1
|
Alfarsi A, Weird GM, Kumar A, Nugegoda D. Multigenerational toxicity effects and impact of antibiotics exposed to duckweed, Lemna minor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179324. [PMID: 40220465 DOI: 10.1016/j.scitotenv.2025.179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
The escalating presence of antibiotics in aquatic ecosystems poses substantial risks to public health and ecosystem stability. The objective of this study was to examine the effects of three common antibiotics-ciprofloxacin (CIP), erythromycin (ERY), and sulfamethoxazole (SMX)-on the growth and physiology of Lemna minor (L. minor) across three generations (parental (F0), first filial (F1), and second filial (F2)). Specifically, the research aimed to determine how these antibiotics influence frond number, frond area, root area, and photosynthetic pigment content in L. minor. Higher concentrations of CIP (50 μg/L, 250 μg/L, and 1250 μg/L) significantly decreased frond numbers (F2 > F1 > F0), while ERY exhibited the opposite trend, and SMX displayed adaptation in F2. ERY increased frond area at a lower concentration (10 μg/L), while high concentrations of CIP (250 μg/L and 1250 μg/L) and lower concentrations of SMX (10 μg/L and 50 μg/L) reduced it. CIP displayed a biphasic response on root growth, with 10 μg/L decreasing root area by 760 μm2 and 50 μg/L and 1250 μg/L, increasing it by 2480 μm2 and 2300 μm2, respectively. ERY consistently inhibited root growth. The F1 generation showed the most pronounced reduction in green area, particularly under higher CIP concentrations (1250 μg/L). Chlorophyll A (Chl A) and carotenoid contents were resilient to antibiotic stress, while Chlorophyll B (Chl B) exhibited generation-specific responses. This study highlights the need for continued monitoring of antibiotics in aquatic systems and calls for further research on the long-term impacts of antibiotics on aquatic plants and ecosystems.
Collapse
Affiliation(s)
- Ali Alfarsi
- RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia; CSIRO Environment, Waite Campus, Urrbrae, SA 5064, Australia; Drug Safety Centre, Ministry of Health, Muscat 100, Oman.
| | | | - Anupama Kumar
- CSIRO Environment, Waite Campus, Urrbrae, SA 5064, Australia
| | - Dayanthi Nugegoda
- RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| |
Collapse
|
2
|
Alismail AM, Alqurashi MS, Almulla MO. Network Analysis of Psychological Empowerment, Need for Cognition, and Academic Self-Efficacy among Graduate Students. Psychiatr Q 2025; 96:183-200. [PMID: 39856484 DOI: 10.1007/s11126-025-10117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The present study employed network analysis to explore the interrelationships between academic self-efficacy, psychological empowerment, and the need for knowledge at the symptom level among graduate students. Three hundred fifty-three graduate students from King Faisal University, Hofuf, Saudi Arabia (63.5% male, 72.2% in the 25-35 age range) completed the Psychological Empowerment Scale, Need for Cognition Scale (NCS), and Academic Self-Efficacy Scale as self-report measures. Different R-Studio programming software packages, such as "graph," "network tools," and "botnet," were used to analyze the current study's data. The most central node on the network analysis was Self.2 (history of success/failure), with the greatest betweenness (2.18), closeness (1.84), and strength (1.86). This node showed that it was essential for connecting other variables, despite having an expected negative effect (-0.37). Then there was also Psy.4 (impact), which showed a high centrality of betweenness 1.13 and closeness 1.29. Indeed, positive edges for Self.2 (previous successes/failures) and MB (Need for Cognition) (edge weight 0.37) clearly showed that good past experiences increased cognitive activity. A Bridge Betweenness of 10 was the most significant bridge node (Self.4 (university behavior) in the bridge analysis), linking network elements. Bootstrapped confidence intervals proved that these connections remained stable, ensuring the network was robust over resamples. Enhancing graduate students' self-efficacy and psychological empowerment, particularly through positive past experiences, could improve their academic performance and cognitive engagement. Future research should explore the implications of these findings for designing interventions to foster academic success.
Collapse
Affiliation(s)
- Abdulaziz Mohammed Alismail
- Department of the Education and Psychology, College of Education, King Faisal University, Hofuf, Saudi Arabia.
| | | | - Mazen Omar Almulla
- Department of the Education and Psychology, College of Education, King Faisal University, Hofuf, Saudi Arabia
| |
Collapse
|
3
|
Sanusi IO, Olutona GO, Wawata IG, Onohuean H, Adepoju AA. Geospatial monitoring and human health risk assessment of pharmaceutical residues in groundwater and surface water in Kampala and Mbarara Districts, Uganda. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:30. [PMID: 39718649 DOI: 10.1007/s10653-024-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
This study investigated the occurrence, concentration and human health risks of five pharmaceutical residues-metronidazole, sulfamethoxazole, ciprofloxacin, carbamazepine, and caffeine-in groundwater and surface water samples from Kampala and Mbarara districts of Uganda. The present study also employed techniques of remote sensing and geographic information system (GIS); thereby, emphasizing the importance of thematic mapping, land use classification, and spatial buffering to evaluate pharmaceutical contaminants in an environmental setting. The risk quotient (RQ) approach was also employed to assess the risk of exposure to the pharmaceutical contaminants. Caffeine was found with the highest average concentration in groundwater (53.515 µg/L), whereas carbamazepine had the highest average concentration in surface water (48.635 µg/L) during the dry season. Ciprofloxacin consistently recorded the lowest average concentrations in both groundwater and surface water across all seasons. Overall, the data revealed high concentrations of pharmaceutical residues in surface water compared to groundwater during both seasons, except for caffeine which was not detected in surface water across the seasons. Notable seasonal changes were also observed in caffeine and metronidazole concentrations, indicating the role of human activities and environmental factors in influencing contamination patterns during specific seasons. The factor analysis revealed that consumption rate of pharmaceuticals and anthropogenic activities are the main factors responsible for the contamination of groundwater and surface water. Moreover, results revealed that the risk of adverse human health effects for carbamazepine and metronidazole during both seasons were high (RQ > 1), thereby highlighting the prioritization of frequent monitoring by the environmental protection agencies. Given that the combined risk of exposure for all the pharmaceuticals exceeded one, adopting stringent pharmaceutical disposal and control measures are essential for mitigating potential human health risks associated with their exposure. Further investigation into optimal and effective pharmaceutical remediation strategies for both groundwater and surface water are highly recommended.
Collapse
Affiliation(s)
- Idris O Sanusi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, P.O. BOX 71, Ishaka-Bushenyi, Uganda.
| | - Godwin O Olutona
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, P.O. BOX 71, Ishaka-Bushenyi, Uganda
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo, Nigeria
| | - Ibrahim G Wawata
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pure and Applied Chemistry, Kebbi State University of Science and Technology, Aliero, PMB +243 1144, Birnin Kebbi, Nigeria
- Institute of Biomedical Research, Faculty of Biomedical Science, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Adeleke A Adepoju
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Hernández-Tenorio R. Degradation pathways of sulfamethoxazole under phototransformation processes: A data base of the major transformation products for their environmental monitoring. ENVIRONMENTAL RESEARCH 2024; 262:119863. [PMID: 39214487 DOI: 10.1016/j.envres.2024.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater and aquatic environments worldwide at concentrations from ng L-1 to μg L-1. Unfortunately, SMX is not completely removed in municipal wastewater treatment plants (WWTPs), thus, SMX and their transformation products (TPs) are discharged into aquatic environments, where can be transformed by phototransformation reactions. In this study, the phototransformation of SMX as well as generation of their major TPs under photolysis and photocatalysis processes was reviewed. SMX can be totally removed under photolysis and photocatalysis processes in aqueous solutions using simulated or natural radiation. Degradation pathways such as isomerization, hydroxylation, fragmentation, nitration, and substitution reactions were identified during the generation of the major TPs of SMX. Particularly, 26 TPs were considered for the creation of a data base of the major TPs of SMX generated under phototransformation processes. These 26 compounds could be used as reference during the SMX monitoring both wastewater and water bodies, using analytic methodologies such as target analysis and suspect screening. A data base of the major TPs of pharmaceuticals active compounds (PhACs) as SMX could help to implementation of best environmental monitoring programs for the study of the environmental risks both PhACs and their TPs with highest occurrence in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
5
|
Qiu X, Pu M, Zhang H, Xu B, Wang J, Xuan R. Occurrence, distribution, and correlation of antibiotics in the aquatic ecosystem of Poyang Lake Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135656. [PMID: 39213768 DOI: 10.1016/j.jhazmat.2024.135656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The widespread existence and persistence of antibiotics in the aquatic environment, and their extensive ecological risks, have attracted considerable attention. The objective of this study was to evaluate the occurrence and distribution of 25 antibiotics in environmental and biological samples from Poyang Lake Basin in China. SPE-HPLC-MS/MS was used to quantify the concentrations in different matrices. The total concentrations ranged from 144 to 933 ng/L in the water and 346 to 1154 ng/g in the sediment. In the spatial distribution analysis of this basin, the concentrations in the Ganjiang River were generally higher than those in Poyang Lake. The seasonal distribution in the wet and dry seasons showed comparatively higher concentrations during the dry season than the wet season. Additionally, antibiotics were found in various hydrophytes and animals, and the bioconcentration factor values followed the order: emergent plants > floating plants > submerged plants and benthic organisms > ducks > fish. Moreover, correlations among different matrices showed that antibiotics in viviparid snails were significantly positively correlated with those in ducks, and negatively correlated with those in carps, indicating the transmission relationship through the food chain. The results showed the trophic transfer of antibiotics in the food web and their potential environmental impacts on Poyang Lake Basin need constant attention.
Collapse
Affiliation(s)
- Xiaojian Qiu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Mengjie Pu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Haowen Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jiazhen Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
6
|
Fan X, Zhang X, Zhang Y, Jiang S, Song W. Photocurrent switchable dual-target bioassay: Signal distinction and interface reconfiguration via pH-responsive triplex DNA programming. Biosens Bioelectron 2024; 262:116540. [PMID: 38943856 DOI: 10.1016/j.bios.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Most multiplexed photoelectrochemical (PEC) sensors require additional instrumentation and cumbersome electrode modification and surface partitioning, which limits their portability and instrument miniaturization. Herein, a pH-responsive programmable triple DNA nanomachine was developed for constructing a reconfigurable multiplex PEC sensing platform. By programming the base sequence, T-A·T-riched triple DNA was designed to construct integrated nano-controlled release machine (INCRM) for simultaneous recognition of multiple targets. The INCRM enables to recognize two targets in one step, and sequentially separate the signal labels by pH adjustment. The detached signal label catalyzes glucose to produce gluconic acid, causing the C-riched DNA fold into a triple structure on the electrode surface. As a result, one target can be detected relying on the enhanced photocurrent due to accelerated electron transfer between the CdS QD labeled at the end of C-riched DNA and the electrode. The triplex DNA dissociation in pH 7.4 buffer reconfigures the electrode interface, which can be continued to detect another target. The feasibility of the multiplexed sensor is verified by the detection of extensively coexisting antibiotics enrofloxacin (ENR) and ciprofloxacin (CIP). Under the optimal conditions, wide linear range (10 fg/mL ∼ 1 μg/mL) and low detection limit (3.27 fg/mL and 9.60 fg/mL) were obtained. The pH-regulated programmable triplex DNA nanomachine-based sensing platform overcomes the technical difficulties of conventional multiplexed PEC assay, which may open the way for miniaturization of multiplexed PEC sensors.
Collapse
Affiliation(s)
- Xue Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanru Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Özkul G, Kehribar EŞ, Ahan RE, Şeker UÖŞ. An Antibiotic-Degrading Engineered Biofilm Platform to Combat Environmental Antibiotic Resistance. ACS Biomater Sci Eng 2024; 10:6625-6633. [PMID: 39226538 DOI: 10.1021/acsbiomaterials.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The presence of antibiotics in natural water bodies is a growing problem regarding the occurrence of antibiotic resistance among various species. This is mainly caused by the excessive use of medical and veterinary antibiotics as well as the lack of effective treatment processes for eliminating residual antibiotics from wastewaters. In this study, we introduce a genetically engineered biomaterial as a solution for the effective degradation of one of the dominantly found antibiotics in natural water bodies. Our biomaterial harnesses laccase-type enzymes, which are known to attack specific types of antibiotics, i.e., fluoroquinolone-type synthetic antibiotics, and as a result degradation occurs. The engineered biomaterial is built using Escherichia coli biofilm protein CsgA as a scaffold, which is fused separately to two different laccase enzymes with the SpyTag-SpyCatcher peptide-protein duo. The designed biofilm materials were successful in degrading ciprofloxacin, as demonstrated with the data obtained from mass spectrometry analysis and cell viability assays.
Collapse
Affiliation(s)
- Gökçe Özkul
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
9
|
Coutinho R, Hoshima HY, Vianna MTG, Marques M. Sustainable application of modified Luffa cylindrica biomass for removal of trimethoprim in water by adsorption with process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55280-55300. [PMID: 39227535 DOI: 10.1007/s11356-024-34797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Collapse
Affiliation(s)
- Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Henrique Yahagi Hoshima
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marco Tadeu Gomes Vianna
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Godinho O, Devos DP, Quinteira S, Lage OM. The influence of the phylum Planctomycetota in the environmental resistome. Res Microbiol 2024; 175:104196. [PMID: 38467354 DOI: 10.1016/j.resmic.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Antimicrobial resistance is one of the leading causes of death worldwide and research on this topic has been on the spotlight for a long time. More recently and in agreement with the One Health Approach, the focus has moved towards the environmental resistome. Members of the phylum Planctomycetota are ubiquitously present in the environment including in hotspots for antimicrobial resistance selection and dissemination. Furthermore, phenotypic broad-range resistance has been observed in diverse members of this phylum. Here we review the evidence available on antimicrobial resistance in the underexploited Planctomycetota and highlight key aspects for future studies.
Collapse
Affiliation(s)
- Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Quinteira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Rede de Investigação em Biodiversidade e Biologia Evolutiva, Laboratório Associado, Universidade do Porto, 4485-6661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
| | - Olga M Lage
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
12
|
Wilkinson JL, Thornhill I, Oldenkamp R, Gachanja A, Busquets R. Pharmaceuticals and Personal Care Products in the Aquatic Environment: How Can Regions at Risk be Identified in the Future? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:575-588. [PMID: 37818878 DOI: 10.1002/etc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are an indispensable component of a healthy society. However, they are well-established environmental contaminants, and many can elicit biological disruption in exposed organisms. It is now a decade since the landmark review covering the top 20 questions on PPCPs in the environment (Boxall et al., 2012). In the present study we discuss key research priorities for the next 10 years with a focus on how regions where PPCPs pose the greatest risk to environmental and human health, either now or in the future, can be identified. Specifically, we discuss why this problem is of importance and review our current understanding of PPCPs in the aquatic environment. Foci include PPCP occurrence and what drives their environmental emission as well as our ability to both quantify and model their distribution. We highlight critical areas for future research including the involvement of citizen science for environmental monitoring and using modeling techniques to bridge the gap between research capacity and needs. Because prioritization of regions in need of environmental monitoring is needed to assess future/current risks, we also propose four criteria with which this may be achieved. By applying these criteria to available monitoring data, we narrow the focus on where monitoring efforts for PPCPs are most urgent. Specifically, we highlight 19 cities across Africa, Central America, the Caribbean, and Asia as priorities for future environmental monitoring and risk characterization and define four priority research questions for the next 10 years. Environ Toxicol Chem 2024;43:575-588. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John L Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Ian Thornhill
- School of Environment, Education and Development, The University of Manchester, Manchester, UK
| | - Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Anthony Gachanja
- Department of Food Science and Post-Harvest Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosa Busquets
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
13
|
Kamanmalek S, Rice-Boayue J. Development of a national antibiotic multimetric index for identifying watersheds vulnerable to antibiotic pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122670. [PMID: 37813143 DOI: 10.1016/j.envpol.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Improved surveillance of antibiotics and antibiotic resistance (AR) throughout the environment is an important aspect of the prevention and control of threats posed to human and ecological health. In response to field investigations often limited by resources and time, this study aims to develop a systematic approach to assess watershed vulnerability to antibiotic pollution and AR by integrating modeling and field studies. The national antibiotic pollution vulnerability index was developed to identify watersheds most impacted by antibiotic sources. The index incorporates multiple metrics representing antibiotic pollution driven by both agricultural activities and municipal wastewater (i.e. outpatient antibiotic prescriptions, wastewater treatment plant effluent flow, stream order and dilution factor of effluent-receiving streams, manure application, and animal facilities), alongside climate change indicators (i.e., temperature, precipitation, and runoff). The pollution index was applied at a state level in North Carolina to identify the most-impacted watersheds and inform site selection for targeted field study quantifying azithromycin, ciprofloxacin, sulfamethoxazole, and trimethoprim concentrations. Modeled-informed sites in NC demonstrated the highest reported concentrations of azithromycin, trimethoprim, and sulfamethoxazole compared to previous NC studies, confirming the index effectiveness in identifying watersheds with higher antibiotic concentrations. At the national scale, watersheds relatively more vulnerable to antibiotic pollution are predominantly located in the Midwest, South, and Northeast regions of the U.S., with Iowa and Indiana being the most impacted states. Climate change is expected to exacerbate watershed vulnerability to agriculture-driven AR in the Midwest and Northeast due to an increase in precipitation and mean temperature coupled with intense agricultural activities. In addition, due to climate change-induced reductions in precipitation and runoff, watersheds in the Midwest, Mid-Atlantic, and South Central are dominantly at higher risk of effluent-driven AR occurrences. We have disseminated the developed indices as open-source online tools to aid in prioritizing strategies to mitigate AR occurrence across the U.S.
Collapse
Affiliation(s)
- Sara Kamanmalek
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, 32306, USA
| | - Jacelyn Rice-Boayue
- Department of Civil, Construction, And Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
14
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
15
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Wan T, Gao K. Effects of water environmental factors and antibiotics on bacterial community in urban landscape lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106740. [PMID: 37925787 DOI: 10.1016/j.aquatox.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The presence of antibiotics can affect the natural microbial community and exert selective pressure on the environment's microorganisms. This study focused on three types of urban landscape lakes in Xi'an that were closely related to human activities. By combining basic water quality indicators, antibiotic occurrence status, bacterial communities and their potential metabolic functions, Spearman correlation coefficient and redundancy analysis were used to explore the relationship between them, and further explore the impact mechanism of environmental factors and antibiotics on bacterial community structure. The results showed that ofloxacin, erythromycin, and roxithromycin were the main types of antibiotics in the three landscape lakes, with low ecological risks, and there was a clear clustering of antibiotic occurrence. Proteobacteria was the most abundant bacterial phylum, and each lake had its own unique dominant bacteria, which indicates that they are influenced by varying water sources, pollution, and other nearby environments. Statistical analysis showed that pH and nitrogen nutrients were the most critical environmental factors affecting bacterial communities (P<0.01), while tetracyclines and lincomycins were the antibiotics that had a significant impact on bacterial communities (P<0.05). Antibiotics mainly promote defense- and signal transduction-related functions, and inhibit the metabolic activity of bacterial communities. However, the impact of antibiotics on bacterial diversity, community structure, and potential metabolic function in the three urban lakes was less than that of environmental factors. These results help to clarify the mechanism and degree of impact of different interference factors (environmental factors, conventional pollutants, and antibiotics) on bacterial communities in the water environment and are important for the management of urban landscape lake water environments.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Kangyi Gao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
16
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
17
|
Liang Y, Li H, Li S, Chen S. Organic diffusive gradients in thin films (o-DGT) for determining environmental behaviors of antibiotics: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132279. [PMID: 37597396 DOI: 10.1016/j.jhazmat.2023.132279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Antibiotics are recognized as effective medicine that has been extensively used in human and veterinary. Since the rate of releasing into the environment is stronger than the rate of elimination, antibiotics are regarded as persistent or "pseudo-persistent" organic compounds that result in the development of microbial antibiotic resistance. Therefore, assessment for their ecological risks to the environment are essential. Diffusive gradients in thin films for organic compounds (o-DGT) have been adapted to investigate the environmental behaviors of antibiotics. Currently, more than 20 compounds have been tested by o-DGT in waters and soil environments. In this review, we explained the theoretical reason that o-DGT is feasible to determine the labile fraction of antibiotics in different environmental media. The most used agarose diffusive gel, and various binding agents such as resin, porous carbon and nano-scale materials have been compared to optimize the sampling of antibiotics by o-DGT. Results of deploying o-DGT devices in waters and soils from previous studies were discussed to understand the bioavailability and dynamic transport of antibiotics. Also, we provided the feasibility analysis of using o-DGT in sediments for antibiotics measurements, which is required to be carried out in future studies. To have a deep view on the development of o-DGT, its technical limitations and viable improvements were summarized in this study for further applications on antibiotics research.
Collapse
Affiliation(s)
- Yixuan Liang
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Hanbing Li
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sha Chen
- Department of Environmental Science, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
18
|
Wu C, Ge J, Gu F, Bai L. Electrochemical oxidation technique to pharmaceutical pollutants removal. CHEMOSPHERE 2023; 337:139373. [PMID: 37391083 DOI: 10.1016/j.chemosphere.2023.139373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Human progress in medical science and drug production has improved the growth process and increased human lifespan. Most of the drugs used are to control or prevent common human diseases. These drugs can be produced in different ways such as synthetic, chemical, biological, etc. On the other hand, pharmaceutical companies have a large volume of pharmaceutical effluents and wastewater that enters the environment and harms nature and human life. The main problems of entering the pharmaceutical effluent into the environmental cycle are the creation of drug resistance against the active substance of the drugs and the occurrence of abnormalities in the next generations. Therefore, the process of pharmaceutical wastewater treatment is used to reduce the level of pharmaceutical pollutants in order to enter the pharmaceutical wastewater into the environmental cycle. Until recently, filtration, passing through reverse osmosis and ion exchange resins, cleaning facilities, etc., have been various methods to remove pharmaceutical pollutants. Due to the low efficiency of the usual and old systems, the use of new methods has attracted more attention. In this article, the aim is to investigate the electrochemical oxidation method in order to remove the active ingredient of some commonly used drugs (aspirin, atorvastatin, metformin, metronidazole and ibuprofen) from the wastewater of pharmaceuticals. Therefore, in order to observe the initial conditions of the samples, a cyclic voltammetry diagram with a scanning rate of 100 mV/s has been performed. Next, by using the chronoamperometry process and applying a constant potential, the desired drugs were subjected to the electrochemical process of oxidation. As a result, the re-examined samples were subjected to cyclic voltammetry test to determine the conditions of sample oxidation peaks as well as the removal efficiency of the samples by examining the surface under the initial and final voltammetry graph. The results indicate that this method for removing selected drugs has a high removal efficiency of about 70% and 100% for atorvastatin samples. Therefore, this method is accurate, reproducible (RSD 2%), efficient, easy and economical and can be used in drug manufacturing industries. This method is used in a wide range of drug concentration. This means that by increasing the concentration of the drug, without the need to change the equipment used and the applied potential, by spending more time in the oxidation process, it is possible to remove very high amounts of the drug (more than 1000 ppm).
Collapse
Affiliation(s)
- Chunying Wu
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 32022, Jilin, China.
| | - Ji Ge
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 32022, Jilin, China.
| | - Feng Gu
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 32022, Jilin, China.
| | - Lu Bai
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 32022, Jilin, China.
| |
Collapse
|
19
|
Mathai T, Pal T, Prakash N, Mukherji S. Portable biosensor for the detection of Enrofloxacin and Ciprofloxacin antibiotic residues in food, body fluids, environmental and wastewater samples. Biosens Bioelectron 2023; 237:115478. [PMID: 37356410 DOI: 10.1016/j.bios.2023.115478] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Enrofloxacin (ENR) and its metabolite Ciprofloxacin (CIP) are both a class of fluoroquinolone antibiotics effective against a broad-spectrum microbial infection. Recent surge in the consumption of CIP and ENR has been linked to increased cases of drug-resistant pathogens. This is due to the fact that the antibiotic residues remain in milk, meat, soil and environmental water for a prolonged duration. Although gold standard methods such as LC-MS are sensitive, they suffer from expensive operation and maintenance cost, and would need dedicated facilities and tedious sample preparation steps. Such limitations make on site detection impossible for regulatory bodies in developing countries. To address this issue, we developed a portable device that can detect the presence of CIP and ENR antibiotics in the range of parts per billion (ppb) concentrations accurately. It consists of a polyaniline (PAni) coated U-bent optical fiber with anti-ENR/CIP antibody immobilized on the polymer surface. The sensor relies on the principle of evanescent wave absorbance by antigen-antibody complex. The sensor showed limit of detection (LOD) of 1 ppb with a linear range of operation from 1 ppb to 500 ppb (R2 = 0.96-0.99) in lake water, waste water treatment plant effluent, urine, blood serum, milk and meat samples. The recovery of the sensor ranges from 88% to 120% indicating reasonable accuracy. The sensor has excellent selectivity towards CIP and ENR and showed stability for four weeks indicating its field deployability and robustness. The portable sensor is scalable and contract has been given to an industry partner to mass manufacture the device.
Collapse
Affiliation(s)
- Tennyson Mathai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Tathagata Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Nayan Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India.
| |
Collapse
|
20
|
Yanwen Z, Feng C, Wei L, Jian Q, Liang X, Qianyu L, Yinlong Z. Photocatalytic degradation of a typical macrolide antibiotic roxithromycin using polypropylene fibre sheet supported N-TiO 2/graphene oxide composite materials. ENVIRONMENTAL TECHNOLOGY 2023; 44:3354-3366. [PMID: 35323102 DOI: 10.1080/09593330.2022.2057239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The post-treatment of recycling the fine photocatalyst nanoparticles restricts their application. In this study, a new photocatalytic material was synthesized by immobilizing the N-doped TiO2 and graphene oxide (GO) composite on polypropylene (PP) (N-TiO2/GO/PP) fibre sheet, and characterized based on X-ray diffraction spectroscopy (XRD), Raman spectroscopy and Scanning Electron Microscope (SEM). The photocatalytic activity was evaluated using roxithromycin (ROX) as a typical antibiotic pollutant. XRD, Raman spectra and SEM images proved that N-TiO2/GO/PP fibre sheet was successfully synthesized. The photocatalytic degradation of 10 mg L-1 ROX can reach up to 90% and the degradation rate constant was 0.2299 h-1 in surface water with the application amount of TiO2/GO/PP fibre sheet of 24.6 cm × 2.7 cm and reaction time of 9 h under the irradiation of simulated sunlight. The application amount of TiO2/GO/PP fibre sheet, initial concentration of ROX and water matrix significantly affect the degradation of ROX. A low concentration of natural organic matter (NOM) slightly promoted the degradation of ROX, while a high concentration of NOM significantly inhibited the degradation of ROX. Alkaline condition (pH 8-9) is favourable for the photocatalytic degradation of ROX by TiO2/GO/PP fibre sheet. The photocatalytic reactivity of the TiO2/GO/PP fibre sheet showed no significant decrease after three runs. Two primary degradation products of ROX were identified and they showed lower ecotoxicity than ROX. The results demonstrate that the new synthesized TiO2/GO/PP fibre sheet shows promising application prospects in the treatment of antibiotics in wastewater and surface waters.
Collapse
Affiliation(s)
- Zhou Yanwen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, People's Republic of China
| | - Cai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Li Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiu Jian
- Jiangsu Shuangliang Environmental Technology Co. Ltd., Wuxi, People's Republic of China
| | - Xu Liang
- Jiangsu Shuangliang Environmental Technology Co. Ltd., Wuxi, People's Republic of China
| | - Liu Qianyu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhang Yinlong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Tran TT, Cole M, Tomas E, Scott A, Topp E. Potential selection and maintenance of manure-originated multi-drug resistant plasmids at sub-clinical concentrations for tetracycline family antibiotics. Can J Microbiol 2023; 69:339-350. [PMID: 37267627 DOI: 10.1139/cjm-2022-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goal of this study was to (a) determine the minimum selection concentrations of tetracycline family antibiotics necessary to maintain plasmids carrying tetracycline-resistant genes and (b) correlate these results to environmental hotspot concentrations reported in previous studies. This study used two plasmids (pT295A and pT413A) originating from dairy manure in a surrogate Escherichia coli host CV601. The minimum selection concentrations of antibiotics tested in nutrient-rich medium were determined as follows: 0.1 mg/L for oxytetracycline, 0.45 mg/L for chlortetracycline, and 0.13-0.25 mg/L for tetracycline. Mixing oxytetracycline and chlortetracycline had minimum selection concentration values increased 2-fold compared to those in single antibiotic tests. Minimum selection concentrations found in this study were lower than reported environmental hotspot concentrations, suggesting that tetracycline family antibiotics were likely to be the driver for the selection and maintenance of these plasmids. Relatively high plasmid loss rates (>90%) were observed when culturing a strain carrying a tetracycline-resistant plasmid in antibiotic-free nutrient-rich and nutrient-defined media. Overall, results suggested that these plasmids can be maintained at concentrations environmentally relevant in wastewater treatment plants, sewage, manure, and manured soil; however, they are unstable and easily lost in the absence of antibiotics.
Collapse
Affiliation(s)
- Tam T Tran
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Marlena Cole
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Emily Tomas
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Andrew Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| |
Collapse
|
22
|
Khan MMT, Sklar L. Editorial: Environmental contaminants in aquatic systems and chemical safety for environmental and human health, volume II. Front Public Health 2023; 11:1157834. [PMID: 37383263 PMCID: PMC10299172 DOI: 10.3389/fpubh.2023.1157834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/08/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Mohiuddin Md. Taimur Khan
- Department of Civil and Environmental Engineering, Washington State University Tri-Cities, Richland, WA, United States
| | - Larry Sklar
- Center for Molecular Discovery and Cancer Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
23
|
Kasonga TK, Kamika I, Ngole-Jeme VM. Ligninolytic enzyme activity and removal efficiency of pharmaceuticals in a water matrix by fungus Rhizopus sp. Isolated from cassava. ENVIRONMENTAL TECHNOLOGY 2023; 44:2157-2170. [PMID: 35018877 DOI: 10.1080/09593330.2021.2024885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/15/2021] [Indexed: 05/30/2023]
Abstract
Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
24
|
Varga L, Fenner K, Singer H, Honti M. From market to environment - consumption-normalised pharmaceutical emissions in the Rhine catchment. WATER RESEARCH 2023; 239:120017. [PMID: 37172372 DOI: 10.1016/j.watres.2023.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
Direct and indirect threats by organic micropollutants can only be reliably assessed and prevented if the exposure to these chemicals is known, which in turn requires a confident estimate of their emitted amounts into the environment. APIs (Active Pharmaceutical Ingredients) enter surface waters mostly through the sewer system and wastewater treatment plants (WWTPs). However, their effluent fluxes are highly variable and influenced by several different factors that challenge robust emission estimates. Here, we defined a dimensionless, theoretically consumption-independent 'escape factor' (kesc) for estimating the amount of APIs (expected to be) present in WWTP effluents. The factor is determined as the proportion of marketed and actually emitted amounts of APIs. A large collection of German and Swiss monitoring datasets were analyzed to calculate stochastic kesc values for 31 APIs, reflecting both the magnitude and uncertainty of consumption-normalised emissions. Escape factors provide an easy-to-use tool for the estimation of average API emissions and expected variability from numerous WWTPs given that consumption data are provided, thereby supporting simulation modeling of the fate of APIs in stream networks or exposure assessments.
Collapse
Affiliation(s)
- Laura Varga
- Department of Sanitary and Environmental Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Mark Honti
- Eötvös Loránd Research Network, ELKH-BME Water Research Group, Budapest H-1111, Hungary
| |
Collapse
|
25
|
Liu Y, Shi X, Chen X, Ding P, Zhang L, Yang J, Pan J, Yu Y, Wu J, Hu G. Spatial Distribution and Risk Assessment of Antibiotics in 15 Pharmaceutical Plants in the Pearl River Delta. TOXICS 2023; 11:382. [PMID: 37112609 PMCID: PMC10143516 DOI: 10.3390/toxics11040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pharmaceutical plants are an essential source of antibiotics emitted into the aqueous environment. The monitoring of target antibiotics in pharmaceutical plants through various regions is vital to optimize contaminant release. The occurrence, distribution, removal, and ecological risk of 30 kinds of selected antibiotics in 15 pharmaceutical plants in the Pearl River Delta (PRD) were investigated in this study. Lincomycin (LIN) showed the highest concentration (up to 56,258.3 ng/L) in the pharmaceutical plant influents from Zhongshan city. Norfloxacin (NFX) showed a higher detection frequency than other antibiotics. In addition, the spatial distribution of antibiotics in pharmaceutical plants showed significant differences, with higher concentrations of total antibiotics found in pharmaceutical plant influents in Shenzhen City than those of different regions in PRD. The treatment processes adopted by pharmaceutical plants were commonly ineffective in removing antibiotics, with only 26.7% of antibiotics being effectively removed (average removal greater than 70%), while 55.6% of antibiotics had removal rates of below 60%. The anaerobic/anoxic/oxic (AAO)-membrane bioreactor (MBR) combined process exhibited better treatment performance than the single treatment process. Sulfamethoxazole (SMX), ofloxacin (OFL), erythromycin-H2O (ETM-H2O), sulfadiazine (SDZ), sulfamethazine (SMZ), norfloxacin (NFX), and ciprofloxacin (CIP) in pharmaceutical plant effluents posed high or moderate ecological risk and deserve particular attention.
Collapse
Affiliation(s)
- Yuanfei Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- School of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404000, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jian Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404000, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| |
Collapse
|
26
|
Wang K, Su Z, Reguyal F, Bian R, Li W, Yu H, Sun Y, Zhuang Y, Shang W. Seasonal occurrence of multiple classes of antibiotics in East China rivers and their association with suspended particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158579. [PMID: 36075442 DOI: 10.1016/j.scitotenv.2022.158579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding the occurrence and fate of antibiotics from different categories is vital to predict their environmental exposure and risks. This study presents the spatiotemporal occurrence of 45 multi-class antibiotics and their associations with suspended particulate matter (SPM) in Xiaoqing River (XRB) and Yellow River (YRB) via 10-month monitoring in East China. Thirty-five and 31 antibiotics were detected in XRB and YRB, respectively. Among them, fluoroquinolones (FQs) had the highest total mean concentration (up to 24.8 μg/L in XRB and 15.4 μg/L in YRB), followed by sulfonamides (SAs) (14.0 μg/L and 15.4 μg/L) and macrolides (MLs) (1.1 μg/L and 1.6 μg/L). Significant spatial-temporal variations were found in both rivers where higher concentrations of antibiotics were observed in urban and densely populated areas during winter and spring. Hydrological factors such as river flow and water volume, instream attenuation and antibiotic usage may cause the observed variabilities in the seasonal patterns of antibiotic pollution. Using linear regression analysis, for the first time, this study confirmed that the total concentrations of MLs (p < 0.05), FQs (p < 0.001) and SAs (p < 0.001) were strongly correlated with the turbidity/total suspended solids in the studied rivers (except MLs in YRB). It is thus suggested that partitioning processes onto SPM might affect the distribution of detected antibiotics in rivers, which are largely dependent on SPM composition and characteristics. The risk quotient (RQ) determined for up to 87 % of individual compound was below 0.1 in both rivers; however, the high joint toxicity reflected by the mixed RQs of detected antibiotics may rise risk alarm for aquatic species. Further aspects regarding active mechanisms of SPM-antibiotic interactions and ecological risks of coexistence of multiple antibiotics need to be investigated.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Jinan Environmental Research Academy, Jinan, Shandong 250100, China.
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Haofeng Yu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Ying Zhuang
- Qingdao Environmental Sanitation Development Center, Qingdao 266073, China
| | - Wan Shang
- Qingdao Environmental Sanitation Development Center, Qingdao 266073, China
| |
Collapse
|
27
|
Azithromycin Adsorption onto Different Soils. Processes (Basel) 2022. [DOI: 10.3390/pr10122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The antibiotic azithromycin (AZM) is one of the most persistent in the environment, with potential to cause serious health and environmental problems. As some polluting discharges containing this antibiotic can reach the soil, it is clearly relevant determining the ability of soils with different characteristics to retain it. In this research, AZM adsorption and desorption were studied for a variety of soils, using batch-type experiments. The results show that, at low doses of antibiotic added (less than or equal to 50 µmol L−1), the adsorption always reached 100%, while when higher concentrations were added (between 200 and 600 µmol L−1) the highest adsorption corresponded to soils with higher pH values. Adsorption data were fitted to the Linear, Langmuir and Freundlich models, with the latter showing the best fit, in view of the determination coefficient. No desorption was detected, indicating that AZM is strongly adsorbed to the soils evaluated, suggesting that the risks of environmental problems due to this contaminant are minimized for these edaphic media. These results can be considered relevant with respect to risk assessment and possible programming of measures aimed at controlling environmental contamination by emerging contaminants, especially from the group of antibiotics, and in particular from AZM.
Collapse
|
28
|
Bianco K, de Farias BO, Gonçalves-Brito AS, Alves do Nascimento AP, Magaldi M, Montenegro K, Flores C, Oliveira S, Monteiro MA, Spisso BF, Pereira MU, Ferreira RG, Albano RM, Cardoso AM, Clementino MM. Mobile resistome of microbial communities and antimicrobial residues from drinking water supply systems in Rio de Janeiro, Brazil. Sci Rep 2022; 12:19050. [PMID: 36351942 PMCID: PMC9646821 DOI: 10.1038/s41598-022-21040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are widespread in the environment due to the overuse of antibiotics and other pollutants, posing a threat to human and animal health. In this study, we evaluated antimicrobial residues, bacterial diversity and ARGs in two important watersheds, Guandu and São João, that supply drinking water to Rio de Janeiro city, Brazil. In addition, tap water samples were collected from three different cities in Rio de Janeiro State, including the metropolitan area of Rio de Janeiro city. Clarithromycin, sulfamethoxazole and azithromycin were found in untreated water and drinking water in all samples. A greater abundance of Proteobacteria was observed in Guandu and São João watersheds, with most of the sequences belonging to the Gammaproteobacteria class. A plasmidome-focused metagenomics approach revealed 4881 (Guandu), 3705 (São João) and 3385 (drinking water) ARGs mainly associated with efflux systems. The genes encoding metallo-β-lactamase enzymes (blaAIM, blaGIM, blaIMP, and blaVIM) were detected in the two watersheds and in drinking water samples. Moreover, we demonstrated the presence of the colistin resistance genes mcr-3 and mcr-4 (both watersheds) and mcr-9 (drinking water and Guandu) for the first time in Brazil. Our data emphasize the importance of introducing measures to reduce the disposal of antibiotics and other pollutants capable of promoting the occurrence and spread of the microbial resistome on aquatic environments and predicting possible negative impacts on human health.
Collapse
Affiliation(s)
- Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil.
| | - Beatriz Oliveira de Farias
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Ana Paula Alves do Nascimento
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Kaylanne Montenegro
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Claudia Flores
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Samara Oliveira
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Mychelle Alves Monteiro
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| | | | | | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde INCQS/FIOCRUZ, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 4365, Brazil
| |
Collapse
|
29
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
30
|
Wu S, Hua P, Gui D, Zhang J, Ying G, Krebs P. Occurrences, transport drivers, and risk assessments of antibiotics in typical oasis surface and groundwater. WATER RESEARCH 2022; 225:119138. [PMID: 36191526 DOI: 10.1016/j.watres.2022.119138] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Intensive use of antibiotics affects biogeochemical cycles and stimulates the evolution of antibiotic resistance, thus threatening global health and social development. The spatiotemporal distributions of antibiotics in single aqueous matrices have been widely documented; however, their occurrence in surface-groundwater systems has received less attention, especially in arid regions that usually have fragile ecosystems. Therefore, we investigated the occurrence of thirty-one antibiotics in the surface water and adjacent groundwater in the Xinjiang Uygur Autonomous Region, China. The results showed that the total concentrations of detected antibiotics varied from 17.37 to 84.09 ng L-1 and from 16.38 to 277.41 ng L-1 in surface and groundwater, respectively. The median concentration of antibiotics showed the pattern of norfloxacin (4.86 ng L-1) > ciprofloxacin (3.93 ng L-1) > pefloxacin (3.39 ng L-1) in surface water; whereas in groundwater, this was in the order of pefloxacin (6.30 ng L-1) > norfloxacin (4.33 ng L-1) > ciprofloxacin (2.68 ng L-1). Heatmap analysis indicated that vertical infiltration had limited effects on antibiotic exchange in surface-ground water systems because of the high potential evaporation and low water storage. Redundancy analysis suggested that the oxidation-reduction potential (p < 0.01) and dissolved oxygen (p < 0.05) jointly affected the distribution of antibiotics in surface water. Ecological risk assessment showed that antibiotics in 98.9% of surface water and 99.1% of groundwater did not pose significant risks to aquatic species. The findings of this study will help develop effective mitigation strategies for antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Shixue Wu
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China.
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Jin Zhang
- Yangtze Institute for Conservation and Development, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098 Nanjing, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
31
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Balu S, Chuaicham C, Balakumar V, Rajendran S, Sasaki K, Sekar K, Maruthapillai A. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. CHEMOSPHERE 2022; 298:134311. [PMID: 35307392 DOI: 10.1016/j.chemosphere.2022.134311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical organics are a vital milestone in contemporary human research since they treat various diseases and improve the quality of human life. However, these organic compounds are considered one of the major environmental hazards after the conception, along with the massive rise in antimicrobial resistance (AMR) in an ecosystem. There are various biological and catalytic technologies existed to eliminate these organics in aqueous system with their limitation. Advanced Oxidation processes (AOPs) are used to decompose these pharmaceutical organic compounds in the wastewater by generating reactive species with high oxidation potential. This review focused various photocatalysts, and photocatalytic oxidation processes, especially core-shell materials for photo (electro)catalytic application in pharmaceutical wastewater decomposition. Moreover, we discussed in details about the design and recent developments of core shell catalysts and comparison for photocatalytic, electrocatalytic and photo electrocatalytic applications in pharmaceutical wastewater treatment. In addition, the mixture of inorganic and organic core-shell materials, and metal-organic framework-based core-shell catalysts discussed in detail for antibiotic degradation.
Collapse
Affiliation(s)
- Surendar Balu
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Arthanareeswari Maruthapillai
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
33
|
Anliker S, Santiago S, Fenner K, Singer H. Large-scale assessment of organic contaminant emissions from chemical and pharmaceutical manufacturing into Swiss surface waters. WATER RESEARCH 2022; 215:118221. [PMID: 35259558 DOI: 10.1016/j.watres.2022.118221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This study presents a nation-wide assessment of the influence of chemical and pharmaceutical manufacturing (CPM) wastewaters on synthetic organic contaminant (SOC) emissions to Swiss surface waters. Geographic Information System (GIS) based analysis of the presence of CPM in wastewater treatment plant (WWTP) catchments revealed wide distribution of this industrial sector across Switzerland, suggesting that one-third of the 718 Swiss WWTPs may be influenced by CPM wastewaters. To reflect the diversity of this type of wastewaters, we investigated the effluents of 11 WWTPs of diverse sizes and technologies, which treated 0-100% wastewater from a variety of CPM activities. In an extensive sampling campaign, we collected temporally high resolved (i.e., daily) samples for 2-3 months to capture the dynamics of CPM discharges. The > 850 samples were then measured with liquid chromatography high-resolution mass spectrometry (LC-HRMS). Non-target characterization of the LC-HRMS time series datasets revealed that CPM wastewaters left a highly variable and site-specific signature in the effluents of the WWTPs. Particularly, compared to WWTPs with purely domestic input, a larger variety of substances (up to 15 times more compounds) with higher maximum concentrations (1-2 orders of magnitude) and more uncommon substances were found in CPM-influenced effluents. Moreover, in the latter, highly fluctuating discharges often contributed to a substantial fraction of the overall emissions. The largely varying characteristics of CPM discharges between different facilities were primarily related to the type of activities at the industries (i.e., production versus processing of chemicals) as well as to the pre-treatment and storage of CPM wastewaters. Eventually, for one WWTP, LC-HRMS time series were correlated with ecotoxicity time series obtained from bioassays and major toxic components could be identified. Overall, in view of their potential relevance to water quality, a strong focus on SOC discharges from CPM is essential, including the design of situation-specific monitoring, as well as risk assessment and mitigation strategies that consider the variability of industrial emissions.
Collapse
Affiliation(s)
- Sabine Anliker
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich,Universitaetstrasse 16, 8092, Zurich, Switzerland.
| | - Sergio Santiago
- Soluval Santiago, Rue Edouard-Dubied 2, 2108 Couvet, Switzerland.
| | - Kathrin Fenner
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich,Universitaetstrasse 16, 8092, Zurich, Switzerland; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Heinz Singer
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland.
| |
Collapse
|
34
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
35
|
Jiang Y, Ran J, Mao K, Yang X, Zhong L, Yang C, Feng X, Zhang H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113464. [PMID: 35395600 DOI: 10.1016/j.ecoenv.2022.113464] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The frequent use of antibiotics allows them to enter aqueous environments via wastewater, and many types of antibiotics accumulate in the environment due to difficult degradation, causing a threat to environmental health. It is crucial to adopt effective technical means to remove antibiotics in aqueous environments. The Fenton reaction, as an effective organic pollution treatment technology, is particularly suitable for the treatment of antibiotics, and at present, it is one of the most promising advanced oxidation technologies. Specifically, rapid Fenton oxidation, which features high removal efficiency, thorough reactions, negligible secondary pollution, etc., has led to many studies on using the Fenton reaction to degrade antibiotics. This paper summarizes recent progress on the removal of antibiotics in aqueous environments by Fenton and Fenton-like reactions. First, the applications of various Fenton and Fenton-like oxidation technologies to the removal of antibiotics are summarized; then, the advantages and disadvantages of these technologies are further summarized. Compared with Fenton oxidation, Fenton-like oxidations exhibit milder reaction conditions, wider application ranges, great reduction in economic costs, and great improved cycle times, in addition to simple and easy recycling of the catalyst. Finally, based on the above analysis, we discuss the potential for the removal of antibiotics under different application scenarios. This review will enable the selection of a suitable Fenton system to treat antibiotics according to practical conditions and will also aid the development of more advanced Fenton technologies for removing antibiotics and other organic pollutants.
Collapse
Affiliation(s)
- Yu Jiang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
36
|
Kasonga TK, Coetzee MAA, Kamika I, Momba MNB. Assessing a co-culture fungal granule ability to remove pharmaceuticals in a sequencing batch reactor. ENVIRONMENTAL TECHNOLOGY 2022; 43:1684-1699. [PMID: 33151811 DOI: 10.1080/09593330.2020.1847204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation of carbamazepine (CBZ), diclofenac sodium (DCF) and ibuprofen (IBP) was evaluated through fungal granules development in a sequencing batch reactor (SBR). Fungal granules were developed in co-culture of T. polyzona, A. niger, T. longibrachiatum, M. circinelloides and R. microsporus at a retention time (RT) of 2 days and 1 day. Ligninolytic enzymes [laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP)] were determined. Removal of pharmaceuticals was assessed and metabolites identified using the SPE-UPLC-QToF/MS methods. A pH range of 3-4.6 was found to improve the granulation development from day 6 and the production of ligninolytic enzymes [MnP (253.00 ± 14.19 U/L), Lac (111.58 ± 10.00 U/L) and LiP (95.25 ± 8.22 U/L)]. At steady-state, a removal of 97.41±0.25%, 99.83±0.14%, and 99.91±0.08 were achieved at an RT of 2 days for CBZ, DCF, and IBP, respectively, and of 91.94±0.05%, 99.31±0.12% and 97.72±0.23% at an RT of 1 days for the same PhCs. A variety of chemical reactions have been proposed for degradation pathways catalysed by enzyme-producing fungi, generating fragment ions of intermediate compounds. This study is highly relevant for cost-effective and environmentally friendly wastewater treatment processes in water scare countries.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
37
|
Capability of MXene 2D material as an amoxicillin, ampicillin, and cloxacillin adsorbent in wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Xue J, Lei D, Zhao X, Hu Y, Yao S, Lin K, Wang Z, Cui C. Antibiotic residue and toxicity assessment of wastewater during the pharmaceutical production processes. CHEMOSPHERE 2022; 291:132837. [PMID: 34762889 DOI: 10.1016/j.chemosphere.2021.132837] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/25/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Various pollutants are released during pharmaceutical production processes, which is of great concern. Most studies have focused on the terminal treatment results of mixed pharmaceutical wastewater, and further research on wastewater from the production processes is required. This study investigated the wastewater quality indicators, residual antibiotics, and biological toxicity of the wastewater during the production process in a large pharmaceutical producing factory in Northern China. The wastewater contained numerous organic pollutants, with the chemical oxygen demand (COD) values ranging from 2.0 × 103 to 2.6 × 105 mg L-1 and the total nitrogen (TN) values ranging from 1.3 × 103 to 2.0 × 104 mg L-1. High concentrations of cephalexin and cefradine remained in the wastewater of the production workshop, with the highest concentration of cefradine reaching 1328 mg L-1. The wastewater from the oxidation and solvent recovery workshops was more toxic to Vibrio fischeri and Daphnia magna than that of other workshops. Moreover, the biological acute toxicity of wastewater was significantly correlated with the concentration of COD and TN (p < 0.01). This study provides new insights into the treatment of antibiotic production wastewater, illuminating the incomplete extraction of products and the significant risk posed by pharmaceutical wastewater to the environment.
Collapse
Affiliation(s)
- JiaJia Xue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai, 200237, China
| | - Dandan Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiumei Zhao
- Environmental Protection Department of North China Pharmaceutical Company Limited, Shijiazhuang, 050015, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai, 200237, China.
| |
Collapse
|
39
|
Cardoso DN, Oliveira M, Soares AMVM, Loureiro S. Susceptibility of Folsomia candida to Agrochemicals after Multigenerational Exposure to Human Pharmaceuticals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:592-600. [PMID: 33590911 DOI: 10.1002/etc.5013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In realistic environmental scenarios, soil organisms can be exposed to a combination of pharmaceuticals and agriproducts or within different time frames. Therefore, it is necessary to increase knowledge on soil organism susceptibility under a complex mixture exposure scenario. The present study aimed to assess the susceptibility of the collembolan Folsomia candida to copper and dimethoate on a pre-exposure for 3 generations to human pharmaceuticals (fluoxetine and carbamazepine). Carryover effects on reproductive output and survival were observed after a multigenerational pre-exposure to carbamazepine or fluoxetine, considerably increasing the sensitivity of collembolans to both copper and dimethoate. This was more evident for collembolans pre-exposed to the highest concentrations of both pharmaceuticals (40 mg/kg soil), as demonstrated by a significant reduction in the number of juveniles and increased mortality. In addition, pre-exposure to carbamazepine and fluoxetine induced varying effects on subsequent exposure to the same chemical. Although pre-exposure to carbamazepine led to a decrease in collembolan reproduction, even when transferred to a clean medium, fluoxetine induced severe effects but only when collembolans were exposed to other contaminants (i.e., not when transferred to clean soil). The present study highlighted the need to consider carryover effects and possible interactions between pharmaceuticals and other contaminants under simultaneous exposure. Environ Toxicol Chem 2022;41:592-600. © 2021 SETAC.
Collapse
Affiliation(s)
- Diogo N Cardoso
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
40
|
Zhou Q, Liu G, Arif M, Shi X, Wang S. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151040. [PMID: 34673055 DOI: 10.1016/j.scitotenv.2021.151040] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of antibiotics for treating humans, animals, and plants has resulted in the contamination of aquatic environments, posing a potential threat to public health and aquatic life; hence, this topic is of great concern worldwide. Lakes are considered to be antibiotic-rich reservoirs because many of the antibiotics discharged from rivers enter lakes. Chaohu Lake is one of the top five freshwater lakes in China. This study aims to provide a current evaluation of the antibiotics present in the surface water of the Chaohu Lake basin. To this end, the occurrences of 18 antibiotics categorized into 5 different groups were investigated in the study area, and the impact of inflowing rivers on their distribution was assessed. The results showed that the concentrations of 14 antibiotics in water samples ranged from 0 to 892 ng/L, and that antibiotics were detected at most sampling sites. Among them, the Nanfeihe and Shiwulihe rivers, which are close to the city, contributed the most to antibiotic pollution, indicating the widespread occurrence of antibiotics in the study area. A risk assessment based on the risk quotient method indicated that ofloxacin, ciprofloxacin, sulfamethoxazole, erythromycin, and norfloxacin in the lake water posed a high ecological risk to algae, while sulfamethazine posed a high risk to plants (RQ >1).
Collapse
Affiliation(s)
- Qiqi Zhou
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodan Shi
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sizhuang Wang
- CAS Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
41
|
Pashaei R, Zahedipour-Sheshglani P, Dzingelevičienė R, Abbasi S, Rees RM. Effects of pharmaceuticals on the nitrogen cycle in water and soil: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:105. [PMID: 35044585 PMCID: PMC8766359 DOI: 10.1007/s10661-022-09754-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The effects of pharmaceuticals on the nitrogen cycle in water and soil have recently become an increasingly important issue for environmental research. However, a few studies have investigated the direct effects of pharmaceuticals on the nitrogen cycle in water and soil. Pharmaceuticals can contribute to inhibition and stimulation of nitrogen cycle processes in the environment. Some pharmaceuticals have no observable effect on the nitrogen cycle in water and soil while others appeared to inhibit or stimulate for it. This review reports on the most recent evidence of effects of pharmaceuticals on the nitrogen cycle processes by examination of the potential impact of pharmaceuticals on nitrogen fixation, nitrification, ammonification, denitrification, and anammox. Research studies have identified pharmaceuticals that can either inhibit or stimulate nitrification, ammonification, denitrification, and anammox. Among these, amoxicillin, chlortetracycline, ciprofloxacin, clarithromycin, enrofloxacin, erythromycin, narasin, norfloxacin, and sulfamethazine had the most significant effects on nitrogen cycle processes. This review also clearly demonstrates that some nitrogen transformation processes such as nitrification show much higher sensitivity to the presence of pharmaceuticals than other nitrogen transformations or flows such as mineralization or ammonia volatilization. We conclude by suggesting that future studies take a more comprehensive approach to report on pharmaceuticals' impact on the nitrogen cycle process.
Collapse
Affiliation(s)
- Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | | | | | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, Iran
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Robert M. Rees
- Scotland’s Rural College (SRUC), West Mains Rd. Edinburgh, Scotland, EH9 3JG UK
| |
Collapse
|
42
|
Singh S, Kumar V, Anil AG, Kapoor D, Khasnabis S, Shekar S, Pavithra N, Samuel J, Subramanian S, Singh J, Ramamurthy PC. Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113569. [PMID: 34509810 DOI: 10.1016/j.jenvman.2021.113569] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics overuse, inappropriate conduct, and discharge have led to adverse effects on various ecosystems. The occurrence of antibiotics in surface and drinking water is a matter of global concern. It is responsible for multiple disorders, including disruption of endocrine hormones and high chronic toxicity. The hospitals, pharmaceutical industries, households, cattle farms, and aquaculture are the primary discharging sources of antibiotics into the environment. This review provides complete detail on applying different nanomaterials or nanoparticles for the efficient removal of antibiotics from the diverse ecosystem with a broader perspective. Efforts have been made to focus on the degradation pathways and mechanism of antibiotic degradation using nanomaterials. More light has been shed on applying nanostructures in photocatalysis, which would be an economical and efficient solution. The nanoscale material or nanoparticles have incredible potential for mineralizing pharmaceutical compounds in aqueous solutions at low cost, easy handling characteristics, and high efficacy. Furthermore, nanoparticles can absorb the pharmaceutical by-products and wastes at a minimum cost as they can be easily recycled. With the increasing number of research in this direction, the valorization of pharmaceutical wastes and by-products will continue to expand as we progress from old conventional approaches towards nanotechnology. The utilization of nanomaterials in pharmaceutical wastewater remediation is discussed with a major focus on valorization, energy generation, and minimization and its role in the circular economy creating sustainable development.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bangalore, 560012, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, 474009, India
| | - Amith G Anil
- Department of Materials Engineering Indian Institute of Science, Bangalore, 560012, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sutripto Khasnabis
- Department of Materials Engineering Indian Institute of Science, Bangalore, 560012, India
| | - Shweta Shekar
- Department of Materials Engineering Indian Institute of Science, Bangalore, 560012, India
| | - N Pavithra
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bangalore, 560012, India
| | - Jastin Samuel
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - S Subramanian
- Department of Materials Engineering Indian Institute of Science, Bangalore, 560012, India.
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
43
|
Kasonga TK, Coetzee MAA, Kamika I, Momba MNB. Assessing the Fungal Simultaneous Removal Efficiency of Carbamazepine, Diclofenac and Ibuprofen in Aquatic Environment. Front Microbiol 2021; 12:755972. [PMID: 34966363 PMCID: PMC8710540 DOI: 10.3389/fmicb.2021.755972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Unused pharmaceutical compounds (PhCs) discharged into the aquatic environment have been regarded as emerging pollutants due to potential harmful effects on humans and the environment. Microbial bioremediation is considered as a viable option for their removal from wastewater. The aim of this study was to assess the simultaneous removal of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP) by previously isolated fungi (Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona, and Rhizopus microsporus). The tolerance to PhCs was conducted by tracking the fungal mycelium mat diameters in solid media and its dry biomass in liquid media, at the drug concentration range of 0.1 to 15 mg/L. The fungal enzymatic activities were determined for lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), respectively. The PhC removal efficiency of the fungi was assessed in aerated batch flasks and the drug concentrations and intermediate compounds formation were determined by using SPE-UPLC/MS. A tolerance over 70% was recorded for all the fungi at drug concentration of 0.1 mg/L. Manganese peroxidase was produced by all the fungi with very low amount of LiP, while all the enzymes were produced by T. polyzona. The pH of 4.3, temperature 37 ± 1.5°C and incubation time of 6 days were the optimum parameters for the fungal enzymatic activities. The best removal of CBZ (87%) was achieved by R. microsporus after 10 days. Between 78 and 100% removal of DCF was observed by all the fungi after 24 h, while 98% of IBP was removed after 2 days by M. circinelloides. Only a few intermediate compounds were identified after 3 days and disappeared after 10 days of incubation. This study demonstrated that apart from the basidiomycetes, the ascomycetes and zygomycetes are also producers of ligninolytic enzymes and have the ability to biodegrade emerging pollutants such as PhCs.
Collapse
Affiliation(s)
- Teddy K. Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Martie A. A. Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, School of Science, College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Maggy N. B. Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
44
|
Wang K, Zhuang T, Su Z, Chi M, Wang H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147811. [PMID: 34023602 DOI: 10.1016/j.scitotenv.2021.147811] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 05/19/2023]
Abstract
Sewage treatment plants (STPs) and pharmaceutical manufactories (PMFs) are recognized as important reservoirs for aquatic pollution with antibiotics. Although the occurrence of multiple classes of antibiotics has been mostly reported for STPs and PMFs, knowledge on the effects of wastewater treatment processes on the removal of antibiotics is not well documented. In this study, wastewaters were collected from different treatment points of two STPs and two PMFs in eastern China. Thirty-seven antibiotics within the four classes of fluoroquinolones (FQs), macrolides (MACs), sulfonamides (SAs) and tetracyclines (TCs) were analyzed. Among the investigated antibiotics, 19-33 out of 37 target compounds were detected at least once in the STPs wastewaters ranging from low ng/L to approximately 12.7 μ/L. In the wastewater samples collected from PMFs, up to 34 antibiotics were present with detection frequencies up to 100%, showing generally higher concentrations (up to 19.0 μ/L) than those at the STPs. FQs and SAs were the dominant antibiotic families, which accounted for more than 90% of the total antibiotic concentration in the wastewaters. Moreover, the removal of antibiotics by anaerobic-anoxic-oxic (A2O), membrane bioreactor (MBR) and conventional activated sludge (CAS) systems was evaluated. The MBR system exhibited the best performance, mainly due to the processes of biodegradation and sorption during biological treatments. Notably, several SAs (SMP, SMZ) and FQs (CIN, ENO) antibiotics were consistently detected at concentration levels of μ/L in the effluent samples. The culturable antibiotic-resistance tests and risk assessment indicated that the antibiotic-contaminated effluents would facilitate the development of resistant bacteria and pose high toxicity to non-target organisms in the aquatic environment. Overall, the findings suggested an urgent need for improving the wastewater treatment technologies for simultaneous removal of different classes of antibiotics.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Jinan Environmental Research Academy, Jinan, Shandong 250100, China.
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Menghao Chi
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Haichao Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
45
|
Seid MG, Lee C, Cho K, Hong SW. Degradation of ranitidine and changes in N-nitrosodimethylamine formation potential by advanced oxidation processes: Role of oxidant speciation and water matrix. WATER RESEARCH 2021; 203:117495. [PMID: 34388496 DOI: 10.1016/j.watres.2021.117495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of thirteen (photo/electro) chemical oxidation processes on the formation potential (FP) of N-nitrosodimethylamine (NDMA) during the chloramination of ranitidine in reverse osmosis (RO) permeate and brine. The NDMA-FP varied significantly depending on the pretreatment process, initial pH, and water matrix types. At higher initial pH values (> 7.0), most pretreatments did not reduce the NDMA-FP, presumably because few radical species and more chloramine-reactive byproducts were generated. At pH < 7.0, however, electrochemical oxidation assisted by chloride and Fe2+/H2O2, catalytic wet peroxide oxidation and peroxydisulfate-induced pretreatments removed up to 85% of NDMA-FP in the RO brine. Ultraviolet (UV) irradiation or prechlorination alone did not reduce the NDMA-FP effectively, but combined UV/chlorine treatment effectively reduced the NDMA-FP. In contrast, after UV irradiation (2.1 mW cm-2 for 0.5 h) in the presence of H2O2 and chloramine, NDMA formation increased substantially (up to 26%) during the post-chloramination of the RO permeate. Mass spectrometric analysis and structural elucidation of the oxidation byproducts indicated that compared with the reactive nitrogen species generated by UV/NH2Cl, sulfate radicals and (photo/electro)chemically generated reactive chlorine species were more promising for minimizing NDMA-FP. Unlike, the hemolytic •OH driven by UV/H2O2, the •OH from Fe(IV)-assisted pretreatments showed a significant synergistic effect on NDMA-FP reduction. Overall, the results suggest the need for a careful assessment of the type of radical species to be used for treating an RO water system containing amine-functionalized compounds.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea.
| | - Seok Won Hong
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
46
|
Fonseca VF, Duarte IA, Duarte B, Freitas A, Pouca ASV, Barbosa J, Gillanders BM, Reis-Santos P. Environmental risk assessment and bioaccumulation of pharmaceuticals in a large urbanized estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147021. [PMID: 34088124 DOI: 10.1016/j.scitotenv.2021.147021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 05/11/2023]
Abstract
We screened for the presence of 66 different pharmaceutical residues in surface waters and in multiple invertebrate and fish species of the Tejo estuary to produce an environmental risk assessment of individual pharmaceuticals and their mixtures, as well as evaluate the bioaccumulation of pharmaceuticals in one of Europe's largest estuarine systems. Sixteen pharmaceutical residues, from seven therapeutic classes, were detected in estuarine waters, with environmental mixture concentrations ranging from 42 to 1762 ng/L. Environmental risk assessment via the determination of risk quotients, demonstrated high ecological risk for the antibiotic amoxicillin and angiotensin II receptor blockers irbesartan and losartan. Moderate risk was estimated for antidepressants, antiepileptics, anxiolytics and beta-blockers, but the risk quotient of the accumulated mixture of compounds was over 380-fold higher than the no risk threshold, driven by antibiotics and angiotensin II receptor blockers. In biota, higher risk therapeutic groups were found in higher concentrations, with nine pharmaceutical residues detected, including six antibiotics and two neuroactive compounds, and maximum tissue concentrations up to 250 μg/kg. Bioaccumulation was species- and compound-specific, with only two compounds found simultaneously in water and biota, likely a result of the complex dynamics and fate of pharmaceuticals in estuarine waters. Nonetheless, higher detection frequencies were observed in species living directly on or just above the substrate (i.e. benthic and demersal species), underpinning the importance of habitat use, as well the potential role of sediment and diet based routes for pharmaceutical uptake. Ultimately, results support urgent action on managing the impact of pharmaceuticals in coastal environments, striving for improved monitoring schemes tailored to the dynamic nature and ecological diversity of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Freitas
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Ana Sofia Vila Pouca
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal
| | - Jorge Barbosa
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
47
|
Hidayati NV, Syakti AD, Asia L, Lebarillier S, Khabouchi I, Widowati I, Sabdono A, Piram A, Doumenq P. Emerging contaminants detected in aquaculture sites in Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145057. [PMID: 33592457 DOI: 10.1016/j.scitotenv.2021.145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals of emerging concern (acetaminophen (ACM), trimethoprim (TMP), oxytetracycline (OTC), and sulfamethoxazole (SMX)) were detected in water samples from aquaculture environments and nonaquaculture sites in four regions located on the northern coast of Central Java. ACM was the most prevalent pharmaceutical, with a mean concentration ranging from not detected (n.d.) to 5.5 ± 1.9 ngL-1 (Brebes). Among the target antibiotics (TMP, OTC, SMX), OTC was the most ubiquitous, with a mean concentration varying from n.d. to 8.0 ± 3.3 ngL-1. Correlation analysis demonstrated that there was a significant correlation between TMP and SMX concentrations. Based on ecological risk assessment evaluation, the use of OTC requires serious consideration, as it presented high health risks to algae, while ACM, TMP, and SMX posed an insignificant to moderate risk to algae, invertebrates, and fish. The findings obtained from this study highlight OTC as an emerging contaminant of prominent concern. More attention needs to be given to managing and planning for the sustainable management of shrimp farms, particularly in the northern part of Central Java.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia; Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Marine Science and Fisheries Faculty - Raja Ali Haji Maritime University, Jl. Politeknik Senggarang-Tanjungpinang, Riau Islands Province 29100, Indonesia.
| | | | | | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | |
Collapse
|
48
|
Tardy V, Bonnineau C, Bouchez A, Miège C, Masson M, Jeannin P, Pesce S. A pilot experiment to assess the efficiency of pharmaceutical plant wastewater treatment and the decreasing effluent toxicity to periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125121. [PMID: 33858096 DOI: 10.1016/j.jhazmat.2021.125121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical industry effluents are complex and highly variable in time. Assessing the efficiency of a pharmaceutical industry wastewater treatment plant (WWTP) and the resulting decrease in effluent toxicity and ecological risk is thus not straightforward. We set up an original in situ pilot directly connected to a pharmaceutical WWTP to monitor the chronic toxicity of successive effluents using natural periphytic biofilms. Their structural and functional responses to effluent exposure were assessed by combining (i) a molecular approach to characterize the bacterial and diatom diversity and (ii) functional measurements of photosynthetic and enzyme activities. Effluent contamination by pharmaceuticals strongly decreased after the quaternary treatment (activated carbon). Most of the structural biological characteristics improved with cumulative WWTP treatment (bacterial diversity, microbial genetic structure, and biological diatom index), showing community recovery along the treatment process. However, functional parameters did not show clear links with treatment steps, suggesting that microbial activities were not solely driven by pharmaceuticals produced during the experimental period. Operationally, this type of pilot system offers a useful tool for biomonitoring approaches and offers new approaches for industrial managers to assess the ecological risk of production effluents in receiving water.
Collapse
Affiliation(s)
| | | | - Agnès Bouchez
- INRAE, USMB, UMR CARRTEL, 74200 Thonon-les-Bains, France
| | | | | | - Pierric Jeannin
- SANOFI, Central Laboratory of Environment & Safety, route d'Avignon, 30390 Aramon, France
| | | |
Collapse
|
49
|
Hubeny J, Harnisz M, Korzeniewska E, Buta M, Zieliński W, Rolbiecki D, Giebułtowicz J, Nałęcz-Jawecki G, Płaza G. Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS One 2021; 16:e0252691. [PMID: 34086804 PMCID: PMC8177550 DOI: 10.1371/journal.pone.0252691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: ,
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grażyna Płaza
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
50
|
Bao Y, Li F, Chen L, Mu Q, Huang B, Wen D. Fate of antibiotics in engineered wastewater systems and receiving water environment: A case study on the coast of Hangzhou Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144642. [PMID: 33736269 DOI: 10.1016/j.scitotenv.2020.144642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of man-made antibiotics in natural environment has aroused attentions from both scientists and publics. However, few studies tracked antibiotics from their production site to the end of disposal environment. Taking the coastal region of Hangzhou Bay as the study area, the fate of 77 antibiotics from 6 categories in two-step wastewater treatment plants (WTPs, i.e. pharmaceutical WTP and integrated WTP) was focused; and the antibiotics in both dissolved and adsorbed phases were investigated simultaneously in this study. The ubiquitous occurrence of antibiotics was observed in the two-step WTPs, with antibiotic concentrations following the order of PWTP (LOQ - 1.0 × 105 ng·L-1) > IWTPi (for industrial wastewater treatment, LOQ - 3.7 × 103 ng·L-1) > IWTPd (for domestic sewage treatment, LOQ - 1.3 × 103 ng·L-1). And the types of antibiotics detected in excess sludge and suspended particles were in accordance with those in wastewater. Quinolones were invariably dominant in both dissolved and adsorbed fractions. High removal efficiencies (median values >50.0%) were acquired for the dissolved quinolones (except for DFX), tetracyclines, β-lactams, and lincosamides. Anaerobic/anoxic/oxic achieved the highest aqueous removal of antibiotics among the investigated treatment technologies in the three WTPs. PWTP and IWTP removed 9797 and 487 g·d-1 of antibiotics, respectively; and a final effluent with 126.4 g·d-1 of antibiotics was discharged into the effluent-receiving area (ERA) of Hangzhou Bay. Source apportionment analysis demonstrated that the effluents of IWTPd and IWTPd contributed respectively 39.3% and 8.9% to the total antibiotics in the ERA. The results illustrate quantitatively the antibiotic flows from engineered wastewater systems to natural water environment, on the basis of which the improvements of wastewater treatment technologies and discharge management would be put forward.
Collapse
Affiliation(s)
- Yingyu Bao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|