1
|
Ding J, Liu Y, Li Y, Huang Y, Li S, Wang F, Chen D, Lu B, Lin N. Insights into the accumulation and hepatobiliary transport of bisphenols (BPs) in liver and bile. ENVIRONMENTAL RESEARCH 2024; 263:120251. [PMID: 39476930 DOI: 10.1016/j.envres.2024.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Bisphenols (BPs) are widely distributed in daily life as typical endocrine disruptors. In this study, we examined the distribution of bisphenol A (BPA) and BPA alternatives in liver (n = 149) and bile (n = 102) tissues from the patients with liver cancer, and calculated the hepatobiliary transport efficiency of BPs (TB-L). Seven BPs were detected in both liver (median: 0.859 ng/g; range: 0.0200-26.7 ng/g) and bile (median: 0.307 ng/mL; range: 0.0200-26.7 ng/mL), and BPA was the predominant in both liver (mean: 1.89 ng/g) and bile (mean: 1.65 ng/mL). The TB-L of BPs was reported for the first time and found to be negatively correlated with the molecular weight and Log Kow of BPs. Furthermore, BPA and ∑BPs in liver showed a significant negative correlation with age, and a significant difference was found in BPs in liver and bile in hepatocellular carcinoma patients with different genders (p < 0.05). For liver function indicators, levels of BPs showed significant positive correlation with γ-glutamyl transferase (GGT) and alanine aminotransferase (ALT), especially BPBP levels in bile. This suggests that BPs may have some correlation with hepatocellular carcinoma. This is the first report on distribution characteristics of BPs in the liver and bile of hepatocellular carcinoma patients, and is the first study to report the hepatobiliary transport efficiency of BPs. The results should contribute to the understanding of BPs accumulation in the liver and bile and further relationship with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Ding
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongheng Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Bin Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Lepeule J, Broséus L, Jedynak P, Masdoumier C, Philippat C, Guilbert A, Nakamura A. [Environmental exposures and epigenome changes within the first 1000 days of life]. Med Sci (Paris) 2024; 40:947-954. [PMID: 39705565 DOI: 10.1051/medsci/2024178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Early environmental exposures can have long-term effects on child's development and health. Epigenetic modifications may partly explain these effects, and studying them could lead to significant advances in our understanding of the underlying mechanisms. This review summarises recent data on epigenetic and environmental epidemiology during the first 1000 days of life for several common exposures, including tobacco, phenols and phthalates, air pollutants, ambient temperature and vegetation.
Collapse
Affiliation(s)
- Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Lucile Broséus
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Paulina Jedynak
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Chloé Masdoumier
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Claire Philippat
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Ariane Guilbert
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| |
Collapse
|
3
|
Ji H, Zhu H, Wang Z, Liang H, Chen Y, Liu X, Yuan W, Wu Q, Yuan Z, Miao M. Prenatal bisphenol analogs exposure and placental DNA hypomethylation of genes in the PPAR signaling pathway: Insights for bisphenol analogs' effects on infant anthropometry. ENVIRONMENTAL RESEARCH 2024; 266:120476. [PMID: 39613017 DOI: 10.1016/j.envres.2024.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Prenatal exposure to bisphenol analogs (BPs) may pose hazards to offspring's health; however, their underlying mechanisms remain to be elucidated. DNA methylation, a major epigenetic mechanism, may be involved in early programming following environmental disturbances. In this prospective study, we investigated associations between prenatal BPs exposure and the placental DNA methylation levels of 14 candidate genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway among 205 mother-infant pairs and explored the potential mediating role of the DNA methylation in the association of prenatal BPs exposure with anthropometric measurements of infants aged 1 year. We observed a general pattern that prenatal BPs exposure was associated with the DNA hypomethylation of candidate genes, with associations consistently and notably observed for PPAR α (PPARA), retinoid X receptor α (RXRA), acetyl-CoA acyltransferase 1, and acyl-CoA dehydrogenase medium chain (ACADM) in linear regression and Bayesian kernel machine regression. Both models identified bisphenol F (BPF) as the predominant compound. We found inverse associations between the placental DNA methylation levels of most candidate genes, such as PPARA, RXRA, ACADM, and nuclear receptor subfamily 1 group H member 3 (NR1H3), and the length-for-age z-score, arm circumference-for-age z-score, subscapular skinfold-for-age z-score, and abdominal skinfold thickness of the infants. The DNA methylation levels of RXRA and NR1H3 could mediate the associations between prenatal BPF exposure and increased infant anthropometric measurements, with mediating portions ranging from 23.02% to 30.53%. Our findings shed light on the potential mechanisms underlying the effects of prenatal BPs exposure on infant growth and call for urgent actions for risk assessment and regulation of BPF. Future cohort studies with larger sample sizes are warranted to confirm our findings.
Collapse
Affiliation(s)
- Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Zhengwei Yuan
- NHC Key Laboratory of Congenital Malformation (Key Laboratory of Health Ministry for Congenital Malformation), Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
4
|
Cisneros EP, Morse BA, Savk A, Malik K, Peppas NA, Lanier OL. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J Nanobiotechnology 2024; 22:714. [PMID: 39548452 PMCID: PMC11566257 DOI: 10.1186/s12951-024-02954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the "one-size-fits-all" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations. Key patient-dependent properties impacting NP delivery include blood flow rates, body fat distribution, reproductive organ vascularization, hormone and protein levels, immune responses, and chromosomal differences. Understanding these variables is crucial for developing effective, patient-specific nanotechnologies. The formation of a protein corona around NPs upon exposure to biological fluids significantly alters NP properties, affecting biodistribution, pharmacokinetics, cytotoxicity, and organ targeting. The dynamics of the protein corona, such as time-dependent composition and formation of soft and hard coronas, depend on NP characteristics and patient-specific serum components. This review highlights the importance of understanding protein corona formation across different patient backgrounds and its implications for NP design, including sex, ancestry, age, environment, and disease state. By exploring these variables, we aim to advance the development of personalized nanomedicine, improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Ethan P Cisneros
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley A Morse
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas, Austin, USA
| | - Ani Savk
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Khyati Malik
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Olivia L Lanier
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA.
- Cancer Therapeutics Program, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Mirzakhani H. From womb to wellness: early environmental exposures, cord blood DNA methylation and disease origins. Epigenomics 2024; 16:1175-1183. [PMID: 39263926 PMCID: PMC11457657 DOI: 10.1080/17501911.2024.2390823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Fetal exposures can induce epigenetic modifications, particularly DNA methylation, potentially predisposing individuals to later health issues. Cord blood (CB) DNA methylation provides a unique window into the fetal epigenome, reflecting the intrauterine environment's impact. Maternal factors, including nutrition, smoking and toxin exposure, can alter CB DNA methylation patterns, associated with conditions from obesity to neurodevelopmental disorders. These epigenetic changes underscore prenatal exposures' enduring effects on health trajectories. Technical challenges include tissue specificity issues, limited coverage of current methylation arrays and confounding factors like cell composition variability. Emerging technologies, such as single-cell sequencing, promise to overcome some of these limitations. Longitudinal studies are crucial to elucidate exposure-epigenome interactions and develop prevention strategies. Future research should address these challenges, advance public health initiatives to reduce teratogen exposure and consider ethical implications of epigenetic profiling. Progress in CB epigenetics research promises personalized medicine approaches, potentially transforming our understanding of developmental programming and offering novel interventions to promote lifelong health from the earliest stages of life.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
England-Mason G, Merrill SM, Liu J, Martin JW, MacDonald AM, Kinniburgh DW, Gladish N, MacIsaac JL, Giesbrecht GF, Letourneau N, Kobor MS, Dewey D. Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration. EPIGENOMES 2024; 8:31. [PMID: 39189257 PMCID: PMC11348373 DOI: 10.3390/epigenomes8030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah M. Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
| | - Amy M. MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W. Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Gladish
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Sabaredzovic A, Lyon-Caen S, Bayat S, Slama R, Philippat C, Lepeule J. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. ENVIRONMENT INTERNATIONAL 2024; 189:108763. [PMID: 38824843 DOI: 10.1016/j.envint.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; ISGlobal, Barcelona, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), 59000 Lille, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | | | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
8
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
9
|
Blaauwendraad SM, Shahin S, Duh-Leong C, Liu M, Kannan K, Kahn LG, Jaddoe VWV, Ghassabian A, Trasande L. Fetal bisphenol and phthalate exposure and early childhood growth in a New York City birth cohort. ENVIRONMENT INTERNATIONAL 2024; 187:108726. [PMID: 38733764 DOI: 10.1016/j.envint.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates during pregnancy may disrupt fetal developmental programming and influence early-life growth. We hypothesized that prenatal bisphenol and phthalate exposure was associated with alterations in adiposity through 4 years. This associations might change over time. METHODS Among 1091 mother-child pairs in a New York City birth cohort study, we measured maternal urinary concentrations of bisphenols and phthalates at three time points in pregnancy and child weight, height, and triceps and subscapular skinfold thickness at ages 1, 2, 3, and 4 years. We used linear mixed models to assess associations of prenatal individual and grouped bisphenols and phthalates with overall and time-point-specific adiposity outcomes from birth to 4 years. RESULTS We observed associations of higher maternal urinary second trimester total bisphenol and bisphenol A concentrations in pregnancy and overall child weight between birth and 4 years only (Beta 0.10 (95 % confidence interval 0.04, 0.16) and 0.07 (0.02, 0.12) standard deviation score (SDS) change in weight per natural log increase in exposure), We reported an interaction of the exposures with time, and analysis showed associations of higher pregnancy-averaged mono-(2-carboxymethyl) phthalate with higher child weight at 3 years (0.14 (0.06, 0.22)), and of higher high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-carboxymethyl) phthalate, and mono-(2-ethylhexyl) phthalate with higher child weight at 4 years (0.16 (0.04, 0.28), 0.15 (0.03, 0.27), 0.19 (0.07, 0.31), 0.16 (0.07, 0.24), 0.11 (0.03, 0.19)). Higher pregnancy-averaged high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-2(ethyl-5-oxohexyl) phthalate concentrations were associated with higher child BMI at 4 years (0.20 (0.05, 0.35), 0.20 (0.05, 0.35), 0.22 (0.06, 0.37), 0.20 (0.05, 0.34), 0.20 (0.05, 0.34)). For skinfold thicknesses, we observed no associations. DISCUSSION This study contributes to the evidence suggesting associations of prenatal exposure to bisphenols and high-molecular-weight phthalates on childhood weight and BMI.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sarvenaz Shahin
- Departments of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
| | - Carol Duh-Leong
- Departments of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Kurunthachalam Kannan
- Departments of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
| | - Linda G Kahn
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Akhgar Ghassabian
- Departments of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States; Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Leonardo Trasande
- Departments of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States; Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States; New York University College of Global Public Health, New York City, NY 10016, United States.
| |
Collapse
|
10
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
12
|
Li Z, Chen C, Ying P, Ji-Jun G, Lian-Jie D, Dan H, Xuan-Min Z, Tian-Yue G, Chao Z, Jia-Hu H. Bisphenol A and its analogue bisphenol S exposure reduce estradiol synthesis via the ROS-mediated PERK/ATF4 signaling pathway. Food Chem Toxicol 2023; 182:114179. [PMID: 37944787 DOI: 10.1016/j.fct.2023.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
As a kind of endocrine-disrupting chemicals, BPA may affect the human placenta. Due to consumer unease about BPA, many manufacturers are using alternatives to BPA, such as BPS. However, some reports suggest that BPS may produce similar results to BPA. To understand how BPA/BPS leads to reduced synthesis of placental estradiol (E2), we conducted studies using a human choriocarcinoma cell (JEG-3) model for research. In this study. Elisa assay revealed that both BPA/BPS exposures decreased E2 synthesis in JEG-3 cells. The results of RT-PCR showed that both BPA and BPS could reduce the mRNA expression of CYP19A1, a key enzyme for E2 synthesis in JEG-3 cells. In addition, Western blot assay showed that BPA/BPS-induced ER-stress PERK/eIF2α/ATF4 signaling protein expression was increased. The expression of ROS in cells after exposure to BPA/BPS was detected using the 2,7-dichlorodihydrofluorescein diacetate (DCF-DA) method. The results of this experiment showed that BPA/BPS significantly induced an inhibition of ROS in JEG-3 cells. The present study concluded that, firstly, BPS exposure induced almost the same effect as BPA in reducing E2 synthesis in JEG-3 cells. Second, BPA/BPS exposure may reduce E2 synthesis in JEG-3 cells by increasing ROS levels and thus activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Zhou Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Chen Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Pan Ying
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Gu Ji-Jun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Dou Lian-Jie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Huang Dan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Zou Xuan-Min
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Guan Tian-Yue
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China
| | - Zhang Chao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China.
| | - Hao Jia-Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui, Medical University, Hefei, China.
| |
Collapse
|
13
|
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023; 15:4657. [PMID: 37960310 PMCID: PMC10648368 DOI: 10.3390/nu15214657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).
Collapse
Affiliation(s)
- Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Yolanda Gálvez-Ontiveros
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
14
|
Pan Y, Wu M, Shi M, Shi P, Zhao N, Zhu Y, Karimi-Maleh H, Ye C, Lin CT, Fu L. An Overview to Molecularly Imprinted Electrochemical Sensors for the Detection of Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2023; 23:8656. [PMID: 37896749 PMCID: PMC10611091 DOI: 10.3390/s23208656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation. Molecularly imprinted electrochemical sensors (MIES) have emerged as a promising tool for BPA detection due to their high selectivity, sensitivity, affordability, and portability. This review provides a comprehensive overview of recent advances in MIES for BPA detection. We discuss the operating principles, fabrication strategies, materials, and methods used in MIES. Key findings show that MIES demonstrate detection limits comparable or superior to conventional methods like HPLC and GC-MS. Selectivity studies reveal excellent discrimination between BPA and structural analogs. Recent innovations in nanomaterials, novel monomers, and fabrication techniques have enhanced sensitivity, selectivity, and stability. However, limitations exist in reproducibility, selectivity, and stability. While challenges remain, MIES provide a low-cost portable detection method suitable for on-site BPA monitoring in diverse sectors. Further optimization of sensor fabrication and characterization will enable the immense potential of MIES for field-based BPA detection.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
15
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
16
|
Karramass T, Sol C, Kannan K, Trasande L, Jaddoe V, Duijts L. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121853. [PMID: 37247769 DOI: 10.1016/j.envpol.2023.121853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fetal exposure to bisphenols and phthalates may lead to alterations in the respiratory and immune system development in children, and to adverse respiratory health. AIMTO STUDY: the associations of fetal bisphenols and phthalates exposure with lung function and asthma at age 13 years. STUDY DESIGN and Methods This study among 1020 children was embedded in a population-based prospective cohort study. We measured maternal urine bisphenol and phthalate concentrations in first, second and third trimester of pregnancy, and lung function by spirometry and asthma by questionnaires at age 13 years. Multivariable linear and logistic regression models were applied. RESULTS Maternal urine bisphenol and phthalate concentrations averaged during pregnancy were not associated with childhood lung function or asthma. Associations of maternal urine bisphenol and phthalate concentrations in specific trimesters with respiratory outcomes showed that one interquartile range increase in the natural log transformed maternal urine mono-isobutyl phthalate concentration in second trimester was associated with a higher FEV1/FVC, but not with asthma, accounting for confounders and multiple-testing correction. Although there were associations of higher second trimester bisphenol S with a lower FVC and FEV1 in boys and girls, and of higher first trimester bisphenol S with a decreased risk of asthma in boys and an increased risk of asthma in girls, these results did not remain significant after correction for multiple testing. Results were not modified by maternal history of asthma or atopy. CONCLUSIONS Maternal urine bisphenol and phthalate concentrations averaged or in specific trimesters during pregnancy were not strongly associated with childhood lung function and asthma at age 13 years. BPS, as a BPA substitute, tended to be associated with impaired lung function and altered risk of asthma, partly sex-dependent, but its strength was limited by a relatively low detection rate and should be queried in contemporary cohorts.
Collapse
Affiliation(s)
- Tarik Karramass
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chalana Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Health, Wadsworth Center, New York State, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States
| | - Leonardo Trasande
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States; Department of Pediatrics, New York, University School of Medicine, United States; Department of Environmental Medicine, New York University School of Medicine, United States; Department of Population Health, New York University School of Medicine, United States; New York Wagner School of Public Service, United States; New York University Global Institute of Public Health, New York, United States
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
19
|
McCabe CF, Goodrich JM, Bakulski KM, Domino SE, Jones TR, Colacino J, Dolinoy DC, Padmanabhan V. Probing prenatal bisphenol exposures and tissue-specific DNA methylation responses in cord blood, cord tissue, and placenta. Reprod Toxicol 2023; 115:74-84. [PMID: 36473650 PMCID: PMC9851062 DOI: 10.1016/j.reprotox.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The early-gestational fetal epigenome establishes the landscape for fetal development and is susceptible to disruption via environmental stressors including chemical exposures. Research has explored how cell- and tissue-type-specific epigenomic signatures contribute to human disease, but how the epigenome in each tissue comparatively responds to environmental exposures is largely unknown. This pilot study compared DNA methylation in four previously identified genes across matched cord blood (CB), cord tissue (CT), and placental (PL) samples from 28 mother-infant pairs in tthe Michigan Mother Infant Pairs study; evaluated association between prenatal exposure to bisphenols (BPA, BPF, and BPS) and DNA methylation (DNAm) by tissue type; compared epigenome-wide DNAm of CB and PL; and explored associations between prenatal bisphenol exposures and epigenome-wide DNAm in PL. Bisphenol concentrations were quantified in first-trimester maternal urine. DNAm was assessed at four genes via pyrosequencing in three tissues; epigenome-wide DNAm analysis via Infinium MethylationEPIC array was completed on CB and PL. Candidate gene analysis revealed tissue-specific differences across all genes. In adjusted linear regression, BPA and BPF were associated with DNAm across candidate genes in PL but not CB and CT. Epigenome-wide comparison of matched CB and PL DNAm revealed tissue-specific differences at most CpG sites and modest associations between maternal first-trimester bisphenol exposures and PL but not CB DNAm. These data endorse inclusion of a variety of tissues in prenatal exposure studies. Overlapping and divergent responses in CB, CT, and PL demonstrate their utility in combination to capture a fuller picture of the epigenetic effect of developmental exposures.
Collapse
Affiliation(s)
- Carolyn F McCabe
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven E Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Justin Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Zhang H, Bai X, Zhang T, Song S, Zhu H, Lu S, Kannan K, Sun H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17143-17152. [PMID: 36441562 DOI: 10.1021/acs.est.2c06091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on neonicotinoid (NEO) exposure in pregnant women and fetuses are scarce, and transplacental transfer of these insecticides is unknown. In this study, parent NEOs (p-NEOs) and their metabolites (m-NEOs) were determined in 95 paired maternal (MS) and cord serum (CS) samples collected in southern China. Imidacloprid was the predominant p-NEO in both CS and MS samples, found at median concentrations of 1.84 and 0.79 ng/mL, respectively, whereas N-desmethyl-acetamiprid was the most abundant m-NEO in CS (median: 0.083 ng/mL) and MS (0.13 ng/mL). The median transplacental transfer efficiencies (TTEs) of p-NEOs and m-NEOs were high, ranging from 0.81 (thiamethoxam, THM) to 1.61 (olefin-imidacloprid, of-IMI), indicating efficient placental transfer of these insecticides. Moreover, transplacental transport of NEOs appears to be passive and structure-dependent: cyanoamidine NEOs such as acetamiprid and thiacloprid had higher TTE values than the nitroguanidine NEOs, namely, clothianidin and THM. Multilinear regression analysis revealed that the concentrations of several NEOs in MS were associated significantly with hematological parameters related to hepatotoxicity and renal toxicity. To our knowledge, this is the first analysis of the occurrence and distribution of NEOs in paired maternal-fetal serum samples.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510275, P.R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
22
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Sol CM, Gaylord A, Santos S, Jaddoe VWV, Felix JF, Trasande L. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clin Epigenetics 2022; 14:125. [PMID: 36217170 PMCID: PMC9552446 DOI: 10.1186/s13148-022-01345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phthalates and bisphenols are non-persistent endocrine disrupting chemicals that are ubiquitously present in our environment and may have long-lasting health effects following fetal exposure. A potential mechanism underlying these exposure-outcome relationships is differential DNA methylation. Our objective was to examine the associations of maternal phthalate and bisphenol concentrations during pregnancy with DNA methylation in cord blood using a chemical mixtures approach. METHODS This study was embedded in a prospective birth cohort study in the Netherlands and included 306 participants. We measured urine phthalates and bisphenols concentrations in the first, second and third trimester. Cord blood DNA methylation in their children was processed using the Illumina Infinium HumanMethylation450 BeadChip using an epigenome-wide association approach. Using quantile g-computation, we examined the association of increasing all mixture components by one quartile with cord blood DNA methylation. RESULTS We did not find evidence for statistically significant associations of a maternal mixture of phthalates and bisphenols during any of the trimesters of pregnancy with DNA methylation in cord blood (all p values > 4.01 * 10-8). However, we identified one suggestive association (p value < 1.0 * 10-6) of the first trimester maternal mixture of phthalates and bisphenols and three suggestive associations of the second trimester maternal mixture of phthalates and bisphenols with DNA methylation in cord blood. CONCLUSIONS Although we did not identify genome-wide significant results, we identified some suggestive associations of exposure to a maternal mixture of phthalates and bisphenols in the first and second trimester with DNA methylation in cord blood that need further exploration in larger study samples.
Collapse
Affiliation(s)
- Chalana M. Sol
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abigail Gaylord
- grid.137628.90000 0004 1936 8753Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY 10016 USA
| | - Susana Santos
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W. V. Jaddoe
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F. Felix
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Pediatrics, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Environmental Medicine, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,New York Wagner School of Public Service, New York City, NY, 10016, USA. .,New York University Global Institute of Public Health, New York City, NY, 10016, USA.
| |
Collapse
|
24
|
Blaauwendraad SM, Jaddoe VW, Santos S, Kannan K, Dohle GR, Trasande L, Gaillard R. Associations of maternal urinary bisphenol and phthalate concentrations with offspring reproductive development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119745. [PMID: 35820574 DOI: 10.1016/j.envpol.2022.119745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Fetal exposure to bisphenols and phthalates may influence development of the reproductive system. In a population-based, prospective cohort study of 1059 mother-child pairs, we examined the associations of maternal gestational urinary bisphenols and phthalates concentrations with offspring reproductive development from infancy until 13 years. We measured urinary bisphenol and phthalate concentrations in each trimester. We obtained information on cryptorchidism or hypospadias after birth from medical records. At 9.7 years, we measured testicular and ovarian volume by MRI. At 13.5 years, we measured child Tanner stages and menstruation through questionnaire. We performed linear or logistic regression models for boys and girls to assess the associations of maternal urinary average and trimester-specific bisphenols and phthalates with child reproductive outcomes. Next, to further explore potential synergistic or additive effects of exposures together, we performed mixed exposure models using a quantile g computation approach. Models were adjusted for maternal age, ethnicity, body-mass index, education, parity, energy intake, smoking and alcohol use, and child's gestational age at birth, birthweight and body-mass index. In boys, no associations of maternal gestational phthalate or bisphenol with offspring cryptorchidism and hypospadias were found. Higher maternal high-molecular-weight phthalate and total bisphenol, but not phthalic acid or low-molecular-weight phthalate, were associated with larger child testicular volume at 10 years. Higher maternal phthalic acid and total bisphenol were associated with earlier genital and pubic hair development at 13 years, respectively (p-values<0.05). In girls, we found no associations of maternal urinary bisphenol and phthalate with ovarian volume or menstrual age. Only higher maternal urinary high-molecular-weight phthalate was associated with earlier pubic hair development at 13 years (p-values <0.05). Higher mixture exposure was associated with earlier pubic hair development in both sexes. In conclusion, higher maternal gestational urinary bisphenol and phthalate concentrations were associated with alterations in offspring reproductive development, mainly in boys.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
| | - Gert R Dohle
- Department of Urology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA; Department of Population Health, New York University School of Medicine, New York City, NY, USA; New York University Wagner School of Public Service, New York City, NY, 10016, USA; New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Navarro-Lafuente F, Adoamnei E, Arense-Gonzalo JJ, Prieto-Sánchez MT, Sánchez-Ferrer ML, Parrado A, Fernández MF, Suarez B, López-Acosta A, Sánchez-Guillamón A, García-Marcos L, Morales E, Mendiola J, Torres-Cantero AM. Maternal urinary concentrations of bisphenol A during pregnancy are associated with global DNA methylation in cord blood of newborns in the "NELA" birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156540. [PMID: 35688234 DOI: 10.1016/j.scitotenv.2022.156540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) set a public health risk through disruption of normal physiological processes. The toxicoepigenetic mechanisms of developmental exposure to common EDCs, such as bisphenol A (BPA), are poorly known. The present study aimed to evaluate associations between perinatal maternal urinary concentrations of BPA, bisphenol S (BPS) and bisphenol F (BPF) and LINE-1 (long interspersed nuclear elements) and Alu (short interspersed nuclear elements, SINEs) DNA methylation levels in newborns, as surrogate markers of global DNA methylation. Data come from 318 mother-child pairs of the `Nutrition in Early Life and Asthma´ (NELA) birth cohort. Urinary bisphenol concentration was measured by dispersive liquid-liquid microextraction and ultrahigh performance liquid chromatography with tandem mass spectrometry detection. DNA methylation was quantitatively assessed by bisulphite pyrosequencing on 3 LINEs and 5 SINEs. Unadjusted linear regression analyses showed that higher concentration of maternal urinary BPA in 24th week's pregnancy was associated with an increase in LINE-1 methylation in all newborns (p = 0.01) and, particularly, in male newborns (p = 0.03). These associations remained in full adjusted models [beta = 0.09 (95 % CI = 0.03; 0.14) for all newborns; and beta = 0.10 (95 % CI = 0.03; 0.17) for males], including a non-linear association for female newborns as well (p-trend = 0.003). No associations were found between maternal concentrations of bisphenol and Alu sequences. Our results suggest that exposure to environmental levels of BPA may be associated with a modest increase in LINE-1 methylation -as a relevant marker of epigenomic stability- during human fetal development. However, any effects on global DNA methylation are likely to be small, and of uncertain biological significance.
Collapse
Affiliation(s)
| | - Evdochia Adoamnei
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Julián J Arense-Gonzalo
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María T Prieto-Sánchez
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - María L Sánchez-Ferrer
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - Antonio Parrado
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mariana F Fernández
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Suarez
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Luis García-Marcos
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | - Eva Morales
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jaime Mendiola
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto M Torres-Cantero
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Yang R, Duan J, Li H, Sun Y, Shao B, Niu Y. Bisphenol-diglycidyl ethers in paired urine and serum samples from children and adolescents: Partitioning, clearance and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119351. [PMID: 35489536 DOI: 10.1016/j.envpol.2022.119351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA), which may also adversely affect the growth and development of children and adolescents. Here, we investigated nine bisphenol-diglycidyl ethers (BDGEs) in 181 paired urine and serum samples from children and adolescents from Beijing to determine their partitioning, clearance and exposure levels. The results showed that nine BDGEs were detected in 181 urine and serum samples from children and adolescents from Beijing. Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H2O) was the primary pollutant. The daily intake of ∑BDGEs was 15.217 ng/kg bw/day among children and adolescents in Beijing. The ranking of BDGEs in terms of renal clearance rate (CLrenal) in this study population was BADGE > BADGE·2H2O > BFDGE > bisphenol F bis(3-chloro-2-hydroxypropyl) glycidyl ether (BFDGE·2HCl) > bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H2O). In addition, the serum and urine ratios (S/U ratios) of BFDGE·2HCl, BADGE·2H2O, BFDGE, BADGE, and BADGE·HCl·H2O were higher than 1, indicating that these contaminants have a higher enrichment capacity in human blood. To our knowledge, this is the first study on the partitioning and renal clearance rate of BDGEs in paired urine and serum samples from children and adolescents.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiali Duan
- Office of Health Promotion, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Ying Sun
- Office of Health Promotion, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China.
| |
Collapse
|
27
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
28
|
Blaauwendraad SM, Gaillard R, Santos S, Sol CM, Kannan K, Trasande L, Jaddoe VW. Maternal Phthalate and Bisphenol Urine Concentrations during Pregnancy and Early Markers of Arterial Health in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47007. [PMID: 35471947 PMCID: PMC9041527 DOI: 10.1289/ehp10293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Fetal exposure to endocrine-disrupting chemicals such as phthalates and bisphenols might lead to fetal cardiovascular developmental adaptations and predispose individuals to cardiovascular disease in later life. OBJECTIVES We examined the associations of maternal urinary bisphenol and phthalate concentrations in pregnancy with offspring carotid intima-media thickness and distensibility at the age of 10 y. METHODS In a population-based, prospective cohort study of 935 mother-child pairs, we measured maternal urinary phthalate and bisphenol concentrations at each trimester. Later, we measured child carotid intima-media thickness and distensibility in the children at age 10 y using ultrasound. RESULTS Maternal urinary average or trimester-specific phthalate concentrations were not associated with child carotid intima-media thickness at age 10 y. Higher maternal average concentrations of total bisphenol, especially bisphenol A, were associated with a lower carotid intima-media thickness [differences - 0.15 standard deviation score and 95% confidence interval (CI): - 0.24 , - 0.09 and - 0.13 (95% CI: - 0.22 , - 0.04 ) per interquartile range (IQR) increase in maternal urinary total bisphenol and bisphenol A concentration]. Trimester-specific analysis showed that higher maternal third-trimester total bisphenol and bisphenol A concentrations were associated with lower child carotid intima-media thickness [differences - 0.13 (95% CI: - 0.22 , - 0.04 ) and - 0.13 (95% CI: - 0.22 , - 0.05 ) per IQR increase in maternal urinary bisphenol concentration]. Maternal urinary bisphenol or phthalate concentrations were not associated with child carotid distensibility. DISCUSSION In this large prospective cohort, higher maternal urinary bisphenols concentrations were associated with smaller childhood carotid intima-media thickness. Further studies are needed to replicate this association and to identify potential underlying mechanisms. https://doi.org/10.1289/EHP10293.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chalana M. Sol
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
- New York University Wagner School of Public Service, New York University, New York, New York, USA
- New York University College of Global Public Health, New York University, New York, New York, USA
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
29
|
Zou Z, Harris LK, Forbes K, Heazell AEP. Sex-specific effects of Bisphenol a on the signalling pathway of ESRRG in the human placenta. Biol Reprod 2022; 106:1278-1291. [PMID: 35220427 PMCID: PMC9198953 DOI: 10.1093/biolre/ioac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) exposure during pregnancy is associated with low fetal weight, particularly in male fetuses. The expression of estrogen-related receptor gamma (ESRRG), a receptor for BPA in the human placenta, is reduced in fetal growth restriction. This study sought to explore whether ESRRG signaling mediates BPA-induced placental dysfunction and determine whether changes in the ESRRG signaling pathway are sex-specific. Placental villous explants from 18 normal term pregnancies were cultured with a range of BPA concentrations (1 nM–1 μM). Baseline BPA concentrations in the placental tissue used for explant culture ranged from 0.04 to 5.1 nM (average 2.3 ±1.9 nM; n = 6). Expression of ESRRG signaling pathway constituents and cell turnover were quantified. BPA (1 μM) increased ESRRG mRNA expression after 24 h in both sexes. ESRRG mRNA and protein expression was increased in female placentas treated with 1 μM BPA for 24 h but was decreased in male placentas treated with 1 nM or 1 μM for 48 h. Levels of 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and placenta specific-1 (PLAC1), genes downstream of ESRRG, were also affected. HSD17B1 mRNA expression was increased in female placentas by 1 μM BPA; however, 1 nM BPA reduced HSD17B1 and PLAC1 expression in male placentas at 48 h. BPA treatment did not affect rates of proliferation, apoptosis, or syncytiotrophoblast differentiation in cultured villous explants. This study has demonstrated that BPA affects the ESRRG signaling pathway in a sex-specific manner in human placentas and a possible biological mechanism to explain the differential effects of BPA exposure on male and female fetuses observed in epidemiological studies.
Collapse
Affiliation(s)
- Zhiyong Zou
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- St Mary’s Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
30
|
Marchlewicz E, McCabe C, Djuric Z, Hoenerhoff M, Barks J, Tang L, Song PX, Peterson K, Padmanabhan V, Dolinoy DC. Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. CHEMOSPHERE 2022; 286:131645. [PMID: 34426127 PMCID: PMC8595757 DOI: 10.1016/j.chemosphere.2021.131645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 05/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Perinatal development is a critical window for altered, lifelong health trajectory, and evidence supports the role of perinatal programming in chronic metabolic diseases. To examine the impact of diet and bisphenol A (BPA) on the developmental trajectory of NAFLD in offspring, we exposed dams from pre-gestation through lactation to a human-relevant dose of oral BPA coupled with intake of high fat Western or Mediterranean-style diets. We assessed hepatic steatosis by quantifying hepatic triglycerides (TGs) and metabolic health by measuring body weight, relative organ weights, and serum hormone levels in dams and offspring at postnatal day 10 (PND10) and 10-months of age. In dams, consumption of the Western or Mediterranean diet increased hepatic TGs 1.7-2.4-fold, independent of BPA intake. Among offspring, both perinatal diet and BPA exposure had a greater impact on metabolic outcomes than on hepatic steatosis. At PND10, serum leptin levels were elevated 2.6-4.8-fold in pups exposed to the Mediterranean diet, with a trend for sex-specific effects on body and organ weights. At 10-months, sex-specific increases in organ weight and hormone levels were observed in mice perinatally exposed to Western + BPA or Mediterranean + BPA. These findings suggest lifestage-specific interaction of perinatal exposures to experimental diets and BPA on offspring metabolic health without effects on NAFLD later in life. Importantly, alterations in dam phenotype by diet and BPA exposure appear to impact offspring health trajectory, emphasizing the need to define dam diet in assessing effects of environmental exposures on offspring health.
Collapse
Affiliation(s)
- Elizabeth Marchlewicz
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carolyn McCabe
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Barks
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Tang
- Department of Biostatistics, University of Pittsburgh, Pittsburg, PA, USA
| | - Peter X Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen Peterson
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118024. [PMID: 34523531 PMCID: PMC8590835 DOI: 10.1016/j.envpol.2021.118024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/14/2023]
Abstract
In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ekaterina Bourova-Flin
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Milan Jakobi
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
32
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
33
|
Rosenfeld CS. Transcriptomics and Other Omics Approaches to Investigate Effects of Xenobiotics on the Placenta. Front Cell Dev Biol 2021; 9:723656. [PMID: 34631709 PMCID: PMC8497882 DOI: 10.3389/fcell.2021.723656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
The conceptus is most vulnerable to developmental perturbation during its early stages when the events that create functional organ systems are being launched. As the placenta is in direct contact with maternal tissues, it readily encounters any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and waste, the placenta possesses a tightly regulated endocrine system that is, of itself, vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other environmental toxicants. To determine whether extrinsic factors affect placental function, transcriptomics and other omics approaches have become more widely used. In casting a wide net with such approaches, they have provided mechanistic insights into placental physiological and pathological responses and how placental responses may impact the fetus, especially the developing brain through the placenta-brain axis. This review will discuss how such omics technologies have been utilized to understand effects of EDCs, including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking, and air pollution on placental gene expression, DNA methylation, and metabolomic profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic regulators of placental function. Thus, the evidence to date that xenobiotics affect placental miR expression patterns will also be explored. Such omics approaches with mouse and human placenta will assuredly provide key biomarkers that may be used as barometers of exposure and can be targeted by early mitigation approaches to prevent later diseases, in particular neurobehavioral disorders, originating due to placental dysfunction.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, United States.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
34
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
35
|
Blaauwendraad SM, Voerman E, Trasande L, Kannan K, Santos S, Ruijter GJG, Sol CM, Marchioro L, Shokry E, Koletzko B, Jaddoe VWV, Gaillard R. Associations of maternal bisphenol urine concentrations during pregnancy with neonatal metabolomic profiles. Metabolomics 2021; 17:84. [PMID: 34518915 PMCID: PMC8437833 DOI: 10.1007/s11306-021-01836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fetal exposure to bisphenols is associated with altered fetal growth, adverse birth outcomes and childhood cardio-metabolic risk factors. Metabolomics may serve as a tool to identify the mechanisms underlying these associations. We examined the associations of maternal bisphenol urinary concentrations in pregnancy with neonatal metabolite profiles from cord blood. METHODS In a population-based prospective cohort study among 225 mother-child pairs, maternal urinary bisphenol A, S and F concentrations in first, second and third trimester were measured. LC-MS/MS was used to determine neonatal concentrations of amino acids, non-esterified fatty acids (NEFA), phospholipids (PL), and carnitines in cord blood. RESULTS No associations of maternal total bisphenol concentrations with neonatal metabolite profiles were present. Higher maternal average BPA concentrations were associated with higher neonatal mono-unsaturated alkyl-lysophosphatidylcholine concentrations, whereas higher maternal average BPS was associated with lower neonatal overall and saturated alkyl-lysophosphatidylcholine (p-values < 0.05).Trimester-specific analyses showed that higher maternal BPA, BPS and BPF were associated with alterations in neonatal NEFA, diacyl-phosphatidylcholines, acyl-alkyl-phosphatidylcholines, alkyl-lysophosphatidylcholine, sphingomyelines and acyl-carnitines, with the strongest effects for third trimester maternal bisphenol and neonatal diacyl-phosphatidylcholine, sphingomyeline and acyl-carnitine metabolites (p-values < 0.05). Associations were not explained by maternal socio-demographic and lifestyle characteristics or birth characteristics. DISCUSSION Higher maternal bisphenol A, F and S concentrations in pregnancy are associated with alterations in neonatal metabolite profile, mainly in NEFA, PL and carnitines concentrations. These findings provide novel insight into potential mechanisms underlying associations of maternal bisphenol exposure during pregnancy with adverse offspring outcomes but need to be replicated among larger, diverse populations.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ellis Voerman
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
- Department of Population Health, New York University School of Medicine, New York City, NY, USA
- School of Public Service, New York University Wagner, New York City, NY, 10016, USA
- New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Kurunthachalam Kannan
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
| | - Susana Santos
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - George J G Ruijter
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Disease, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Chalana M Sol
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Linda Marchioro
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU-Ludwig-Maximilians Universität München, Munich, Germany
| | - Engy Shokry
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU-Ludwig-Maximilians Universität München, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU-Ludwig-Maximilians Universität München, Munich, Germany
| | - Vincent W V Jaddoe
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group (Na-29), Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
36
|
Song X, Wang Z, Zhang Z, Miao M, Liu J, Luan M, Du J, Liang H, Yuan W. Differential methylation of genes in the human placenta associated with bisphenol A exposure. ENVIRONMENTAL RESEARCH 2021; 200:111389. [PMID: 34089743 DOI: 10.1016/j.envres.2021.111389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to bisphenol A (BPA) is associated with numerous adverse health outcomes among offspring. Although DNA methylation is considered one of the underlying causes of these associations, few studies have focused on the association between prenatal BPA exposure and DNA methylation in the human placenta. In this study, we examined the association between prenatal BPA exposure and DNA methylation in the placenta of 146 mother-infant pairs from the Shanghai-Minhang Birth Cohort Study. BPA concentrations in maternal urine samples were measured using high-performance liquid chromatography. Six placenta samples were selected for whole-genome methylation analysis using Infinium Human Methylation 450K Beadchip, followed by pyrosequencing-based methylation analysis of three selected genes in 146 placentas. Among 282 differentially methylated CpGs, representing 208 genes, 127 were hypermethylated, and 155 were hypomethylated in the BPA exposure group. Prenatal BPA exposure was associated with a higher methylation level of HLA-DRB6 in individuals as determined using pyrosequencing, which was consistent with the whole-genome methylation analysis results. Compared with that subjects with low BPA exposure, the methylation level (ln-transformed) of HLA-DRB6 in placentas from those with high BPA exposure increased by 0.29% (95% confidence interval[CI]: 0.02%, 0.56%) at the CpG2 site, and the average methylation level (ln-transformed) of the three CpG sites increased by 0.30% (95%CI: -0.03%, 0.63%). Our findings provide evidence that prenatal BPA exposure might alter DNA methylation levels in the placenta.
Collapse
Affiliation(s)
- Xiuxia Song
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ziliang Wang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Maohua Miao
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Junwei Liu
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Min Luan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jing Du
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Hong Liang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Wei Yuan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
37
|
Abstract
Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called 'in vitro toxicity' of 'essential amino acids' before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a 'global' demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, 'an essential amino acid', should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another 'semi-essential amino acid', is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine β-synthase pathway is not active. In this way, cysteine is a 'real essential amino acid'. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.
Collapse
|
38
|
Huang YF, Chang CH, Chen PJ, Lin IH, Tsai YA, Chen CF, Wang YC, Huang WY, Tsai MS, Chen ML. Prenatal Bisphenol a Exposure, DNA Methylation, and Low Birth Weight: A Pilot Study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116144. [PMID: 34200176 PMCID: PMC8201193 DOI: 10.3390/ijerph18116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Prenatal exposure to bisphenol A (BPA) may increase the risk of abnormal birth outcomes, and DNA methylation might mediate these adverse effects. This study aimed to investigate the effects of maternal BPA exposure on maternal and fetal DNA methylation levels and explore whether epigenetic changes are related to the associations between BPA and low birth weight. We collected urine and blood samples originating from 162 mother-infant pairs in a Taiwanese cohort study. We measured DNA methylation using the Illumina Infinium HumanMethylation 450 BeadChip in 34 maternal blood samples with high and low BPA levels based on the 75th percentile level (9.5 μg/g creatinine). Eighty-seven CpGs with the most differentially methylated probes possibly interacting with BPA exposure or birth weight were selected using two multiple regression models. Ingenuity pathway analysis (IPA) was utilized to narrow down 18 candidate CpGs related to disease categories, including developmental disorders, skeletal and muscular disorders, skeletal and muscular system development, metabolic diseases, and lipid metabolism. We then validated these genes by pyrosequencing, and 8 CpGs met the primer design score requirements in 82 cord blood samples. The associations among low birth weight, BPA exposure, and DNA methylation were analyzed. Exposure to BPA was associated with low birth weight. Analysis of the epigenome-wide findings did not show significant associations between BPA and DNA methylation in cord blood of the 8 CpGs. However, the adjusted odds ratio for the dehydrogenase/reductase member 9 (DHRS9) gene, at the 2nd CG site, in the hypermethylated group was significantly associated with low birth weight. These results support a role of BPA, and possibly DHRS9 methylation, in fetal growth. However, additional studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 360, Taiwan
- Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 360, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Jung Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wei-Yun Huang
- Immuno Genomics Co., Ltd., Taipei 112, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Song Tsai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 110, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
39
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
40
|
Amir S, Shah STA, Mamoulakis C, Docea AO, Kalantzi OI, Zachariou A, Calina D, Carvalho F, Sofikitis N, Makrigiannakis A, Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1464. [PMID: 33557243 PMCID: PMC7913912 DOI: 10.3390/ijerph18041464] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERβ) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.
Collapse
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Olga-Ioanna Kalantzi
- Department of Environment, University of Aegean, University Hill, 81100 Mytilini, Greece;
| | - Athanasios Zachariou
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Felix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
41
|
Li J, Sun X, Xu J, Tan H, Zeng EY, Chen D. Transplacental Transfer of Environmental Chemicals: Roles of Molecular Descriptors and Placental Transporters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:519-528. [PMID: 33295769 DOI: 10.1021/acs.est.0c06778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transplacental transfer of environmental chemicals results in direct risks to fetal development. Although numerous studies have investigated transplacental transfer efficiencies (TTEs) of environmental chemicals, the underlying mechanisms and influencing factors remain poorly understood. The present study aims to synthesize a current state of knowledge on the TTEs of major environmental chemicals and explore the roles of chemicals' molecular descriptors and placental transporters in the transplacental transfer. The results indicate great variations in TTEs (median: 0.29-2.86) across 51 chemicals. Chemical-dependent TTEs may partially be attributed to the influences of chemicals' molecular descriptors. Predictive models based on experimental TTEs and 1790 computed molecular descriptors indicate that a very limited number of molecular descriptors, such as the topological polar surface area, may substantially influence and efficiently predict chemicals' TTEs. In addition, molecular docking analyses were conducted to determine the binding affinities between 51 chemicals and six selected transporters, including BCRP, MDR1, hENT1, FRα, SERT, and MRP1. The results reveal transporter- and chemical-dependent binding affinities. Therefore, our study demonstrates that molecular descriptors and placental transporters, among a variety of other factors, can play important roles in the transplacental transfer of environmental chemicals. However, the underlying mechanisms and several important knowledge gaps identified herein require further investigations.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfei Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Oldenburg J, Fürhacker M, Hartmann C, Steinbichl P, Banaderakhshan R, Haslberger A. Different bisphenols induce non-monotonous changes in miRNA expression and LINE-1 methylation in two cell lines. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab011. [PMID: 34858639 PMCID: PMC8633614 DOI: 10.1093/eep/dvab011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 05/12/2023]
Abstract
4,4'-Isopropylidenediphenol (bisphenol A, BPA), a chemical substance that is widely used mainly as a monomer in the production of polycarbonates, in epoxy resins, and in thermal papers, is suspected to cause epigenetic modifications with potentially toxic consequences. Due to its negative health effects, BPA is banned in several products and is replaced by other bisphenols such as bisphenol S and bisphenol F. The present study examined the effects of BPA, bisphenol S, bisphenol F, p,p'-oxybisphenol, and the BPA metabolite BPA β-d-glucuronide on the expression of a set of microRNAs (miRNAs) as well as long interspersed nuclear element-1 methylation in human lung fibroblast and Caco-2 cells. The results demonstrated a significant modulation of the expression of different miRNAs in both cell lines including miR-24, miR-155, miR-21, and miR-146a, known for their regulatory functions of cell cycle, metabolism, and inflammation. At concentrations between 0.001 and 10 µg/ml, especially the data of miR-155 and miR-24 displayed non-monotonous and often significant dose-response curves that were U- or bell-shaped for different substances. Additionally, BPA β-d-glucuronide also exerted significant changes in the miRNA expression. miRNA prediction analysis indicated effects on multiple molecular pathways with relevance for toxicity. Besides, long interspersed nuclear element-1 methylation, a marker for the global DNA methylation status, was significantly modulated by two concentrations of BPA and p,p'-oxybisphenol. This pilot study suggests that various bisphenols, including BPA β-d-glucuronide, affect epigenetic mechanisms, especially miRNAs. These results should stimulate extended toxicological studies of multiple bisphenols and a potential use of miRNAs as markers.
Collapse
Affiliation(s)
- Julia Oldenburg
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria
| | - Maria Fürhacker
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | | | | | - Rojin Banaderakhshan
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alexander Haslberger
- **Correspondence address. Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria. Tel: +4369912211212; E-mail:
| |
Collapse
|
43
|
Song X, Zhou X, Yang F, Liang H, Wang Z, Li R, Miao M, Yuan W. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. ENVIRONMENTAL RESEARCH 2020; 190:109996. [PMID: 32763279 DOI: 10.1016/j.envres.2020.109996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
In utero exposure to bisphenol A (BPA) in early stages of development has been reported to exert adverse health effects on offspring later in life. Epigenetic alterations, particularly DNA methylation, may be one plausible biological mechanism involved. We examined the association between maternal BPA exposure and DNA methylation in cord blood. We randomly selected 96 paired samples of maternal urine and infant cord blood collected from the Shanghai-Minhang Birth Cohort. BPA levels in maternal urine were measured using high-performance liquid chromatography (HPLC). Three cord blood samples with maternal BPA levels >2.0 μg/g Cr and three samples with undetected BPA were randomly selected for genome-wide methylation analysis using methylated DNA binding domain sequencing (MBD-Seq). The genes with hypermethylated promoter regions were chosen for validation using quantitative methylation-specific polymerase chain reaction (Q-MSP). Based on MBD-seq results, we observed that maternal BPA exposure was primarily associated with hypermethylation of genes involved in signal transduction in the nervous system. Using Q-MSP, we further validated the association between maternal BPA exposure and promoter hypermethylation of three genes in multiple linear regression models: a log unit increase in BPA was associated with 12.63% (95%CI: 7.99, 17.26), 11.17%, (95%CI: 3.31, 19.02), and 16.57% (95% CI: 10.59, 22.56) increase in promoter of CAPS2, TNFRSF25, and HKR1 methylation, respectively. Our findings provide evidence that in utero exposure to BPA could alter the offspring's epigenome by altering DNA methylation pattern.
Collapse
Affiliation(s)
- Xiuxia Song
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiaoyu Zhou
- Shanghai Tongshu Biotechnology Co., Ltd., China
| | - Fen Yang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Hong Liang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ziliang Wang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Runsheng Li
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Maohua Miao
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Wei Yuan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
44
|
Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Jaddoe VWV, Trasande L. Fetal phthalates and bisphenols and childhood lipid and glucose metabolism. A population-based prospective cohort study. ENVIRONMENT INTERNATIONAL 2020; 144:106063. [PMID: 32889482 PMCID: PMC7572773 DOI: 10.1016/j.envint.2020.106063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND AIMS Fetal exposure to endocrine disruptors such as phthalates and bisphenols may lead to developmental metabolic adaptations. We examined associations of maternal phthalate and bisphenol urine concentrations during pregnancy with lipids, insulin, and glucose concentrations at school age. METHODS In a population-based, prospective cohort study among 757 mother-child pairs, we measured maternal phthalate and bisphenol urine concentrations in first, second and third trimester of pregnancy. We measured non-fasting lipids, glucose and insulin blood concentrations of their children at a mean age of 9.7 (standard deviation 0.2) years. Analyses were performed for boys and girls separately. RESULTS An interquartile range (IQR) higher natural log transformed third trimester maternal urine phthalic acid concentration was associated with a 0.20 (95% confidence interval (CI) 0.07-0.34) standard deviation score (SDS) higher triglycerides concentration among boys. Maternal bisphenol urine concentrations were not associated with non-fasting lipid concentrations during childhood. An IQR higher natural log transformed second trimester maternal high molecular weight phthalates (HMWP) and di-2-ethylhexylphthalate (DEHP) urine concentration were associated with a 0.19 (95% CI 0.31-0.07) respectively 0.18 (95% CI 0.31-0.06) SDS lower glucose concentration among boys. An IQR higher natural log transformed third trimester maternal bisphenol F urine concentration was associated with a 0.22 (95% CI 0.35-0.09) SDS lower non-fasting insulin concentration among boys. CONCLUSIONS Our results suggest potential persisting sex specific effects of fetal exposure to phthalates and bisphenols on childhood lipid concentrations and glucose metabolism. Future studies are needed for replication and exploring underlying mechanisms.
Collapse
Affiliation(s)
- Chalana M Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA; Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY 10016, USA; Department of Population Health, New York University School of Medicine, New York City, NY, USA; New York University Wagner School of Public Service, New York City, NY 10016, USA; New York University College of Global Public Health, New York City, NY 10016, USA.
| |
Collapse
|
45
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
46
|
Wei Y, Han C, Li S, Cui Y, Bao Y, Shi W. Cuscuta chinensis flavonoids down-regulate the DNA methylation of the H19/Igf2 imprinted control region and estrogen receptor alpha promoter of the testis in bisphenol A exposed mouse offspring. Food Funct 2020; 11:787-798. [PMID: 31930238 DOI: 10.1039/c9fo02770j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with reproductive disorders. The BPA effect as an endocrine disruptor is widely known but other mechanisms underlying developmental disease, such as epigenetic modifications, still remain unclear. The objective of this study was to investigate whether Cuscuta chinensis flavonoids (CCFs) can be used as a dietary supplement to reverse BPA-induced epigenetic disorders, by analyzing the molecular processes related to BPA impairment of testicular development. BPA and different concentrations of CCFs were administered to the dams at gestation day (GD) 0.5-17.5. The testis and serum of male mice were collected at postnatal day (PND) 21 and PND 56 for the detection of related indicators. Our results showed that compared with the BPA group, CCFs could significantly increase the serum contents of testosterone (T), estradiol (E2) in males at PND 21 and PND 56, as well as the contents and transcription levels of DNA methyltransferase 3A (Dnmt3A), Dnmt3B in males at PND 21 and that of estrogen receptor alpha (ERα) at PND 56. The expressions of Dnmt1 and ERα at PND 21 and ERβ at both PND 21 and PND 56 in males were significantly decreased with the administration of different concentrations of CCFs (P < 0.01 or P < 0.05). CCFs also significantly inhibited the BPA-induced hypermethylated status of the ERα promoter and H19/Igf2 imprinting control region (ICR) in the testis at PND 56. These results indicated that CCFs could decrease the methylation levels of ERα and H19/Igf2 genes by inhibiting the expression of DNA methyltransferases (DNMTs), thereby decreasing the levels of reproductive hormones and receptors in adult males, and ultimately alleviating the negative effect of BPA on testicular development in male mice.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| | | | | | | | | | | |
Collapse
|
47
|
Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Philips EM, Trasande L, Jaddoe VWV. Fetal exposure to phthalates and bisphenols and childhood general and organ fat. A population-based prospective cohort study. Int J Obes (Lond) 2020; 44:2225-2235. [PMID: 32920592 DOI: 10.1038/s41366-020-00672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Fetal exposure to phthalates and bisphenols might have long-lasting effects on growth and fat development. Not much is known about the effects on general and organ fat development in childhood. We assessed the associations of fetal exposure to phthalates and bisphenols with general and organ fat measures in school-aged children. METHODS In a population-based, prospective cohort study among 1128 mother-child pairs, we measured maternal urinary phthalate metabolites and bisphenol concentrations in first, second, and third trimester. Offspring body mass index, fat mass index by dual-energy X-ray absorptiometry, and visceral and pericardial fat indices and liver fat fraction were measured by magnetic resonance imaging at 10 years. RESULTS After adjustment for confounders and correction for multiple testing, an interquartile range increase in first trimester phthalic acid concentrations remained associated with a 0.14 (95% confidence interval: 0.05, 0.22) standard deviation score increase in pericardial fat index. We also observed tendencies for associations of higher maternal low molecular weight phthalate urinary concentrations in second trimester with childhood pericardial fat index, but these were not significant after adjustment for multiple testing. High molecular weight phthalate, di-2-ethylhexyl phthalate, and di-n-octyl phthalate concentrations were not associated with childhood outcomes. Maternal urinary bisphenol concentrations were not associated with childhood adiposity. CONCLUSIONS Maternal first trimester phthalic acid concentrations are associated with increased childhood pericardial fat index at 10 years of age, whereas maternal bisphenol concentrations are not associated with childhood adiposity. We did not find significant sex-specific effects. These findings should be considered as hypothesis generating and need further replication and identification of underlying mechanisms.
Collapse
Affiliation(s)
- Chalana M Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Department of Chemistry, the Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elise M Philips
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Population Health, New York University School of Medicine, New York City, NY, USA.,New York University Wagner School of Public Service, New York City, NY, 10016, USA.,New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab 2020; 31:508-524. [PMID: 32249015 PMCID: PMC7395962 DOI: 10.1016/j.tem.2020.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elvis Ticiani
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
49
|
Rytel L, Gonkowski S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int J Mol Sci 2020; 21:E4543. [PMID: 32604714 PMCID: PMC7353066 DOI: 10.3390/ijms21124543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland;
| |
Collapse
|
50
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|