1
|
Mierzejewska-Sinner E, Thijs S, Vangronsveld J, Urbaniak M. Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178414. [PMID: 39808900 DOI: 10.1016/j.scitotenv.2025.178414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl. endophytes) can speed up the removal of organics and increase the plants resistance to pollutants such as MCPA. The role of plant-associated bacteria in endophyte-assisted phytoremediation has been partially described, however neither MCPA-tolerant endophytic bacteria has been isolated nor characterized. So far, promising results were obtained by simultaneous cultivation of Cucurbita pepo (zucchini) and amendment of soil with structurally related PSM syringic acid (SA), which can substantially enhance removal of MCPA from soil. Hence, the main aim of this research was to study the effect of PSM (SA) on the presence of functional MCPA-tolerant endophytic bacteria using a culture-dependent and -independent approach. Comparison between the molecular and microbiological analysis revealed differences between applied methods. However, irrespectively of the genera identification methods, presence of phenolic compounds (MCPA or SA) favorized presence of potential MCPA-degraders. On the basis of MCPA tolerance tests of isolated bacteria, two Pseudomonas endophytic isolates from zucchini roots and three isolates from zucchini leaves i.e. Pseudomonas sp., Paenarthrobacter sp. and Acinetobacter sp. were selected for further screening of plant growth promoting properties (PGPP). MCPA-tolerant endophytic bacteria showed multiple PGPP. Therefore, these isolates can potentially contribute to an improved fitness of plants used for the purpose of enhancing phytoremediation of environments polluted with phenoxy herbicides.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska-Sinner
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033, Lublin, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Mohamed IA, Soliman HAM, Hana M, Lee JS, Sayed AEDH. Toxicity of mixture of polyethylene microplastics and Up Grade® pesticide on Oreochromis niloticus juvenile: I. Hemato-biochemical and histopathological alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104213. [PMID: 37422028 DOI: 10.1016/j.etap.2023.104213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Acute toxicity experiments were conducted to determine the lethal concentration 50 (LC50) of the Up Grade®46% SL for Oreochromis niloticus. Our results showed that the 96-h LC50 value of UPGR for O. niloticus was 29.16 mg L-1. To study hemato-biochemical effects, fish were exposed for 15 days to individual UPGR at 2.916 mg L-1, individual polyethylene microplastics (PE-MPs) at 10 mg L-1, and to their combinations UPGR+PE-MPs. UPGR exposure induced significant decrease in account of red blood cells (RBCs) and white blood cells (WBCs), platelets, monocytes, neutrophils, eosinophils, and the concentrations of hemoglobin (Hb), hematocrit (Hct), and mean corpuscular hemoglobin concentration (MCHC) than other treatments, compared to the control group. Sub-acute UPGR exposure significantly increase lymphocytes, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH), compared to the control group. In conclusion, UPGR and PE-MPs displayed antagonistic toxic effects due to maybe the sorption of UPGR onto PE-MPs.
Collapse
Affiliation(s)
- Ibrahim A Mohamed
- Department of Plant Protection, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| | - Mervat Hana
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, 16419 Suwon, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Molecular Biology Researches & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
3
|
A Model Assessment of the Occurrence and Reactivity of the Nitrating/Nitrosating Agent Nitrogen Dioxide (•NO2) in Sunlit Natural Waters. Molecules 2022; 27:molecules27154855. [PMID: 35956802 PMCID: PMC9370000 DOI: 10.3390/molecules27154855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen dioxide (•NO2) is produced in sunlit natural surface waters by the direct photolysis of nitrate, together with •OH, and upon the oxidation of nitrite by •OH itself. •NO2 is mainly scavenged by dissolved organic matter, and here, it is shown that •NO2 levels in sunlit surface waters are enhanced by high concentrations of nitrate and nitrite, and depressed by high values of the dissolved organic carbon. The dimer of nitrogen dioxide (N2O4) is also formed in the pathway of •NO2 hydrolysis, but with a very low concentration, i.e., several orders of magnitude below •NO2, and even below •OH. Therefore, at most, N2O4 would only be involved in the transformation (nitration/nitrosation) of electron-poor compounds, which would not react with •NO2. Although it is known that nitrite oxidation by CO3•− in high-alkalinity surface waters gives a minor-to-negligible contribution to •NO2 formation, it is shown here that NO2− oxidation by Br2•− can be a significant source of •NO2 in saline waters (saltwater, brackish waters, seawater, and brines), which offsets the scavenging of •OH by bromide. As an example, the anti-oxidant tripeptide glutathione undergoes nitrosation by •NO2 preferentially in saltwater, thanks to the inhibition of the degradation of glutathione itself by •OH, which is scavenged by bromide in saltwater. The enhancement of •NO2 reactions in saltwater could explain the literature findings, that several phenolic nitroderivatives are formed in shallow (i.e., thoroughly sunlit) and brackish lagoons in the Rhône river delta (S. France), and that the laboratory irradiation of phenol-spiked seawater yields nitrophenols in a significant amount.
Collapse
|
4
|
Recent advances in the application of different electrode materials for the determination of 4-hydroxy-nitrobenzene: Review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Hydro-Saline Dynamics of a Shallow Mediterranean Coastal Lagoon: Complementary Information from Short and Long Term Monitoring. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9070701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Vaccarès Lagoon System, located in the central part of the Rhône Delta (France), is a complex shallow coastal lagoon, exposed to a typical Mediterranean climate and a specific hydrological regime affected by man-controlled exchanges with the sea and agricultural drainage channels. In this article, we report the results obtained by a series of monitoring programs, with different spatial and temporal resolutions. Long-term datasets from 1999 to 2019 with data collected on a monthly basis and a high spatial resolution highlighted the significant spatial heterogeneity in salinity regimes, and helped to determine the long-term evolution of the total mass of dissolved salt. High-frequency surveys allowed to characterize the water levels and salinity dynamics seasonal response to (i) the exchanges with the Mediterranean Sea, (ii) the exchanges with agricultural drainage channels, and (iii) the rain and evaporation. In addition, wind effects on salinity variations are also explored. This work shows how different spatial and temporal monitoring strategies provide complementary information on the dynamic of such a complex system. Results will be useful and provide insight for the management of similar lagoon systems, accommodating for both human activities and ecological stakes in the context of global change.
Collapse
|
6
|
Marussi G, Vione D. Secondary Formation of Aromatic Nitroderivatives of Environmental Concern: Photonitration Processes Triggered by the Photolysis of Nitrate and Nitrite Ions in Aqueous Solution. Molecules 2021; 26:2550. [PMID: 33925664 PMCID: PMC8124604 DOI: 10.3390/molecules26092550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as •NO2, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors. Moreover, aromatic substrates can highly differ in their reactivity towards the various photogenerated species, thereby providing different behaviours towards photonitration. Despite the high complexity, it is possible to rationalise the different photonitration pathways in a coherent framework. In this context, this review paper has the goal of providing the reader with a guide on what to expect from the photonitration process under different conditions, how to study it, and how to determine which pathway(s) are prevailing in the formation of the observed nitroderivatives.
Collapse
Affiliation(s)
- Giovanna Marussi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| |
Collapse
|
7
|
Song W, Wan Y, Jiang Y, Liu Z, Wang Q. Urinary concentrations of 2,4-D in repeated samples from 0-7 year old healthy children in central and south China. CHEMOSPHERE 2021; 267:129225. [PMID: 33341734 DOI: 10.1016/j.chemosphere.2020.129225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) and its analogues are widely used in agriculture. Although the occurrence of 2,4-D in urine has been widely reported in North America, it has scarcely been investigated in China, especially in young children. In addition, both invivo and in vitro studies have shown that high-level 2,4-D exposure is associated with oxidative stress, but their association in a general sensitive population has rarely been evaluated. In this study, 2,4-D and its analogues were measured in 417 urine samples collected from 139 children aged 0-7 during the non-peak season of pesticide application in Wuhan, central China, and Shenzhen, south China. Each of them provided three samples in three consecutive days. An oxidative stress biomarker, 8-hydroxy-2-deoxyguanosine (8-OHdG), was also measured. The geometric mean (GM) of unconjugated urinary 2,4-D concentration was 0.10 μg/L (corrected by urinary specific gravity, SG-corrected). After β-glucuronidase hydrolysis, the GM of SG-corrected urinary 2,4-D was 0.15 μg/L, and the detection frequency was 100%. Moderate inter-day reproducibility was found within individuals, with an intraclass correlation coefficient of 0.68 for SG-corrected urinary deconjugated 2,4-D. The GM of estimated daily intake of 2,4-D was 6.05 ng/kg-bw/day. A significant positive correlation was found between urinary 2,4-D and 8-OHdG, whereas no association was found after SG-correction. This is the first study to characterize the occurrence of urinary 2,4-D, its inter-day reliability, and its association with urinary 8-OHdG in young children from China.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Zhengdan Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
8
|
Rey-García F, Sieira BJ, Bao-Varela C, Leis JR, Angurel LA, Quintana JB, Rodil R, de la Fuente GF. Can UV-C laser pulsed irradiation be used for the removal of organic micropollutants from water? Case study with ibuprofen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140507. [PMID: 32629255 DOI: 10.1016/j.scitotenv.2020.140507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
A novel approach based on the direct pulsed irradiation of UV-C light onto ibuprofen (IBP) solutions was evaluated in this work, as proof of concept for the direct removal of micropollutants. The experiments confirmed that laser irradiation is able to completely degrade IBP in 15 min in distilled water, with a DOC depletion of ca. 25% and with transformation products (TPs) remaining in solution and estimated to represent ca. 10% of the initial IBP concentration. In wastewater spiked samples, removal efficiency is slightly lower but still significant (ca. 5% IBP remaining after 15 min). Hence, this work suggests that low power solid state pulsed lasers, emitting at 266 nm wavelength, show promise for the removal of these type of micropollutants from water. These results open new opportunities towards the development of chemical-free water treatment methods based on direct, selective irradiation using state of the art, miniaturized laser devices.
Collapse
Affiliation(s)
- Francisco Rey-García
- Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), c/María de Luna 3, 50018 Zaragoza, Spain; Unidad Asociada de Microóptica & Óptica GRIN, "Photonics4life" group, Universidade de Santiago de Compostela, c/Campus Sur s/n, 15782 Santiago de Compostela, Spain.
| | - Benigno José Sieira
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Carmen Bao-Varela
- Unidad Asociada de Microóptica & Óptica GRIN, "Photonics4life" group, Universidade de Santiago de Compostela, c/Campus Sur s/n, 15782 Santiago de Compostela, Spain
| | - José Ramón Leis
- Unidad Asociada de Microóptica & Óptica GRIN, "Photonics4life" group, Universidade de Santiago de Compostela, c/Campus Sur s/n, 15782 Santiago de Compostela, Spain.
| | - Luis Alberto Angurel
- Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), c/María de Luna 3, 50018 Zaragoza, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Germán Francisco de la Fuente
- Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), c/María de Luna 3, 50018 Zaragoza, Spain.
| |
Collapse
|
9
|
Muszyński P, Brodowska MS, Paszko T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1276-1293. [PMID: 31788729 PMCID: PMC6994553 DOI: 10.1007/s11356-019-06510-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/10/2019] [Indexed: 05/07/2023]
Abstract
The article presents the behavior of phenoxy acids in water, the levels in aquatic ecosystems, and their transformations in the water environment. Phenoxy acids are highly soluble in water and weakly absorbed in soil. These highly mobile compounds are readily transported to surface and groundwater. Monitoring studies conducted in Europe and in other parts of the world indicate that the predominant phenoxy acids in the aquatic environment are mecoprop, 4-chloro-2-methylphenoxyacetic acid (MCPA), dichlorprop, 2,4-dichlorophenoxyacetic acid (2,4-D), and their metabolites which are chlorophenol derivatives. In water, the concentrations of phenoxy acids are effectively lowered by hydrolysis, biodegradation, and photodegradation, and a key role is played by microbial decomposition. This process is determined by the qualitative and quantitative composition of microorganisms, oxygen levels in water, and the properties and concentrations of phenoxy acids. In shallow and highly insolated waters, phenoxy acids can be decomposed mainly by photodegradation whose efficiency is determined by the form of the degraded compound. Numerous studies are underway on the use of advanced oxidation processes (AOPs) to remove phenoxy acids. The efficiency of phenoxy acid degradation using AOPs varies depending on the choice of oxidizing system and the conditions optimizing the oxidation process. Most often, methods combining UV radiation with other reagents are used to oxidize phenoxy acids. It has been found that this solution is more effective compared with the oxidation process carried out using only UV.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Marzena S Brodowska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland.
| | - Tadeusz Paszko
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| |
Collapse
|
10
|
Ji Y, Wang L, Jiang M, Lu J, Ferronato C, Chovelon JM. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO). WATER RESEARCH 2017; 123:249-257. [PMID: 28672209 DOI: 10.1016/j.watres.2017.06.081] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
As promising in-situ chemical oxidation (ISCO) technologies, sulfate radical-based advanced oxidation processes (SR-AOPs) are applied in wastewater treatment and groundwater remediation in recent years. In this contribution, we report for the first time that, thermally activated persulfate oxidation of phenol in the presence of nitrite (NO2-), an anion widely present in natural waters, could lead to the formation of nitrated by-products including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,6-dinitrophenol (2,6-DNP). Nitrogen dioxide radical (NO2•), arising from SO4•- scavenging by NO2-, was proposed to be involved in the formation of nitrophenols as a nitrating agent. It was observed that nitrophenols accounted for approximately 70% of the phenol transformed under reaction conditions of [NO2-] = 200 μM, [PS] = 2 mM and temperature of 50 °C. Increasing the concentration of NO2- remarkably enhanced the formation of nitrophenols but did not affect the transformation rate of phenol significantly. The degradation of phenol and the formation of nitrophenols were significantly influenced by persulfate dosage, solution pH and natural organic matter (NOM). Further studies on the degradation of other phenolic compounds, including 4-chlorophenol (4-CP), 4-hydroxybenzoic acid (4-HBA), and acetaminophen (ATP), verified the formation of their corresponding nitrated by-products as well. Therefore, formation of nitrated by-products is probably a common but overlooked phenomenon during SO4•--based oxidation of phenolic compounds in the presence of NO2-. Nitroaromatic compounds are well known for their carcinogenicity, mutagenicity and genotoxicity, and are potentially persistent in the environment. The formation of nitrated organic by-products in SR-AOPs should be carefully scrutinized, and risk assessment should be carried out to assess possible health and ecological impacts.
Collapse
Affiliation(s)
- Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdi Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| |
Collapse
|
11
|
Castro G, Rodríguez I, Ramil M, Cela R. Evaluation of nitrate effects in the aqueous photodegradability of selected phenolic pollutants. CHEMOSPHERE 2017; 185:127-136. [PMID: 28688846 DOI: 10.1016/j.chemosphere.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The effect of nitrate in the aqueous photodegradation of five phenolic environmental pollutants (ortho-phenylphenol, OPP; methyl paraben, MeP; propyl paraben, PrP; Triclosan, TCS and bisphenol A, BPA) is evaluated. Time-course of precursor compounds and formation of transformation products (TPs) were investigated by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Nitrate showed a positive effect in the removal of selected pollutants. Observed TPs resulted from hydroxylation, aromatic nitration (with or without molecule cleavage) and nitro dehalogenation processes. The above reactions involved the participation of ·OH and ·NO2 radicals arising from photolysis of nitrate. Nitro TPs were produced in a different extent depending on the structure of the precursor pollutant, nitrate concentration, light source (254 nm UV and solar light) and water matrix (ultrapure, surface and urban wastewater). Some of these nitro TPs were also observed during UV irradiation of untreated and unbuffered wastewater, either naturally polluted with parent phenolic compounds or spiked with these species at the sub μg L-1 level. Nitration reactions were particularly favourable for OPP with the generated nitro TPs displaying a higher stability than the precursor molecule and the hydroxylated TPs of the same compound.
Collapse
Affiliation(s)
- G Castro
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto de Investigación y Análisis Alimentario (IIAA), Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - I Rodríguez
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto de Investigación y Análisis Alimentario (IIAA), Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - M Ramil
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto de Investigación y Análisis Alimentario (IIAA), Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - R Cela
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto de Investigación y Análisis Alimentario (IIAA), Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
12
|
Chen R, Liu C, Yuan L, Zha J, Wang Z. 2, 4-Dichloro-6-nitrophenol, a photonitration product of 2, 4-dichlorophenol, caused anti-androgenic potency in Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:591-598. [PMID: 27325545 DOI: 10.1016/j.envpol.2016.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
2,4-Dichloro-6-nitrophenol (DCNP) is an environmental transformation product of 2,4-dichlorophenol that has been identified as widespread in effluent wastewater, but little is known about its toxicity because this compound is not regulated. Therefore, to investigate the endocrine disruption potency of DCNP in Chinese rare minnows (Gobiocypris rarus), adult and juvenile fish were exposed to various concentrations of DCNP (2, 20, and 200 μg/L) for 28 d. After 28 d exposure, the plasma vitellogenin (VTG) levels were reduced in females while increased in males and juvenile fish considerably, as compared with the control. These results suggested that DCNP affects the HPG-axis in a sex-dependent way. Testosterone (T) levels in the plasma were significantly lower in adult and juvenile fish and were accompanied by an increased estradiol (E2)/T ratio. Histopathological observation revealed hypertrophy of the hepatocytes and nuclear pyknosis in the liver, the inhibition of spermatogenesis in the testes, and the degeneration of oocytes in the ovaries after DCNP exposure. The expression pattern of selected genes indicated that the nuclear receptor, steroidogenesis and gonadotropin regulation pathways were perturbed after DCNP exposure. Above all, our results demonstrated that DCNP clearly had anti-androgenic activity in both adult and juvenile fish and can therefore be considered as an endocrine-disrupting chemical.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cao Liu
- Beijing Water Sciences and Technology Institute, Beijing, 100048, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zijian Wang
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
13
|
Rodríguez-Cabo T, Rodríguez I, Ramil M, Cela R. Evaluation of nitrate effects in the photodegradability of cyprodinil. Kinetics study and transformation products elucidation. Anal Bioanal Chem 2016; 408:4455-64. [DOI: 10.1007/s00216-016-9543-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
|
14
|
An Unstructured Numerical Model to Study Wind-Driven Circulation Patterns in a Managed Coastal Mediterranean Wetland: The Vaccarès Lagoon System. WATER 2015. [DOI: 10.3390/w7115986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rahemi V, Garrido JMPJ, Borges F, Brett CMA, Garrido EMPJ. Electrochemical sensor for simultaneous determination of herbicide MCPA and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4491-4499. [PMID: 25315934 DOI: 10.1007/s11356-014-3693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
The development and application of a polyaniline/carbon nanotube (CNT) cyclodextrin matrix (PANI-β-CD/MWCNT)-based electrochemical sensor for the quantitative determination of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) and its main transformation product 4-chloro-2-methylphenol in natural waters are described. A simple cyclic voltammetry-based electrochemical methodology, in phosphate buffer solution at pH 6.0, was used to develop a method to determine both MCPA and 4-chloro-2-methylphenol, without any previous extraction or derivatization steps. A linear concentration range (10 to 50 μmol L(-1)) and detection limits of 1.1 and 1.9 μmol L(-1), respectively, were achieved using optimized cyclic voltammetric parameters. The proposed method was successfully applied to the determination of MCPA and 4-chloro-2-methylphenol in natural water samples with satisfactory recoveries (94 to 107%) and in good agreement with the results obtained by an established high-performance liquid chromatography technique, no significant differences being found between the methods. Interferences from ionic species and other herbicides used for broad-leaf weed control were shown to be small. The newly developed methodology was also successfully applied to MCPA photodegradation environmental studies.
Collapse
Affiliation(s)
- V Rahemi
- Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto (ISEP), Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | | | | | | | | |
Collapse
|
16
|
Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 2014; 19:20627-49. [PMID: 25514054 PMCID: PMC6271189 DOI: 10.3390/molecules191220627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022] Open
Abstract
A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.
Collapse
|
17
|
Muter O, Berzins A, Strikauska S, Pugajeva I, Bartkevics V, Dobele G, Truu J, Truu M, Steiner C. The effects of woodchip- and straw-derived biochars on the persistence of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:93-100. [PMID: 25173744 DOI: 10.1016/j.ecoenv.2014.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 05/09/2023]
Abstract
Sorption and degradation are the primary processes controlling the efficacy and runoff contamination risk of agrochemicals. This study assessed the influence of two biochars, made from woodchips and straw at a pyrolysis temperature of 725°C and applied to a loamy sand and a sandy soil in the concentration of 5.3 g 100 g(-1) sandy soil and 4.1 g 100 g(-1) loamy sand soil, or 53 t ha(-1) for both soil types, on degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). Soils were spiked with 50 mg MCPA kg(-1) soil. In the sandy soil, significantly more MCPA remained after 100 days if amended with straw-derived biochar in comparison to wood-derived biochar. Both biochars types significantly increased urease activity (p<0.05) after 37 days in the loamy sand soil, but these differences disappeared after 100 days. A root and shoot elongation test demonstrated that the soils containing straw-derived biochar and spiked with MCPA, showed the highest phytotoxicity. Both biochars were found to retard MCPA degradation in loamy sand and sandy soils. This effect could not be explained only by sorption processes due to comparatively low developed micro/mesoporous structure of both biochars shown by BET surface analysis. However, an enhanced MCPA persistence and soil toxicity in sandy soil amended with straw biochar was observed and further studies are needed to reveal the responsible mechanisms.
Collapse
Affiliation(s)
- Olga Muter
- Institute of Microbiology & Biotechnology, University of Latvia, 4 Kronvalda Boulevard, Riga LV-1010, Latvia.
| | - Andrejs Berzins
- Institute of Microbiology & Biotechnology, University of Latvia, 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - Silvija Strikauska
- Latvia University of Agriculture, 2 Liela Street, Jelgava LV-3001, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", 3 Lejupes Street, Riga LV-1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", 3 Lejupes Street, Riga LV-1076, Latvia
| | - Galina Dobele
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, Riga LV-1006, Latvia
| | - Jaak Truu
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia
| | - Marika Truu
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia
| | - Christoph Steiner
- BlackCarbon A/S, Barritskovvej 36, 7150 Barrit, Denmark; University of Kassel, Steintr. 19, 37213 Witzenhausen, Germany
| |
Collapse
|
18
|
Paszko T. Modeling of pH-dependent adsorption and leaching of MCPA in profiles of Polish mineral soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:229-240. [PMID: 25051325 DOI: 10.1016/j.scitotenv.2014.06.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to determine the leaching potential of MCPA and the contribution of major soil components to its retention in 27 profiles of common Polish arable soils. Results of experiments and modeling of the pH-dependent adsorption indicated that the adsorption of the neutral and anionic forms of MCPA on soil organic matter are the predominant adsorption mechanisms, even in soil horizons with very low organic matter contents. The third most important mechanism was the adsorption of MCPA anions, most likely through the water bridging mechanism on sorption sites created by exchangeable Fe cations adsorbed in soil. It was found that in acidic soils with very low organic matter contents, the neutral form of MCPA was also adsorbed on the quartz and silica sorption sites of silt and sand. The value of r(2) was 78% when it was assumed that MCPA was adsorbed only on organic matter and 93% when all indicated mechanisms of adsorption on mineral soil components were included in the model fitted to data from all soil profiles. Simulations using FOCUS PELMO indicated that in two profiles, the 80th percentiles of the average yearly concentrations of MCPA in the leachate exceeded the European Union (EU) contamination limit of 0.1 μgL(-1). It was shown that when an assumption was made in the model of pH-dependent adsorption that MCPA was adsorbed only on organic matter, the leaching potential of MCPA was overestimated in the examined soils. Much better predictions were obtained when adsorption on mineral soil components was also included in the model.
Collapse
Affiliation(s)
- Tadeusz Paszko
- Department of Chemistry, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
19
|
Vione D, Minella M, Maurino V, Minero C. Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species. Chemistry 2014; 20:10590-606. [PMID: 24888627 DOI: 10.1002/chem.201400413] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 11/09/2022]
Abstract
This paper gives an overview of the main reactive transient species that are produced in surface waters by sunlight illumination of photoactive molecules (photosensitizers), such as nitrate, nitrite, and chromophoric dissolved organic matter (CDOM). The main transients (˙OH, CO3(-˙) , (1)O2, and CDOM triplet states) are involved in the indirect phototransformation of a very wide range of persistent organic pollutants in surface waters.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino (Italy), Fax: (+39) 011-6705242; NatRisk Inter-Department Centre, University of Torino, Via Leonardo Da Vinci 44, 10095 Grugliasco (TO) (Italy).
| | | | | | | |
Collapse
|
20
|
Passananti M, Temussi F, Iesce MR, Previtera L, Mailhot G, Vione D, Brigante M. Photoenhanced transformation of nicotine in aquatic environments: involvement of naturally occurring radical sources. WATER RESEARCH 2014; 55:106-114. [PMID: 24602865 DOI: 10.1016/j.watres.2014.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
This work investigated the fate of nicotine (Nico) in aqueous solution upon reaction with singlet oxygen ((1)O2) and hydroxyl radical (HO·). The second-order rate constants of Nico with (1)O2 (k(Nico,(1)O(2)) = (3.38 ± 0.14) × 10(6) M(-1) s(-1)) and HO· (kNico,·OH = (1.08 ± 0.10) × 10(9) M(-1) s(-1)) were determined using competition kinetics. Photochemical modelling showed that the reaction of Nico with HO· would prevail over that with (1)O2 in surface waters transformation pathway. The Nico photochemical half-life time could be accounted for by the two reactions. This value would vary in the month-year range depending on the environmental conditions: phototransformation would be favoured in shallow water poor in organic matter and rich in nitrate and nitrite. Irradiation experiments of Nico with nitrite suggested that transformation could not be accounted for by HO· reaction alone. Indeed, a variable fraction of Nico transformation (30-80% depending on the conditions) would take place upon reaction with additional transients, photogenerated NOx being possible candidates. The chemical structures of the transformation intermediates were derived by means of HPLC-MS. The detection of nitroderivatives upon irradiation of Nico with nitrite suggests the involvement of nitrogen dioxide in the relevant photoprocesses.
Collapse
Affiliation(s)
- Monica Passananti
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) - ENSCCF, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubière, France; UdR Napoli 4 INCA Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Fabio Temussi
- UdR Napoli 4 INCA Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Maria Rosaria Iesce
- UdR Napoli 4 INCA Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Lucio Previtera
- UdR Napoli 4 INCA Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Gilles Mailhot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) - ENSCCF, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubière, France
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy(1); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco, TO, Italy(2)
| | - Marcello Brigante
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) - ENSCCF, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubière, France.
| |
Collapse
|
21
|
Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:709036. [PMID: 24795892 PMCID: PMC3985176 DOI: 10.1155/2014/709036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/04/2014] [Indexed: 11/17/2022]
Abstract
Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.
Collapse
|
22
|
Ji Y, Zhou L, Zhang Y, Ferronato C, Brigante M, Mailhot G, Yang X, Chovelon JM. Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices. WATER RESEARCH 2013; 47:5865-5875. [PMID: 23906777 DOI: 10.1016/j.watres.2013.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 05/28/2023]
Abstract
The occurrence of sunscreen agents in natural environment is of scientific concern recently due to their potential risk to ecology system and human beings as endocrine disrupting chemicals (EDCs). In this work the photodegradation mechanism and pathways of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid (PBSA) were investigated under artificial solar irradiation with the goal of assessing the potential of photolysis as a transformation mechanism in aquatic environments. The quantum yield of PBSA direct photolysis in pH 6.8 buffer solution under filtered mercury lamp irradiation was determined as 2.70 × 10(-4). Laser flash photolysis (LFP) experiments confirmed the involvement of PBSA radical cation (PBSA(·+)) during direct photolysis. Acidic or basic condition facilitated PBSA direct photolysis in aqueous solution. Indirect photolysis out-competes direct photolysis as a major process for PBSA attenuation only at higher level of photosensitizers (e.g., NO3(-) > 2 mM). Thus, direct photolysis is likely to be the major loss pathway responsible for the elimination of PBSA in natural sunlit surface waters, while indirect photolysis (e.g., mediated by HO·) appeared to be less important due to a general low level of steady-state concentration of HO· ([HO·]ss) in natural surface waters. Direct photolysis pathways of PBSA includes desulfonation and benzimidazole ring cleavage, which are probably initiated by the excited triplet state ((3)PBSA*) and radical cation (PBSA(·+)). Conversely, hydroxylation products of PBSA and 2-phenyl-1H-benzimidazole as well as their ring opening intermediates were found in nitrate-induced PBSA photolysis, suggesting the indirect photodegradation was primarily mediated by HO and followed a different mechanism.
Collapse
Affiliation(s)
- Yuefei Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Université Lyon 1, UMR CNRS 5256, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), 2 Avenue Albert Einstein, F-69626 Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abramović BF, Despotović VN, Šojić DV, Orčić DZ, Csanádi JJ, Četojević-Simin DD. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products. CHEMOSPHERE 2013; 93:166-171. [PMID: 23773444 DOI: 10.1016/j.chemosphere.2013.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
The photocatalytic degradation of the herbicide clomazone (0.05mM) in aqueous suspensions of TiO2 Degussa P25 was examined as a function of the different operational parameters. The optimum concentration of the catalyst was found to be 0.50mgmL(-1) under UV light at the pH 10.3. In the first stage of the reaction, the photocatalytic degradation of clomazone followed the pseudo-first order kinetics, with and the heterogeneous catalysis proceeding via OH radicals. The results also showed that the disappearance of clomazone led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred after about 55min. Tentative photodegradation pathways were proposed and discussed. A comparison of the evolution of toxicity that was evaluated in vitro in rat hepatoma (H-4-II-E) and human fetal lung (MRC-5) cell lines with the degradation kinetics indicates that the irradiation contributed to the decrease of the toxicity of the mixture that is no longer dominated by the parent compound. The study also encompassed the effect of the quality of natural water on the rate of removal of clomazone.
Collapse
Affiliation(s)
- Biljana F Abramović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
De Laurentiis E, Minella M, Maurino V, Minero C, Mailhot G, Sarakha M, Brigante M, Vione D. Assessing the occurrence of the dibromide radical (Br₂⁻•) in natural waters: measures of triplet-sensitised formation, reactivity, and modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 439:299-306. [PMID: 23085471 DOI: 10.1016/j.scitotenv.2012.09.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 05/15/2023]
Abstract
The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br(•)/Br(2)(-•), with rate constant (2-4)⋅10(9)M(-1)s(-1) that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ((3)CDOM*). The brominating agent Br(2)(-•) could thus be formed in natural waters upon oxidation of bromide by both (•)OH and (3)CDOM*. Br(2)(-•) would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of ~3⋅10(2)L(mg C)(-1)s(-1) was measured between Br(2)(-•) and DOM. It was thus possible to model the formation and reactivity of Br(2)(-•) in natural waters, assessing the steady-state [Br(2)(-•)]≈10(-13)-10(-12)M. It is concluded that bromide oxidation by (3)CDOM* would be significant compared to oxidation by (•)OH. The (3)CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge (•)OH. Under such conditions, (•)OH-assisted formation of Br(2)(-•) would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of (3)CDOM* is much higher compared to that of (•)OH in most surface waters and would provide a large (3)CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br(2)(-•) could be an important source of the nitrating agent (•)NO(2) in bromide-rich, nitrite-rich and DOM-poor environments. Such a process could possibly account for significant aromatic photonitration observed in irradiated seawater and in sunlit brackish lagoons.
Collapse
Affiliation(s)
- Elisa De Laurentiis
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy. http://www.chimicadellambiente.unito.it
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sur B, De Laurentiis E, Minella M, Maurino V, Minero C, Vione D. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: laboratory and model assessment of the degradation kinetics, and comparison with field data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:296-303. [PMID: 22521169 DOI: 10.1016/j.scitotenv.2012.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with OH. NCP has a polychromatic photolysis quantum yield Φ(NCP)=(1.27±0.22)·10(-5), a rate constant with OH k(NCP,)(OH)=(1.09±0.09)·10(10) M(-1) s(-1), a rate constant with (1)O(2)k(NCP,1O2)=(2.15±0.38)·10(7) M(-1) s(-1), a rate constant with the triplet state of anthraquinone-2-sulphonate k(NCP,3AQ2S*)=(5.90±0.43)·10(8) M(-1) s(-1), and is poorly reactive toward CO(3)(-). The k(NCP,3AQ2S*) value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhône delta (Southern France).
Collapse
Affiliation(s)
- Babita Sur
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Bonnefoy A, Chiron S, Botta A. Environmental nitration processes enhance the mutagenic potency of aromatic compounds. ENVIRONMENTAL TOXICOLOGY 2012; 27:321-331. [PMID: 20737582 DOI: 10.1002/tox.20644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
This work is an attempt to establish if aromatic nitration processes are always associated with an increase of genotoxicity. We determined the mutagenic and genotoxic effects of Benzene (B), Nitrobenzene (NB), Phenol (P), 2-Nitrophenol (2-NP), 2,4-Dinitrophenol (2,4-DNP), Pyrene (Py), 1-Nitropyrene (1-NPy), 1,3-Dinitropyrene (1,3-DNPy), 1,6-Dinitropyrene (1,6-DNPy), and 1,8-Dinitropyrene (1,8-DNPy). The mutagenic activities were evaluated with umuC test in presence and in absence of metabolic activation with S9 mix. Then, we used both cytokinesis-blocked micronucleus (CBMN) assay, in combination with fluorescent in situ hybridization (FISH) of human pan-centromeric DNA probes on human lymphocytes in order to evaluate the genotoxic effects. Analysis of all results shows that nitro polycyclic aromatic hydrocarbons (PAHs) are definitely environmental genotoxic/mutagenic hazards and confirms that environmental aromatic nitration reactions lead to an increase in genotoxicity and mutagenicity properties. Particularly 1-NPy and 1,8-DNPy can be considered as human potential carcinogens. They seem to be significant markers of the genotoxicity, mutagenicity, and potential carcinogenicity of complex PAHs mixtures present in traffic emission and industrial environment. In prevention of environmental carcinogenic risk 1-NPy and 1,8-DNPy must therefore be systematically analyzed in environmental complex mixtures in association with combined umuC test, CBMN assay, and FISH on cultured human lymphocytes. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.
Collapse
Affiliation(s)
- Aurélie Bonnefoy
- Laboratoire de Biogénotoxicologie et Mutagénèse Environnementale, EA 1784/FR 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | |
Collapse
|
28
|
Abramović B, Kler S, Sojić D, Laušević M, Radović T, Vione D. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2011; 198:123-32. [PMID: 22035693 DOI: 10.1016/j.jhazmat.2011.10.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 05/20/2023]
Abstract
This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used β(1)-blocker, in TiO(2) suspensions of Wackherr's "Oxyde de titane standard" and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO(2) Wackherr induced a significantly faster MET degradation compared to TiO(2) Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (OH), it was shown that the reaction with OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO(2) and H(2)O, while the nitrogen was predominantly present as NH(4)(+). Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO(2) specimen.
Collapse
Affiliation(s)
- Biljana Abramović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
29
|
Bedini A, Maurino V, Minero C, Vione D. Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenol: a mechanistic study of environmental significance. Photochem Photobiol Sci 2011; 11:418-24. [PMID: 22124765 DOI: 10.1039/c1pp05288h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-induced nitration pathways of phenols are important processes for the transformation of pesticide-derived secondary pollutants into toxic derivatives in surface waters and for the formation of phytotoxic compounds in the atmosphere. Moreover, phenols can be used as ˙NO(2) probes in irradiated aqueous solutions. This paper shows that the nitration of 4-chlorophenol (4CP) into 2-nitro-4-chlorophenol (NCP) in the presence of irradiated nitrate and nitrite in aqueous solution involves the radical ˙NO(2). The experimental data allow exclusion of an alternative nitration pathway by ˙OH + ˙NO(2). Quantum mechanical calculations suggest that the nitration of both phenol and 4CP involves, as a first pathway, the abstraction of the phenolic hydrogen by ˙NO(2), which yields HNO(2) and the corresponding phenoxy radical. Reaction of phenoxyl with another ˙NO(2) follows to finally produce the corresponding nitrated phenol. Such a pathway also correctly predicts that 4CP undergoes nitration more easily than phenol, because the ring Cl atom increases the acidity of the phenolic hydrogen of 4CP. This favours the H-abstraction process to give the corresponding phenoxy radical. In contrast, an alternative nitration pathway that involves ˙NO(2) addition to the ring followed by H-abstraction by oxygen (or by ˙NO(2) or ˙OH) is energetically unfavoured and erroneously predicts faster nitration for phenol than for 4CP.
Collapse
Affiliation(s)
- Andrea Bedini
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | | | | | | |
Collapse
|
30
|
Sopeña F, Villaverde J, Maqueda C, Morillo E. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:298-305. [PMID: 21924830 DOI: 10.1016/j.jhazmat.2011.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/15/2011] [Accepted: 08/14/2011] [Indexed: 05/31/2023]
Abstract
Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT(50) value was 3h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.
Collapse
Affiliation(s)
- Fatima Sopeña
- Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES, Spain.
| | | | | | | |
Collapse
|
31
|
Richardson SD, Ternes TA. Water analysis: emerging contaminants and current issues. Anal Chem 2011; 83:4614-48. [PMID: 21668018 DOI: 10.1021/ac200915r] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Susan D Richardson
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| | | |
Collapse
|
32
|
Raina R, Etter ML, Buehler K, Starks K, Yowin Y. Phenoxyacid Herbicides in Stormwater Retention Ponds: Urban Inputs. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajac.2011.28112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Al Housari F, Höhener P, Chiron S. Factors responsible for rapid dissipation of acidic herbicides in the coastal lagoons of the Camargue (Rhône River Delta, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:582-587. [PMID: 21075422 DOI: 10.1016/j.scitotenv.2010.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
This study was aimed at investigating which processes cause acidic herbicides (e.g., bentazone, MCPA and dichlorprop) to rapidly disappear in the lagoons of the Rhône delta, which are peculiar brackish and shallow aquatic environments. The use of the model MASAS (Modeling of Anthropogenic Substances in Aquatic Systems) revealed that sorption, sedimentation, volatilization, flushing and abiotic hydrolysis had a minor role in the attenuation of the investigated herbicides. Laboratory scale biodegradation and photodegradation studies were conducted to better assess the significance of these two processes in the natural attenuation of herbicides in brackish (lagoons) waters with respect to fresh waters (canals draining paddy fields). Herbicide biodegradation rates were significantly lower in lagoon water than in canal water. Consequently, photodegradation was the main dissipation route of all investigated herbicides. The contribution of indirect photolysis was relevant for MCPA and dichlorprop while direct photolysis dominated for bentazone removal. There is a need to further investigate the identity of phototransformation products of herbicides in lagoons.
Collapse
Affiliation(s)
- Fadi Al Housari
- Laboratoire Chimie Provence, Aix-Marseille Universités-CNRS (UMR 6264), 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | | | | |
Collapse
|
34
|
Maddigapu PR, Minella M, Vione D, Maurino V, Minero C. Modeling phototransformation reactions in surface water bodies: 2,4-dichloro-6-nitrophenol as a case study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:209-214. [PMID: 20822131 DOI: 10.1021/es102458n] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The anionic form of 2,4-dichloro-6-nitrophenol (DCNP), which prevails in surface waters over the undissociated one, has a direct photolysis quantum yield of (4.53 ± 0.78) × 10(-6) under UVA irradiation and second-order reaction rate constants of (2.8 ± 0.3) × 10(9) M(-1) s(-1) with •OH, (3.7 ± 1.4) × 10(9) M(-1) s(-1) with (1)O(2), and (1.36 ± 0.09) × 10(8) M(-1) s(-1) with the excited triplet state of anthraquinone-2-sulfonate, adopted as a proxy for the photoactive dissolved organic compounds in surface waters. DCNP also shows negligible reactivity with the carbonate radical. Insertion of the data into a model of surface water photochemistry indicates that the direct photolysis and the reactions with •OH and (1)O(2) would be the main phototransformation processes of DCNP, with •OH prevailing in organic-poor and (1)O(2) in organic-rich waters. The model results compare well with the field data of DCNP in the Rhône river delta (Southern France), where (1)O(2) would be the main reactive species for the phototransformation of the substrate.
Collapse
Affiliation(s)
- Pratap Reddy Maddigapu
- Dipartimento di Chimica Analitica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
35
|
Reddy Maddigapu P, Minero C, Maurino V, Vione D, Brigante M, Charbouillot T, Sarakha M, Mailhot G. Photochemical and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochem Photobiol Sci 2011; 10:601-9. [DOI: 10.1039/c0pp00311e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Vione D, Khanra S, Das R, Minero C, Maurino V, Brigante M, Mailhot G. Effect of dissolved organic compounds on the photodegradation of the herbicide MCPA in aqueous solution. WATER RESEARCH 2010; 44:6053-62. [PMID: 20732707 DOI: 10.1016/j.watres.2010.07.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 05/23/2023]
Abstract
This work shows that the addition of phenol and 2-propanol as model organic compounds significantly decreases the direct photolysis quantum yield of 4-chloro-2-methylphenoxyacetic acid (MCPA) upon UVB irradiation in aqueous solution. Laser flash photolysis data suggest that 2-propanol is able to decrease the formation of the MCPA excited states under irradiation. A decrease from 0.54 to 0.34 of the photolysis quantum yield of the anionic form of MCPA (which prevails over the undissociated one in surface waters) could have a considerable impact on the MCPA lifetime in ecosystems where the direct photolysis is the main phototransformation pathway. In surface water bodies where the direct photolysis has comparable kinetics as the reaction with OH, a decrease of the quantum yield would enhance the relative importance of the OH pathway, which yields considerably less toxic intermediates than the direct photolysis.
Collapse
Affiliation(s)
- Davide Vione
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Reddy Maddigapu P, Minero C, Maurino V, Vione D, Brigante M, Mailhot G. Enhancement by anthraquinone-2-sulphonate of the photonitration of phenol by nitrite: implication for the photoproduction of nitrogen dioxide by coloured dissolved organic matter in surface waters. CHEMOSPHERE 2010; 81:1401-1406. [PMID: 20932551 DOI: 10.1016/j.chemosphere.2010.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/03/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
Anthraquinone-2-sulphonate (AQ2S) under UVA irradiation is able to oxidise nitrite to (·)NO(2) and to induce the nitration of phenol. The process involves the very fast reactions of the excited triplet state (3)AQ2S(*) and its 520-nm absorbing exciplex with water, at different time scales (ns and μs, respectively). Quinones are ubiquitous components of coloured dissolved organic matter (CDOM) in surface waters and AQ2S was adopted here as a proxy of CDOM. Using a recently developed model of surface-water photochemistry, we found that the oxidation of nitrite to (·)NO(2) by (3)CDOM(*) could be an important (·)NO(2) source in water bodies with high [NO(2)(-)] to [NO(3)(-)] ratio, for elevated values of column depth and NPOC.
Collapse
Affiliation(s)
- Pratap Reddy Maddigapu
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Albinet A, Minero C, Vione D. Phototransformation processes of 2,4-dinitrophenol, relevant to atmospheric water droplets. CHEMOSPHERE 2010; 80:753-758. [PMID: 20538316 DOI: 10.1016/j.chemosphere.2010.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 05/29/2023]
Abstract
This paper shows that the polychromatic quantum yield for the photolysis of 2,4-dinitrophenol (24DNP) in the wavelength interval of 300-500 nm is (8.1+/-0.4) x 10(-5) for the undissociated phenol, and (3.4+/-0.2) x 10(-5) for the phenolate. The second-order rate constants for reaction with ()OH were determined here as (1.76+/-0.05) x 10(9) M(-1) s(-1) and (2.33+/-0.11) x 10(9) M(-1) s(-1) for the phenol and the phenolate, respectively. By combining laboratory results and a simple modelling approach of the atmospheric aqueous phase, this work shows that the direct photolysis and the reaction with ()OH would play a comparable role in the degradation of 24DNP at pH>4. The ()OH reaction would prevail for pH<4. Both pathways would be more important than the night-time reaction with *NO(3) as removal processes for 24DNP in the atmospheric waters.
Collapse
Affiliation(s)
- Alexandre Albinet
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | | | | |
Collapse
|
39
|
Albinet A, Minero C, Vione D. UVA irradiation induces direct phototransformation of 2,4-dinitrophenol in surface water samples. CHEMOSPHERE 2010; 80:759-763. [PMID: 20541236 DOI: 10.1016/j.chemosphere.2010.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 05/29/2023]
Abstract
Lake water samples spiked with 2,4-dinitrophenol (24DNP) were irradiated under artificial UVA irradiance. It was found that the direct photolysis is the main photodegradation pathway of 24DNP in lake water. On the lake water samples it was also determined the formation and consumption rates of *OH, by means of the transformation reaction of benzene into phenol. It was found that the rate of direct photolysis prevails over the *OH phototransformation rate by one-two orders of magnitude. Moreover, the excited triplet states of chromophoric dissolved organic matter and singlet oxygen are expected to play a negligible role in the photodegradation of 24DNP. By modelling the direct photolysis of 24DNP in surface water bodies, one gets a half-life time of 2-10 summer sunny days for water-column depths up to 10 m. This would make the direct photolysis a major pathway for the transformation of 24DNP in freshwaters.
Collapse
Affiliation(s)
- Alexandre Albinet
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | | | | |
Collapse
|
40
|
Maddigapu PR, Vione D, Ravizzoli B, Minero C, Maurino V, Comoretto L, Chiron S. Laboratory and field evidence of the photonitration of 4-chlorophenol to 2-nitro-4-chlorophenol and of the associated bicarbonate effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1063-1069. [PMID: 19936815 DOI: 10.1007/s11356-009-0260-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/31/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND, AIM AND SCOPE Photochemical processes can decontaminate the aqueous environment from xenobiotics, but they also produce secondary pollutants. This paper presents field and laboratory evidence of the transformation of 4-chlorophenol (4CP) into 2-nitro-4-chlorophenol (2N4CP). MATERIALS AND METHODS Field monitoring of 4CP and 2N4CP was carried out by solid phase extraction coupled with liquid chromatography-multiple reaction monitoring mass spectrometry. Laboratory irradiation experiments were carried out under a UV-Vis lamp, and the time evolution of the compounds of interest was followed by liquid chromatography. PURPOSE The purpose of this study was elucidating the pathways leading to 2N4CP from 4CP in paddy field water. RESULTS AND DISCUSSION The field monitoring results suggest that 4CP can be transformed into 2N4CP in the paddy field water of the Rhône delta (Southern France). The laboratory study indicates that the transformation can take place via photonitration by (*)NO(2). The nitration process is inhibited by bicarbonate, possibly due to basification that favours the occurrence of the 4-chlorophenolate. The latter could consume (*)NO(2) without being nitrated. Photonitration in the presence of bicarbonate could account for the observed transformation in the field. CONCLUSIONS Photonitration of 4CP to 2N4CP by (*)NO(2) could account for the observed interconversion of the two compounds in paddy fields. The results are of concern because 2N4CP is biorecalcitrant and toxic. RECOMMENDATIONS AND PERSPECTIVES Bicarbonate can modulate the photonitration of 4CP into 2N4CP, which can be very significant in bicarbonate-poor waters.
Collapse
Affiliation(s)
- Pratap Reddy Maddigapu
- Dipartimento di Chimica Analitica, Università di Torino, Via P. Giuria 5, 10125, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Richardson SD. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal Chem 2010; 82:4742-74. [DOI: 10.1021/ac101102d] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Susan D. Richardson
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605
| |
Collapse
|
42
|
al Housari F, Vione D, Chiron S, Barbati S. Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 2010; 9:78-86. [DOI: 10.1039/b9pp00030e] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Kamoshita M, Kosaka K, Endo O, Asami M, Aizawa T. Mutagenic activities of a chlorination by-product of butamifos, its structural isomer, and their related compounds. CHEMOSPHERE 2010; 78:482-487. [PMID: 19863995 DOI: 10.1016/j.chemosphere.2009.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 05/28/2023]
Abstract
The mutagenic activities of 5-methyl-2-nitrophenol (5M2NP), a chlorination by-product of butamifos, its structural isomer 2-methyl-5-nitrophenol (2M5NP), and related compounds were evaluated by the Ames assay. The mutagenic activities of 5M2NP and 2M5NP were negative or not particularly high. However, those of their chlorinated derivatives were increased in Salmonella typhimurium strain TA100 and the overproducer strains YG1026, and YG1029 in the absence and/or presence of a rat liver metabolic activation system (S9 mix), particularly for YG1029. The mutagenic activities of 6-chloro-2-methyl-5-nitrophenol (6C2M5NP) in YG1029 in the absence and presence of S9 mix were 70000 and 110000 revertants mg(-1), respectively. When nitro functions of 6C2M5NP and 4-chloro-5-methyl-2-nitrophenol (4C5M2NP) were reduced to amino functions, their mutagenic activities were markedly decreased. The mutagenic activities of 5M2NP and 4C5M2NP were lower than those of 2M5NP and 6C2M5NP, respectively. Thus, it was shown that substituent position is a key factor for the mutagenic activities of methylnitrophenols (MNPs) and related compounds. The mutagenic activities of the extracts of 2M5NP in chlorination increased early during the reaction time and then decreased. The main chlorination by-product contributing to the mutagenic activities of the extracts of 2M5NP in chlorination was 6C2M5NP. The results of chlorination of 2M5NP suggested that MNPs were present as their dichlorinated derivatives or further chlorination by-products in drinking water.
Collapse
Affiliation(s)
- Masahiro Kamoshita
- Department of Water Supply Engineering, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | | | | | | | | |
Collapse
|
44
|
Weber J, Halsall CJ, Wargent JJ, Paul ND. The aqueous photodegradation of fenitrothion under various agricultural plastics: implications for pesticide longevity in agricultural 'micro-environments'. CHEMOSPHERE 2009; 76:147-150. [PMID: 19282019 DOI: 10.1016/j.chemosphere.2009.01.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 05/27/2023]
Abstract
Plastic cladding is increasingly used in agriculture to create micro-environments to improve crop yield/growth. Many of these plastics can alter the solar light spectrum by inhibiting or reducing the transmittance of certain parts of the solar spectrum. In this study, we investigated the aqueous photolysis of fenitrothion, under a selection of different plastic films commonly used in agriculture. Three different grades of polyethylene film were used: 'standard', 'transparent' and 'opaque'. The transmittance of light wavelengths in the UV region (290-400 nm), measured with a spectroradiometer, was found to decrease in the order of transparent>standard>opaque. Fenitrothion, an organophosphorothioate insecticide possesses molar absorptivity in the solar wavelength range of 290-400 nm. Aqueous first order degradation rate constants for fenitrothion determined over a 12 h period were found to be considerably less for those experiments conducted under the standard and opaque plastic films, compared to the transparent film and no-film control. The experiments were conducted in an Atlas Suntest solar simulator using a UV-filtered Xenon arc lamp to simulate sunlight. The first order half-life for fenitrothion was 100 and 250 h under the standard and opaque films, respectively, compared to approximately 10 h for the transparent film and no-film experiments. Our results suggest that pesticide longevity could be greatly extended within these plastic micro-environments, especially for those chemicals which may degrade/transform via photolytic or photochemical pathways.
Collapse
Affiliation(s)
- Jan Weber
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | | |
Collapse
|
45
|
Halladja S, ter Halle A, Pilichowski JF, Boulkamh A, Richard C. Fulvic acid-mediated phototransformation of mecoprop. A pH-dependent reaction. Photochem Photobiol Sci 2009; 8:1066-71. [DOI: 10.1039/b901306g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|