1
|
Li R, Luo Y, Zhu X, Zhang J, Wang Z, Yang W, Li Y, Li H. Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown. WATER RESEARCH 2024; 262:122143. [PMID: 39067275 DOI: 10.1016/j.watres.2024.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 μg·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10-4 in 2015 to 1.27 × 10-4 in 2019, and rebounded to 1.40 × 10-4 in 2020-2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.
Collapse
Affiliation(s)
- Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhenyu Wang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Wenyu Yang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Zhao W, Li P, Yang B. New insight into the spatiotemporal distribution and ecological risk assessment of endocrine-disrupting chemicals in the Minjiang and Tuojiang rivers: perspective of watershed landscape patterns. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1360-1372. [PMID: 38957940 DOI: 10.1039/d4em00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
This study evaluated the pollution characteristics, spatiotemporal distribution, and ecological risks of eight endocrine-disrupting chemicals (EDCs) in the Minjiang and Tuojiang rivers. Utilizing 3S technology (ArcGIS, remote sensing, GPS) and Fragstats, the research calculated eight landscape pattern indices related to land use types along the Minjiang river and established correlations between landscape factors and EDC distribution through stepwise multiple regression. The results indicated that bisphenol A (BPA) and nonylphenol (NP) were the most concerning EDCs, with detection frequencies of 97-100% and peak concentrations up to 63.35 ng L-1, primarily located in the middle and lower reaches of the Minjiang river and the upper reaches of the Tuojiang river. There was a significant correlation between the spatial distribution of pollutants and landscape patterns, where increased fragmentation, a higher number of patches, and complex patch shapes within a 10-kilometer buffer zone were associated with elevated levels of river pollution. By integrating four classical mathematical models to fit curves for acute and chronic toxicity data of BPA and NP, the findings suggested that BPA posed a higher ecological risk. This interdisciplinary research provided essential theoretical insights for investigating river pollution and its influencing factors, offering a new perspective on simultaneous river pollution control, urban functional zoning, and adjustment of watershed landscape spatial patterns from an urban planning standpoint.
Collapse
Affiliation(s)
- Weike Zhao
- School of Architecture and Civil Engineering, Xihua University, Chengdu, 610039, China
| | - Peilin Li
- China MCC5 Group Corp. Ltd, Chengdu, 610023, China.
| | - Bo Yang
- China MCC5 Group Corp. Ltd, Chengdu, 610023, China.
| |
Collapse
|
3
|
Kadadou D, Tizani L, Alsafar H, Hasan SW. Analytical methods for determining environmental contaminants of concern in water and wastewater. MethodsX 2024; 12:102582. [PMID: 38357632 PMCID: PMC10864661 DOI: 10.1016/j.mex.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Naaz N, Pandey J. Spatial distribution of polycyclic aromatic hydrocarbons in water and sediment in the Ganga River: source diagnostics and health risk assessment on dietary exposure through a common carp fish Labeo rohita. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:196. [PMID: 38695954 DOI: 10.1007/s10653-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.
Collapse
Affiliation(s)
- Neha Naaz
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Ladeia Ramos R, Rezende Moreira V, Santos Amaral MC. Phenolic compounds in water: Review of occurrence, risk, and retention by membrane technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119772. [PMID: 38147771 DOI: 10.1016/j.jenvman.2023.119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Phenolic compounds are one of the main contributors to water source contamination worldwide. In this review, the data collected on Elsevier, Scopus, and Pubmed, considering papers published between 2000 and 2023, showed more than 60 different phenols have been identified in water matrix (<0.065-179,000,000 ng L-1). The highest concentration reported was in surface water canals in India. The most recurrent and studied compound was bisphenol A (n = 93) in concentrations ranging from 0.45 to 2,970,000 ng L-1. The solid phase extraction (HBL Oasis cartridge) and methanol as solvent was the method of pre-concentration most used followed by gas chromatography for the determination of phenols in water samples. The importance of drinking water guidelines incorporating more phenolic compounds was emphasized given the variety of these compounds quantified in water matrix. The human health risk assessment (HRA) was performed for the min-max concentrations of the pollutants reported in the literature. High HRA even at the lowest concentrations for 2-nitrophenol, 2,6-dichlorophenol, 3,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and 2,4-dinitrophenol was recognized. The cancer risk estimated was considered possible for 3-methylphenol, 2,4-dimethylphenol, 2,4,6-trichlorophenol, pentachlorophenol, and 2,4-dinitrophenol in the highest concentrations. The in-depth discussion of mechanisms, advantages, challenges, and carbon footprint of membrane technologies in water treatment and phenols retention demonstrated the great potential and trends for the production of safe drinking water, highlighting reverse osmosis, as a mature technology, and membrane distillation, as an emergent technology.
Collapse
Affiliation(s)
- Ramatisa Ladeia Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Janarthanam VA, Issac PK, Guru A, Arockiaraj J. Hazards of polycyclic aromatic hydrocarbons: a review on occurrence, detection, and role of green nanomaterials on the removal of PAH from the water environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1531. [PMID: 38008868 DOI: 10.1007/s10661-023-12076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Organic pollutant contamination in the environment is a serious and dangerous issue, especially for developing countries. Among all organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are the more frequently discovered ones in the environment. PAH contamination is caused chiefly by anthropogenic sources, such as the disposal of residential and industrial waste and automobile air emissions. They are gaining interest due to their environmental persistence, toxicity, and probable bioaccumulation. The existence of PAHs may result in damage to the environment and living things, and there is widespread concern about the acute and chronic threats posed by the release of these contaminants. The detection and elimination of PAHs from wastewater have been the focus of numerous technological developments during recent decades. The development of sensitive and economical monitoring systems for detecting these substances has attracted a lot of scientific attention. Using several nanomaterials and nanocomposites is a promising treatment option for the identification and elimination of PAHs in aquatic ecosystems. This review elaborated on the sources of origin, pathogenicity, and widespread occurrence of PAHs. In addition, the paper highlighted the use of nanomaterial-based sensors in detecting PAHs from contaminated sites and nanomaterial-based absorbents in PAH elimination from wastewater. This review also addresses the development of Graphene and Biofunctionalized nanomaterials for the elimination of PAHs from the contaminated sites.
Collapse
Affiliation(s)
- Vishnu Adith Janarthanam
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, , Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Schmitt GT, Caetano MO, Marques VM, Kieling AG, Launay M, Acosta Muñiz LI, Gomes LP. Comparison of 17β-estradiol, bisphenol-A and caffeine concentration levels before and after the water treatment plant. JOURNAL OF WATER AND HEALTH 2023; 21:1716-1726. [PMID: 38017601 PMCID: wh_2023_234 DOI: 10.2166/wh.2023.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This article compares the concentration levels of 17β-estradiol (E2), bisphenol-A (BPA) and caffeine (CAF) in the Sinos River, Brazil, which is a source of drinking water and the presence of contaminants after the conventional treatment in a municipal water treatment plant (WTP). A total of nine sampling campaigns were carried out, with sample collection in the Sinos River, upstream and downstream of the WTP, in addition to a drinking water sample (DW). The samples were extracted with solid phase extraction (SPE) and the concentration by liquid chromatography coupled to mass spectrometry (LC-MS). The maximum concentration in the Sinos River was 6,127.99 ng·L-1 for E2, 3,294.63 ng·L-1 for BPA and 1,221.95 ng·L-1 for CAF. In drinking water, the concentration range of E2, BPA and CAF was from less than the Detection Limit (DL) up to 437.50 ng·L-1,
Collapse
Affiliation(s)
- Graziela Taís Schmitt
- Civil Engineering Post-Graduate Program, Unisinos University, São Leopoldo, Brazil E-mail:
| | | | | | | | - Marie Launay
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Lilia Itzel Acosta Muñiz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Luciana Paulo Gomes
- Civil Engineering Post-Graduate Program, Unisinos University, São Leopoldo, Brazil
| |
Collapse
|
8
|
Chen Y, Song R, Li P, Wang Y, Tan Y, Ma Y, Yang L, Wu L, Du Z, Qi X, Zhang Z. Spatiotemporal distribution, sources apportionment and ecological risks of PAHs: a study in the Wuhan section of the Yangtze River. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7405-7424. [PMID: 36788152 PMCID: PMC9928594 DOI: 10.1007/s10653-023-01500-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the sources, contamination and ecological risks of polycyclic aromatic hydrocarbons (PAHs) based on their spatiotemporal distribution in aquatic environment in the Wuhan section of the Yangtze River (WYR). The fugacity ratio evaluation indicated that sediment was secondary release sources of two- and three-ring PAHs and sinks of four- and five-ring PAHs. The total concentrations of PAHs (Σ16PAHs) ranged from 2.51 to 102.5 ng/L in water with the dominant contribution of 47.8% by two-ring PAHs. Σ16PAHs in sediments varied from 5.90 to 2926 ng/g with the contribution of 35.4% by four-ring PAHs. The higher levels of PAHs occurred around developed industrial areas during the wet season, which was related to local industrial emissions and influenced by rainfall/runoff. Annual flux of Σ16PAHs was estimated of 28.77 t. The PMF model analysis revealed that petroleum and industrial emissions were the dominant sources in water accounting for 58.5% of the total pollution, although traffic emission was the main source for sediment accounting for 44.6%. Risk assessments showed that PAHs in water were at low risks, whereas about 44% of the sediments were identified as medium risks. Therefore, energy structure adjustment and further implement of regulation and monitoring are necessary to reduce PAH emissions.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ranran Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenjie Du
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
9
|
Liu X, Dong Z, Baccolo G, Gao W, Li Q, Wei T, Qin X. Distribution, composition and risk assessment of PAHs and PCBs in cryospheric watersheds of the eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164234. [PMID: 37230341 DOI: 10.1016/j.scitotenv.2023.164234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) are significant components of persistent organic pollutants (POPs) and pose a threat to both ecosystems and human health. To explore their spatial distribution, origins, and risk assessment, we collected 25 glacial meltwater and downstream river water samples in the eastern Tibetan Plateau (including the Qilian Mountains in the northeast) during the summer of 2022 (June-July). Our results showed that ∑PAHs and ∑PCBs were present in a wide range from ND-1380 ng/L and ND-1421 ng/L, respectively. Compared to other studies worldwide, the ∑PAHs and ∑PCBs in the Hengduan Mountains were at high levels. The PAHs and PCBs mainly consisted of low-molecular-weight homologs, including Ace, Flu, Phe, and PCB52. Phe was the primary component of PAHs. Glacial meltwater samples generally exhibited low concentration of PAHs and PCB52, whereas downstream river water samples typically showed high concentration of PAHs and PCB52. We attributed this characteristic to the influence of pollutants physicochemical properties, altitude effect, long-range transport (LRT), and local environmental conditions. In the eastern Tibetan Plateau glacier basin (especially in the Hailuogou watersheds), the concentration of PAHs and PCB52 in runoff generally increased with decreasing elevation. We believe that the primary factor affecting the concentration of PAHs and PCB52 in the region is the difference in local human activity inputs from various altitudes. The composition characteristics of PAHs and PCBs suggested that incomplete coal combustion and coking discharge mainly caused PAHs, while the combustion of coal and charcoal and the release of capacitors primarily caused PCBs. We assessed the carcinogenic risk of PAHs and PCBs in the glacier basin of the TP and found that the potential threat of PAHs was stronger than that of PCBs. Overall, this study provides new insights into the ecological security of water resources in eastern Tibetan Plateau. It is significant for controlling PAHs and PCBs emissions, assessing the ecological environment of the glacier watershed, and regional human health.
Collapse
Affiliation(s)
- Xiaoli Liu
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; College of Environment and Planning, National Demonstration Center for Geography and Environment, Henan University, Kaifeng, China
| | - Zhiwen Dong
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
| | - Giovanni Baccolo
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Wenhua Gao
- College of Environment and Planning, National Demonstration Center for Geography and Environment, Henan University, Kaifeng, China
| | - Quanlian Li
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ting Wei
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Qin
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
10
|
Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water in the coal mining area of northern Shaanxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50496-50508. [PMID: 36795203 DOI: 10.1007/s11356-023-25932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
This study investigated the spatial distribution, pollution source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the Kuye River, which is a typical river in the mining area of China, 16 priority PAHs were quantitatively detected at 59 sampling sites by high-performance liquid chromatography-diode array detector-fluorescence detector. The results showed that the ∑PAHs concentrations in the Kuye River were in the range of 50.06-278.16 ng/L. The PAHs monomer concentrations were in the range 0-121.22 ng/L, of which chrysene had the highest average concentration (36.58 ng/L), followed by benzo[a]anthracene and phenanthrene. In addition, the 4-ring PAHs showed the highest relative abundance in the 59 samples, ranging from 38.59 to 70.85%. Moreover, the highest concentrations of PAHs were mainly observed in coal mining, industrial, and densely populated areas. On the other hand, according to the diagnostic ratios and positive matrix factorization (PMF) analysis, it can be concluded that coking/petroleum sources, coal combustion, vehicle emission, and fuel-wood combustion contributed to the PAHs concentrations in the Kuye River by 37.91%, 36.31%, 13.93%, and 11.85%, respectively. In addition, the results of the ecological risk assessment indicated that benzo[a]anthracene had a high ecological risk. Among the 59 sampling sites, only 12 belong to low ecological risk areas, and others were at medium to high ecological risks. The current study provides data support and a theoretical basis to effectively manage pollution sources and ecological environment treatment in mining areas.
Collapse
|
11
|
A Comparative Analysis on the Concentration and Potential Risk of Polycyclic Aromatic Hydrocarbons in Surface Water, Sediment and Soil from a Non-crude Oil and a Crude Oil Explosion Site in the Niger Delta, Nigeria. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Pullaguri N, Umale A, Bhargava A. Neurotoxic mechanisms of triclosan: The antimicrobial agent emerging as a toxicant. J Biochem Mol Toxicol 2023; 37:e23244. [PMID: 36353933 DOI: 10.1002/jbt.23244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Ashwini Umale
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| |
Collapse
|
13
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
14
|
Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Sathishkumar P. The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia. CHEMOSPHERE 2022; 297:134151. [PMID: 35245589 DOI: 10.1016/j.chemosphere.2022.134151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Numerous chemical substances are used for daily life activities have an effect on the endocrine system and are frequently classed as endocrine-disrupting chemicals (EDCs). The present study investigated the fact and distribution of EDCs type (estrogen, plasticizer, and preservative). In particular, EDCs such as estriol, 1,2,4 triazole, 17α-ethinylestradiol, methyl paraben, estrone, 3,4,4 trichlorocarbanilide, 17β-estradiol, and bisphenol A (BPA) were selected as the target EDCs for the detection in the Bengawan Solo and Brantas rivers located in Indonesia. Among the targeted EDCs, BPA is found to be highest in the water samples of Bengawan Solo (1070 ng/L and mean at 219 ng/L) and Brantas (556 ng/L and mean at 222 ng/L) rivers. The EDCs concentration is higher in both rivers during the dry season compared to the wet season due to the dilution effect caused by heavy rainfall. The entry of municipal wastewater is the primary sources of EDCs contamination in both rivers. Finally, this study suggests that the contamination level of EDCs in river water could pose an environmental threat, particularly during dry seasons.
Collapse
Affiliation(s)
- Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia; Center for Coastal Disaster Mitigation and Rehabilitation Studies, Universitas Diponegoro, Semarang, 50275, Indonesia.
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT 250, Miri, Sarawak, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Novia Safinatunnajah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Palanivel Sathishkumar
- Microbiology and Ecotoxicology Lab, Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
15
|
Grochowicz M, Szajnecki Ł, Rogulska M. Crosslinked 4-Vinylpyridine Monodisperse Functional Microspheres for Sorption of Ibuprofen and Ketoprofen. Polymers (Basel) 2022; 14:polym14102080. [PMID: 35631962 PMCID: PMC9146734 DOI: 10.3390/polym14102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, ibuprofen and ketoprofen are widely used over-the-counter medications to treat inflammation, fever, or pain. Their high consumption and improper disposal cause them to get into the environment and often pollute surface water. In this study, the new polymeric porous microspheres based on 4-vinylpyridine (4VP) are presented as effective sorbents for ibuprofen and ketoprofen preconcentration and removal. The porous microspheres were obtained via seed swelling polymerization with the use of two types of methacrylate crosslinkers, i.e., trimethylolpropane trimethacrylate (TRIM) and 1,4-dimethacryloiloxybenzene (14DMB). Additionally, as a reference sorbent, a copolymer of styrene and divinylbenzene was obtained. Porous structure investigations showed that the microspheres possess a specific surface area of about 100 m2/g, but noticeable differences were observed in their internal topography depending on the type of crosslinker used. Moreover, the porous structure of dry and swollen microspheres differs significantly. Swollen copolymers reveal the presence of micropores. The 4VP microspheres are characterized by high thermal stability; their initial decomposition temperature is about 300 °C. The performance of the 4VP copolymers as sorbents in aqueous solutions of drugs was evaluated in static and dynamic modes at three pH values of 3, 7, and 11. The highest sorption efficiency was obtained for ibuprofen and ketoprofen in pH 3. Both 4VP copolymers indicate the high sorption capacity in a static sorption as follows: towards ketoprofen of about 40 mg/g whereas towards ibuprofen of about 90 mg/g and 75 mg/g on copolymer crosslinked with trimethylolpropane trimethacrylate and 1,4-dimethacryloiloxybenzene, respectively. The recovery of ibuprofen and ketoprofen after dynamic sorption experiments was higher than 90%.
Collapse
|
16
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. Monomer Release from Dental Resins: The Current Status on Study Setup, Detection and Quantification for In Vitro Testing. Polymers (Basel) 2022; 14:polym14091790. [PMID: 35566958 PMCID: PMC9100225 DOI: 10.3390/polym14091790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Improvements in mechanical properties and a shift of focus towards esthetic dentistry led to the application of dental resins in various areas of dentistry. However, dental resins are not inert in the oral environment and may release monomers and other substances such as Bisphenol-A (BPA) due to incomplete polymerization and intraoral degradation. Current research shows that various monomers present cytotoxic, genotoxic, proinflammatory, and even mutagenic effects. Of these eluting substances, the elution of BPA in the oral environment is of particular interest due to its role as an endocrine disruptor. For this reason, the release of residual monomers and especially BPA from dental resins has been a cause for public concern. The assessment of patient exposure and potential health risks of dental monomers require a reliable experimental and analytical setup. However, the heterogeneous study design applied in current research hinders biocompatibility testing by impeding comparative analysis of different studies and transfer to the clinical situation. Therefore, this review aims to provide information on each step of a robust experimental and analytical in vitro setup that allows the collection of clinically relevant data and future meta-analytical evaluations.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
- Correspondence:
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany;
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| |
Collapse
|
17
|
Mengesha DN, Abebe MW, Appiah-Ntiamoah R, Kim H. Ground coffee waste-derived carbon for adsorptive removal of caffeine: Effect of surface chemistry and porous structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151669. [PMID: 34793804 DOI: 10.1016/j.scitotenv.2021.151669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based adsorbents show high adsorption capacity towards caffeine due to their porosity and surface functionality. However, the main limiting factor for high performance has not been addressed; furthermore, the adsorption interaction with different active sites needs to be explored. In this study, we synthesized a hierarchical porous nitrogen-doped carbon with unique surface functionality by single-step calcination of coffee waste with KOH under N2. The porous structure, nitrogen content, and types are optimized by varying calcination temperature and KOH concentration. The result of the adsorption experiments shows that both the nitrogen type and the pore size distribution are the limiting factors to adsorption. In addition, the effect of acidic and basic functional groups is studied in detail. The adsorption of caffeine on CW-C is dominantly governed by EDA interaction between the resonance structure of pyridonic-N and the electron-withdrawing group of the caffeine, and the dispersive force caused by the oxidized-N and delocalized π electron of caffeine. Furthermore, we demonstrate that the surface of CW-C is not suitable for the formation of electrostatic and non-electrostatic interaction with caffeine. The maximum adsorption capacity of caffeine at 25 °C is 274.2 mg/g. Moreover, we demonstrate that the unique physio-chemical properties of CW-C are capable of adsorbing other emerging contaminants such as diclofenac, where maximum adsorption capacity of 242.3 mg/g diclofenac is recorded.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Research Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Research Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Research Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Research Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
18
|
Katti PA, Goundadkar BB. Waves of follicle development, growth and degeneration in adult ovary of zebrafish (Danio rerio) on chronic exposure to environmental estrogens in laboratory. Reprod Toxicol 2022; 110:31-38. [PMID: 35331892 DOI: 10.1016/j.reprotox.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Patterns of quantitative production of follicles, their growth, and degeneration in the adult ovary of zebrafish (Danio rerio) in response to long-term (80 days) exposure to environmental estrogens (EE) in the laboratory, were studied. Experimentally naive female D. rerio procured from fish farm were acclimated to the laboratory (natural temperature, 26 ± 1° C, photoperiod, 11.30 L:12.30 D) for two weeks and divided into 10 groups. Each group (n = 20) was housed in a separate glass aquarium containing 10 L of conditioned water (physico-chemical parameters maintained within the permissible range prescribed for zebrafish) along with either 5 ng or 10 ng/L of 17α-ethynylestradiol (EE2) or diethylstilbestrol (DES) or bisphenol A (BPA) or estradiol 17-β (positive control) or water with no chemical (negative control). All experimental fish were fed twice daily on commercial pellets (ad libitum) supplemented with Artemia nauplius, the exposure was semi-static and chemical residues in media samples were determined by ultra-performance liquid chromatography (UPLC). Exposure of fish to estrogens increased (p < 0.05) (i) body mass and gonadosomatic indices (GSI) in E2, EE2 and DES groups (ii) previtellogenic and vitellogenic follicles in E2 and EE2 groups (iii) atretic follicles (AF) in DES and BPA groups compared to controls and (iv) decrease in total oocyte volumes (V = 4/3. π. r3) compared to those of E2 group. These results suggest that the chronic exposure of fish to EE (at environmentally relevant concentrations) has a profound influence on ovarian follicular dynamics and the effects of individual EE are discrete on the ovary.
Collapse
Affiliation(s)
- Pancharatna A Katti
- Department of Zoology, Karnatak University, Dharwad 580003, Karnataka, India.
| | - Basavaraj B Goundadkar
- Department of Zoology, Govindram Seksaria Science College, Belagavi 590006, Karnataka, India.
| |
Collapse
|
19
|
Li R, Cai J, Li J, Wang Z, Pei P, Zhang J, Krebs P. Characterizing the long-term occurrence of polycyclic aromatic hydrocarbons and their driving forces in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127065. [PMID: 34523466 DOI: 10.1016/j.jhazmat.2021.127065] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As carcinogenic and ubiquitous pollutants, an in-depth understanding of the long-term environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) and their driving forces is crucial for reducing human health risks. Based on long-term monitoring data from 2001 to 2016, this study systematically investigated the temporal and seasonal trends, periodic oscillation, source apportionment, and human health risks of PAHs in eight rivers in the Free State of Saxony, Germany. The results showed that the annual average ∑16PAHs (sum of 16 PAH concentrations) ranged from 28.2 ng L-1 to 202 ng L-1. Using the Mann-Kendall test, a trend of decreasing PAH concentrations was determined (slope range: -0.103 to -0.0159). Wavelet analysis indicated that the most significant periodic oscillation of PAHs was 10-30 months, with more pollution in winter. Source apportionment analysis suggested that vehicular emissions and coal combustion contributed the most to PAH concentrations (20.6-40.3% and 21.7-41.4%, respectively) and related health risks (54.1-80.1% and 5.61-37.9%, respectively). Furthermore, the risks (oral lifetime: 4.24×10-7-1.34×10-6; dermal lifetime: 2.86×10-5-9.05×10-5) were determined to be low. The data revealed that the substitution of petroleum and coal with cleaner energy would facilitate the mitigation of PAHs.
Collapse
Affiliation(s)
- Ruifei Li
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Junlin Cai
- Consulting R&D Department, Shanghai Environmental Protection Co., Ltd, 200233 Shanghai, China
| | - Jiafeng Li
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhenyu Wang
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Peng Pei
- College of Mines, Guizhou University, 550025 Guiyang, China
| | - Jin Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632 Guangzhou, China.
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Chen Y, Chen Y, Jia J, Yan B. Triclosan detoxification through dechlorination and oxidation via microbial Pd-NPs under aerobic conditions. CHEMOSPHERE 2022; 286:131836. [PMID: 34388436 DOI: 10.1016/j.chemosphere.2021.131836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The present study focuses on the successful preparation of microbial palladium nanoparticles (Pd-NPs). The even distribution of Pd in the periplasmic space of B. megaterium Y-4 cells is characterized using a transmission electronic microscopy (TEM) and scanning electron microscope (SEM). X-Ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the domination of Pd (0) in Pd-NPs. The microbial Pd-NPs were selected to detoxify triclosan (TCS). Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the intermediate products of dechlorination and oxidization. Free radicals quenching and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) capturing experiments confirmed the crucial contribution of atomic H• and O2·- to TCS degradation. Besides, TCS degradation by microbial Pd-NPs could alleviate the cytotoxicity of TCS polluted water. Meanwhile, great circulating utilization of microbial Pd-NPs was obtained in degrading TCS. Corresponding findings in the present study could provide new insight into the role of microbial Pd-NPs in detoxifying pollutants.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510405, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510405, PR China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510405, PR China.
| |
Collapse
|
21
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Spatial and temporal variability of contaminants of emerging concern in a drinking water source. RSC Adv 2022; 12:20876-20885. [PMID: 35919150 PMCID: PMC9301962 DOI: 10.1039/d2ra02962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
The spatial–temporal behaviour of contaminants of emerging concern (CECs) are not well-documented in drinking water sources, including in Quebec, Canada.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Francois Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| | | | - Jean-B. Sérodes
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manuel J. Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Sharma P, Hanigan D. Evidence of low levels of trace organic contaminants in terminal lakes. CHEMOSPHERE 2021; 285:131408. [PMID: 34242983 DOI: 10.1016/j.chemosphere.2021.131408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Endorheic lakes (or terminal lakes, TLs) have no natural outlet other than evaporation and slow infiltration. Some TLs receive reclaimed wastewater which contains poorly removed trace organic contaminants (TrOCs). To determine if TLs accumulate TrOCs we conducted a preliminary assessment of the occurrence of ten TrOCs in three TLs receiving reclaimed wastewater and one TL which does not directly receive reclaimed wastewater. Five of ten TrOCs (carbamazepine, DEET, fluoxetine, primidone, and trimethoprim) were present in all four TLs' surface waters (~0.3-1109 ng/L), six (caffeine, carbamazepine, DEET, diphenhydramine, primidone, and trimethoprim) were present in sediment samples (0.1-77 ng/gDW) and in soil samples (0.1-137 ng/gDW). Concentrations of caffeine, carbamazepine, diphenhydramine, fluoxetine and meprobamate were significantly higher in TLs receiving wastewater from a secondary treatment plant compared to those TLs which received tertiary treated wastewater. Carbamazepine, fluoxetine, sulfamethoxazole, and trimethoprim were present at concentrations greater than is typical of other U.S. freshwater lakes, but other TrOC concentrations were present at lower concentrations than in other freshwater lakes. We conclude that some TrOCs may accumulate in TLs, but to a lesser extent than would be expected based on the accumulation of dissolved constituents alone, which indicates that there are other unidentified processes in TLs that contribute to TrOC losses. Other TLs across the globe may have similar levels of TrOCs due to anthropogenic influence and treated wastewater inputs.
Collapse
Affiliation(s)
- Priyamvada Sharma
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA.
| |
Collapse
|
23
|
Rathi BS, Kumar PS, Vo DVN. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149134. [PMID: 34346357 DOI: 10.1016/j.scitotenv.2021.149134] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Water is required for the existence of all living things. Water pollution has grown significantly, over the decades and now it has developed as a serious worldwide problem. The presence and persistence of Hazardous pollutants such as dyes, pharmaceuticals and personal care products, heavy metals, fertilizer and pesticides and their transformed products are the matter of serious environmental and health concerns. A variety of approaches have been tried to clean up water and maintain water quality. The type of pollutants present in the water determines the bulk of technological solutions. The main objective of this article was to review the occurrences and fate of hazardous contaminants (dyes, pharmaceuticals and personal care products, heavy metals, and pesticides) found in wastewater effluents. These effluents mingle with other streams of water and that are utilized for a variety of reasons such as irrigation and other domestic activities that is further complicating the issue. It also discussed traditional treatment approaches as well as current advances in hazardous pollutants removal employing graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other innovative forms of useable materials. It also discussed the identification and quantification of harmful pollutants using various approaches, as well as current advancements. Finally, a risk assessment of hazardous pollutants in water is provided in terms of the human health and the environment. This data is anticipated to serve as a foundation for future improvements in hazardous pollutant risk assessment. Furthermore, future studies on hazardous pollutants must not only emphasize on the parent chemicals, as well as on their possible breakdown products in various media.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
24
|
Yang Y, Chen Z, Zhang J, Wu S, Yang L, Chen L, Shao Y. The challenge of micropollutants in surface water of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146537. [PMID: 33774309 DOI: 10.1016/j.scitotenv.2021.146537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The Yangtze River, the third largest river and supporting nearly one-third of Chinese population, has been severely polluted in recent decades. Among the numerous pollutants, organic micropollutants, as one kind of important emerging contaminants, are currently key contaminants of concern. However, few studies have focused on their mixture environmental impacts, especially for the complex environmental mixtures. In the current study, four categories of organic micropollutants, including 16 polycyclic aromatic hydrocarbons (PAHs), 32 polychlorinated biphenyls (PCBs), 27 organochlorine pesticides (OCPs) and 20 pharmaceutical and personal care products (PPCPs) are analyzed in 10 study sites on the Yangtze River. Subsequently, comprehensive risk assessment for micropollutant mixtures was conducted by risk quotient based on the sum of PEC/PNEC values (RQMEC/PNEC) and risk quotient based on the toxic units (RQSTU). The mixture risk evaluation based on the detected environmental concentrations indicates that micropollutant mixtures in surface water of the Yangtze River exhibited relative high risks for aquatic organisms. The observed results revealed that mixture risk assessments have to consider the complexity of environmental samples; PCBs dominated main mixture risks in the upper stream; PAHs contributed major comprehensive risks in the middle stream; and OCPs were the key micropollutants in the downstream. The outcomes of the present study here can serve for pollution control in the Yangtze River, which provide the scientific underpinnings and regulatory reference for risk management and river protection.
Collapse
Affiliation(s)
- Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Jialing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
25
|
Shen B, Wu J, Zhan S, Jin M. Residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters of the Ili-Balkhash Basin, arid Central Asia: Concentrations and risk assessment. CHEMOSPHERE 2021; 273:129705. [PMID: 33524765 DOI: 10.1016/j.chemosphere.2021.129705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Release and transport of contaminants in watersheds can have adverse effects on aquatic organisms and human health. Little attention, however, has been paid to chemical contamination of aquatic environments in arid regions by persistent organic pollutants. We analyzed the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters of the Ili-Balkhash Basin, in arid central Asia. ΣOCP concentrations ranged from 4.02 to 122.80 ng L-1 and ΣPAH concentrations were between 7.58 and 70.98 ng L-1. On a global scale, OCP and PAH concentrations in waters of the Ili-Balkhash system were relatively low, with only a few exceptions, i.e., highest concentrations near cities and relatively high values in some headwater areas. Source identification revealed that the dichlorodiphenyltrichloroethanes (DDTs) may come from recent use, whereas endosulfans stem from historic applications. Lindane, a common insecticide, may be responsible for hexachlorocyclohexanes (HCHs). Low-molecular-weight PAHs, primarily originating from wood and coal combustion and petroleum-derived sources, were the primary components of PAHs in waters. Furthermore, the primary sources of PAHs at different sites were identified using a Positive Matrix Factorization model: 1) oil leakage (33.9%), 2) biomass burning (29.5%), 3) coal combustion (22.6%), and 4) petroleum-powered vehicles (14.1%). Agricultural, industrial and domestic activities are all potential pollution sources. Besides, contaminated headwater areas indicate that long-range transport has probably become a non-negligible mechanism for pollutant distribution. Risk assessment showed low to moderate toxicity for aquatic organisms, but no marked carcinogenic or non-carcinogenic risks for human health.
Collapse
Affiliation(s)
- Beibei Shen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jinglu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Shuie Zhan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
26
|
Rocha MJ, Rocha E. Concentrations, sources and risks of PAHs in dissolved and suspended material particulate fractions from the Northwest Atlantic Coast of the Iberian Peninsula. MARINE POLLUTION BULLETIN 2021; 165:112143. [PMID: 33610110 DOI: 10.1016/j.marpolbul.2021.112143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities can introduce polycyclic aromatic hydrocarbons (PAHs) in coastal waters. Here, 16 priority PAHs were quantified by gas chromatography-mass spectroscopy (GC-MS) in seawater samples from three Iberian Atlantic habitats. Results showed global concentrations of ≅9 ng/L in the aqueous phase (DAP) and ≅94 ng/g, dw in suspended particulate matter (SPM). The identified sources were both petrogenic and pyrogenic. Nonetheless, the application of several quantitative approaches, including Principal Component Analysis, point to distinct PAHs inputs amongst the sampling areas and demonstrate that sources in S1 (fire forests/sea harbor) are different from those at S2 and S3 (oil refinery/sea harbor). The calculated carcinogenicity potential in both DAP and SPM was low for humans (high percentage of Group 3 PAHs). However, both toxic equivalent factors (TEQs) and environmental risks coefficients (RQs) reveal that the evaluated areas are not risk-free, as confirmed by the practical Artemia salina acute-test assay.
Collapse
Affiliation(s)
- Maria João Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Portugal; Team of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), U.Porto, Portugal.
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Portugal; Team of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), U.Porto, Portugal
| |
Collapse
|
27
|
Tan C, Jian X, Su L, Lu X, Huang J, Deng J, Chu W. Kinetic removal of acetaminophen and phenacetin during LED-UV 365 photolysis of persulfate system: Reactive oxygen species generation. CHEMOSPHERE 2021; 269:129337. [PMID: 33387793 DOI: 10.1016/j.chemosphere.2020.129337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Acetaminophen (ACT) and phenacetin (PNT) removal during light-emitting diode (LED)-UV photolysis of persulfate (PS) was evaluated with a typical wavelength of 365 nm. Decay of PNT and ACT in pH ranges of 5.5-8.5 followed pseudo-first order kinetics. Maximum pseudo-first order rate constants (kobs) of ACT and PNT decomposition of 1.8 × 10-1 and 1.2 × 10-1 min-1, respectively, were obtained at pH 8.5. Hydroxyl radicals (·OH), sulfate radicals (SO4·-), superoxide radicals (O2-·), and singlet oxygen (1O2) were determined in-situ electron paramagnetic resonance (EPR) and alcohol scavenging tests. The average contributions of ·OH and SO4·- were 23.5% and 53.0% for PNT removal, and 15.9% and 53.0% for ACT removal at pH ranges of 5.5-8.5. In samples subjected to chlorination after LED-UV365/PS pre-oxidation, a relatively small total concentration of five halogenated disinfection by-products (DBPs) was obtained of 90.9 μg L-1 (pH 5.5) and 126.7 μg L-1 (pH 7.0), which is 58.5% and 30.2% lower than that in system without LED-UV365/PS pre-oxidation. Meanwhile, a higher maximum value of total DBP concentration was obtained at pH 8.5 (445.6 μg L-1) following LED-UV365/PS pre-oxidation. The results of economy evaluation showed that UV365 was more cost-effective in application for organic contaminant removal compared with UV254.
Collapse
Affiliation(s)
- Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Xinchi Jian
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Lianghu Su
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xu Lu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenhai Chu
- Key Laboratory of Yangze River Water Environment, Tongji University, Shanghai, 200092, China
| |
Collapse
|
28
|
Singh V, Suthar S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. CHEMOSPHERE 2021; 268:129331. [PMID: 33359991 DOI: 10.1016/j.chemosphere.2020.129331] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Occurrence of 15 different pharmaceuticals and personal care products (PPCPs) (ibuprofen, diclofenac, ketoprofen, acetaminophen, ciprofloxacin, erythromycin, amoxicillin, ofloxacin, tetracycline, metoprolol, triclosan, salicylic acid, N, N diethyl-meta-toluamide, caffeine and β-Estradiol) belongs to eight different classes in an urban stretch of River Ganges were detected for three seasons in two holy cities Rishikesh and Haridwar (India). The overall concentration of PPCPs in the River Ganges ranged between Below Detectable Limit (BDL) to 1104.84 ng/L, with higher concentrations at anthropogenically influenced lower reaches of the River Ganges at Haridwar. Acetaminophen, triclosan, N, N diethyl-meta-toluamide (DEET), tetracycline, and caffeine showed the highest detection frequency (>90-100%) in the river. PPCPs concentration, especially for NSAIDs (Ibuprofen, ketoprofen and acetaminophen), antibiotics (ciprofloxacin, tetracycline and ofloxacin) and metabolite (salicylic acid) was found to be higher in winter compared to summer in the Ganges, possibly due to the lower biodegradation efficiency related to lesser temperatures and inadequate sunlight. While metoprolol (beta-blockers), triclosan (antibacterial), DEET (insect repellent) and caffeine (human indicator) showed a higher load in summer, possibly due to their intense uses during this period. Results of risk quiescent (RQ) revealed higher ecological risk for algae while the moderate risk for river fish biota.
Collapse
Affiliation(s)
- Vineet Singh
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
29
|
Li Y, Zhang C, Hu Z. Selective removal of pharmaceuticals and personal care products from water by titanium incorporated hierarchical diatoms in the presence of natural organic matter. WATER RESEARCH 2021; 189:116628. [PMID: 33220609 DOI: 10.1016/j.watres.2020.116628] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Natural organic matter (NOM), such as humic acids, fulvic acids, and tannic acids, is ubiquitous in water bodies and hinders the photodegradation of pharmaceuticals and personal care products (PPCPs). We prepared titanium incorporated hierarchical diatoms as a novel photocatalyst to selectively remove PPCPs (triclosan, bisphenol A or BPA, and N, N-Diethyl-meta-toluamide or DEET) in the presence of NOM (humic acid). Diatom (Stephanodiscus hantzschii) grown in a titanium(IV) bis(ammonium lactato) dihydroxide solution integrated 7.2% ± 1.4% (mass fraction) of titanium in their cell wall and formed silica-titania frustules. The photodegradation of triclosan, BPA, and DEET by both silica-titania frustules and titania nanopowder (a control photocatalyst) follows pseudo-first-order kinetics. Under ultraviolent light irradiation, the titanium-content-normalized pseudo-first-order removal rate constants of triclosan, BPA, and DEET by silica-titania frustules were 3, 4, and 4-times those by titania nanopowder, respectively, at a humic acid concentration of 10 mg•L-1. Incorporation of titanium did not alter the morphology and hierarchical nano/microstructures of the diatom. The silica-titania frustules were rich in nanopores with a diameter of 20 ± 4 nm (mean ± standard deviation), allowing PPCPs with a small molecular weight (typically < 600 g•mol-1) to pass through while efficiently rejecting NOM with high molecular weights. The silica-titania frustules with hierarchical nano/microstructures served as a prefiltration unit by selectively allowing PPCPs to pass through the nanopores and are therefore promising for photodegradation and environmental remediation applications.
Collapse
Affiliation(s)
- Yan Li
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
30
|
Das Sarkar S, Nag SK, Kumari K, Saha K, Bandyopadhyay S, Aftabuddin M, Das BK. Occurrence and Safety Evaluation of Antimicrobial Compounds Triclosan and Triclocarban in Water and Fishes of the Multitrophic Niche of River Torsa, India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:488-499. [PMID: 33215293 DOI: 10.1007/s00244-020-00785-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Personal care product (PCP) chemicals have a greater chance of accumulation in the aquatic environments because of their volume of use. PCPs are biologically active substances that can exert an adverse effect on the ecology and food safety. Information on the status of these substances in Indian open water ecosystems is scarce. In this paper, we report the incidence of two synthetic antimicrobials, triclosan (TCS), including its metabolite methyl-triclosan (Me-TCS) and triclocarban (TCC) in Torsa, a transboundary river flowing through India. In water TCS and TCC were detected at levels exceeding their respective PNEC (Predictive No Effect Concentration). Both the compounds were found to be bioaccumulative in fish. TCS concentration (91.1-589 µg/kg) in fish was higher than that of TCC (29.1-285.5 µg/kg). The accumulation of residues of the biocides varied widely among fishes of different species, ecological niche, and feeding habits. Me-TCS could be detected in fishes and not in water. The environmental hazard quotient of both TCS and TCC in water indicated a moderate risk. However, the health risk analysis revealed that fishes of the river would not pose any direct hazard to human when consumed. This is the first report of the occurrence of these PCP chemicals in a torrential river system of the eastern Himalayan region.
Collapse
Affiliation(s)
- Soma Das Sarkar
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Subir Kumar Nag
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Kavita Kumari
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Keya Saha
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Sudarshan Bandyopadhyay
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Mohammad Aftabuddin
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Basanta Kumar Das
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
31
|
De Oliveira T, Boussafir M, Fougère L, Destandau E, Sugahara Y, Guégan R. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. CHEMOSPHERE 2020; 259:127480. [PMID: 32634722 DOI: 10.1016/j.chemosphere.2020.127480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
A Na+ exchanged montmorillonite clay (Na-Mt) and its organoclay derivatives prepared with benzyldimethyltetradecylammonium (BDTA) cationic and polyoxyethylene (20)oleyl-ether (Brij-O20) non-ionic surfactants were used for first time at our knowledge as adsorbents the removal diverse pharmaceuticals (PPs) from samples collected in a rural wastewater facility (town of Josnes in France). The selected facility showed a poor efficiency for the elimination of PPs that were permanently release to the environment. Although involving different interactional mechanisms, the whole adsorbents Na-Mt, nonionic Brij-Mt and cationic BDTA-Mt organoclays, could remove the entire PPs of various chemical nature in a low concentration regime (ng L-1), where electrostatic interactions mainly controlled the adsorption. Thus, the organic PPs cations were preferentially adsorbed onto Na-Mt and Brij0.4-Mt (with its dual hydrophilic-hydrophobic nature) while anionic PPs showed a bold affinity to BDTA-Mt. The hydrophobic environment generated by the intercalation of surfactants within the interlayer space of organoclays conferred a versatility for the adsorption of numerous PPs through weak molecular forces (Van der Waals and/or pi-pi interactions). The study confirmed the proper efficiency of the studied layered materials including organoclays and emphasized about their promising interests in water remediation strategy.
Collapse
Affiliation(s)
- Tiago De Oliveira
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France
| | - Mohammed Boussafir
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, UMR 7311, CNRS-Université D'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Emilie Destandau
- Institut de Chimie Organique et Analytique, UMR 7311, CNRS-Université D'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Régis Guégan
- Institut des Sciences de La Terre D'Orléans, UMR 7327, CNRS-Université D'Orléans, 1A Rue de La Férollerie, 45071 Orléans Cedex 2, France; Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
32
|
Ibigbami OA, Adeyeye EI, Adelodun AA. Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Groundwater of Fuel-Impacted Areas in Ado-Ekiti, Nigeria. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1834413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Adedeji A. Adelodun
- Department of Marine Science and Technology, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
33
|
Caban M, Stepnowski P. Electron ionization induced fragmentation of fluorinated derivatives of bisphenols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8860. [PMID: 32533586 DOI: 10.1002/rcm.8860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Fluorinated derivatization agents allow for the identification and quantification of emerging pollutants with high sensitivity, yet details of their potential applications using electron ionization are lacking. The fluorine atom itself does not effectively participate in electron ionization. Furthermore, limited information exists regarding the effect of fluorine during electron ionization-induced fragmentation. To fill this gap, this report presents the fragmentation pathways of the fluorinated derivatives of ten bisphenol analogues as exemplary emerging pollutants. METHODS The bisphenols were derivatized by the acetylation reagent trifluoroacetic anhydride and a new silylation reagent, namely dimethyl(3,3,3-trifluoropropyl)silyldiethylamine (DIMETRIS; previously applied for the analysis of selected pharmaceuticals in environmental samples), and analyzed using GC/MS (electron ionization, 70 eV). Deuterated bisphenol A was added to the group of analytes to confirm the proposed fragmentation pathways. RESULTS The specific chemical structure of bisphenols gives the possibility of several resonance hybrids of C-centered radicals. This, in turn, results in several fragmentation pathways, unique for each resonance hybrid. Sequential losses of radicals and neutral fragments were observed in both types of derivative, with final stable carbenium ions. McLafferty-type rearrangements were observed between the native structure of the analytes and the introduced substituents. The gamma-shift of F onto Si in the Si(CH2 )2 CF3 substituent is proposed to explain the loss of the fragment with a mass of 78 u. CONCLUSIONS Both types of derivatization reagent used were found to be applicable, although the use of DIMETRIS was limited for high-mass bisphenols. The introduction of fluorine by derivatization brings benefits for the qualitative and quantitative analysis of bisphenol-type compounds using GC/MS because of the presence of characteristic ions in the mass spectra.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| |
Collapse
|
34
|
Sta Ana KM, Espino MP. Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines. CHEMOSPHERE 2020; 256:127122. [PMID: 32470735 DOI: 10.1016/j.chemosphere.2020.127122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of hormones and hormone-like compounds in water has been regarded as an emerging environmental concern. These water contaminants are known to cause endocrine disruption that may affect aquatic organisms. In this study, hormones and phenolic xenoestrogens were investigated and measured in the surface waters of Laguna Lake, Philippines. Laguna Lake is the largest lake in the country that has many uses including fish cultivation and source for potable water production. The hormones estrone, 17-beta-estradiol, 17-alpha-ethynylestradiol, progesterone and testosterone as well as the plasticizer bisphenol A in the lake water were determined by solid phase extraction and LC-MS/MS. The extraction method exhibited good recoveries (75-90% in spiked lake water) while the instrumental method of analysis has low detection limits (0.01-0.24 μg/L) and good linear response (>99% in the 0-50 μg/L concentration range). In the nine sampling sites across the lake, estrone was found in concentrations between 0.03 and 0.30 ng/L. 17-Beta-estradiol, testosterone and progesterone were detected in some of the sites in concentrations up to 0.36, 0.22, and 2.05 ng/L, respectively. Bisphenol A was detected in all sites in higher concentrations of 0.71-47.40 ng/L. Although there are no local guidelines yet, the determination and monitoring of these emerging water contaminants are important because of their potential environmental impacts. Further to this initial study, investigations on point sources spanning the tributary rivers, long-term determination of locational and temporal variations, and assessment of ecotoxicological risks are needed. These are crucial in the regulation and mitigation of discharges into the lake.
Collapse
Affiliation(s)
- Katrina Marie Sta Ana
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
35
|
Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30933-30944. [PMID: 31749003 DOI: 10.1007/s11356-019-06861-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days' exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK
- Bitung Marine Life Conservation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Tandurusa, Aertembaga, Bitung, North Sulawesi, Indonesia
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK.
| |
Collapse
|
36
|
Shao HY, Zhang ZC, Chai JF, Xu G, Tang L, Wu MH. Pollution characteristics and underlying ecological risks of primary semi-volatile organic compounds (SVOCs) in urban watersheds of Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27708-27720. [PMID: 32399879 DOI: 10.1007/s11356-020-08528-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
We investigated the pollution characteristics of ninety semi-volatile organic compounds (SVOCs) in the rivers and lakes of Shanghai. Total concentrations of Σ90SVOCs in water and sediment samples from 30 sites ranged from 1.47 to 19.5 μg/L and 2.38 to 9.48 mg/kg, respectively. PAEs and PAHs were the major contaminant compounds found in all samples. OCPs accounted for less than 3% of the total concentrations of Σ90SVOCs and other SVOCs were either not detected or only detected in trace amounts. Our results indicated that domestic swage, industrial wastewater, petroleum products, and other human activities were the pollutant sources to the water and sediment. It is noteworthy that products that contain the banned chemicals HCH and DDT are still under use within the studied areas. Ecological and health risk assessment results showed that dieldrin and BBP have the potential to cause adverse effects on the environment, while B(a)p and DBP have high carcinogenic risks to humans.
Collapse
Affiliation(s)
- Hai-Yang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhou-Chong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jian-Fei Chai
- Information Technology Office, School of Mechatronic Engineering and Automation, Shanghai, 200444, People's Republic of China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ming-Hong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| |
Collapse
|
37
|
Zhou Z, Lu J, Wang J, Zou Y, Liu T, Zhang Y, Liu G, Tian Z. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118250. [PMID: 32197231 DOI: 10.1016/j.saa.2020.118250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 05/29/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most hazardous pollutants and have attracted significant attention in the last decades. Up to now, rapid and on-site trace detection of PAHs remains a challenging issue. Here, taking advantage of the high sensitivity and reliable qualification of Surface-enhanced Raman Spectroscopy (SERS), we firstly carried out trace analyses of 16 typical PAHs in water at concentrations as low as 100-0.1 μg/L, depending on the number of aromatic rings of the molecule. Furthermore, owing to the simplicity of the liquid-liquid extraction (LLE) step, the sensitivity was further improved 2-3 orders of magnitude, and the lowest detectable concentrations were 100, 50, and 5 ng/L for anthracene, pyrene, and benzo[a]pyrene (the three PAHs typically found in heavily polluted waters), respectively. The LLE-SERS approach was successfully applied to the qualitative and quantitative analyses of different (ocean and coast) water samples being spiked by these three PAHs, which showed great promise as a trace detection tool of PAHs under water environments having different contaminant matrices.
Collapse
Affiliation(s)
- Zhifan Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianglong Lu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Juyong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yisong Zou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yulong Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Zhongqun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
38
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| |
Collapse
|
39
|
Gadisa BT, Kassahun SK, Appiah-Ntiamoah R, Kim H. Tuning the charge carrier density and exciton pair separation in electrospun 1D ZnO-C composite nanofibers and its effect on photodegradation of emerging contaminants. J Colloid Interface Sci 2020; 570:251-263. [DOI: 10.1016/j.jcis.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022]
|
40
|
Hadibarata T, Kristanti RA, Mahmoud AH. Occurrence of endocrine-disrupting chemicals (EDCs) in river water and sediment of the Mahakam River. JOURNAL OF WATER AND HEALTH 2020; 18:38-47. [PMID: 32129185 DOI: 10.2166/wh.2019.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study was performed to examine the occurrence of endocrine disrupting chemicals (EDCs), including four steroid estrogens, one plasticizer, and three preservatives in the Mahakam River, Indonesia. The physicochemical analysis of river water and sediment quality parameters were determined as well as the concentration of EDCs. The range of values for pH, total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen demand (BOD), total suspended solids (TSS), nitrate, ammonium, phosphate, and oil/grease in river water and sediment were higher than recommended limits prescribed by the World Health Organization's Guidelines for Drinking-water Quality (GDWQ). Bisphenol A (BPA) was the most widely found EDC with the highest concentration level at 652 ng/L (mean 134 ng/L) in the river water and ranged from ND (not detected) to 952 ng/L (mean 275 ng/L) in the sediment. Correlation analysis to investigate the relationship between the EDCs' concentrations in water and sediment also revealed a significant correlation (R2 = 0.93) between the EDCs' concentrations. High concentrations of EDCs are found in urban and residential areas because these compounds are commonly found in both human and animal bodies, resulting in the disposal of EDCs into canals and rivers in urban and suburban areas, as well as livestock manure and waste that is generated from intensive livestock farming around the suburban area.
Collapse
Affiliation(s)
- Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia E-mail:
| | - Risky Ayu Kristanti
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya TunRazak, Gambang, 26300 Kuantan, Malaysia
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Li Y, Ding J, Zhang L, Liu X, Wang G. Occurrence and ranking of pharmaceuticals in the major rivers of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133991. [PMID: 31465916 DOI: 10.1016/j.scitotenv.2019.133991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Residual pharmaceuticals have received widespread attention worldwide due to their continuous release and potential hazard to the environment. As a result of rapid development and a large population, China has become a country with high production and consumption of pharmaceuticals. This may be the main reason for the high detection frequencies and concentrations of pharmaceuticals in the aquatic environment in China. Rivers represent an important water resource and play an important role in the sustainable development of the Chinese economy and society. This study summarizes the occurrence of frequently detected pharmaceuticals in major rivers. A hazard score based on the occurrence, exposure potential, and environmental effects of pharmaceuticals was calculated and a prioritization approach was used to rank 166 pharmaceuticals that were detected in the aquatic environment of major rivers in China. The priority list provides a basis for selecting candidate pharmaceuticals for future site-specific monitoring in rivers.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Phong Vo HN, Le GK, Hong Nguyen TM, Bui XT, Nguyen KH, Rene ER, Vo TDH, Thanh Cao ND, Mohan R. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. CHEMOSPHERE 2019; 236:124391. [PMID: 31545194 DOI: 10.1016/j.chemosphere.2019.124391] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
Acetaminophen (ACT) is commonly used as a counter painkiller and nowadays, it is increasingly present in the natural water environment. Although its concentrations are usually at the ppt to ppm levels, ACT can transform into various intermediates depending on the environmental conditions. Due to the complexity of the ACT degradation products and the intermediates, it poses a major challenge for monitoring, detection and to propose adequate treatment technologies. The main objectives of this review study were to assess (i) the occurrences and toxicities, (2) the removal technologies and (3) the transformation pathways and intermediates of ACT in four environmental compartments namely wastewater, surface water, ground water, and soil/sediments. Based on the review, it was observed that the ACT concentrations in wastewater can reach up to several hundreds of ppb. Amongst the different countries, China and the USA showed the highest ACT concentration in wastewater (≤300 μg/L), with a very high detection frequency (81-100%). Concerning surface water, the ACT concentrations were found to be at the ppt level. Some regions in France, Spain, Germany, Korea, USA, and UK comply with the recommended ACT concentration for drinking water (71 ng/L). Notably, ACT can transform and degrade into various metabolites such as aromatic derivatives or organic acids. Some of them (e.g., hydroquinone and benzoquinone) are toxic to human and other life forms. Thus, in water and wastewater treatment plants, tertiary treatment systems such as advanced oxidation, membrane separation, and hybrid processes should be used to remove the toxic metabolites of ACT.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Gia Ky Le
- Environmental Engineering and Management Program, Asian Institute of Technology (AIT), P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Thi Minh Hong Nguyen
- Environmental Engineering and Management Program, Asian Institute of Technology (AIT), P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, Viet Nam.
| | - Khanh Hoang Nguyen
- National Food Institute, Denmark Technical University, 2800, Kgs. Lyngby, Denmark
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE - Delft, Institute of Water Education 2601 DA, Delft, the Netherlands
| | - Thi Dieu Hien Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Ngoc-Dan Thanh Cao
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Raj Mohan
- National Institute of Technology Karnataka, Surathkal, Karnataka, Dakshina Kannada, 575025, India
| |
Collapse
|
43
|
Kumar M, Ram B, Honda R, Poopipattana C, Canh VD, Chaminda T, Furumai H. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133640. [PMID: 31377355 DOI: 10.1016/j.scitotenv.2019.133640] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 05/28/2023]
Abstract
Multi-drug resistant microbes, pathogenic viruses, metals, and pharmaceuticals and personal care products (PPCPs) in water has become the crux of urban sustainability issues. However, vulnerability due to pollutant concurrences, source apportionment, and identification of better faecal indicators needs to be better understood. The present study focuses on the vulnerability of urban Guwahati, the largest city in Northeastern India, through analyzing the concurrence of PPCPs, enteric viruses, antibiotic resistant bacteria, metal, and faecal contamination in water. The study strives to identify a relevant marker of anthropogenic pollution for the Indian scenario. Samples from the Brahmaputra River (n = 4), tributary Bharalu River (an unlined urban drain; n = 3), and Ramsar recognized Lake (Dipor Bil; n = 1) indicate caffeine > acetaminophen > theophylline > carbamazepine > crotamiton for PPCPs and pepper mild mottle virus (PMMoV) > aichi > hepatitis A > norovirus GII > norovirus GI for enteric viruses. PMMoV was the better indicator of faecal pollution due to its prevalence, specificity and ease of detection. Antibiotic resistance was neither correlated with the prevalence of PPCPs nor E. coli. As, Co and Mn appear to be inducing antibiotic resistance in E. coli. While the risk quotient of the urban drain (Bharalu River) indicates one order higher magnitude than reported for other Indian rivers, the Lake exhibited the least pollution and better resilience. The concurrence of pollutants and multi-drug resistant E. coli, owing to the complete absence of wastewater treatment, puts the city in a highly vulnerable state. Pollution is being regulated only by the dilution capability of the Brahmaputra River, which needs to be further researched for seasonal variation.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Bhagwana Ram
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Ryo Honda
- Faculty of Environmental Design, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | | | - Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka
| | - Hiroaki Furumai
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Gong X, Shen Z, Zhang Q, Zeng Y, Sun J, Ho SSH, Lei Y, Zhang T, Xu H, Cui S, Huang Y, Cao J. Characterization of polycyclic aromatic hydrocarbon (PAHs) source profiles in urban PM 2.5 fugitive dust: A large-scale study for 20 Chinese cites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:188-197. [PMID: 31207509 DOI: 10.1016/j.scitotenv.2019.06.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in road dust (RD) and construction dust (CD) in PM2.5 were quantified in the samples collected in 20 Chinese cities. The PAHs profiles in urban PM2.5 fugitive dusts were determined and their potential health risks were evaluated. Seven geographical regions in China were identified as northwest China (NWC), the North China Plain (NCP), northeast China (NEC), central China (CC), south China (SC), southwest China (SWC), and east China (EC). The overall average concentrations of total quantified PAHs (ΣPAHs) were 23.2 ± 18.9 and 22.8 ± 29.6 μg·g-1 in RD and CD of PM2.5, indicating that severe PAHs pollution to urban fugitive dusts in China. The differences of ΣPAHs between RD and CD were minor in northern and central regions of China but much larger in southern and east regions. The ƩPAHs for RD displayed a pattern of "high in northern and low in southern", and characterized by large abundance of high molecular weights (HMWs) PAHs, indicating that vehicle emission was the predominant pollution origin. Additionally, higher diagnostic ratios of fluoranthene/(fluoranthene + pyrene) in NCP, CC, and SWC suggest critical contributions of biomass burning and coal combustion for RD in these areas. In comparison, gasoline combustion was the major pollution source for CD PAHs in NWC, NCP, NEC, and CC, whereas industrial emissions such as cement production and iron smelting had strong impacts in the heavy industrial regions. The total benzo[a]pyrene (BaP) carcinogenic potency concentrations (BaPTEQ) for RD and CD both showed the lowest in SC (0.05 and 0.07, respectively) and the highest in NCP (10.99 and 7.67, respectively). The highest and lowest incremental life cancer risks (ILCR) were found in NCP and SC, coinciding with the spatial distributions of ambient PAHs levels. The total CD-related cancer risks for adults and children (~10-4) suggest high potential health risks in NCP, SWC, and NWC, whereas the evaluated values in EC and SC indicate virtual safety (≤10-6).
Collapse
Affiliation(s)
- Xuesong Gong
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; International Joint Research Center for Persistent Toxic Pollutants, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Qian Zhang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaling Zeng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Pollutants, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
45
|
Liu Q, Xu X, Wang L, Lin L, Wang D. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:241-247. [PMID: 31200196 DOI: 10.1016/j.ecoenv.2019.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The coexistence of parent polycyclic aromatic hydrocarbons (PPAHs) and halogenated PAHs (HPAHs) in drinking water has generated much concern recently. However, a method to simultaneously determine these compounds has not been developed. In this study, a method using solid-phase extraction combined with gas chromatography-mass spectrometry for determination of PPAHs and HPAHs in drinking water was established. Forty-two target compounds including 16 PPAHs and 26 HPAHs (16 chlorinated PAHs (Cl-HPAHs) and 10 brominated PAHs (Br-PAHs)) were selected to evaluate the performance. Our results indicate enriching compounds with a LC18 cartridge and eluting with dichloromethane is optimal with recovery of 74.88-119.4%. Method detection limits ranged from 0.34 to 3.37 ng L-1 when only using 1 L samples. The method accomplished the analysis of trace PPAHs and HPAHs. We found the coexistence of PPAHs and HPAHs including 12 PPAHs, 2 Cl-PAHs and 3 Br-PAHs in tap water samples. Maximum total concentration of PPAHs and HPAHs reached 33.69 ng L-1 and 3.04 ng L-1, respectively. Trace Br-PAHs were first detected in drinking water. 6-bromobenzene[a]pyrene was dominated among the HPAHs with a concentration from 2.30 to 2.69 ng L-1. The simultaneous occurrence of PPAHs and HPAHs in drinking water should receive more attention, and their formation mechanism should be further explored.
Collapse
Affiliation(s)
- Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Long Wang
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
46
|
Wang Y, Liu Y, Lu S, Liu X, Meng Y, Zhang G, Zhang Y, Wang W, Guo X. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28796-28807. [PMID: 31377929 DOI: 10.1007/s11356-019-06047-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
The pharmaceutical and personal care product (PPCP) residues in freshwater lakes are being highlighted around the world. The occurrence and ecological risk of 34 PPCPs classified as antibiotics, non-steroidal anti-inflammatory drugs (NSAID), cardiovascular drugs, psychotropic drugs, anti-inflammatory drugs, psychostimulants, and pesticides during rainstorm period in surface water of the Dongting Lake, China, were studied. Twenty-six out of thirty-four PPCPs were detected, and the total concentrations of antibiotics ranged from 0.15 to 214.75 ng L-1 in surface water. The highest average concentration was observed for diclofenac, followed by diethyltoluamide (DEET). The PPCP concentrations were much lower in Dongting Lake compared to other rivers and lakes due to the strong dilution effect of rainstorm, while the detection rate remains high. Caffeine and DEET were detected with 100% frequency in Dongting Lake, and the detection rates of diclofenac, mefenamic acid, and roxithromycin were above 90%. The pollution levels of antibiotics decreased in the order of East Dongting Lake > South Dongting Lake > West Dongting Lake, which may be related to the distribution of aquaculture plants, sewage treatment plants, and population density. The risk quotient (RQ) method was used to evaluate ecological environment risk under the worst case and the results suggested that clarithromycin, diclofenac, roxithromycin, and erythromycin might pose a significant risk to aquatic organisms in Dongting Lake, especially clarithromycin. This study can provide data support for further research on the dilutive effect and mechanism of rainwater runoff on PPCPs in lakes on a large scale.
Collapse
Affiliation(s)
- Yongqiang Wang
- School of Geography and Environment, Shandong Normal University, Jinan, 250358, Shandong, China
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Liu
- School of Geography and Environment, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaohui Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guodong Zhang
- School of Geography and Environment, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Yaru Zhang
- School of Geography and Environment, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Weiliang Wang
- School of Geography and Environment, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
47
|
Liang X, Junaid M, Wang Z, Li T, Xu N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:695-707. [PMID: 31035152 DOI: 10.1016/j.envpol.2019.04.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, nine congeners of polybrominated diphenyl ethers (PBDEs) and sixteen congeners of polycyclic aromatic hydrocarbons (PAHs) were measured in water samples to elucidate their spatial distribution, congener profiles, sources and ecological risks in the Guanlan River during both the dry season (DS) and the wet season (WS). The concentration of Σ9PBDE ranged from 58.40 to 186.35 ng/L with an average of 115.72 ng/L in the DS, and from 8.20 to 37.80 ng/L with an average of 22.15 ng/L in the WS. Meanwhile, the concentration of Σ16PAHs was ranged from 121.80 to 8371.70 ng/L with an average of 3271.18 ng/L in the DS and from 1.85 to 7124.25 ng/L with an average of 908.11 ng/L in the WS. The concentrations of PBDEs and PAHs in the DS were significantly higher than those in the WS, probably due to the dilution of the river during the rainy season. Moreover, the spatial distribution of pollutants revealed decreasing trend in the concentration from upstream to downstream and almost identical pattern was observed during both seasons. The source apportionment suggested that penta-BDE and to some extent octa-BDE commercial products were major sources of PBDEs in the study area. However, the sources of PAHs were mainly comprised of fossil fuels and biomass burning, followed by the petroleum products and their mixtures. The results of the ecological risk assessment indicated PBDEs contamination posed high ecological risks, while PAHs exhibited low or no ecological risks in the study area. Consistent with the environmental levels, the ecological risks of pollutants were relatively lower in the WS, compared to that in the DS. The results from this study would provide valuable baseline data and technical support for policy makers to protect the ecological environment of the Guanlan River.
Collapse
Affiliation(s)
- Xinxiu Liang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhifen Wang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tianhong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Carvalho FIM, Dantas Filho HA, Dantas KDGF. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in groundwater by GC-FID after solid-phase extraction. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0839-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Adhikari PL, Maiti K, Bam W. Fate of particle-bound polycyclic aromatic hydrocarbons in the river-influenced continental margin of the northern Gulf of Mexico. MARINE POLLUTION BULLETIN 2019; 141:350-362. [PMID: 30955743 DOI: 10.1016/j.marpolbul.2019.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/03/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
This study utilizes suspended particles and seafloor sediments collected from the northern Gulf of Mexico (GOM) continental margin to study the fate, transport, residence times and accumulation rates of particle-bound polycyclic aromatic hydrocarbons (PAHs). Total particulate-PAHs and particulate organic carbon (POC) varied between 0.9 and 7.0 ng/L, and 4-131 μg/L, respectively. Particulate-PAHs were positively correlated with POC, while both particulate-PAHs and POC were negatively correlated with salinity (P-value < 0.05). These results show that the river-derived particle influx and associated POC are important vectors for transport and fate of particulate-PAHs in the river-dominated northern GOM continental ecosystems. The composition of underlying seafloor sediment-PAHs were not correlated to the water column particulate-PAHs, which is attributed to re-mineralization, sediment resuspension/redistribution and different timescales of comparison. The 210Pb-derived residence time of particles and associated particulate-PAHs in water column varied between 2 and 39 days. Residence times of particulate-PAHs were significantly correlated with seafloor sediment-PAHs accumulation rates, shorter water column residence times leading to higher PAHs accumulation rates.
Collapse
Affiliation(s)
- P L Adhikari
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America.
| | - K Maiti
- College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - W Bam
- College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
50
|
Araújo CVM, González-Ortegón E, Pintado-Herrera MG, Biel-Maeso M, Lara-Martín PA, Tovar-Sánchez A, Blasco J. Disturbance of ecological habitat distribution driven by a chemical barrier of domestic and agricultural discharges: An experimental approach to test habitat fragmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2820-2829. [PMID: 30463135 DOI: 10.1016/j.scitotenv.2018.10.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Contamination is an important factor for determining the pattern of habitat selection by organisms. Since many organisms are able to move from contaminated to more favorable habitats, we aimed to: (i) verify if the contamination along the river Guadalete (Spain) could generate a chemical barrier, restricting the displacement of freshwater shrimps (Atyaephyra desmarestii) and (ii) discriminate the role of the contaminants concerning the preference response by the shrimps. A. desmarestii was experimentally tested in a multi-compartmented, non-forced exposure system, simulating the spatial arrangement of the samples just like their distribution in the environment. Water and sediment samples were chemically characterized by analyses of 98 chemical compounds and 19 inorganic elements. Shrimps selected the less contaminated water and sediment samples, with two marked preference patterns: (i) upstream displacement avoiding the sample located at the point of pollutant discharges and those samples downstream from this point and (ii) fragmentation of the population with spatial isolation of the upstream and downstream populations. The preference was related to the avoidance of artificial sweeteners, flame retardants, fragrances, PAHs, PCBs, pesticides, UV filters and some inorganic elements. The threat of contamination was related to its potential to isolate populations due to the chemical fragmentation of their habitat.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain.
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain; CEIMAR International Campus of Excellence of the Sea, Spain
| | - Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Miriam Biel-Maeso
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|