1
|
Azam I, Benson JD. Silymarin mediated osmotic responses and damage in HepG2 cell suspensions and monolayers. Cryobiology 2023; 112:104552. [PMID: 37301358 DOI: 10.1016/j.cryobiol.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Maintenance of cells within a volume range compatible with their functional integrity is a critical determinant of cell survival after cryopreservation, and quantifying this osmotically induced damage is a part of the rational design of improved cryopreservation protocols. The degree that cells tolerate osmotic stress significantly impacts applicable cryoprotocols, but there has been little research on the time dependence of this osmotic stress. Additionally, the flavonoid silymarin has been shown to be hepatoprotective. Therefore, here we test the hypotheses that osmotic damage is time-dependent and that flavonoid inclusion reduces osmotic damage. In our first experiment, cells were exposed to a series of anisosmotic solutions of graded hypo- and hypertonicity for 10-40 min, resulting in a conclusion that osmotically induced damage is time dependent. In the next experiment, adherent cells preincubated with silymarin at the concentration of 10-4 mol/L and 10-5 mol/L showed a significant increase in cell proliferation and metabolic activity after osmotic stress compared to untreated matched controls. For instance, when adherent cells preincubated with 10-5 mol/L silymarin were tested, resistance to osmotic damage and a significant increase (15%) in membrane integrity was observed in hypo-osmotic media and a 22% increase in hyperosmotic conditions. Similarly, significant protection from osmotic damage was observed in suspended HepG2 cells in the presence of silymarin. Our study concludes that osmotic damage is time dependent, and the addition of silymarin leads to elevated resistance to osmotic stress and a potential increase in the cryosurvival of HepG2 cells.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Canada.
| |
Collapse
|
2
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
3
|
Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Protective role of AKBA against benzo(a)pyrene-induced lung carcinogenesis by modulating biotransformation enzymes and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23072. [PMID: 35437857 DOI: 10.1002/jbt.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
The present study was designed to explore the chemopreventive potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) during the initiation and promotion stage of lung carcinogenesis induced by benzo(a)pyrene (BaP) in female Sprague Dawley rats. BaP was administered at a dose level of 50 mg/kg b.wt. twice a week orally in olive oil for 4 weeks. AKBA administration was started 4 weeks before BaP treatment and continued for another 8 weeks at a dose level of 50 mg/kg b.wt. orally in olive oil three times a week. BaP treatment showed significantly increased in the activities of Phase I biotransformation enzymes (Cytochrome P450 , b5 , and aryl hydrocarbon hydrolase) and inhibited the activity of Phase II enzyme (glutathione-S-transferase). Also, a significant elevation in oxidative stress biomarkers lipid peroxidation, reactive oxygen species, and protein carbonyl content concentration. Further, an appreciable decrease was observed in the activities of endogenous antioxidant enzymes superoxide dismutase, CAT, GPx, GR, and a decline in nonenzymatic GSH levels. As a result of BaP induced oxidative stress, alteration in erythrocytes morphology was observed. Fourier transform infrared spectroscopy spectrum of lung tissue showed structural changes due to BaP exposure. Moreover, levels of tumor biomarkers such as total sialic acid, carcinoembryonic antigen, and alkaline phosphatase were significantly elevated following BaP treatment which was substantiated by alterations noticed in the histoarchitecture of lung tissue. Interestingly, AKBA administration to BaP treated rats appreciably alleviated the changes inflicted by BaP on various biochemical indices and histoarchitecture of lungs. Therefore, the study clearly revealed that AKBA by containing oxidative stress shall prove to be quite effective in providing chemoprevention against BaP induced lung carcinogenesis.
Collapse
Affiliation(s)
- Priti Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India.,Electron microscopy facility, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Manoj Kumar
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Higher Education Shimla, Govt. College Chowari, Shimla, Himachal Pradesh, India
| | - Sunil Kumar Dhatwalia
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Zoology and Environmental Sciences, Maharaja Agarsen University, Baddi Solan, Himachal Pradesh, India
| | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
4
|
Hu T, Zhou L, Wang X, Zhou X, Yi R, Long X, Zhao X. Prophylactic Effect of Lactobacillus fermentum TKSN02 on Gastric Injury Induced by Hydrochloric Acid/Ethanol in Mice Through Its Antioxidant Capacity. Front Nutr 2022; 9:840566. [PMID: 35299759 PMCID: PMC8921696 DOI: 10.3389/fnut.2022.840566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
In this article, the preventive and protective effect of a new Lactobacillus fermentum, (Lactobacillus fermentum TKSN02: LF-N2), which was isolated and identified from Xinjiang naturally fermented yogurt, on hydrochloric acid (HCl)/ethanol induced gastric injury in mice was studied. A total of 40 mice were divided into the following five groups: normal, model, LF-N2, LB (Lactobacillus bulgaricus), and Ranitidine groups. Except for the normal and model groups, mice in the other groups were treated with LF-N2, LB (Lactobacillus bulgaricus), and Ranitidine separately, and the injury of the gastric tissue was observed by taking photos and pathological sections. The levels of oxidation indicators, gastrointestinal hormone and the inflammatory cytokines in serum and gastric tissue in each group were measured. Further more, the gene expression levels of oxidative stress and inflammation related genes in the colon tissue were determined by the Real-Time PCR method. Pathological observation confirmed that LF-N2 could inhibit the gastric injury caused by HCl/ethanol. Observation of the appearance of the gastric indicated that LF-N2 could effectively reduce the area of gastric injury. Biochemical results showed that the serum gastrin (GAS) and gastric motilin (MTL) levels in the LF-N2 group were significantly lower and the serum somatostatin (SS) level was higher than in the model group and there was no significant difference between all treatment groups. The activities of total superoxide dismutase (T-SOD) and glutathione (GSH) were increased while the malondialdehyde (MDA) content was decreased in LF-N2 treatment group mice, which suggested that LF-N2 has a good antioxidant effect. Further RT-PCR experiments also showed that LF-N2 could promote the related mRNA expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, and CAT) and anti-inflammatory cytokines (IL-4, and IL-10), while it inhibited the gene expression of pro-inflammatory cytokine (IL-6) and apoptosis factor (Caspase-3). As observed, LF-N2 exerted a good preventive effect on HCl/ethanol induced gastric injury in mice, and the effect was close to that of LB, which indicated that LF-N2 has potential use as a probiotic due to its gastric injury treatment effects.
Collapse
Affiliation(s)
- Tiantian Hu
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Liang Zhou
- TCM (Rheumatic Immunology/Geriatrics) Department, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Xiaoli Wang
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xianrong Zhou
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ruokun Yi
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
5
|
Azadpour M, Farajollahi MM, Dariushnejad H, Varzi AM, Varezardi A, Barati M. Effects of synthetic silymarin-PLGA nanoparticles on M2 polarization and inflammatory cytokines in LPS-treated murine peritoneal macrophages. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1446-1454. [PMID: 35096304 PMCID: PMC8769520 DOI: 10.22038/ijbms.2021.59312.13161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Silymarin (SM) is a natural antioxidant compound with good anti-inflammatory effects, but its poor water solubility restricts its usage. Today, nanomaterial compounds (such as PLGA Poly D, L-lactic-co-glycolic acid) can provide a proper drug delivery system and help improve the accessibility of bioactive compounds to cells and tissues. MATERIALS AND METHODS In this study, PLGA nanoparticles (NPs) containing SM (SM-PLGA) were synthesized and characterized and their biological effects were evaluated on M2 macrophage polarization to regulate inflammation. SM-PLGA NPs were fabricated by the oil in water emulsion (O/W) method. Macrophages (MQs) were isolated from mouse peritoneum by the cold RPMI lavage protocol. Primary mouse MQ cells were treated by SM and SM-PLGA NPs and then stimulated with lipopolysaccharide (LPS). M2 polarization was evaluated by measurements of cytokine secretion levels (TNF-α, IL1-β, and IL-10), flow cytometry markers (F4/80, CD11b, CD38, and CD206), and the expression of specific proteins (M2 Ym1 and Fizz1). RESULTS SM-PLGA characterization showed that NPs were fabricated in the desired form. SM and SM-PLGA decreased pro-inflammatory cytokines (TNF-α and IL1-β) and increased IL10 as an anti-inflammatory cytokine. On the other hand, the M2-associated markers and proteins increased following treatment with SM and SM-PLGA. Post-hoc analysis indicated that these changes were more pronounced in the SM-PLGA group. CONCLUSION This study revealed that SM-PLGA could markedly promote M2 polarization, thereby providing a valuable medical approach against sepsis and septic shock.
Collapse
Affiliation(s)
- Mojgan Azadpour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Morad Farajollahi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences,Tehran, Iran
| | - Hassan Dariushnejad
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Mohammad Varzi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Varezardi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra Barati
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang J, Chen L, Zhang L, Chen Q, Tan F, Zhao X. Effect of Lactobacillus fermentum HFY03 on the Antifatigue and Antioxidation Ability of Running Exhausted Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8013681. [PMID: 34621465 PMCID: PMC8492249 DOI: 10.1155/2021/8013681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Yak yogurt is mainly produced in Qinghai-Tibet Plateau. It is a kind of naturally fermented dairy product. It contains abundant microorganisms. Lactobacillus fermentum (LF) HFY03 is a lactic acid bacteria derived from it. Our main research content is to study the influence of LF-HFY03 on the antifatigue and antioxidation ability of running exhausted mice. We gave different doses of LF-HFY03 to mice by gavage for 4 weeks. We selected vitamin C as the positive control group, mainly to study the relationship between antioxidant capacity and fatigue resistance and LF-HFY03 in mice with running exhaustion. The results showed that LF-HFY03 and vitamin C could significantly improve the running time of mice. And with the increase in LF-HFY03 concentration, the exhaustion time of mice was also extended. LF-HFY03 can reduce the content of urea nitrogen and lactic acid and also can increase the content of free fatty acids and liver glycogen. The levels of alanine aminotransferase, serum creatine kinase, and aspartate aminotransferase in mice decreased gradually as the antioxidant peptide level of walnut albumin increased. LF-HFY03 can reduce malondialdehyde (MDA) levels in a quantification-dependent manner and can also increase catalase (CAT) and superoxide dismutase (SOD) levels. LF-HFY03 can also increase the expressions of CAT mRNA, Cu/Zn-SOD, and Mn-SOD in the liver of mice. At the same time, LF-HFY03 can also increase the expression of protein of threonine transporter 1 (AST1)/alanine/cysteine/serine, mRNA, nNOS, and eNOS. At the same time, the solution could reduce the expression of TNF-α, syncytin-1, and inducible nitric oxide synthase (iNOS). The results showed that LF-HFY03 has a high development and application prospect as an antifatigue probiotic nutritional supplement.
Collapse
Affiliation(s)
- Junxiao Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| | - Ling Chen
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, 610500 Sichuan, China
| | - Lingyan Zhang
- School of Continuing Education, Chongqing University of Education, Chongqing 400067, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
7
|
Yi R, Feng M, Chen Q, Long X, Park KY, Zhao X. The Effect of Lactobacillus plantarum CQPC02 on Fatigue and Biochemical Oxidation Levels in a Mouse Model of Physical Exhaustion. Front Nutr 2021; 8:641544. [PMID: 34095185 PMCID: PMC8173150 DOI: 10.3389/fnut.2021.641544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese Sichuan pickle is a fermented food rich in microorganisms. Microorganisms have the potential to become an important new form of potent future therapeutic capable of treating human disease. Selecting vitamin C as a positive control, a lactic acid bacteria (Lactobacillus plantarum CQPC02, LP-CQPC02) isolated from Sichuan pickle was given to mice over 4 weeks to investigate the effect of CQPC02 on fatigue levels and biochemical oxidation phenomena in exercise-exhausted Institute of Cancer Research (ICR) mice. The fatigue model was established by forced swimming of mice, the levels of hepatic glycogen, skeletal muscle glycogen, lactic acid, blood urea nitrogen and free fatty acid were measured by physicochemical methods, serum serum creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels were measured by kits, the histopathological changes in the livers of mice were observed by H&E slicing, and the mRNA changes in the livers and skeletal muscles were observed by quantitative polymerase chain reaction (qPCR). Both vitamin C and LP-CQPC02 increased swimming exhaustion time. The concentration of LP-CQPC02 and exhaustion time were positively correlated. LP-CQPC02 also increased liver glycogen, skeletal muscle glycogen and free fatty acid content in mice and reduced lactic acid and blood urea nitrogen content in a dose-dependent manner. As walnut albumin antioxidant peptide concentration increased, levels of mouse CK, AST, and AST gradually decreased. LP-CQPC02 increased SOD and CAT levels and decreased MDA levels in a dose-dependent fashion. LP-CQPC02 up-regulated expression of mRNA encoding copper/zinc-superoxide dismutase (Cu/Zn-SOD), manganese-superoxide dismutase (Mn-SOD), and CAT in swimming exhaustion mouse liver tissue. LP-CQPC02 also up-regulated alanine/serine/cysteine/threonine transporter 1 (ASCT1) expression while down-regulating syncytin-1, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) expression in swimming exhaustion mouse skeletal muscle. Overall, LP-CQPC02 had a clear anti-fatigue and anti-oxidation effect. This suggests that LP-CQPC02 can be developed as a microbiological therapeutic agent.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Min Feng
- Department of Obstetrics, Eastern Hospital, Sichuan Provincial Medical Sciences Academy and Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
8
|
Zhao X, Wang H, Yang Y, Gou Y, Wang Z, Yang D, Li C. Protective Effects of Silymarin Against D-Gal/LPS-Induced Organ Damage and Inflammation in Mice. Drug Des Devel Ther 2021; 15:1903-1914. [PMID: 33976540 PMCID: PMC8106468 DOI: 10.2147/dddt.s305033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/10/2021] [Indexed: 01/26/2023] Open
Abstract
AIM Silymarin contains various flavonoids and exhibits antioxidative, anti-inflammatory, and anticancer effects, in addition to other pharmacological properties. This study explored the alleviating effect of silymarin on multiple-organ damage induced by D-galactose/lipopolysaccharide in Kunming mice. METHODS Kunming mice were injected intraperitoneally with D-galactose (30 mg/kg·BW)/LPS (3 μg/kg·BW) and then treated using silymarin with different doses (75 mg/kg·bw and 150 mg/kg·bw) via intragastric administration. Changes in organ indexes, pathological changes, liver-function index, biochemical indexes, molecular biological indexes, and genes related to the oxidation and inflammation of main organs were evaluated. RESULTS After the mice were treated with silymarin, their body weight showed no significant change, and the liver, kidney, and lung indexes of the treated mice were higher than those of the model group; meanwhile, the corresponding histopathological formation was reduced. Compared with the model group, the silymarin-treated group showed reductions in ALT, AST, and liver function indexes in the mouse serum. Silymarin treatment also increased the SOD, CAT, GSH, GSH-Px, T-AOC, IL-10, and IL-12 levels, as well as reduced the MDA, NO, IL-6, IL-1β, TNF-α, IFN-γ levels in the mouse serum and liver tissues. In addition, quantitative polymerase chain reaction analysis indicated that the mRNA expression levels of SOD1, SOD2, CAT, GSH-Px, IL-10, Nrf2, HO-1, NQO1, Trx, and IκB-α were higher in the liver tissue of the silymarin-treated mice than in those of the model group; meanwhile, the mRNA expression levels of IL-6, IL-1β, TNF-α, IFN-γ, NF-κB, NLRP3, COX2, and p38 were lower than those in the model group. CONCLUSION Silymarin, which exhibits antioxidative and anti-inflammatory effects, can alleviate the liver, lung, and kidney damage induced by D-galactose/lipopolysaccharide. High-dose (150 mg/kg·bw) silymarin can more effectively inhibit organ damage, compared with low-dose silymarin (75 mg/kg·bw) in Kunming mice.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
| | - Haoxiang Wang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Yue Yang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
| | - Yuting Gou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
| | - Zhiying Wang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Dingyi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, People’s Republic of China
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People’s Republic of China
| |
Collapse
|
9
|
Keshavarz F. Molecular level insights into the direct health impacts of some organic aerosol components. NEW J CHEM 2021. [DOI: 10.1039/d1nj00231g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quantum chemistry and biomodeling indicate that the studied organic aerosol components cannot directly cause oxidative stress or mutagenicity/carcinogenicity.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Institute for Atmospheric and Earth System Research
- Faculty of Science
- University of Helsinki
- FI-00014 Helsinki
- Finland
| |
Collapse
|
10
|
Delveaux J, Turpin C, Veeren B, Diotel N, Bravo SB, Begue F, Álvarez E, Meilhac O, Bourdon E, Rondeau P. Antirhea borbonica Aqueous Extract Protects Albumin and Erythrocytes from Glycoxidative Damages. Antioxidants (Basel) 2020; 9:antiox9050415. [PMID: 32408712 PMCID: PMC7278591 DOI: 10.3390/antiox9050415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes constitutes a major health problem associated with severe complications. In hyperglycemic conditions, chronically increased oxidation and glycation of circulating components lead to advanced glycation end-products (AGEs) formation, a key contributor in diabetes complication progression. In line with literature documenting the beneficial properties of herbal teas, this study evaluates the antioxidant/glycant properties of Antirhea borbonica (Ab). Ab aqueous extract effects were tested on human albumin or erythrocytes submitted to methyl glyoxal-mediated glycoxidative damages. By using mass spectrometry, Ab aqueous extracts revealed to be rich in polyphenols. All tested biomarkers of oxidation and glycation, such as AGE, ketoamine, oxidized thiol groups, were decreased in albumin when glycated in the presence of Ab aqueous extract. Ab extract preserve erythrocyte from methylglyoxal (MGO)-induced damages in terms of restored membrane deformability, reduced oxidative stress and eryptosis phenomenon. Antioxidant capacities of Ab extract on erythrocytes were retrieved in vivo in zebrafish previously infused with MGO. These results bring new evidences on the deleterious impacts of glycation on albumin and erythrocyte in diabetes. Furthermore, it reveals antioxidant and antiglycant properties of Ab that could be used for the dietary modulation of oxidative stress and glycation in hyperglycemic situations.
Collapse
Affiliation(s)
- Jade Delveaux
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Chloé Turpin
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Susana B. Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, 15706 Santiago de Compostela, Spain; (S.B.B.); (E.Á.)
| | - Floran Begue
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, 15706 Santiago de Compostela, Spain; (S.B.B.); (E.Á.)
- CIBERCV, 28029 Madrid, Spain
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Centre hospitalier universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Correspondence: (E.B.); (P.R.); Tel.: +262(0)-2-62-93-88-43 (P.R.); Fax: +262(0)-2-62-93-88-01 (P.R.)
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Correspondence: (E.B.); (P.R.); Tel.: +262(0)-2-62-93-88-43 (P.R.); Fax: +262(0)-2-62-93-88-01 (P.R.)
| |
Collapse
|
11
|
Jee SC, Kim M, Sung JS. Modulatory Effects of Silymarin on Benzo[a]pyrene-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21072369. [PMID: 32235460 PMCID: PMC7177818 DOI: 10.3390/ijms21072369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced by B[a]P. B[a]P exhibited toxicity in HepG2 cells, whereas co-treatment of the cells with B[a]P and silymarin reduced the formation of BPDE-DNA adducts, thereby increasing cell viability. Determination of the level of major B[a]P metabolites in the treated cells showed that BPDE levels were reduced by silymarin. Nuclear factor erythroid 2-related factor 2 (Nrf2) and pregnane X receptor (PXR) were found to be involved in the activation of detoxifying genes against B[a]P-mediated toxicity. Silymarin did not increase the expression of these major transcription factors, but greatly facilitated their nuclear translocation. In this manner, treatment of HepG2 cells with silymarin modulated detoxification enzymes through NRF2 and PXR to eliminate B[a]P metabolites. Knockdown of Nrf2 abolished the preventive effect of silymarin on BPDE-DNA adduct formation, indicating that activation of the Nrf2 pathway plays a key role in preventing B[a]P-induced genotoxicity. Our results suggest that silymarin has anti-genotoxic effects, as it prevents BPDE-DNA adduct formation by modulating the Nrf2 and PXR signaling pathways.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
12
|
The Role of Traditional Chinese Medicine in the Regulation of Oxidative Stress in Treating Coronary Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3231424. [PMID: 30918578 PMCID: PMC6409025 DOI: 10.1155/2019/3231424] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/19/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.
Collapse
|
13
|
Gao Y, Tan N, Wang J, He D, Ji K, Han J, Yan X. Selective recognition and preliminary separation of hepatoprotective component silybin from milk thistle seeds by the prepared core–shell magnetic molecularly imprinted polymer. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1549-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Rangi S, Dhatwalia SK, Bhardwaj P, Kumar M, Dhawan D. Evidence of similar protective effects afforded by white tea and its active component ‘EGCG’ on oxidative-stress mediated hepatic dysfunction during benzo(a)pyrene induced toxicity. Food Chem Toxicol 2018; 116:281-291. [DOI: 10.1016/j.fct.2018.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
|
15
|
Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Mahdavi M, Alipour A, Aliasgharian A. Iron-chelating effect of silymarin in patients with β-thalassemia major: A crossover randomised control trial. Phytother Res 2017; 32:496-503. [DOI: 10.1002/ptr.5995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/13/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ebrahim Salehifar
- Department of Clinical Pharmacology, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Mehrnoush Kosaryan
- Department of Pediatrics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Hossein Karami
- Department of Pediatrics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Mohammadreza Mahdavi
- PhD in Medical Genetics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Abbas Alipour
- Department of Community Medicine, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Aily Aliasgharian
- Student Research Committee, MSc in Medical Microbiology, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| |
Collapse
|
16
|
Federico A, Dallio M, Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017; 22:molecules22020191. [PMID: 28125040 PMCID: PMC6155865 DOI: 10.3390/molecules22020191] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Carmelina Loguercio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| |
Collapse
|
17
|
Wang Y, Wang W, Peng W, Liu W, Cai W, Xia Z, Zhang H, Xing AZ. CARDIOPROTECTIVE ROLES OF THE CHINESE MEDICINAL FORMULA BAO-XIN-TANG ON ACUTE MYOCARDIAL INFARCTION IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:65-74. [PMID: 28573223 PMCID: PMC5446467 DOI: 10.21010/ajtcam.v14i2.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Bao-Xin-Tang (BXT) is a traditional Chinese medicinal formula used for the treatment of coronary heart disease and known to have favorable therapeutic benefits. The current study was designed to determine whether BXT has a cardioprotective role for acute myocardial infarction. The underlying mechanisms were also explored. Materials and Methods: The Sprague-Dawley rat model of acute myocardial infarction was established by occluding the left anterior descending branch of the coronary artery. After a 3-h ischemic period, we determined the myocardial infarction size, inflammatory components, and antioxidant activities. Results: The data showed that BXT could reduce the infarction size and lower the levels of C-reactive protein, interleukin-6, and myeloperoxidase, and increase the activities of superoxide dismutase and the anti-inflammatory cytokine, interleukin-10. These results indicate that administration of BXT, following acute myocardial infarction, could reduce infarct size. Conclusion: The effects of BXT may be related to its anti-inflammatory and anti-oxidative properties.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Weihao Wang
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Weijun Peng
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Weiping Liu
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Weijun Cai
- Department of Histology & Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, P.R. China
| | - Zian Xia
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Honggeng Zhang
- The Second People's Hospital of Hunan Province, Changsha 410007, P.R. China
| | - And Zhihua Xing
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| |
Collapse
|
18
|
Roostaei-Ali Mehr M, Parisoush P. Effect of Different Levels of Silymarin and Caproic Acid on Storage of Ram Semen in Liquid Form. Reprod Domest Anim 2016; 51:569-74. [PMID: 27321767 DOI: 10.1111/rda.12721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Two experiments were designed to evaluate the effect of silymarin on stored spermatozoa using four rams. In experiment 1, silymarin was evaluated as a supplement for Tris-glucose extender. Semen samples (n = 20) were diluted with extender containing 0, 50, 100, 150 and 200 μg/ml silymarin and incubated at 5°C for 72 h. Membrane integrity, acrosome integrity, sperm viability and motility were evaluated at 72 h. Concentration of malondialdehyde (MDA) was determined after 48 h. Membrane integrity was higher in 100 μg/ml silymarin (65.2%) than control group (43.2%, p < 0.05). Acrosome integrity was highest in 100 μg/ml silymarin (71.3%, p < 0.05). Progressive motility was higher in 100 (58.5%), 150 (60.62%) and 200 μg/ml silymarin (54.7%) than control group (30.7%, p < 0.05). The highest MDA concentration was observed in control group (400 mm/10 × 10(6) sperm; p < 0.05). The goal of experiment 2 was to determine the interaction between silymarin and caproic acid on ram stored sperm. Ejaculates (n = 20) were diluted by Tris-glucose extender, added 0 (S- ) or 100 μg/ml (S+ ) silymarin and 0 (C- ) or 0.3125% (C+ ) caproic acid, and thereafter, aliquots were incubated at 5°C for 72 h. Membrane integrity was lower in C- S- (57.6%) than C- S+ (73.2%), C+ S- (80.2%) and C+ S+ (72.1%, p > 0.05). The highest sperm viability and acrosome integrity were observed in C+ S- (82.4 and 80.1%, respectively; p < 0.05). There was no difference between C- S+ and C+ S+ on sperm viability and membrane integrity, progressive motility and MDA concentration (p > 0.05). Therefore, the supplementation of extender with silymarin and caproic acid improved sperm quality and caproic acid was superior to caproic acid plus silymarin.
Collapse
Affiliation(s)
- M Roostaei-Ali Mehr
- Faculty of Agricultural Sciences, Department of Animal Science, University of Guilan, Rasht, Iran
| | - P Parisoush
- Faculty of Agricultural Sciences, Department of Animal Science, University of Guilan, Rasht, Iran
| |
Collapse
|
19
|
Eskandari F, Momeni HR. Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.6.397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Influence of dietary replacement of sunflower oil with milk thistle (Silybum marianum) oil on chicken meat quality and antioxidant status of liver. ACTA VET BRNO 2015. [DOI: 10.2754/avb201584040373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The research focused on the effects of dietary replacement of 3% sunflower oil (SO group) with 3% milk thistle oil (MTO group) on the technological quality of meat, such as pH value, colour (CIE L*, CIE a*, CIE b*), drip loss (%), shear force (N), and cooking loss (%), as well as on the content of fatty acid lipids in broiler breast and thigh muscles. Significant difference (P < 0.05) was determined for pHi, pHu, CIE a*, CIE b* values between groups, although the values for the stated indicators were within the standard range. Lipids of breast meat of the MTO group contained more arachidic acid (P < 0.001), octadecenoic acid isomer B (P = 0.047) and eicosatrienoic acid (P = 0.041), and less α-linolenic acid (P < 0.001) and Σn-3PUFA. Lipids of thigh meat of the MTO group contained more ΣSFA, myristoleic acid, eicosatrienoic acid (P < 0.05) and eicosenoic acid (P < 0.001), and less α-linolenic acid, and had narrower Σn-3/n-6 PUFA ratio than the SO group. According to the antioxidant status of broiler liver, there was significantly higher catalase activity determined in the MTO group.
Collapse
|
21
|
Zuikov SA. Study on nucleotide exchange and its interrelationship with prooxidant and antioxidant systems in humans of different ages. ADVANCES IN GERONTOLOGY 2015. [DOI: 10.1134/s2079057015010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Xin L, Wang J, Fan G, Wu Y, Guo S. Activation of HSPA1A promoter by environmental pollutants: An early and rapid response to cellular damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1027-1033. [PMID: 25863329 DOI: 10.1016/j.etap.2015.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
We established the HepG2-luciferase cells containing a luciferase reporter gene regulated by human HSPA1A promoter. The screening of heat shock and three typical environmental toxicants revealed differences in their capacities to activate HSPA1A promoter in HepG2-luciferase cells. After heat shock, a progressive time-dependent increase in relative luciferase activity was detected peaking at 8h of recovery. Benzo[a]pyrene, formaldehyde and sodium bisulfite induced significant time-dependent elevation of relative luciferase activity, which were positively correlated with MDA concentration, Olive tail moment and micronuclei frequency. The significant increase in relative luciferase activity was already evident after 4h of benzo[a]pyrene, 1h of formaldehyde and sodium bisulfite exposure, when no increases in cellular damage were detected by other toxicity tests. Therefore, the HepG2-luciferase cells are useful model for examining the overall cellular responses to oxidative stress and genotoxic damage, and provide a reporter system for rapid and sensitive screening of environmental pollutants.
Collapse
Affiliation(s)
- Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China.
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Guoqiang Fan
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Yanhu Wu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Sifan Guo
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
23
|
Zuikov SA. Study of nucleotide metabolism and its interrelation with pro-oxidant and antioxidant systems in people of different ages. ADVANCES IN GERONTOLOGY 2015. [DOI: 10.1134/s2079057015020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Razavi-Azarkhiavi K, Ali-Omrani M, Solgi R, Bagheri P, Haji-Noormohammadi M, Amani N, Sepand MR. Silymarin alleviates bleomycin-induced pulmonary toxicity and lipid peroxidation in mice. PHARMACEUTICAL BIOLOGY 2014; 52:1267-1271. [PMID: 25026360 DOI: 10.3109/13880209.2014.889176] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT The application of bleomycin is limited due to its side effects including lung toxicity. Silymarin is a flavonoid complex isolated from milk thistle [Silybum marianum L. (Asteraceae)] which has been identified as an antioxidant and anti-inflammatory compound. OBJECTIVE This study evaluates the effect of silymarin on oxidative and inflammatory parameters in the lungs of mice exposed to bleomycin. MATERIALS AND METHODS BALB/c mice were divided into four groups of control, bleomycin (1.5 U/kg), bleomycin plus silymarin (50 and 100 mg/kg). After bleomycin administration, mice received 10 d intraperitoneal silymarin treatment. On 10th day, blood and lung samples were collected for measurement of oxidative and inflammatory factors. RESULTS Silymarin led to a decrease in lung lipid peroxidation (0.19 and 0.17 nmol/mg protein) in bleomycin-injected animals. Glutathione-S-transferase (GST) which was inhibited by bleomycin (32.4 nmol/min/mg protein) induced by higher dose of silymarin (41 nmol/min/mg protein). Silymarin caused an elevation in glutathione (GSH): 2.6 and 3.1 µmol/g lung compare with bleomycin-injected animals 1.8 µmol/g lung. Catalase (CAT) was increased due to high dose of silymarin (65.7 µmol/min/ml protein) compare with bleomycin treated-mice. Myeloperoxidase (MPO) which was induced due to bleomycin (p < 0.05) reduced again by high dose of silymarin (0.51 U/min/mg protein). Bleomycin led to an increase in TNF-α and interleukin-6 (IL-6) (7.9 and 11.8 pg/ml). These parameters were reduced by silymarin (p < 0.05). CONCLUSIONS Silymarin attenuated bleomycin induced-pulmonary toxicity. This protective effect may be due to the ability of silymarin in keeping oxidant-antioxidant balance and regulating of inflammatory mediator release.
Collapse
Affiliation(s)
- Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | | | | | | | | | | | | |
Collapse
|
25
|
Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute Myocardial Infarction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9024-37. [PMID: 25257356 PMCID: PMC4199004 DOI: 10.3390/ijerph110909024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 01/21/2023]
Abstract
Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = -0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction.
Collapse
|
26
|
Kiruthiga PV, Karutha Pandian S, Pandima Devi K. Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: an in vitro study. ENVIRONMENTAL TOXICOLOGY 2014; 29:165-175. [PMID: 22052664 DOI: 10.1002/tox.20783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/12/2011] [Accepted: 09/24/2011] [Indexed: 05/31/2023]
Abstract
Silymarin, the purified extract from milk thistle Silybum marianum (L.) Gaertn, consists mainly of four isomeric flavonolignans: silibinin, isosilibinin, silidianin, and silichristin. The present study was carried out to evaluate the protective potential of silymarin in human erythrocytes against in vitro exposure to the carcinogen benzo(a)pyrene (B(a)P). Erythrocytes isolated from human blood were divided into four groups and treated with Vehicle [Group I], B(a)P (300 μM) [Group II], Silymarin (500 μM) + B(a)P (300 μM) [Group III], and Silymarin alone (500 μM)] [Group IV]. Silymarin treatment maintains the integrity of erythrocytes by preventing hemolysis, protein thiol oxidation and by decreasing the activity of AChE. SEM observations indicate that B(a)P induced significant alteration in the morphology of erythrocytes to echinocytes, which may be due to the interaction of B(a)P with the membrane's outer phopholipid monolayer. The light microscopic and SEM images show that silymarin treatment maintains the normal discocytic morphology of erythrocytes. The protective effect of silymarin might be attributed to its chemical structure and membranotrophic nature. The components silibinin, silydianin, and silychristin have OH in the 3rd, 5th, and 7th carbon atoms that may account for its increased antioxidant activity and removal of ROS formed during B(a)P metabolism.
Collapse
Affiliation(s)
- P V Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | |
Collapse
|
27
|
Kiruthiga PV, Karthikeyan K, Archunan G, Pandian SK, Devi KP. Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicol Ind Health 2013; 31:523-41. [DOI: 10.1177/0748233713475524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benzo(a)pyrene (B(a)P), which is commonly used as an indicator species for polycyclic aromatic hydrocarbon (PAH) contamination, has a large number of hazardous consequences on human health. In the presence of the enzyme cytochrome-P-450 1A1 (CYP1A1), it undergoes metabolic activation to form reactive intermediates that are capable of inducing mutagenic, cytotoxic, teratogenic and carcinogenic effects in various species and tissues. Research within the last few years has shown that flavonoids exhibit chemopreventive effect against these toxins. In the present study, the protective effect of silymarin (a flavonoid) against B(a)P-induced toxicity was monitored in Wistar rats by evaluating the levels of hepatic phase I (CYP1A1), phase II enzymes (glutathione-S-transferase, epoxide hydroxylases, uridinediphosphate glucuronosyltransferases, NAD(P)H: quinone oxidoreductase 1, sulfotransferases), cellular antioxidant enzyme heme oxygenase and total glutathione. The results reveal that silymarin possesses substantial protective effect against B(a)P-induced damages by inhibiting phase I detoxification enzyme CYP1A1 and modulating phase II conjugating enzymes, which were confirmed by histopathological analysis. Overall, the inhibition of CYP1A1 and the modulation of phase II enzymes may provide, in part, the molecular basis for the effect of silymarin against B(a)P.
Collapse
Affiliation(s)
- PV Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Karthikeyan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - G Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Karutha Pandian
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
28
|
Adhikari M, Dhaker A, Adhikari J, Ivanov V, Singh V, Chawla R, Kumar R, Sharma R, Karamalakova Y, Gadjeva V, Arora R. In vitro studies on radioprotective efficacy of silymarin against γ-irradiation. Int J Radiat Biol 2013; 89:200-11. [DOI: 10.3109/09553002.2013.741285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Hackett ES, Twedt DC, Gustafson DL. Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med 2013; 27:10-6. [PMID: 23140176 DOI: 10.1111/jvim.12002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/18/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Milk thistle extracts have been used as a "liver tonic" for centuries. In recent years, silibinin, the active ingredient in milk thistle extracts, has been studied both in vitro and in vivo to evaluate the beneficial effects in hepatic disease. Silibinin increases antioxidant concentrations and improves outcomes in hepatic diseases resulting from oxidant injury. Silibinin treatment has been associated with protection against hepatic toxins, and also has resulted in decreased hepatic inflammation and fibrosis. Limited information currently is available regarding silibinin use in veterinary medicine. Future study is justified to evaluate dose, kinetics, and treatment effects in domestic animals.
Collapse
Affiliation(s)
- E S Hackett
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
30
|
Perumal Vijayaraman K, Muruganantham S, Subramanian M, Shunmugiah KP, Kasi PD. Silymarin attenuates benzo(a)pyrene induced toxicity by mitigating ROS production, DNA damage and calcium mediated apoptosis in peripheral blood mononuclear cells (PBMC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:79-85. [PMID: 23067546 DOI: 10.1016/j.ecoenv.2012.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
Benzo(a)pyrene (B(a)P), which is the most studied member of PAH family is released into the environment (air, water and soil) from natural and man-made sources including industrial and automobile exhaust fumes. Since B(a)P is an omnipresent environmental pollutant and is believed to be a risk factor for human chemical carcinogenesis, it is important to identify potent naturally occurring/synthetic agents that could modulate B(a)P-induced toxicity. The present study explores the effect of the flavonoid silymarin (2.4mg/ml) in counteracting the toxicity of B(a)P (1μM) in PBMC. Flourimetry and Confocal Laser Scanning Microscopy results showed that silymarin reduces the B(a)P induced ROS production and DNA damage. Atomic Absorption Spectroscopy analysis and fluorescent microscopic pictures proved that silymarin reduces the increased intracellular calcium and apoptosis induction during B(a)P treatment. Furthermore, silymarin did not show any inhibition for CYP1B1 activity at transcriptional level by semiquantitative RT PCR but it affects the catalytic activity of Phase I CYP1A1/CYP1B1 enzyme (EROD assay) during B(a)P treatment. The findings reveal that silymarin possesses substantial protective effect against B(a)P induced DNA damage and calcium mediated apoptosis by inhibiting the catalytic activity of CYP1B1 and maintaining the intracellular calcium dysregulation; hence, it could be considered as a potential protective agent for environmental contaminant induced immunotoxicity.
Collapse
|
31
|
Kumar M, Jain M, Sehgal A, Sharma V. Modulation of CYP1A1, CYP1B1 and DNA adducts level by green and white tea in Balb/c mice. Food Chem Toxicol 2012; 50:4375-81. [DOI: 10.1016/j.fct.2012.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/02/2023]
|
32
|
Nabavi SM, sureda A, Nabavi SF, Latifi AM, Moghaddam AH, Hellio C. Neuroprotective effects of silymarin on sodium fluoride-induced oxidative stress. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Vijayapadma V, Ramyaa P, Pavithra D, Krishnasamy R. Protective effect of lutein against benzo(a)pyrene-induced oxidative stress in human erythrocytes. Toxicol Ind Health 2012; 30:284-93. [PMID: 22903177 DOI: 10.1177/0748233712457439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was carried out to evaluate the in vitro antioxidant properties and protective effect of lutein in human erythrocyte against benzo(a)pyrene (B(a)P). It is a well-known environmental carcinogen that produces free radicals under normal metabolic circumstances. B(a)P reacts with cellular macromolecules and produces oxidation of protein, lipid and DNA. Lutein is a carotenoid possessing antioxidant, anticarcinogenic and anti-inflammatory properties. In the present investigation, the protective effect of lutein was assessed in vitro against B(a)P-induced oxidative stress by monitoring antioxidant enzymes, lipid peroxidation (LPO), protein carbonyl content, total sulfhydryl (SH) and nonprotein SH groups and methemoglobin in five groups of erythrocytes that include (i) control group, (ii) vehicle control group, (iii) B(a)P-exposed group, (iv) lutein-exposed group and (v) B(a)P coincubation with lutein group. It was observed that the activities of antioxidant enzymes and SH groups were significantly decreased in B(a)P-treated group when compared with control group. LPO level and protein carbonyl and methemoglobin contents were increased in B(a)P-treated group when compared with control group. The erythrocyte that was coincubated with B(a)P and lutein showed significant increase in the antioxidant enzyme activities and a significant reduction in the level of LPO, methemoglobin and protein carbonyl contents when compared with B(a)P-treated group. The results of the present investigation suggest that lutein possess protective effect against B(a)P-induced oxidative stress, possibly by combating oxidative stress by its free radical scavenging activity.
Collapse
Affiliation(s)
- Viswanadha Vijayapadma
- 1Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
34
|
Sajedianfard J, Behroozi Z, Nazifi S, Rajaian H. The Effect of Different Oral Doses of Hydroalcoholic Extract of Silymarin on the Blood Oxidative Stress Indicators in Streptozotocin Induced Diabetic Rats. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9318-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Eser N, Göçmen C, Erdoğan S, Büyüknacar HSG, Kumcu EK, Açıkalın A, Önder S. Effect of silymarin on bladder overactivity in cyclophosphamide-induced cystitis rat model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:840-845. [PMID: 22647456 DOI: 10.1016/j.phymed.2012.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 04/22/2012] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to investigate the effects of silymarin, a phytotherapeutic agent, on bladder overactivity in a cyclophosphamide (CYP)-induced cystitis rat model. Female Wistar Albino rats received a single intraperitoneal injection of CYP (150 mg/kg) or saline and after 72 h, bladder function was evaluated by in vitro preparations of whole bladders and cystometry with continuous saline infusion under urethane anesthesia. Silymarin or a vehicle was orally given for 7 days in rats. CYP was injected on the 5th day of silymarin or vehicle treatment and then the animals were killed on the 8th day. CYP-treatment dramatically potentiated the basal spontaneous contractions of isolated whole bladders compared to control rats. In anesthetized rats, during continuous infusion cystometry, intercontraction interval (ICI) was significantly shorter, but bladder voiding pressure was not significantly changed in CYP-injected rats compared to control rats. In the CYP-injected group, silymarin treatment significantly decreased the amplitude, frequency (contractions/min) and area under the curve of spontaneous contractions, but failed to change carbachol-induced contraction in isolated whole bladder. Also, silymarin treatment significantly increased the ICI in comparison to the vehicle treatment. In the saline-injected group, no significant changes in the bladder function were observed between the silymarin and vehicle-treated groups. Histopathological examination showed that CYP-induced bladder inflammation tended to be lower in the silymarin+CYP-treated group. In conclusion, the oral administration of silymarin suppressed CYP-induced bladder overactivity. Silymarin may be considered as an attractive treatment for CYP-induced bladder overactivity.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, University of Çukurova, TR-01330, Adana, Turkey
| | | | | | | | | | | | | |
Collapse
|
36
|
G.E. J, Pratap S, Ramesh A, Hood D. In utero exposure to benzo(a)pyrene predisposes offspring to cardiovascular dysfunction in later-life. Toxicology 2012; 295:56-67. [PMID: 22374506 PMCID: PMC3575114 DOI: 10.1016/j.tox.2012.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 02/07/2023]
Abstract
In utero exposure of the fetus to benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is thought to dysregulate cardiovascular development. To investigate the effects of in utero B(a)P exposure on cardiovascular development, timed-pregnant Long Evans Hooded (LEH) rats were exposed to diluent or B(a)P (150, 300, 600 and 1200 μg/kg/BW) by oral gavage on embryonic (E) days E14 (the metamorphosing embryo stage) through E17 (the 1st fetal stage). There were no significant effects of in utero exposure to B(a)P on the number of pups born per litter or in pre-weaning growth curves. Pre-weaning profiles for B(a)P metabolite generation from cardiovascular tissue were shown to be dose-dependent and elimination of these metabolites was shown to be time-dependent in exposed offspring. Systolic blood pressure on postnatal day P53 in the middle and high exposure groups of offspring were significantly elevated as compared to controls. Microarray and quantitative real-time PCR results were directly relevant to a biological process pathway in animal models for "regulation of blood pressure". Microarray and quantitative real-time PCR analysis revealed upregulation of mRNA expression for angiotensin (AngII), angiotensinogen (AGT) and endothelial nitric oxide synthase (eNOS) in exposed offspring. Biological network analysis and gene set enrichment analysis subsequently identified potential signaling mechanisms and molecular pathways that might explain the elevated systolic blood pressures observed in B(a)P-exposed offspring. Our findings suggest that in utero exposure to B(a)P predispose offspring to functional deficits in cardiovascular development that may contribute to cardiovascular dysfunction in later life.
Collapse
Affiliation(s)
- Jules G.E.
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - S. Pratap
- Department of Microbiology & Immunology, Microarray/Bioinformatics Core, Meharry Medical College, Nashville, TN 37208, USA
| | - A. Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - D.B. Hood
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
37
|
Amin ZA, Bilgen M, Alshawsh MA, Ali HM, Hadi AHA, Abdulla MA. Protective Role of Phyllanthus niruri Extract against Thioacetamide-Induced Liver Cirrhosis in Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:241583. [PMID: 22649471 PMCID: PMC3357973 DOI: 10.1155/2012/241583] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/13/2012] [Accepted: 02/27/2012] [Indexed: 01/26/2023]
Abstract
A preclinical study was performed to determine if the extract from Phyllanthus niruri (PN) plays a protective role against liver cirrhosis induced by thioacetamide (TAA) in rats. Initially, acute toxicity was tested and the results showed that the extract was benign when applied to healthy rats. Next, the therapeutic effect of the extract was investigated using five groups of rats: control, TAA, silymarin, and PN high dose and low dose groups. Significant differences were observed between the TAA group and the other groups regarding body and liver weights, liver biochemical parameters, total antioxidant capacity, lipid peroxidation, and oxidative stress enzyme levels. Gross visualization indicated coarse granules on the surface of the hepatotoxic rats' livers, in contrast to the smoother surface in the livers of the silymarin and PN-treated rats. Histopathological analysis revealed necrosis, lymphocytes infiltration in the centrilobular region, and fibrous connective tissue proliferation in the livers of the hepatotoxic rats. But, the livers of the treated rats had comparatively minimal inflammation and normal lobular architecture. Silymarin and PN treatments effectively restored these measurements closer to their normal levels. Progression of liver cirrhosis induced by TAA in rats can be intervened using the PN extract and these effects are comparable to those of silymarin.
Collapse
Affiliation(s)
- Zahra A. Amin
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mehmet Bilgen
- Health and Translational Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammed A. Alshawsh
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah M. Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A. Hamid A. Hadi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood A. Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Malekinejad H, Rahmani F, Valivande-Azar S, Taheri-Broujerdi M, Bazargani-Gilani B. Long-term administration of Silymarin augments proinflammatory mediators in the hippocampus of rats: evidence for antioxidant and pro-oxidant effects. Hum Exp Toxicol 2012; 31:921-30. [PMID: 22354081 DOI: 10.1177/0960327112436405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silymarin (SMN) is used as an antioxidant complex to attenuate the pro-oxidant effects of toxic agents. This study was designed to investigate the impact of a long-term administration of SMN on proinflammatory mediators, oxidative stress biomarkers and on the levels of interleukin-1β (IL-1β) transcript in the hippocampus. A total of 40 adult male Wistar rats were assigned into control and test groups. Animals in the test group were subdivided into four subgroups according to the following treatment profile: carbon tetrachloride (CCl(4), 0.5 ml/kg), SMN 25, SMN 50 and SMN 100 (mg/kg). The animals received the compounds by gastric gavage. Following the 8-week treatment period, animals in the CCl(4) group showed body weight loss, while the test groups except SMN 100 revealed a significant (p < 0.05) positive body weight gain. The levels of nitric oxide (NO) and malondialdehyde (MDA) as pro-oxidant and lipid peroxidation index, respectively, increased in CCl(4)- and SMN 100-treated groups, while SMN at lower dose levels did not alter the NO and MDA content. The concentration of total thiol molecules increased in the SMN 50 group and showed a remarkable decrease in CCl(4) and SMN 100 groups. Animals treated with CCl(4) or SMN 100 showed an upregulation of IL-1β, while animals in SMN 25 and SMN 50 groups showed a slight downregulation of expression of IL-1β at the messenger RNA level. These findings suggest that SMN at higher dosage level might exert pro-oxidant effect as an increase in the level of MDA and proinflammatory mediators such as NO, and upregulation of IL-1β in the hippocampus were shown.
Collapse
Affiliation(s)
- H Malekinejad
- Department of Pharmacology and Toxicology, Urmia University, Urmia, Iran.
| | | | | | | | | |
Collapse
|
39
|
Li Z, Chadalapaka G, Ramesh A, Khoshbouei H, Maguire M, Safe S, Rhoades RE, Clark R, Jules G, McCallister M, Aschner M, Hood DB. PAH particles perturb prenatal processes and phenotypes: protection from deficits in object discrimination afforded by dampening of brain oxidoreductase following in utero exposure to inhaled benzo(a)pyrene. Toxicol Sci 2012; 125:233-47. [PMID: 21987461 PMCID: PMC3243744 DOI: 10.1093/toxsci/kfr261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/22/2011] [Indexed: 02/04/2023] Open
Abstract
The wild-type (WT) Cpr(lox/lox) (cytochrome P(450) oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P(450) enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)-dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cpr(lox/lox) mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P(450)1B1-associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14-E17) exposure to B(a)P (100 μg/m(3)), Cpr(lox/lox) offspring exhibited: (1) elevated B(a)P metabolite and F(2)-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030-3303
| | | | - Habibeh Khoshbouei
- Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208
| | - Mark Maguire
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030-3303
| | - Raina E. Rhoades
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - Ryan Clark
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | - George Jules
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| | | | - Michael Aschner
- Department of Pediatrics
- Department of Pharmacology, Center in Molecular Toxicology and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37212
| | - Darryl B. Hood
- Department of Neuroscience and Pharmacology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
40
|
Banaee M, Sureda A, Mirvaghefi AR, Rafei GR. Effects of long-term silymarin oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:885-896. [PMID: 21519846 DOI: 10.1007/s10695-011-9486-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/09/2011] [Indexed: 05/30/2023]
Abstract
Silymarin, an extract from "milk thistle" (Silybum marianum) plant is traditionally used as herbal medicine. The present study was conducted to investigate the clinical effects and possible side effects of silymarin on biochemical blood parameters of rainbow trout (Oncorhynchus mykiss). Fishes were treated with 0 (control), 100, 400, and 800 mg of silymarin per kg of food during 4 weeks. Plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), creatine kinase (CK), glucose, total protein, creatinine, triglyceride, cholesterol, urea, uric acid and liver cellular total antioxidant, and protein content were measured after 7, 14, and 28 days of silymarin treatment. The results showed that oral administration of silymarin in fish significantly reduced plasma glucose and cholesterol levels and relatively increased plasma total protein and globulin concentrations (P < 0.05). Increasing plasma albumin levels indicate the important role of albumin in drug transportation in circulatory system of fish. Silymarin also stabilized cellular membrane structure and regulated the levels of AST, ALT, ALP, CK, and LDH activity. In conclusion, on the basis of these results, oral administration of silymarin up to 400 mg per 1 kg of food has no side effect on blood biochemical and clinical parameters of fishes. However, oral administration of 800 mg/kg- of silymarin caused cytotoxicity and modifications in blood biochemical parameters of fish.
Collapse
Affiliation(s)
- Mahdi Banaee
- Department of Aquaculture, Natural Resource and Environmental Faculty, Industrial University of Behbahan, Behbahan, Iran.
| | | | | | | |
Collapse
|
41
|
Malekinejad H, Taheri-Broujerdi M, Moradi M, Tabatabaie SH. Silymarin potentiates the antinociceptive effect of morphine in mice. Phytother Res 2011; 25:250-5. [DOI: 10.1002/ptr.3251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Blevins S, Siegel PB, Blodgett DJ, Ehrich M, Saunders GK, Lewis RM. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poult Sci 2010; 89:1878-86. [PMID: 20709972 DOI: 10.3382/ps.2010-00768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gossypol, a pigment of cotton, is a hepatic toxin for chickens. Thus, despite its high protein content, inclusion of cottonseed meal in poultry diets is problematic. Silymarin, an extract from milk thistle, has hepatoprotective qualities and could potentially serve as a feed additive to offset the toxicity of gossypol. The objective of this study was to determine if silymarin could counteract gossypol toxicosis. Cockerels (n = 144) from lines divergently selected for humoral immunity were used. Three individuals from each line were randomly assigned to a cage and fed a corn-soybean meal (control) diet for 14 d. Six cages per line were then randomly assigned 1 of 4 dietary treatments (1,000 mg/kg of gossypol, 1,000 mg/kg of silymarin, 1,000 mg/kg of both gossypol and silymarin, or a control diet). Body weight and feed intake data were collected for 21 d, with chickens bled weekly to collect plasma and determine hematocrits. Chickens were then killed, and livers were collected for subsequent histology and enzymatic activity analyses. Endpoints measured weekly were analyzed with repeated measures and regression methodologies. Plasma and liver enzyme activities, and histological measures, were analyzed using ANOVA. No significant interactions between diets and lines were observed. Chickens assigned to the gossypol and gossypol-silymarin diets stopped gaining weight at d 14 (P < 0.001) and lost weight by d 21 (P < 0.001). Gamma glutamyltransferase was also elevated in these chickens at d 14; activities increased further by d 21 (P < 0.001). Histological examination of liver slices indicated substantial lipidosis (P < 0.001). Furthermore, quinone reductase activity was higher in gossypol- and gossypol-silymarin-treated chickens than in control and silymarin-treated chickens (P < 0.001). Silymarin did not alleviate any clinical effects of gossypol toxicosis.
Collapse
Affiliation(s)
- S Blevins
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gokulakrishnan A, Ali ARL. Cigarette smoke-induced biochemical perturbations in human erythrocytes and attenuation by epigallocatechin-3-gallate--tea catechin. Pharmacol Rep 2010; 62:891-9. [PMID: 21098872 DOI: 10.1016/s1734-1140(10)70349-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/09/2010] [Indexed: 10/25/2022]
Abstract
The protective effect of epigallocatechin-3-gallate (EGCG) against cigarette smoke (CS) induced alterations in human erythrocyte was studied using an in vitro model. Hemolysis, carboxyhemoglobin, osmotic fragility, hemin, lipid peroxidation (LPO), protein thiol, protein carbonyl, glutathione, antioxidant enzymes, membrane bound ATPases and erythrocyte ghost protein were assessed to investigate the effect of EGCG. Erythrocytes were incubated with CS and/or 10 μM EGCG under physiological conditions of temperature and pH for 2 h. CS significantly increased the percentage of hemolysis, carboxyhemoglobin, hemin, LPO and osmotic fragility in human erythrocytes whereas EGCG pretreatment significantly reduced all the above parameters. The levels of protein carbonyls significantly increased whereas the level of protein thiol decreased significantly in erythrocytes incubated with CS. EGCG pretreatment significantly decreased the levels of carbonyls and increased the level of protein thiol. The level of glutathione, antioxidant enzyme and membrane bound ATPases were decreased significantly in erythrocytes incubated with CS. However, EGCG pretreatment significantly increased the activities of GSH, antioxidant enzymes and membrane bound ATPases. CS incubated erythrocytes showed a progressive loss of the cytoskeleton proteins and formation of low molecular weight bands and protein aggregates. EGCG pretreatment of CS incubated erythrocytes showed a near normal protein profile compared to that of control erythrocytes. The present study divulges that EGCG can reduce the abnormalities of cigarette smoking by ameliorating the oxidative stress. This finding raises the possibility that EGCG may provide protection from CS induced toxicity.
Collapse
|
44
|
Alonso V, Linares V, Bellés M, Albina ML, Pujol A, Domingo JL, Sánchez DJ. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats. Food Chem Toxicol 2010; 48:2206-11. [DOI: 10.1016/j.fct.2010.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/28/2022]
|
45
|
Antioxidant activities of various extracts from Artemisisa selengensis Turcz (LuHao). Molecules 2010; 15:4934-46. [PMID: 20657401 PMCID: PMC6257579 DOI: 10.3390/molecules15074934] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/30/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
The antioxidant activities of the various extracts and fractions from the herbs of Artemisia selegensis Turcz (AST) were investigated by in vitro and in vivo assays. FRAP, DPPH and ABTS assays were used to evaluate the antioxidant activities of the extracts/fractions in vitro. The effect of water extract (WE) in reducing oxidative stress in male mice was evaluated. Phenolic acid compounds contribute significantly to the antioxidant activity. From the results of three in vitro antioxidant assays, WE was found to have the highest antioxidant activity, and among the WE subfractions, the water soluble fraction has a significant antioxidant activity. The in vivo antioxidant assay results showed that high doses of WE significantly decrease the MDA level compared to normal diet and D-(+) galactose group (p < 0.05), and the SOD activity of mice given a high dose of WE was the highest. These in vitro and in vivo studies demonstrated that the extracts, especially the WE from AST, have significant antioxidant and free radical scavenging activities. In summary, we propose that AST could be potentially used as a rich source of natural antioxidants.
Collapse
|
46
|
Devi KP, Kiruthiga PV, Pandian SK, Archunan G, Arun S. Olive oil protects rat liver microsomes against benzo(a)pyrene-induced oxidative damages: an in vitro study. Mol Nutr Food Res 2008; 52 Suppl 1:S95-102. [PMID: 18551459 DOI: 10.1002/mnfr.200800047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Benzo(a)pyrene (B(a)P), a member of the polycyclic aromatic hydrocarbon family is present ubiquitously in the environment. One of its toxic effects is induction of oxidative stress (mediated by the enzyme B(a)P hydroxylase) which leads to various diseases like cancer. Olive oil (OO) that consists of many antioxidant compounds is reported to have many beneficial properties including protection against cancer. The objective of the present study is to evaluate the effect of OO on B(a)P hydroxylase enzyme and further elucidate the antioxidant capacity of OO against B(a)P-induced toxicity. Rat liver microsomes were divided into three groups: vehicle control, B(a)P treated group, and OO + B(a)P co-incubated group. Antioxidant enzymes which were decreased and protein carbonyl content and lipid peroxidation products which were increased on exposure to B(a)P was attenuated to near normal on OO exposure. B(a)P hydroxylase enzyme was very low in OO incubated group which may be due to inhibition of the enzyme by OO or high utilization for the metabolism of B(a)P. Further, no B(a)P metabolites (3-OH B(a)P and B(a)P 7,8-dihydrodiol) were identified in HPLC during B(a)P + OO exposure. The results prove the protective role of OO against B(a)P-induced oxidative damage.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
47
|
An KW, Shin HS, Choi CY. Physiological responses and expression of metallothionein (MT) and superoxide dismutase (SOD) mRNAs in olive flounder, Paralichthys olivaceus exposed to benzo[a]pyrene. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:534-9. [PMID: 18203642 DOI: 10.1016/j.cbpb.2007.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/13/2022]
Abstract
We cloned complementary DNA (cDNA) encoding metallothionein (MT) and superoxide dismutase (SOD) from the liver of olive flounder, Paralichthys olivaceus. The full-length MT cDNA consists of 183 base pairs (bp) and encodes a protein of 60 amino acids; partial SOD cDNA consists of 326 bp and encodes a protein of 109 amino acids. We investigated the dose- and time-related effects of the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) on MT and SOD mRNA using quantitative polymerase chain reaction (QPCR). The expression levels of MT mRNA were highest at 24 h (about five times) in 10 microg/L BaP, and at 6 h (about twelve times) in 30 microg/L BaP. The expression levels of SOD mRNA were highest at 12 h (about three times) in 10 microg/L BaP, and at 6 h (about six times) in 30 microg/L BaP, and then decreased toward the end of the experiment. We also measured plasma glucose and cortisol, all of which increased with BaP exposure. These results suggest that MT and SOD play an important role in the detoxification of reactive oxygen species (ROS) caused by BaP exposure, and thus may be indicators of oxidative stress responses.
Collapse
Affiliation(s)
- Kwang Wook An
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan, 606-791, South Korea
| | | | | |
Collapse
|