1
|
Ren H, Gong X, Zhou L, Wang P, Cao Y. Recent progresses in analytical method development for 210Pb in environmental and biological samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31664-31678. [PMID: 38649600 PMCID: PMC11133052 DOI: 10.1007/s11356-024-33272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
As a decay product of uranium series, 210Pb spreads widely in the nature and imposes strong radiological and chemical toxicity. It is vital to establish reliable and efficient radioanalytical methods for 210Pb determination to support environment and food radioactivity monitoring programs. This article critically reviews analytical methods developed for determining 210Pb in environmental and biological samples, especially new development in recent years. Techniques applied throughout different analytical steps including sample pretreatment, separation, purification, and detection are summarized and their pros and cons are discussed to provide a holistic overview for 210Pb environmental and biological assay.
Collapse
Affiliation(s)
- Hong Ren
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xinyu Gong
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Lei Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Peng Wang
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Yiyao Cao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| |
Collapse
|
2
|
Zhang C, Wang Z, Liu S, Tan H, Zeng D, Li X. Analytical method for sequential determination of persistent herbicides and their metabolites in fish tissues by UPLC-MS/MS. CHEMOSPHERE 2022; 288:132591. [PMID: 34662632 DOI: 10.1016/j.chemosphere.2021.132591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
A novel and accurate liquid chromatography-tandem mass spectrometry method was developed to sequentially determine three persistent herbicides (atrazine (ATZ), acetochlor (ACE), and metolachlor (MET)) and seven characteristic metabolites (desethylatrazine (DEA), deisopropylatrazine (DIA), diaminochlorotriazine (DACT), MET-oxanilic acid (MET-OA), MET-ethanesulfonic acid (MET-ESA), ACE-ESA, and ACE-OA) in fresh fish tissues from six fish species. A modified QuEChERS method was conducted to extract the target compounds from fish tissues. Matrix-matched calibrations of the target analytes were carried out at spiking levels of 1, 10, 100, and 1000 ng g-1. The method was validated in accordance with Codex guidelines (CAC/GL 71-2009). Recoveries for the target analytes were 67-120% with relative standard deviations below 20%, and the matrix effects ranged from -58.7% to 59.3%. The limits of detection and quantitation were 0.01-1.90 and 0.02-6.35 ng g-1, respectively. Moreover, the method was successfully applied to analyze the concentrations of the target chemicals in fresh tissue samples of six fish species (n = 67) collected from four markets in Nanning City, Guangxi Province, China. The concentrations in all samples were 1.1-140.5 ng g-1. Interestingly, this study was the first to measure DEA and DIA in fish liver, and their highest concentrations were 10.7 and 14.2 ng g-1, respectively. This method provides a basis for studying the pathways of biotransformation, bioaccumulation, detoxification, and exposure patterns of ACE, ATZ, MET, and their metabolites in aquatic environments.
Collapse
Affiliation(s)
- Cuifang Zhang
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Zhuang Wang
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Sheng Liu
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Huihua Tan
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Dongqiang Zeng
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Xuesheng Li
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
3
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Almeida Â, Soares AMVM, Esteves VI, Freitas R. Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103661. [PMID: 33878451 DOI: 10.1016/j.etap.2021.103661] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/23/2023]
Abstract
A vast literature has already demonstrated that pharmaceutical drugs exert negative impacts on aquatic organisms but data is sparse on the occurrence of these contaminants in marine aquatic environments and their biota, particularly in comparison with freshwater systems. In marine environments, bivalves are known as good bioindicator species for environmental pollution monitoring. This review summarizes the current knowledge on carbamazepine (CBZ) concentrations in the marine environment (seawater and bivalves) and the analytical methods involved in the drug determination. Carbamazepine was chosen based on its ubiquitous occurrence and proven negative impacts on the aquatic organisms. Overall, CBZ is distributed in the marine environment with concentrations up to ∼ 1 μg/L, revealing its stability and high persistence. Also, CBZ was found in some species of marine bivalves, with concentrations up to 13 ng/g dry weight (DW), however, a bioaccumulation factor could not be calculated due to the absence of CBZ determination in seawater samples for most of the studies. CAPSULE: Carbamazepine is found in seawater up to the low μg/L level, and in bivalve tissue up to a few ng/g DW, with SPE and LC as the techniques of choice for drug extraction and identification.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Onat B, Rosales-Solano H, Pawliszyn J. Development of a Biocompatible Solid Phase Microextraction Thin Film Coating for the Sampling and Enrichment of Peptides. Anal Chem 2020; 92:9379-9388. [DOI: 10.1021/acs.analchem.0c01846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bora Onat
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | | | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Lu Q, Lin R, Du C, Meng Y, Yang M, Zenobi R, Hang W. Metal Probe Microextraction Coupled to Dielectric Barrier Discharge Ionization–Mass Spectrometry for Detecting Drug Residues in Organisms. Anal Chem 2020; 92:5921-5928. [DOI: 10.1021/acs.analchem.0c00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qiao Lu
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rongkun Lin
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chao Du
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Manqing Yang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Renato Zenobi
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ETH Zurich, Department of Chemistry and Applied Biosciences, 8093 Zurich, Switzerland
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Niu P, Lu X, Liu B, Li Y, Liang X, Wang S, Guo Y. Bioaccumulation investigation of bisphenol A in HepG2 cells and zebrafishes enabled by cobalt magnetic polystyrene microsphere derived carbon based magnetic solid-phase extraction. Analyst 2020; 145:1433-1444. [PMID: 31858096 DOI: 10.1039/c9an02324k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetic solid-phase extraction (MSPE) technique coupled with high performance liquid chromatography (HPLC) was developed and used for bioaccumulation investigation of bisphenol A (BPA) in HepG2 cells and zebrafishes. Cobalt magnetic polystyrene microsphere derived carbon (C-Co@PST) as an adsorbent was prepared by in situ polymerization reaction and further annealing treatment. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction were employed to confirm successful synthesis of C-Co@PST. A series of extraction parameters including the amount of the sorbent, the type of elute, extraction time and elution time were investigated to achieve high extraction efficiency. C-Co@PST based MSPE combined with HPLC was successfully established for bioaccumulation research of BPA in living creatures. It was found that the bioconcentration values of BPA in HepG2 cells underwent an increase, then a decrease, and finally reached an equilibrium level of 11.60 μg kg-1 at 8 h. The concentration of BPA in zebrafishes increased ranging from 6.05 μg kg-1 to 31.84 μg kg-1 over a culture time from 1 h to 12 h. Furthermore, linear and exponential models were employed to analyse the bioconcentration variation of BPA in organisms over the exposure time. Mathematical models have been developed to predict the transfer characteristics of BPA.
Collapse
Affiliation(s)
- Panhong Niu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resource and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fraz S, Lee AH, Pollard S, Srinivasan K, Vermani A, David E, Wilson JY. Paternal Exposure to Carbamazepine Impacts Zebrafish Offspring Reproduction Over Multiple Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12734-12743. [PMID: 31393713 DOI: 10.1021/acs.est.9b03393] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-concentration chemical exposures may have both direct health outcomes on adults and indirect effects on their offspring. Using zebrafish, we examined the impacts of chronic, low-concentration carbamazepine (CBZ) exposure on a suite of male reproductive endpoints in the parents and four generations of offspring reared in clean water. CBZ is one of the most frequently detected pharmaceutical residues in water, is a histone deacetylase inhibitor in mammals, and is reported to lower androgens in mammals and fish. Exposure of adult zebrafish to 10 μg/L CBZ for 6 weeks decreased reproductive output, courtship and aggressive behaviors, 11-ketotestosterone (11KT), and sperm morphology but did not impact milt volume or sperm swimming speed. Pairwise breeding generated lineages of offspring with both parents exposed and two lineages where only one parent was exposed; the control lineage had unexposed parents. Reproductive output and male reproductive indices were assessed in F1-F4 offspring to determine whether parental CBZ exposure had transgenerational impacts. The offspring of CBZ-exposed males had lower 11KT, reproductive output, altered courtship, aggression, and sperm morphology compared to the lineage from unexposed parents. Our results indicate that parental carbamazepine exposure history impacts the unexposed progeny up to the F4 generations and that paternal, but not maternal, exposure is most important for the reproductive health of male offspring.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abigail H Lee
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Simon Pollard
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Krishna Srinivasan
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abhilasha Vermani
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Ephraim David
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Joanna Y Wilson
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| |
Collapse
|
9
|
Roszkowska A, Yu M, Bessonneau V, Ings J, McMaster M, Smith R, Bragg L, Servos M, Pawliszyn J. In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:109-115. [PMID: 30884389 DOI: 10.1016/j.envpol.2019.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Vincent Bessonneau
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Jennifer Ings
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Mark McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Richard Smith
- Mass Spectrometry Facility, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
10
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
11
|
Ocaña-Rios I, Peña-Alvarez A, Zuñiga-Perez I, Loeza-Fuentes E. Trace analysis of UV filters and musks in living fish by in vivo SPME-GC-MS. Anal Bioanal Chem 2019; 411:3209-3218. [PMID: 30976896 DOI: 10.1007/s00216-019-01791-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Iran Ocaña-Rios
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Araceli Peña-Alvarez
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | | | - Elena Loeza-Fuentes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Abejas, Conejos y Organismos Acuáticos, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|
12
|
Silva ARM, Neng NR, Nogueira JMF. Multi-Spheres Adsorptive Microextraction (MSAμE)-Application of a Novel Analytical Approach for Monitoring Chemical Anthropogenic Markers in Environmental Water Matrices. Molecules 2019; 24:molecules24050931. [PMID: 30866456 PMCID: PMC6429196 DOI: 10.3390/molecules24050931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
Multi-spheres adsorptive microextraction using powdered activated carbons (ACs) was studied as a novel enrichment approach, followed by liquid desorption and high-performance liquid chromatography with diode array detection (MSAµE(AC)-LD/HPLC-DAD) to monitor caffeine (CAF) and acetaminophen (ACF) traces in environmental matrices. In this study, commercial activated carbons (N, NOX, and R) were tested, with the latter showing a much better performance for the analysis of both anthropogenic drugs. The main parameters affecting the efficiency of the proposed methodology are fully discussed using commercial AC(R). Textural and surface chemistry properties of the ACs sample were correlated with the analytical results. Assays performed on 30 mL of water samples spiked at 10 µg L−1 under optimized experimental conditions, yielding recoveries of 75.3% for ACF and 82.6% for CAF. The methodology also showed excellent linear dynamic ranges for both drugs with determination coefficients higher than 0.9976, limits of detection and quantification of 0.8–1.2 µg L−1 and 2.8–4.0 µg L−1, respectively, and suitable precision (RSD < 13.8%). By using the standard addition method, the application of the present method to environmental matrices, including superficial, sea, and wastewater samples, allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for polar compound analysis, showing to be easy to implement, reliable, and sensitive, with the possibility to reuse and store the analytical devices loaded with the target compounds for later analysis.
Collapse
Affiliation(s)
- Ana R M Silva
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal.
| | - Nuno R Neng
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal.
| | - José M F Nogueira
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal.
| |
Collapse
|
13
|
Fraz S, Lee AH, Wilson JY. Gemfibrozil and carbamazepine decrease steroid production in zebrafish testes (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:1-9. [PMID: 29494825 DOI: 10.1016/j.aquatox.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/20/2023]
Abstract
Gemfibrozil (GEM) and carbamazepine (CBZ) are two environmentally relevant pharmaceuticals and chronic exposure of fish to these compounds has decreased androgen levels and fish reproduction in laboratory studies. The main focus of this study was to examine the effects of GEM and CBZ on testicular steroid production, using zebrafish as a model species. Chronic water borne exposures of adult zebrafish to 10 μg/L of GEM and CBZ were conducted and the dosing was confirmed by chemical analysis of water as 17.5 ± 1.78 and 11.2 ± 1.08 μg/L respectively. A 67 day exposure led to reduced reproductive output and lowered whole body, plasma, and testicular 11-ketotestosterone (11-KT). Testicular production of 11-KT was examined post exposure (42 days) using ex vivo cultures to determine basal and stimulated steroid production. The goal was to ascertain the step impaired in the steroidogenic pathway by each compound. Ex vivo 11-KT production in testes from males chronically exposed to GEM and CBZ was lower than that from unexposed males. Although hCG, 25-OH cholesterol, and pregnenolone stimulation increased 11-KT production in all treatment groups over basal levels, hCG stimulated 11-KT production remained significantly less in testes from exposed males compared to controls. 25-OH cholesterol and pregnenolone stimulated 11-KT production was similar between GEM and control groups but the CBZ group had lower 11-KT production than controls with both stimulants. We therefore propose that chronic GEM and CBZ exposure can reduce production of 11-KT in testes through direct effects independent of mediation through HPG axis. The biochemical processes for steroid production appear un-impacted by GEM exposure; while CBZ exposure may influence steroidogenic enzyme expression or function.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Abigail H Lee
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada; Current affiliation: Department of Medicine, University of Toronto, 1 Kings College, Toronto, M5S 1A8, ON, Canada
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| |
Collapse
|
14
|
Poole JJ, Grandy JJ, Yu M, Boyaci E, Gómez-Ríos GA, Reyes-Garcés N, Bojko B, Heide HV, Pawliszyn J. Deposition of a Sorbent into a Recession on a Solid Support To Provide a New, Mechanically Robust Solid-Phase Microextraction Device. Anal Chem 2017; 89:8021-8026. [DOI: 10.1021/acs.analchem.7b01382] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Justen J. Poole
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Jonathan J. Grandy
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | | | | | - Barbara Bojko
- Department
of Pharmacodynamics and Molecular Pharmacology, Faculty
of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń 85-089, Poland
| | | | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Marjan P, Bragg LM, MacLatchy DL, Servos MR, Martyniuk CJ. How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6470-6479. [PMID: 28489360 DOI: 10.1021/acs.est.7b00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies quantifying the influence of reference site selection on transcriptomic profiles in aquatic organisms exposed to complex mixtures are lacking in the literature, despite the significant implications of such research for the interpretation of omics data sets. We measured hepatic transcriptomic responses in fish across an urban environment in the central Grand River watershed (Ontario, Canada). Adult male rainbow darter (RBD) (Etheostoma caeruleum) were collected from nine sites at varying distances from two major municipal wastewater treatment plants (MWWTPs) (Waterloo, Kitchener), including three upstream reference sites. The transcriptomic response in RBD was independently compared with that of fish from each of the three reference sites. Data collected in fish downstream of the Waterloo MWWTP (poorest effluent quality) suggested that ∼15.5% of the transcriptome response was influenced by reference site selection. In contrast, at sites where the impact of MWWTPs was less-pronounced and fish showed less of a transcriptome response, reference site selection had a greater influence (i.e., ∼56.9% of transcripts were different depending on the site used). This study highlights the importance of conducting transcriptomics studies that leverage more than one reference site, and it broadens our understanding of the molecular responses in fish in dynamic natural environments.
Collapse
Affiliation(s)
- Patricija Marjan
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University , 75 University Avenue West, N2L 3C5 Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Cristopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida , 2187 Mowry Road, Building 471, PO Box 110885, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Application of in vivo solid-phase microextraction in environmental analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Arlos MJ, Hatat-Fraile MM, Liang R, Bragg LM, Zhou NY, Andrews SA, Servos MR. Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points. WATER RESEARCH 2016; 101:351-361. [PMID: 27286470 DOI: 10.1016/j.watres.2016.05.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Organic micropollutants found in the environment are a diverse group of compounds that includes pharmaceuticals, personal care products, and endocrine disruptors. Their presence in the aquatic environment continues to be a concern as the risk they pose towards both the environment and human health is still inconclusive. Removal of these compounds from water and wastewater is difficult to achieve and often incomplete, but UV-TiO2 is a promising treatment approach. In this study, the efficiency of titanium dioxide (TiO2) immobilized on porous supports were tested for treatment of target pharmaceuticals and their metabolites under UV-LED exposure, a potential low energy and cost effective alternative to conventional UV lamps. Immobilization was completed using two different methods: (1) dip coating of TiO2 onto quartz fiber filters (QFT) or (2) thermal-chemical oxidation of porous titanium sheets (PTT). Comparison against experimental controls (dark QFT, dark PTT, and photolysis using UV-LED only) showed that UV-LED/PTT and UV-LED/QFT treatments have the potential to reduce the concentrations of the target compounds. However, the treatments were found to be selective, such that individual pharmaceuticals were removed well using QFT and PTT but not both. The complementary treatment behavior is likely driven by electrostatic interactions of charged compounds with the membranes. QFT membranes are negatively charged at the experimental pH (4.5-5) while PTT membranes are positively charged. As a result, cationic compounds interact more with QFT while anionic compounds with PTT. Neutral compounds, however, were found to be recalcitrant under any treatment conditions suggesting that ionic interactions were important for reactions to occur. This behavior can be advantageous if specificity is required. The behavior of pharmaceutical metabolites is similar to the parent compounds. However, isomeric metabolites of atorvastatin with functional groups in para and ortho configurations behave differently, suggesting that the positioning of functional groups can have an impact in their interaction with the immobilized TiO2. It was also apparent that PTT can be reused after cleaning by heat treatment. Overall, these newly synthesized membrane materials have potential applications for treatment of trace organic contaminants in water.
Collapse
Affiliation(s)
- Maricor J Arlos
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Melisa M Hatat-Fraile
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Robert Liang
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Norman Y Zhou
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Susan A Andrews
- Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
18
|
Dimpe KM, Nomngongo PN. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Direct tissue sampling of diazepam and amitriptyline using mixed-mode SPME fibers: A feasibility study. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Study of complex matrix effect on solid phase microextraction for biological sample analysis. J Chromatogr A 2015; 1411:34-40. [DOI: 10.1016/j.chroma.2015.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
|
22
|
Souza-Silva ÉA, Jiang R, Rodríguez-Lafuente A, Gionfriddo E, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015; 13:1559325815598308. [PMID: 26674671 PMCID: PMC4674187 DOI: 10.1177/1559325815598308] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Lauren A. Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W. Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Brian S. Yates
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Christopher S. Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - E. Spencer Williams
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
24
|
Enantioselective analysis of non-steroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015; 407:4721-31. [PMID: 25869485 DOI: 10.1007/s00216-015-8675-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Toxicity of pharmaceuticals to aquatic biota is still largely unknown, and no research on the stereoselective toxicity of chiral drugs to these organisms has been undertaken to date. Because of the lack of analytical methods available for this purpose, this manuscript deals, for the first time, with the enantioselective analysis of the non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, naproxen and ketoprofen in freshwater fish. The method was based on the microextraction of NSAIDs from fish muscle with a supramolecular liquid made up of inverted hexagonal aggregates of decanoic acid, their enantiomeric separation by liquid chromatography onto a (R)-1-naphthylglycine and 3,5-dinitrobenzoic acid stationary phase and quantification by tandem mass spectrometry. Limits of quantitation (LOQs) for NSAID enantiomers were in the range 1.7-3.3 ng g(-1). Absolute recoveries were from 97 to 104 %, which indicated the high extraction efficiency of the supramolecular solvent. Extraction equilibrium conditions were reached after 10 min which permitted fast sample treatment. Relative standard deviations for enantiomers in fish muscle were always below 6 %. Isotopically labelled internal standards were used to compensate for matrix interferences. The method in-house validation was carried out with the Oncorhynchus mykiss species, and it was applied to the determination of NSAID enantiomers in different fortified freshwater fish species (Alburnus alburnus, Lepomis gibbosus, Micropterus salmoides, O. mykiss and Cyprinus carpio).
Collapse
|
25
|
Sorption of amitriptyline and amphetamine to mixed-mode solid-phase microextraction in different test conditions. J Chromatogr A 2015; 1390:28-38. [DOI: 10.1016/j.chroma.2015.02.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/17/2015] [Accepted: 02/20/2015] [Indexed: 01/22/2023]
|
26
|
Arlos MJ, Bragg LM, Parker WJ, Servos MR. Distribution of selected antiandrogens and pharmaceuticals in a highly impacted watershed. WATER RESEARCH 2015; 72:40-50. [PMID: 25472688 DOI: 10.1016/j.watres.2014.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/07/2014] [Accepted: 11/08/2014] [Indexed: 05/15/2023]
Abstract
Endocrine disruption and high occurrences of intersex have been observed in wild fish associated with municipal wastewater treatment plant (WWTP) effluents in urbanized reaches of rivers around the globe. These reproductive effects have often been attributed to the presence of estrogen receptor agonists in effluents. However, recent studies have isolated a number of androgen receptor antagonists (antiandrogens) that may also contribute to the endocrine disruption observed at sites that are influenced by WWTP outfalls. This study aimed to characterize the spatial and temporal distribution of antiandrogenic personal care products (triclosan, chlorophene, dichlorophene, oxybenzone, 1-naphthol, and 2-naphthol), along with a herbicide (atrazine) and representative pharmaceuticals (carbamazepine, ibuprofen, naproxen, and venlafaxine) in the Grand River watershed in southern Ontario. Surface water sampling of 30 sites associated with six municipal WWTP outfalls was conducted during a summer low flow. Monthly samples were also collected immediately upstream and downstream of a major WWTP from August to November 2012. Atrazine was consistently found in all surface water sampling locations. Many of the target pharmaceuticals and triclosan were detected in WWTP effluents, especially those that did not nitrify. Under low flow conditions, the concentrations of triclosan and several pharmaceuticals increased directly downstream of the WWTPs then decreased rapidly with distance downstream. Chlorophene was either found at trace levels or below detection limits in the effluents while dichlorophene, oxybenzone, 1-naphthol, and 2-naphthol were not detected in any samples. Chlorophene was detected in surface water during the low flow summer period and once during the monthly sampling from August to November. However, the primary source of chlorophene did not appear to be associated with WWTP effluent. This study documents the spatial and temporal occurrence of several antiandrogens and pharmaceuticals in a highly impacted Canadian watershed. It supports previous observations that there is a diversity of contaminants in wastewater effluents and other sources that have the potential to alter endocrine function in wild fish.
Collapse
Affiliation(s)
- M J Arlos
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1; Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - L M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - M R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
27
|
Birjandi AP, Mirnaghi FS, Bojko B, Wąsowicz M, Pawliszyn J. Application of Solid Phase Microextraction for Quantitation of Polyunsaturated Fatty Acids in Biological Fluids. Anal Chem 2014; 86:12022-9. [PMID: 25403310 DOI: 10.1021/ac502627w] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Afsoon Pajand Birjandi
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Fatemeh Sadat Mirnaghi
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Barbara Bojko
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Marcin Wąsowicz
- Department
of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
28
|
Machado AADS, Wood CM, Bianchini A, Gillis PL. Responses of biomarkers in wild freshwater mussels chronically exposed to complex contaminant mixtures. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1345-1358. [PMID: 24996530 DOI: 10.1007/s10646-014-1277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Subcellular biochemical biomarkers are valuable early warning indicators of environmental contaminant effects. Thus, the present study evaluated several biomarkers and the relationships among them in wild freshwater mussels (Lasmigona costata) from a gradient of metal exposure and differential levels of other urban-related influences in the Grand River (ON, Canada). The biomarkers examined are related to metal exposure [gill ion and metal concentrations (Na, K, Ca, Mg, Cd, Cu, Ni, Pb and Zn)], oxidative status [reactive oxygen species (ROS), catalase (CAT), superoxide dismutase (SOD), antioxidant capacity (ACAP)], sulfhydryl (SH) metabolism [glutathione (GSH), protein sulfhydryl groups (SH protein), glutathione S-transferase (GST), glutathione reductase (GR)], and lipid peroxidation. Gill metal concentration increased proportionally to waterborne metal concentration and disturbances in osmotic and divalent cations (Ca and Mg) concentrations were observed. This suggests that the observed effects are associated with metal exposure, although simultaneous relationships with other contaminants are also possible. Oxidative status biomarkers (ROS, SOD, CAT and ACAP) were more sensitive to urban-influences than gill metal concentration. In contrast, biomarkers involving SH metabolism (GSH, SH protein, total SH, GR and GST) were more correlated with gill metal concentration. Oxidative damage occurred when both metal and urban-related influences were high. Mechanistically, the way of dealing with oxidative stress changed when mussels were exposed to high levels of contaminants. The reduction in ROS content, SOD and CAT activity, and ACAP accompanying the stimulation of detoxification metabolism via SH (GSH and SH protein contents, GST and GR activities) and their association with gill metal concentration are discussed.
Collapse
|
29
|
Arlos MJ, Bragg LM, Servos MR, Parker WJ. Simulation of the fate of selected pharmaceuticals and personal care products in a highly impacted reach of a Canadian watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:193-204. [PMID: 24727037 DOI: 10.1016/j.scitotenv.2014.03.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) dispose of numerous trace organic contaminants in the receiving waters that can impact biological function in aquatic organisms. However, the complex nature of WWTP effluent mixtures and a wide variety of potential mechanisms that can alter physiological and reproductive development of aquatic organisms make it difficult to assess the linkages and severity of the effects associated with trace organic contaminants. This paper describes a surface water quality modeling exercise that was performed to understand the relevant contaminant fate and transport processes necessary to accurately predict the concentrations of trace organic compounds present in the aquatic environment. The target compounds modeled include a known antiandrogenic personal care product (triclosan) and selected pharmaceuticals (venlafaxine, naproxen, and carbamazepine). The WASP 7.5 model was adapted and calibrated to reflect approximately ten kilometers of reach of the Grand River watershed that is highly influenced by a major urban WWTP. Simulation of the fate and transport of the target compounds revealed that flow-driven transport processes (advection and dispersion) greatly influenced the behavior of the target contaminants in the aquatic environment. However, fate mechanisms such as photolysis and biodegradation can play an important role in the attenuation of some compounds. The exception was carbamazepine where it was shown to act as a conservative tracer compound for wastewater specific contaminants in the water phase. The calibrated water quality model can now be employed in a number of future applications. Prediction of fate and transport of other trace organic contaminants across the watershed and assessment of the performance of WWTP infrastructure upgrades in the removal of these compounds are just a few examples.
Collapse
Affiliation(s)
- M J Arlos
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - L M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - M R Servos
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
30
|
Bahamonde PA, Tetreault GR, McMaster ME, Servos MR, Martyniuk CJ, Munkittrick KR. Molecular signatures in rainbow darter (Etheostoma caeruleum) inhabiting an urbanized river reach receiving wastewater effluents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:211-220. [PMID: 24513783 DOI: 10.1016/j.aquatox.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Rainbow darter (Etheostoma caeruleum) is a small benthic fish species found in North America that are abundant and distributed throughout the Grand River watershed, ON, Canada. Rainbow darter exhibit intersex in males at sites adjacent to municipal wastewater effluents (MWWE). In October 2010, female and male rainbow darter were collected at 3 sites (1 upstream reference and 2 downstream exposed sites) in the Grand River near the cities of Kitchener and Waterloo. The primary objectives of this research were (1) to characterize the responses of whole organism endpoints (i.e. condition factor (K), liversomatic (LSI) and gonadosomatic index (GSI), histopathology) to MWWEs and (2) to identify transcripts showing altered steady state abundance with exposure to MWWE in fish inhabiting municipal wastewater effluent-exposed areas. Genes measured in this study included vitellogenin, Sry-box containing protein 9 (sox9), forkhead box L2 (foxl2), doublesex and mab-3 related transcription factor 1 (dmrt1), cytochrome P450, family 11, subfamily A, polypeptide 1 (cyp11a) as well as estrogen (esr1, esrb) and androgen (ar) receptors. There were no changes in condition factor; however, there was a significant increase in LSI and a decrease in GSI in fish inhabiting downstream environments when compared with fish collected from the reference site. Males had a high incidence (∼ 70%) of intersex in downstream sites; characterized by the presence of oocytes within the testis. In the gonad, there were sex specific differences for genes related to sexual differentiation; dmrt1 was only expressed in males whereas foxl2 and sox9 were highly expressed in females compared to males. Expression levels of ar and esr1 were higher in females than males. Conversely, esrb was not differentially expressed between sexes or among sites. There were no differences detected for the genes investigated within sex among sites. This study is the first to report on gene expression changes in the rainbow darter, with emphasis on the differences in transcript abundance between sexes and how these changes relate to exposures to MWWEs. Molecular approaches are being investigated for their potential application to field ecotoxicology, and molecular bioassays for relevant, sentinel species in environmental monitoring programs are required to better understand the impact of anthropogenic impacts on species at risk in river systems.
Collapse
Affiliation(s)
- P A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5.
| | - G R Tetreault
- Emerging Methods Branch, Aquatic Contaminant Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada L7R 4A6; University of Waterloo, Department of Biology, Waterloo, ON, Canada N2L 3G1
| | - M E McMaster
- Emerging Methods Branch, Aquatic Contaminant Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - M R Servos
- University of Waterloo, Department of Biology, Waterloo, ON, Canada N2L 3G1
| | - C J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| | - K R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| |
Collapse
|
31
|
Silva LJG, Meisel LM, Lino CM, Pena A. Profiling Serotonin Reuptake Inhibitors (SSRIs) in the Environment: Trends in Analytical Methodologies. Crit Rev Anal Chem 2013; 44:41-67. [DOI: 10.1080/10408347.2013.827966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Tanna RN, Tetreault GR, Bennett CJ, Smith BM, Bragg LM, Oakes KD, McMaster ME, Servos MR. Occurrence and degree of intersex (testis-ova) in darters (Etheostoma SPP.) across an urban gradient in the Grand River, Ontario, Canada. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1981-91. [PMID: 23633427 DOI: 10.1002/etc.2262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/28/2013] [Accepted: 04/24/2013] [Indexed: 05/18/2023]
Abstract
The variability and extent of the intersex condition (oocytes in testes, or testis-ova) was documented in fish along an urban gradient in the Grand River, Ontario, Canada, that included major wastewater treatment plant outfalls. A method for rapid enumeration of testis-ova was developed and applied that increased the capacity to quantify intersex prevalence and severity. Male rainbow darters (Etheostoma caeruleum) sampled downstream of the first major wastewater outfall (Waterloo) had a significant increase, relative to 4 upstream reference sites, in the mean proportion of fish with at least 1 testis-oocyte per lobe of testes (9-20% proportion with ≤ 1 testis-oocyte/lobe vs 32-53% and >1.4 testis-oocyte/lobe). A much higher mean incidence of intersex proportion and degree was observed immediately downstream of the second wastewater outfall (Kitchener; 73-100% and 8-70 testis-oocyte/lobe); but only 6.3 km downstream of the Kitchener outfall, the occurrence of intersex dropped to those of the reference sites. In contrast, downstream of a tertiary treated wastewater outfall on a small tributary, intersex was similar to reference sites. Estrogenicity, measured using a yeast estrogen screen, followed a similar pattern, increasing from 0.81 ± 0.02 ng/L 17b-estradiol equivalents (EEq) (Guelph), to 4.32 ± 0.07 ng/L (Waterloo), and 16.99 ± 0.40 ng/L (Kitchener). Female rainbow darter downstream of the Kitchener outfall showed significant decreases in gonadosomatic index and liver somatic index, and increases in condition factor (k) relative to corresponding reference sites. The prevalence of intersex and alterations in somatic indices suggest that exposure to municipal wastewater effluent discharges can impact endocrine function, energy use, and energy storage in wild fish.
Collapse
Affiliation(s)
- Rajiv N Tanna
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Anal Chim Acta 2013; 794:1-14. [DOI: 10.1016/j.aca.2013.05.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
|
34
|
Souza Silva EA, Risticevic S, Pawliszyn J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.10.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Analysis of Pharmaceutical Compounds in Biota. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62657-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Togunde OP, Lord H, Oakes KD, Servos MR, Pawliszyn J. Development and evaluation of a new in vivo solid-phase microextraction sampler. J Sep Sci 2012; 36:219-23. [PMID: 23255404 DOI: 10.1002/jssc.201200839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/07/2012] [Accepted: 10/07/2012] [Indexed: 11/06/2022]
Abstract
The use of solid-phase microextraction (SPME) as a nonlethal technique for in vivo sampling of pharmaceutical residue in fish tissue has been documented in the literature. However, there is need to improve its simplicity and robustness for wider applications in the laboratory and field. The objective of this research is to develop and improve the SPME device for sampling of pharmaceuticals in fish tissue. The practical application of the new device was demonstrated in the field where some wild fish (Esox masquinongy) were caught in the river and sampled by the device. The samples were analyzed using LC coupled with MS/MS (LC-MS/MS). The new in vivo SPME device with a PDMS extraction phase (sorbent) was demonstrated to a robust tool by both experts and nonexpert of the method and it is simpler than the traditional device. The detection limit of the method in gel and fish tissue was 0.01-0.26 ng/g. The interday reproducibility in gel and fish homogenized fish tissue was 8-16% RSD. This study demonstrates that the new device will provide a platform or opportunity for rapid sampling of carbamazepine, diazepam, and nordiazepam in fish muscle with acceptable precision.
Collapse
|
37
|
Abstract
Conventional in vitro or ex vivo bioanalytical quantitative sample preparation methods for the determination of compounds in biological tissues are often coupled with challenges in obtaining an assay representative of the system of interest. The rising interest in in vivo microsampling bioanalytical methods is due to the unique advantages they offer over their in vitro counterparts. In vivo solid-phase microextraction (SPME), a diffusion-based microsampling tool, has been successfully applied in recent studies to various biological systems. This review presents recent trends in tissue bioanalysis using in vivo SPME as a sample preparation tool. Efforts were made to discuss the various bioapplications of the method while highlighting possible strategies for improved sensitivity where needed. In vivo SPME devices currently employed for the various applications have also been described. In addition, we highlight selectivity of a new class of biocompatible coatings that can potentially improve the coverage of metabolites for untargeted metabolomics.
Collapse
|
38
|
The benefits of using solid-phase microextraction as a greener sample preparation technique. Bioanalysis 2012; 4:1263-5. [PMID: 22720641 DOI: 10.4155/bio.12.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Bojko B, Cudjoe E, Gómez-Ríos GA, Gorynski K, Jiang R, Reyes-Garcés N, Risticevic S, Silva ÉA, Togunde O, Vuckovic D, Pawliszyn J. SPME – Quo vadis? Anal Chim Acta 2012; 750:132-51. [DOI: 10.1016/j.aca.2012.06.052] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
|
40
|
Togunde OP, Oakes KD, Servos MR, Pawliszyn J. Optimization of solid phase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography–mass spectrometry. J Chromatogr A 2012; 1261:99-106. [DOI: 10.1016/j.chroma.2012.07.053] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
|
41
|
Magi E, Bono L, Di Carro M. Characterization of cocoa liquors by GC-MS and LC-MS/MS: focus on alkylpyrazines and flavanols. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1191-1197. [PMID: 22972787 DOI: 10.1002/jms.3034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavor is one of the most important characteristics of chocolate products and is due to a complex volatile fraction, depending both on the cocoa bean genotype and the several processes occurring during chocolate production (fermentation, drying, roasting and conching). Alkylpyrazines are among the most studied volatiles, being one of the main classes of odorant compounds in cocoa products. In this work, a mass spectrometric approach was used for the comparison of cocoa liquors from different countries. A headspace solid-phase microextraction gas chromatography-mass spectrometry method was developed for the qualitative study of the volatile fraction; the standard addition method was then used for the quantitative determination of five pyrazines (2-methylpyrazine, 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3,5-trimethylpyrazine and tetramethylpyrazine). Satisfactory figures of merit were obtained: Limits of quantitation were in the range 0.1-2.7 ng/g; repeatability and reproducibility varied between 3% and 7% and between 8% and 14%, respectively. The total content of the pyrazines was remarkably different in the considered samples, ranging from 99 to 708 ng/g. Tetramethylpyrazine showed the highest concentration in all samples, with a maximum value of 585 ng/g. A preliminary study was also performed on the nonvolatile fraction using LC-MS/MS, identifying some flavanols such as catechin, epicatechin and procyanidins.
Collapse
Affiliation(s)
- Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy.
| | | | | |
Collapse
|
42
|
Ings JS, Oakes KD, Vijayan MM, Servos MR. Temporal changes in stress and tissue-specific metabolic responses to municipal wastewater effluent exposure in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:67-74. [PMID: 22579662 DOI: 10.1016/j.cbpc.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/23/2023]
Abstract
Sub-chronic exposure to municipal wastewater effluent (MWWE) in situ was recently shown to impact the acute response to a secondary stressor in rainbow trout (Oncorhynchus mykiss). However, little is known about whether MWWE exposure in itself is stressful to the animal. To address this, we carried out a laboratory study to examine the organismal and cellular stress responses and tissue-specific metabolic capacity in trout exposed to MWWE. Juvenile rainbow trout were exposed to 0, 20 and 90% MWWE (from a tertiary wastewater treatment plant), that was replenished every 2d, for 14 d. Fish were sampled 2, 8 or 14 d post-exposure. Plasma cortisol, glucose and lactate levels were measured as indicators of organismal stress response, while inducible heat shock protein 70 (hsp70), constitutive heat shock protein 70 (hsc70) and hsp90 expression in the liver were used as markers of cellular stress response. Impact of MWWE on cortisol signaling was ascertained by determining glucocorticoid receptor protein (GR) expression in the liver, brain and, heart, and metabolic capacity was evaluated by measuring liver glycogen content and tissue-specific activities of key enzymes in intermediary metabolism. Plasma glucose and lactate levels were unaffected by exposure to MWWEs, whereas cortisol showed a transient increase in the 20% group at 8d. Liver hsc70 and hsp90, but not hsp70 expression, were higher in the 90% MWWE group after 8d. There was a temporal change in GR expression in the liver and heart, but not brain of trout exposed to MWWE. Liver glycogen content and activities liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), and alanine aminotransferase (AlaAT) were significantly affected by MWWE exposure. The glycolytic enzymes pyruvate kinase (PK) and hexokinase (HK) activities were significantly higher temporally by MWWE exposure in the gill and heart, but not in the liver and brain. Overall, a 14 d exposure to MWWE evokes a cellular stress response and perturbs the cortisol stress response in rainbow trout. The tissue-specific temporal changes in the metabolic capacity suggest enhanced energy demand in fish exposed to MWWE, which may eventually lead to reduced fitness.
Collapse
Affiliation(s)
- Jennifer S Ings
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Pharmaceuticals in biota in the aquatic environment: analytical methods and environmental implications. Anal Bioanal Chem 2012; 404:2611-24. [PMID: 22678760 DOI: 10.1007/s00216-012-6144-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The presence of pharmaceuticals in the aquatic environment is an ever-increasing issue of concern as they are specifically designed to target specific metabolic and molecular pathways in organisms, and they may have the potential for unintended effects on nontarget species. Information on the presence of pharmaceuticals in biota is still scarce, but the scientific literature on the subject has established the possibility of bioaccumulation in exposed aquatic organisms through other environmental compartments. However, few studies have correlated both bioaccumulation of pharmaceutical compounds and the consequent effects. Analytical methodology to detect pharmaceuticals at trace quantities in biota has advanced significantly in the last few years. Nonetheless, there are still unresolved analytical challenges associated with the complexity of biological matrices, which require exhaustive extraction and purification steps, and highly sensitive and selective detection techniques. This review presents the trends in the analysis of pharmaceuticals in aquatic organisms in the last decade, recent data about the occurrence of these compounds in natural biota, and the environmental implications that chronic exposure could have on aquatic wildlife.
Collapse
|
44
|
Adolfsson-Erici M, ÅKerman G, McLachlan MS. In-vivo passive sampling to measure elimination kinetics in bioaccumulation tests. CHEMOSPHERE 2012; 88:62-68. [PMID: 22429846 DOI: 10.1016/j.chemosphere.2012.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
The application of in-tissue passive sampling to quantify chemical kinetics in fish bioconcentration experiments was investigated. A passive sampler consisting of an acupuncture needle covered with a PDMS tube was developed together with a method for its deployment in rainbow trout. The time to steady state for chemical uptake into the passive sampler was >1d, so it was employed as a kinetically limited sampler with a deployment time of 2 h. The passive sampler was employed in parallel with the established whole tissue extraction method to study the elimination kinetics of 10 diverse chemicals in rainbow trout. 4-n-nonylphenol and 2,4,6-tri-tert-butylphenol were close to or below the limit of quantification in the sampler. For chlorpyrifos, musk xylene, hexachlorobenzene, 2,5-dichlorobiphenyl and p,p'-DDT, the elimination rate constants determined with the passive sampler method and the established method agreed within 18%. Poorer agreement (35%) was observed for 2,3,4-trichloroanisole and p-diisopropylbenzene because fewer data were obtained with the passive sampling method due to its lower sensitivity. The work shows that in-tissue passive sampling can be employed to measure contaminant elimination kinetics in fish. This opens up the possibility of studying contaminant kinetics in individual fish, thereby reducing the fish requirements and analytical costs for the determination of bioconcentration factors.
Collapse
|
45
|
Ings JS, Vijayan MM, Servos MR. Tissue-specific metabolic changes in response to an acute handling disturbance in juvenile rainbow trout exposed to municipal wastewater effluent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:53-9. [PMID: 22000339 DOI: 10.1016/j.aquatox.2011.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 05/20/2023]
Abstract
The objective of this study was to evaluate the effects of municipal wastewater effluent (MWWE) exposure on aspects of both organismal and cellular stress response in rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout were exposed for 14 d (2-d static renewal) to tertiary-treated MWWE at concentrations of 0%, 20% and 90%. Following the MWWE exposure, fish were subjected to an acute handling stress and sampled at 1, 4 and 24 h post-stressor, to evaluate the fish performance to additional stressors. Organismal stress response evaluation included measuring plasma cortisol, glucose and lactate concentrations, and tissue metabolic capacity, including gluconeogenic (liver) and glycolytic enzyme activities in the liver, brain, heart and gill. No significant differences between treatments were seen in plasma cortisol, glucose or lactate concentrations after 14 d exposure to MWWE. However, MWWE exposure significantly affected plasma cortisol and glucose response to the acute secondary stressor. Acute handling disturbance enhanced liver gluconeogenic capacity in the control group, but this response was altered in the MWWE exposed groups. MWWE exposure did not affect the acute stressor-mediated enhancement of brain or gill glycolytic capacity, but significantly reduced the glycolytic capacity of liver and heart in response to a secondary stressor compared to the control group. Altogether, chronic exposure to MWWE impacts the metabolic performances to a secondary stressor challenge and this includes disruptions in tissue-specific gluconeogenic and glycolytic capacities in rainbow trout.
Collapse
Affiliation(s)
- Jennifer S Ings
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|