors including pH, contact time, temperature, As (III, V) concentration, ferric chloride (FC) dose, and interfering ions. The optimum pH for As (V) removal with FC was found to be pH 6–7, and it gradually decreased as the pH increased. In contrast, As (III) removal increased with an increase in pH with an optimum pH range of 7–10. The adsorption of As on precipitated iron hydroxide (FHO) was better fitted with pseudo-second order and modified Langmuir–Freundlich models. The antagonistic effect of temperature on As removal with FC was observed, with optimum temperature of 15–25 °C. After critically evaluating the optimum operating conditions, the uptake indices of both As species were developed to select appropriate an FC dose for achieving the MCL level. The results show that the relationship between residual concentration, FC dose, and adsorption affinity of the system was well represented by uptake indices. The higher FC dose was required for suspensions containing greater concentration of As species to achieve MCL level. The As (V) species with a greater adsorption affinity towards FHO require a relatively smaller FC dose than As (III) ions. Moreover, the significant influence of interfering species on As removal was observed in simulated natural water. The author hopes that this study may help researchers and the drinking water industry to develop uptake indices of other targeted pollutants in achieving MCL level during water treatment operations in order to ensure public health safety.
Collapse
Affiliation(s)
- Muhammad Ali Inam
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), H-12 Campus, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Rizwan Khan
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah 67480, Pakistan;
| | - Kang-Hoon Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Korea
- Correspondence:
| | - Young-Min Wie
- Department of Materials Engineering, Kyonggi University, Suwon 16227, Korea;
| |
Collapse
|
29
|
Hussain M, Syed Q, Bashir R, Adnan A. Electrochemical process for simultaneous removal of chemical and biological contaminants from drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45780-45792. [PMID: 33876369 DOI: 10.1007/s11356-021-13669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Simultaneous management of chemical and biological contaminants in drinking water has been presented through modification in conventional electrocoagulation (EC) process. Traditional EC process using iron and aluminum electrodes removed metals but did not affect microbiological contaminants to a greater extent. Iron anode composition was amended by addition of zinc for desired antimicrobial output. To evaluate the efficiency of this system, samples were spiked with multiple element standard and microbial cultures to human unsafe contamination level. Modified EC process removed both types of contaminants making water safe for human consumption within the prescribed regulatory guidelines set by WHO/NSDWQ within 4 min. This setup removed chemical contaminants up to 100% including nitrates, fluoride, arsenic, beryllium, chromium, copper, mercury, vanadium, zinc, nickel, phosphorus, and lead. A substantial removal in cadmium (89.8%), cobalt (75.7%), and selenium (46.7%) was computed. The treatment could not prove good results for removal of boron, barium, lithium, and strontium from the spiked sample. The compositional analysis of flocs screened after spiked sample treatment confirmed the physical adsorption of metals at floc surface. Treatment technique comprehensively proved equally efficient for disinfection of most common microbiological contaminations including E. Coli, fecal coliforms, total coliforms, total plate count, Staphylococcus auseous, and Pseudomonas aeruginosa within 5 min. In EC process 220V voltage was applied through rectifier at electrodes having 15.6 cm2 surface area and 15 mm apart in 1-L water sample batches, where current varied from 0.8 to 1.6 ampere. The outcomes of the current experiment are of novel significance regarding simultaneous removal of metals and microbiological contaminants from drinking water which is not reported in previous treatment studies.
Collapse
Affiliation(s)
- Munawar Hussain
- Government College University, Punjab, 54000, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific & Industrial Research, Laboratories Complex, Lahore, Pakistan
| | - Rashida Bashir
- Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ahmad Adnan
- Government College University, Punjab, 54000, Lahore, Pakistan.
| |
Collapse
|
30
|
Mendoza-Chávez CE, Carabin A, Dirany A, Drogui P, Buelna G, Meza-Montenegro MM, Ulloa-Mercado RG, Diaz-Tenorio LM, Leyva-Soto LA, Gortáres-Moroyoqui P. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater. ENVIRONMENTAL TECHNOLOGY 2021; 42:3463-3474. [PMID: 32072869 DOI: 10.1080/09593330.2020.1732472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Arsenic presence in the water has become one of the most concerning environmental problems. Electrocoagulation is a technology that offers several advantages over conventional treatments such as chemical coagulation. In the present work, an electrocoagulation system was optimized for arsenic removal at initial concentrations of 100 µg/L using response surface methodology. The effects of studied parameters were determined by a 23 factorial design, whereas treatment time had a positive effect and current intensity had a negative effect on arsenic removal efficiency. With a p-value of 0.1629 and a confidence of level 99%, the type of electrode material did not have a significant effect on arsenic removal. Efficiency over 90% was reached at optimal operating conditions of 0.2 A of current intensity, and 7 min of treatment time using iron as the electrode material. However, the time necessary to accomplish with OMS arsenic guideline of 10 µg/L increased from 7 to 30 min when real arsenic-contaminated groundwater with an initial concentration of 80.2 ± 3.24 µg/L was used. The design of a pilot-scale electrocoagulation reactor was determined with the capacity to meet the water requirement of a 6417 population community in Sonora, Mexico. To provide the 1.0 L/s required, an electrocoagulation reactor with a working volume of 1.79 m3, a total electrode effective surface of 701 m2, operating at a current intensity of 180 A and an operating cost of 0.0208 US$/day was proposed. Based on these results, electrocoagulation can be considered an efficient technology to treat arsenic-contaminated water and meet the drinking water quality standards.
Collapse
Affiliation(s)
- Claudia Erika Mendoza-Chávez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| | - Anne Carabin
- Institut national de la recherche scientifique - Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Québec, Canada
| | - Ahmad Dirany
- Institut national de la recherche scientifique - Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Québec, Canada
| | - Patrick Drogui
- Institut national de la recherche scientifique - Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Québec, Canada
| | - Gerardo Buelna
- Institut national de la recherche scientifique - Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Québec, Canada
| | - María Mercedes Meza-Montenegro
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| | - Ruth Gabriela Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| | - Lourdes Mariana Diaz-Tenorio
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| | - Luis Alonso Leyva-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| | - Pablo Gortáres-Moroyoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación e Innovación Biotecnológica, agropecuaria y ambiental), Ciudad Obregón, México
| |
Collapse
|
31
|
Tian Z, Lu C, Zhou Y, Zhang Y, Wei W. Phosphoric acid-induced activation of sepiolite for enhanced As(III) adsorption: role of in situ deposition of nano-hydroxyapatite. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1948424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhuangzhuang Tian
- School of Electronics and Information Engineering, Sias University, Xinzheng, China
| | - Chenchen Lu
- School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Yue Zhou
- School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Wei Wei
- School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| |
Collapse
|
32
|
Rajaei F, Taheri E, Hadi S, Fatehizadeh A, Amin MM, Rafei N, Fadaei S, Aminabhavi TM. Enhanced removal of humic acid from aqueous solution by combined alternating current electrocoagulation and sulfate radical. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116632. [PMID: 33640826 DOI: 10.1016/j.envpol.2021.116632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Application of alternating current in electrocoagulation and activation of persulfate (AEC-PS) for the effective removal of humic acid (HA) from aqueous solution was evaluated. In order to optimize the removal efficiency HA by the AEC-PS process, several influencing parameters such as pH, reaction time, PS dose, current density (CD), concentration of NaCl, initial concentration of HA, and coexisting cations and anions influence were investigated. From the batch experiments, the highest HA removal efficiency obtained was 99.4 ± 0.5% at pH of 5, reaction time of 25 min, CD of 4.5 mA/cm2, PS dose of 200 mg/L, and NaCl concentration of 0.75 g/L for an initial HA concentration of 30 mg/L. When CD increased from 1.25 to 4.5 mA/cm2, the HA removal efficiency was improved from 88.8 ± 4.4% to 96.1 ± 1.5%. In addition, the type of coexisting cations and anions exerted a significant role, leading to a reduction in the removal efficiency of HA. To investigate the dominant free activated radical, radical scavengers such as tert-butyl alcohol and ethanol were employed. It was observed that both OH and SO4- radicals substantially contributed to the removal of HA, and the contribution of SO4- radical was higher than that of OH radical, suggesting that AEC-PS process could serve as a novel and effective treatment technique for the removal of organic matters from aqueous sources.
Collapse
Affiliation(s)
- Fatemeh Rajaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Fadaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
33
|
Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arsenic is present naturally in many geological formations around the world and has been found to be a major source of contamination of groundwater in some countries. This form of contamination represents a serious threat to health, economic and social well-being, particularly in under-developed countries and remote communities. The chemistry of arsenic and the factors that influence the form(s) in which it may be present and its fate when introduced into the environment is discussed briefly in this review. A global overview of arsenic contamination of groundwater around the world is then discussed. As a case study, the identified and established causes of groundwater contamination by arsenic in Bangladesh is highlighted and a perspective is provided on the consequential health, agricultural, social and economic impacts. In addition, the relevant removal strategies that have been developed and can generally be used to remediate arsenic contamination are discussed. Also, the possible influence of groundwater inorganic compositions, particularly iron and phosphate, on the effectiveness of arsenic removal is discussed. Furthermore, some specific examples of the filter systems developed successfully for domestic arsenic removal from groundwater to provide required potable water for human consumption are discussed. Lastly, important considerations for further improving the performance and effectiveness of these filter systems for domestic use are outlined.
Collapse
|
34
|
Ding W, Zheng H, Sun Y, Zhao Z, Zheng X, Wu Y, Xiao W. Activation of MnFe 2O 4 by sulfite for fast and efficient removal of arsenic(III) at circumneutral pH: Involvement of Mn(III). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123623. [PMID: 32846266 DOI: 10.1016/j.jhazmat.2020.123623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
As(III) oxidation to As(V) is deemed necessary for better arsenic removal, and separation is still the optimal approach for water remediation from As(III). Herein, sulfite (SIV) was adopted to activate MnFe2O4 for simultaneous oxidation and adsorption of As(III) in neutral water. The As(III) removal was more efficient than a peroxidation of As(III) followed by adsorption. The adsorption capacity of MnFe2O4/S(IV) for As(III) (26.257 mg g-1) was much higher than those of MnFe2O4 alone for As(III) (9.491 mg g-1) and As(V) (9.142 mg g-1). The mechanistic study corroborated that intermediate Mn(III) was the dominant oxidant responsible for rapid oxidation of As(III), and the dual roles of S(IV) as a complexing ligand and a precursor of oxysulfur radicals accelerated the redox cycle of Mn(II)/Mn(III). Moreover, S(IV) enhanced arsenic adsorption by driving more production of monodentate complexes. As(III) can be effectively removed over a wide range of temperatures (283.15-313.15 K) and pH (3-10) with the optimal pH of 7. The effect of coexisting ions and reusability of MnFe2O4 were also investigated. Especially, the superior performance of MnFe2O4/S(IV) for As(III) removal in various water matrixes may help develop new removal technologies based on active Mn(III) for the water decontamination from As(III).
Collapse
Affiliation(s)
- Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xinyu Zheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yuyang Wu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Weilong Xiao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
35
|
Ali A, Chidambaram S. Assessment of trace inorganic contaminates in water and sediment to address its impact on common fish varieties along Kuwait Bay. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:855-883. [PMID: 32335845 DOI: 10.1007/s10653-020-00559-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The impact of the trace elements on selected marine fishes/crustacean in Kuwait (Sheam, Lobster, Speatty, and Nagroor) were investigated (As, Cd, Ni, Pb, and V) using the element concentrations in marine water and sediments. The toxic elements concentrations were measured in water samples (As, Cd, Cr, Cu, Hg, Ni, Pb, V, and Zn) for estimation of toxic levels, heavy metal evaluation index (84-360), and the degree of contamination (77-353). Similarly, sediment samples were analyzed for As, Cd, Cr, Cu, Ni, Pb, V and estimated for contamination factor, Igeo index, and ecological risk factor with respect to each element analyzed in the sample. The modified degree of contamination (0.25-3.67), risk index (6.5-282.27), metal pollution index (5.95-18.21), and pollution load index (0.27-1.2) were calculated for the samples. This study demonstrated that the water was medium to high contaminated with Cd, Hg, Pb, and V. The sediment analyses showed that most of the metals were within the toxic limits except for Cd, Cu, and Pb in few samples. Most samples were in between the effect range low-effect range medium and threshold effect level-probable effect level range of most metals, except for Cr, Cu, and Ni. Average trace elements concentration in fishes varieties investigated in this study indicated high As in all varieties irrespective of the season and high Ni in all fish during summer. The bioaccumulation factor showed that the trace elements in sediments contributed more to the fish than water. Concentrations of trace elements were greater in fish sampled in winter than that sampled in summer due to variations in the planktonic population in the sea. The estimated daily intake and the chronic daily intake for the Kuwaiti male and female were calculated. The hazards studied revealed that the consumption of Lobster and Speatty may lead to cancer and non-cancer hazards, in both male and female, Speatty having higher probability. The major sources of toxic elements contamination of Kuwait Bay water and sediment appear to be oil-based contamination, urban sewage, brine from desalination, and the trace elements released due to the natural oxidation-reduction processes.
Collapse
Affiliation(s)
- Ameena Ali
- Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | | |
Collapse
|
36
|
Sandoval MA, Fuentes R, Thiam A, Salazar R. Arsenic and fluoride removal by electrocoagulation process: A general review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142108. [PMID: 33207438 DOI: 10.1016/j.scitotenv.2020.142108] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
The environmental sector has expressed a growing interest in using electrocoagulation (EC) to treat groundwater/wastewater for drinking/recycling purposes. In the EC process, the electro-dissolution of sacrificial metallic anodes through direct application of current/cell potential dissolves the metals, which precipitate as oxides and hydroxides depending on the electrolyte pH. These particles have large surface areas and can remove pollutants by coagulation. The EC process has been considered an alternative technology due to its versatility, efficiency, low cost, and environmental compatibility. Unfortunately, the lack of knowledge about scaling-up this process has limited its implementation at the industrial scale. The aim of this study is to provide a review of the EC process used for removing arsenic and fluoride from groundwater and wastewater. Approximately 80 published studies were reviewed for this paper. The fundamentals of the EC process and importance of its operating conditions, i.e., electrode material, current density, supporting electrolyte, and pH, are reported in this paper. Additionally, overview of floc characterization and energy consumption are also presented. Finally, this paper also discusses the future perspectives.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile; Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico.
| | - Rosalba Fuentes
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Ricardo Salazar
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
37
|
Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo DVN, Manan FA. Arsenic removal technologies and future trends: A mini review. JOURNAL OF CLEANER PRODUCTION 2021; 278:123805. [DOI: 10.1016/j.jclepro.2020.123805] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
38
|
Goren AY, Kobya M. Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. CHEMOSPHERE 2021; 263:128253. [PMID: 33297198 DOI: 10.1016/j.chemosphere.2020.128253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Co-occurrence of arsenic and anions in groundwater causes a severe health problems and combine effects of these pollutants significantly affect performance of treatment process. Thus, this study has been conducted to examine the combine effects of anions on arsenic removal using aerated electrocoagulation (EC) reactor with 3D Al electrodes in groundwater. A 3-level, six factors Box-Behnken experimental design (BBD) was applied to investigate the individual and combine effect of anions and operating time: phosphate (x1: 1-10 mg L-1), silica (x2: 20-80 mg L-1), bicarbonate (x3: 130-670 mg L-1), fluoride (x4: 2-10 mg L-1), boron (x5: 5-10 mg L-1), and operating time (x6: 8-22 min) on desired responses. The specified responses were effluent arsenic concentration (Cf,As), removal efficiency of arsenic (Re), consumptions of energy and electrode (ENC and ELC), operational cost (OC), and adsorption capacity (qe). The optimum operating parameters predicted using BBD were found to be x1: 1.0 mg L-1, x2: 26.0 mg L-1, x3: 651.5 mg L-1, x4: 2.0 mg L-1, x5: 9.9 mg L-1, and x6: 10.5 min considering highest removal efficiency of arsenic and lowest operational cost. Under these operating conditions, the experimental values of Cf,As, Re, ENC, ELC, OC, and qe were found to be 2.82 μg L-1, 98.6%, 0.411 kWh m-3, 0.0124 kg m-3, 0.098 $ m-3, and 17.65 μg As (mg Al)-1, respectively. Furthermore, mathematical modelling was conducted using quadratic regression model and response surface analysis was performed to understand the relationship between independent parameters and responses.
Collapse
Affiliation(s)
- A Y Goren
- İzmir Institute of Technology, Environmental Science and Engineering, Izmir, Turkey.
| | - M Kobya
- Gebze Technical University, Department of Environmental Engineering, 41400, Kocaeli, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, Bishkek, Kyrgyzstan.
| |
Collapse
|
39
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
40
|
Dutta N, Haldar A, Gupta A. Electrocoagulation for Arsenic Removal: Field Trials in Rural West Bengal. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:248-258. [PMID: 33398394 DOI: 10.1007/s00244-020-00799-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Arsenic contamination in drinking water is a great concern in different regions of the world as well as in India. Several technologies have been investigated to remove arsenic from water, such as coagulation and co-precipitation, ion exchange, adsorption, and reverse osmosis. In the present research, electrocoagulation with iron electrodes has been assessed as a treatment technology for arsenic removal from groundwater to reach concentrations below 0.01 mg/L (WHO limit) and which is technically effective, affordable for the local area, and easy to operate and maintain. Electrochemically generated iron is converted to hydrated ferric oxide within the contaminated water, which takes up the arsenic from water. A downstream filtration unit (sand or activated alumina) is applied to remove ferric hydroxide flocs produced during the process. The laboratory experiments were conducted in a batch reactor using iron plates as electrodes with monopolar configuration to study the effects of initial pH and electro-charge loading (ECL) on arsenic removal. The optimum operating condition was observed for an electro-charge loading of 25-30 Coulombs/L at pH 7.0 and an initial arsenic concentration of 0.2 mg/L. Two field trials were implemented in West Bengal after suitably designing the electrocoagulation system. Arsenic removal was significant (75-80%) delivering safe water with arsenic below 0.01 mg/L (acceptable limit). Passivation of the electrodes occurred during the operation and calcium-based (including iron) deposition was observed on the cathodes. Passivation is avoidable after running regular polarity reversal of the electrodes.
Collapse
Affiliation(s)
- Neelanjan Dutta
- Civil Engineering Department, NIT Sikkim, Ravangla, Sikkim, India.
| | - Arindam Haldar
- Civil Engineering Department, IIEST, Shibpur, Howrah, West Bengal, India
| | - Anirban Gupta
- Civil Engineering Department, IIEST, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
41
|
Roy M, van Genuchten CM, Rietveld L, van Halem D. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater. WATER RESEARCH 2021; 188:116531. [PMID: 33126004 DOI: 10.1016/j.watres.2020.116531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is a toxic element present in many (ground)water sources in the world. Most conventional As removal techniques require pre-oxidation of the neutral arsenite (As(III)) species to the negatively charged arsenate (As(V)) oxyanion to optimize As removal and minimize chemical use. In this work, a novel, continuous-flow As removal system was developed that combines biological As(III) oxidation by bacteria with Fe electrocoagulation (EC), an Fe(0)-based electrochemical technology that generates reactive Fe(III) precipitates to bind As. The bio-integrated FeEC system (bio-FeEC) showed effective oxidation and removal of 150 µg/L As(III), without the need of chemicals. To remove As to below the WHO guideline of 10 µg/L, 10 times lower charge dosage was required for the bio-FeEC system compared to conventional FeEC. This lower Fe dosage requirement reduced sludge production and energy consumption. The As(III) oxidizing biomass was found to consist of bacteria belonging to Comamonadaceae, Rhodobacteraceae and Acidovorax, which are capable of oxidizing As(III) and are common in drinking water biofilms. Characterization of the As-laden Fe solids by X-ray absorption spectroscopy indicated that both bio-FeEC and conventional FeEC produced solids consistent with a mixture of lepidocrocite and 2-line ferrihydrite. Arsenic bound to the solids was dominantly As(V), but a slightly higher fraction of As(V) was detected in the bio-FeEC solids compared to the conventional FeEC.
Collapse
Affiliation(s)
- Mrinal Roy
- Water Management Department, Faculty of Civil engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Case M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen DK-1350, Denmark
| | - Luuk Rietveld
- Water Management Department, Faculty of Civil engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|
42
|
Oh C, Pak S, Han YS, Ha NTH, Hong M, Ji S. Field demonstration of solar-powered electrocoagulation water treatment system for purifying groundwater contaminated by both total coliforms and arsenic. ENVIRONMENTAL TECHNOLOGY 2021; 42:397-409. [PMID: 31179862 DOI: 10.1080/09593330.2019.1629634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
People who drink groundwater in rural areas of Southeast Asia are exposed to pathogens and arsenic (As)-related health problems. A water treatment system consisting of electrocoagulation reactors, using iron (Fe) electrodes and a filtration tank, was designed to treat complex contaminated groundwater for drinking. Its applicability was demonstrated near the Red River in Vietnam. The water treatment system reduced 10.3 CFU/mL of total coliform and 376 μg/L of As(III) in the groundwater to 0 CFU/mL and 6.68 μg/L, respectively. Total coliforms were attenuated by Fe(II) infiltration or enmeshed during Fe precipitate formation. Of the total As, 43% formed As(III) complexation with the Fe precipitates and the other 57% was oxidized to As(V) then adsorbed to Fe precipitates. The Fe precipitates, containing total coliforms and As, were separated from the discharge water in the filtration tank. The system required 49 W of power to operate, which equates to 423 kWh/year, to continuously purify 0.5 t water/day. This requirement was powered by a 380-750 W solar panel, without external energy supply, making the water treatment system an appropriate option for addressing drinking water problems in rural areas.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Seungil Pak
- Department of Environmental Engineering, Kwangwoon University, Seoul, South Korea
| | - Young-Soo Han
- Geological Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | | | - Moonil Hong
- Wooyoung Engineering Co., Ltd, Seongnam, South Korea
| | - Sangwoo Ji
- Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| |
Collapse
|
43
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
44
|
Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39888-39912. [PMID: 32772289 DOI: 10.1007/s11356-020-10323-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) toxicity is a global phenomenon, and it is continuously threatening human life. Arsenic remains in the Earth's crust in the forms of rocks and minerals, which can be released into water. In addition, anthropogenic activity also contributes to increase of As concentration in water. Arsenic-contaminated water is used as a raw water for drinking water treatment plants in many parts of the world especially Bangladesh and India. Based on extensive literature study, adsorption is the superior method of arsenic removal from water and Fe is the most researched periodic element in different adsorbent. Oxides and hydroxides of Fe-based adsorbents have been reported to have excellent adsorptive capacity to reduce As concentration to below recommended level. In addition, Fe-based adsorbents were found less expensive and not to have any toxicity after treatment. Most of the available commercial adsorbents were also found to be Fe based. Nanoparticles of Fe-, Ti-, Cu-, and Zr-based adsorbents have been found superior As removal capacity. Mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.) removed As efficiently from water. Oxidation of AsO33- to AsO43-and adsorption of oxidized As on the mixed element-based adsorbent occurred by different adsorbents. Metal organic frameworks have also been confirmed as good performance adsorbents for As but had a limited application due to nano-crystallinity. However, using porous materials having extended surface area as carrier for nano-sized adsorbents could alleviate the separation problem of the used adsorbent after treatment and displayed outstanding removal performances.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Yeon-Koo Jeong
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
45
|
Li X, Zhang J, Xie H, Pan Y, Liu J, Huang Z, Long X, Xiao H. Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33234-33247. [PMID: 32533473 DOI: 10.1007/s11356-020-09390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Sawdust loaded with zero-valent iron (S-ZVI) was prepared using a liquid phase reduction method for removing heavy metal ions from contaminated water. Surface chemistry and morphology of adsorbents were characterized with Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), SEM-mapping, EDX, and X-ray photoelectron spectrum (XPS). The results demonstrated that the zero-valent iron was successfully loaded onto the sawdust. The impact of various factors such as pH, initial metal ion concentration, temperature, and contact time on the removal capability of the adsorbents was systematically investigated. The equilibrium adsorption data showed that the adsorption of arsenic ions and Cr(III) followed the Langmuir model well, and the maximum adsorption reached 111.37 and 268.7 mg/g in an aqueous solution system. In addition, the adsorption kinetics was more accurately described by the pseudo-second-order model, suggesting the domination of chemical adsorption. Meanwhile, the results on recyclability indicated that the high performance of S-ZVI on the removal of arsenic ions was well maintained after three regeneration cycles. The adsorption mechanism revealed in this work suggested that S-ZVI improved the dispersion of ZVI by minimizing the agglomeration, thus leading to highly effective adsorption via chelation, electrostatic interaction, and redox reaction.
Collapse
Affiliation(s)
- Xiaoning Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Jinyao Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Hongtian Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Jie Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Zhihong Huang
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Xiang Long
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
46
|
Arsenic Removal by Advanced Electrocoagulation Processes: The Role of Oxidants Generated and Kinetic Modeling. Catalysts 2020. [DOI: 10.3390/catal10080928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic (As) is a naturally occurring element in the environment that poses significant risks to human health. Several treatment technologies have been successfully used in the treatment of As-contaminated waters. However, limited literature has explored advanced electrocoagulation (EC) processes for As removal. The present study evaluates the As removal performance of electrocoagulation, electrochemical peroxidation (ECP), and photo-assisted electrochemical peroxidation (PECP) technologies at circumneutral pH using electroactive iron electrodes. The influence of As speciation and the role of oxidants in As removal were investigated. We have identified the ECP process to be a promising alternative for the conventional EC with around 4-fold increase in arsenic removal capacity at a competitive cost of 0.0060 $/m3. Results also indicated that the rate of As(III) oxidation at the outset of electrochemical treatment dictates the extent of As removal. Both ECP and PECP processes reached greater than 96% As(III) conversion at 1 C/L and achieved 86% and 96% As removal at 5 C/L, respectively. Finally, the mechanism of As(III) oxidation was evaluated, and results showed that Fe(IV) is the intermediate oxidant generated in advanced EC processes, and the contribution of •OH brought by UV irradiation is insignificant.
Collapse
|
47
|
Goren AY, Kobya M, Oncel MS. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment. CHEMOSPHERE 2020; 251:126363. [PMID: 32151809 DOI: 10.1016/j.chemosphere.2020.126363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The application of conventional electrocoagulation (EC) process for removal of As(III) from groundwater suffers from the need of external oxidation agent for oxidation of As(III) to As(V). To tackle this limitation, an aerated EC reactor for the removal of As(III) from groundwater was evaluated in this study. The effect of initial pHi, air flow rate, applied current, and electrode height in the EC reactor was examined. The experimental results showed that removal of arsenic mostly dependent on the applied current, electrode height in EC reactor, and air flow rate. The As(III) removal efficiency (99.2%) was maximum at pHi of 7.5, air flow rate of 6 L min-1, applied current of 0.30 A, and electrode height in EC reactor of 5 cm, with an total operating cost of 0.583 $ m-3. Furthermore, the carcinogenic risk (CR) and non-carcinogenic risk of arsenic (As) was in the range of tolerable limits at all operating conditions except applied current of 0.075 A at the end of the aerated EC process to remove As from groundwater. The present EC reactor process is able to remove As(III) from groundwater to below 10 μg L-1, which is maximum contaminant level of arsenic in drinking water according to the World Health Organization (WHO).
Collapse
Affiliation(s)
- A Y Goren
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey.
| | - M Kobya
- Gebze Technical University, Department of Environmental Engineering, Gebze, Turkey
| | - M S Oncel
- Gebze Technical University, Department of Environmental Engineering, Gebze, Turkey
| |
Collapse
|
48
|
Catrouillet C, Hirosue S, Manetti N, Boureau V, Peña J. Coupled As and Mn Redox Transformations in an Fe(0) Electrocoagulation System: Competition for Reactive Oxidants and Sorption Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7165-7174. [PMID: 32364715 DOI: 10.1021/acs.est.9b07099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron electrocoagulation (EC) can be used for the decentralized treatment of arsenic(As)-contaminated groundwater. Iron EC involves the electrolytic dissolution of an Fe(0) electrode to Fe(II). This process produces reactive oxidants, which oxidize As(III) and Fe(II) to As(V) and a range of Fe(III) (oxyhydr)oxide phases. Here, we investigated the impact of manganese (Mn) on As removal, since the two often co-occur in groundwater. In the absence of Mn(II), we observed rapid As(III) oxidation and the formation of As(V)-Fe(III) polymers. Arsenic removal was achieved upon aggregation of the As(V)-Fe(III) polymers. In the presence of Mn, the mechanism of As removal varied with pH. At pH 4.5, As(III) was oxidized rapidly by OH• and the aggregation of the resulting As(V)-Fe(III) polymers was enhanced by the presence of Mn. At pH 8.5, As(III) and Mn(II) competed for Fe(IV), which led As(III) to persist in solution. The As(V) that did form was incorporated into a mixture of As(V)-Fe(III) polymers and a ferrihydrite-like phase that incorporated 8% Mn(III); some As(III) was also sorbed by these phases. At intermediate pH values, As(III) and Mn(II) also competed for the oxidants, but Mn(III) behaved as a reactive intermediate that reacted with Fe(II) or As(III). This result can explain the presence of As(V) in the solid phase. This detailed understanding of the As removal mechanisms in the presence of Mn can be used to tune the operating conditions of Fe EC for As removal under typical groundwater conditions.
Collapse
Affiliation(s)
- Charlotte Catrouillet
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Sachiko Hirosue
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Nathalie Manetti
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Victor Boureau
- Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
49
|
Jin X, Xie X, Liu Y, Wang Y, Wang R, Jin P, Yang C, Shi X, Wang XC, Xu H. The role of synergistic effects between ozone and coagulants (SOC) in the electro-hybrid ozonation-coagulation process. WATER RESEARCH 2020; 177:115800. [PMID: 32315900 DOI: 10.1016/j.watres.2020.115800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
In order to improve the dissolved organic matter removal efficiency, an electro-hybrid ozonation-coagulation (E-HOC) system was developed in this study, in which the electro-coagulation (EC) and ozonation occurred simultaneously in one integrated unit. Higher removal efficiency was observed for the E-HOC process compared with those of EC, ozonation and pre-ozonation-EC process for the treatment of wastewater treatment plant (WWTP) effluent and ibuprofen (IBP). 58.6% dissolved organic carbon (DOC) removal efficiency was achieved in the E-HOC process for the treatment of WWTP effluent at optimal operational condition (current density 15 mA/cm2, initial pH 5 and ozone dosage 1.5 mg O3/mg DOC). Based on the reactive oxygen species (ROS) detection and reactions on the electrodes, the synergistic effects between ozone and coagulants (SOC) were found to be involved in the E-HOC process. According to pseudo-first-order rate constant analyses, the contribution of five possible organic removal pathways was quantified. It was revealed that the peroxone and SOC effects exhibited almost equal contribution to IBP removal at initial pH 5 under different current densities, both of which played the dominant role in the E-HOC process. However, the contribution of the SOC effects decreased significantly when the initial pH increased to 7 and 9. As an important pathway for organic removal in the E-HOC process at initial pH 5, the mechanism of the SOC effects was analysed at initial pH 5. It was revealed the SOC effects can further improve hydroxyl radicals (•OH) generation, and the surface hydroxyl groups of the hydrolysed Al species generated from anode electrolysis were determined to be the active sites to generate ROS in the SOC effects.
Collapse
Affiliation(s)
- Xin Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xinyue Xie
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuguo Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rui Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pengkang Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Chao Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huining Xu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
50
|
Bandaru SRS, van Genuchten CM, Kumar A, Glade S, Hernandez D, Nahata M, Gadgil A. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6094-6103. [PMID: 32315523 DOI: 10.1021/acs.est.0c00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Millions of people are exposed to toxic levels of dissolved arsenic in groundwater used for drinking. Iron electrocoagulation (FeEC) has been demonstrated as an effective technology to remove arsenic at an affordable price. However, FeEC requires long operating times (∼hours) to remove dissolved arsenic due to inherent kinetics limitations. Air cathode Assisted Iron Electrocoagulation (ACAIE) overcomes this limitation by cathodically generating H2O2 in situ. In ACAIE operation, rapid oxidation of Fe(II) and complete oxidation and removal of As(III) are achieved. We compare FeEC and ACAIE for removing As(III) from an initial concentration of 1464 μg/L, aiming for a final concentration of less than 4 μg/L. We demonstrate that at short electrolysis times (0.5 min), i.e., high charge dosage rates (1200 C/L/min), ACAIE consistently outperformed FeEC in bringing arsenic levels to less than WHO-MCL of 10 μg/L. Using XRD and XAS data, we conclusively show that poor arsenic removal in FeEC arises from incomplete As(III) oxidation, ineffective Fe(II) oxidation and the formation of Fe(II-III) (hydr)oxides at short electrolysis times (<20 min). Finally, we report successful ACAIE performance (retention time 19 s) in removing dissolved arsenic from contaminated groundwater in rural California.
Collapse
Affiliation(s)
- Siva R S Bandaru
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | | | - Arkadeep Kumar
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sara Glade
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Dana Hernandez
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Mohit Nahata
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Ashok Gadgil
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|