1
|
Song Y, Cheng Q, Zhao B. Exogenous organic acids promoted phytoremediation by Hydrangea macrophylla in cadmium‑contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117551. [PMID: 39693853 DOI: 10.1016/j.ecoenv.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Cadmium (Cd) contaminants with high toxicity and mobility seriously threatens the ecological environment and human safety. Hydrangea macrophylla is a potential plant for Cd-contaminated soil remediation. Exogenous organic acids have been proven to effectively enhance the phytoremediation of soil contaminated with Cd. However, research on the effects of organic acids on Cd tolerance and accumulation of H. macrophylla remains scarce. In this study, a potted experiment was performed with H. macrophylla as the research object. The effects of acetic acid (AA), citric acid (CA), and malic acid (MA) with different concentrations (2.5, 5, and 10 mmol·kg-1) on the growth physiology, Cd absorption and accumulation of H. macrophylla and soil microecological environment under Cd stress were systematically studied. Results indicated that organic acids increased chlorophyll content and promoted the growth of H. macrophylla, the biomass of shoots and roots increased by 165.44 % , 161.50 % under 5 mmol·kg-1 citric acid treatment. Furthermore, organic acids reduced the level of membrane lipid peroxidation in leaves, increased plant biomass and promoted root growth of H. macrophylla. By boosting superoxide dismutase (SOD), peroxidase (POD), and catalase activities (CAT), elevating levels of proline (Pro), non-protein thiol (NPT), glutathione (GSH) and phytochelatins (PCs), exogenous organic acids promoted the Cd tolerance of H. macrophylla. In particular, 5 mmol·kg-1 CA had the best effect on improving the Cd tolerance of H. macrophylla. The roots of H. macrophylla accumulated a large amount of Cd, ranging from 365.04 to1111.67 μg·plant-1. Appropriate concentration of organic acids increased the total Cd accumulation by 1.12-2.07 times of H. macrophylla. The translocation factor (TF) increased by 97.91 %, 107.95 % under 5 mmol·kg-1 CA and 10 mmol·kg-1 MA treatments. Nevertheless, TF values were all less than 1. We posit that using H. macrophylla and organic acids could reduce the Cd bioavailability in the soil mainly through rhizosphere immobilization and plant absorption. Additionally, organic acids increased the soil pH, accompanied by changes in soil enzyme activities. 10 mmol·kg-1AA and MA reduced the available Cd concentration by 20.42 % and 31.65 %, respectively. Overall, exogenous organic acids can assist H. macrophylla in phytoremediation. 5 mmol·kg-1 CA treatment was considered the best choice for the remediation of heavy Cd-contaminated soil by H. macrophylla.
Collapse
Affiliation(s)
- Yunjing Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Qian Cheng
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Zahra A, Kayani S, Shahzad A, Sert TD, Ozcelik H, Qin M, Naeem M, Billah M. Wood biochar induced metal tolerance in Maize (Zea mays L.) plants under heavy metal stress. ENVIRONMENTAL RESEARCH 2024; 262:119940. [PMID: 39243839 DOI: 10.1016/j.envres.2024.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.
Collapse
Affiliation(s)
- Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Sadaf Kayani
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan; Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Asim Shahzad
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China; Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Hasan Ozcelik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Motsim Billah
- Directorate of ORIC, Rawalpindi Women University, Rawalpindi, Pakistan.
| |
Collapse
|
3
|
Zagoskina N. Special Issue "Advances in the Physiology of Primary and Secondary Plant Metabolism Under Abiotic and Biotic Stress". Int J Mol Sci 2024; 25:12339. [PMID: 39596403 PMCID: PMC11595043 DOI: 10.3390/ijms252212339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
One of the most relevant areas of biology is the study of plant adaptation processes to the action of various stress factors of abiotic and biotic nature, which is reflected in the works of molecular biologists, geneticists, microbiologists, plant physiologists, and biochemists, as well as biotechnologists [...].
Collapse
Affiliation(s)
- Natalia Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
4
|
Yang F, Han J, Lin R, Yin Y, Deng X, Li Y, Lin J, Wang J. Regulation of the Rhizosphere Microenvironment by Arbuscular Mycorrhizal Fungi to Mitigate the Effects of Cadmium Contamination on Perennial Ryegrass ( Lolium perenne L.). Microorganisms 2024; 12:2335. [PMID: 39597724 PMCID: PMC11596381 DOI: 10.3390/microorganisms12112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium (Cd) stress remain unclear. In this study, Lolium perenne L. was inoculated with AMF (Rhizophagus irregularis) and grown in soils supplemented with Cd (0 mg kg-1, Cd0; 100 mg kg-1, Cd100). Plant biomass, antioxidant enzyme activities, peroxide content, Cd uptake, and rhizosphere bacterial community composition were evaluated. AMF inoculation reduced Cd influx in aboveground tissues, enhanced nutrient availability in the rhizosphere, and mitigated Cd biotoxicity. Additionally, AMF inoculation improved the scavenging efficiency of reactive oxygen species and alleviated oxidative stress in L. perenne, thereby mitigating biomass reduction. Moreover, AMF treatment increased leaf and root biomass by 342.94% and 41.31%, respectively. Furthermore, under the same Cd concentration, AMF inoculation increased bacterial diversity (as measured by the Shannon index) and reduced bacterial enrichment (as indicated by the ACE index). AMF promoted the enrichment of certain bacterial genera (e.g., Proteobacteria and Actinobacteria) in the Cd100 group. These findings suggest that AMF regulated the composition of the rhizosphere bacterial community and promoted the growth of potentially beneficial microorganisms, thereby enhancing the resistance of L. perenne to Cd stress. Cd contamination in soil severely limits plant growth and threatens ecosystem stability, highlighting the need to understand how AMF and rhizosphere microbes can enhance Cd tolerance in L. perenne. Therefore, inoculating plants with AMF is a promising strategy for enhancing their adaptability to Cd-contaminated soils.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jixiang Lin
- College of Landscape Architecture, Northeast Forestry University, NO. 26 Hexing Road, Xiangfang District, Harbin 150040, China; (F.Y.); (J.H.); (R.L.); (Y.Y.); (X.D.); (Y.L.)
| | - Jinghong Wang
- College of Landscape Architecture, Northeast Forestry University, NO. 26 Hexing Road, Xiangfang District, Harbin 150040, China; (F.Y.); (J.H.); (R.L.); (Y.Y.); (X.D.); (Y.L.)
| |
Collapse
|
5
|
Nazir MM, Li G, Nawaz M, Noman M, Zulfiqar F, Ahmed T, Jalil S, Ijaz M, Kuzyakov Y, Du D. Ionic and nano calcium to reduce cadmium and arsenic toxicity in plants: Review of mechanisms and potentials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109169. [PMID: 39369650 DOI: 10.1016/j.plaphy.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Contamination of agricultural soils with heavy metal(loid)s like arsenic (As) and cadmium (Cd) is an ever increasing concern for crop production, quality, and global food security. Numerous in-situ and ex-situ remediation approaches have been developed to reduce As and Cd contamination in soils. However, field-scale applications of conventional remediation techniques are limited due to the associated environmental risks, low efficacy, and large capital investments. Recently, calcium (Ca) and Ca-based nano-formulations have emerged as promising solutions with the large potential to mitigate As and Cd toxicity in soil for plants. This review provides comprehensive insights into the phytotoxic effects of As and Cd stress/toxicity and discusses the applications of Ca-based ionic and nano-agrochemicals to alleviate As and Cd toxicity in important crops such as rice, wheat, maize, and barley. Further, various molecular and physiological mechanisms induced by ionic and nano Ca to mitigate As and Cd stress/toxicity in plants are discussed. This review also critically analyzes the efficiency of these emerging Ca-based approaches, both ionic and nano-formulations, in mitigating As and Cd toxicity in comparison to conventional remediation techniques. Additionally, future perspectives and ecological concerns of the remediation approaches encompassing ionic and nano Ca have been discussed. Overall, the review provides an updated and in-depth knowledge for developing sustainable and effective strategies to address the challenges posed by As and Cd contamination in agricultural crops.
Collapse
Affiliation(s)
- Muhammad Mudassir Nazir
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mohsin Nawaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Arts and Sciences, Gulf University for Science and Technology, Kuwait
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Sanaullah Jalil
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fan X, Mao Q, Zou D, Guo P, Du H, Chen T, He C, Xiong B, Ma M. Responses of Brassica napus to soil cadmium under elevated CO 2 concentration based on rhizosphere microbiome, root transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109127. [PMID: 39284252 DOI: 10.1016/j.plaphy.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution affect crop safety and production. Exposure to elevated CO2 (ECO2) increases cadmium (Cd) uptake in some crops like wheat and rice, however, it remains unclear how ECO2 affects Cd uptake by Brassica napus. Here, we investigated the responses of B. napus seedlings exposed to ECO2 and Cd through analyses of physiology, transcriptome, metabolome, and rhizosphere microbes. Compared with Cd-stress alone (Cd50_ACO2), ECO2 boosted the uptake of Cd by B. napus roots by 38.78% under coupled stresses (Cd50_ECO2). The biomass and leaf chlorophyll a content increased by 38.49% and 79.66% respectively in Cd50_ECO2 relative to Cd50_ACO2. Activities of superoxide dismutase (SOD) and peroxidase (POD) enhanced by 8.42% and 185.01%, respectively, while glutathione (GSH) and ascorbic acid (AsA) contents increased by 16.44% and 52.48%, and abundances of rhizosphere microbes changed significantly under coupled stresses (Cd50_ECO2) relative to Cd-stress alone (Cd50_ACO2). Also, the upregulation of glutathione, glutathione transferase genes, and heavy metal ATPase expression promoted the detoxification effect of rapeseed on Cd. Changes in the expression of transcription factors like MAPK, WRKY, BAK1 and PR1, as well as changes in metabolic pathways like β-alanine, may be involved in the regulatory mechanism of stress response. These findings provide new insights for studying the regulatory mechanism of rapeseed under ECO2 on soil Cd stress, and also provide a basis for further research on Cd tolerant rapeseed varieties in the future climate context.
Collapse
Affiliation(s)
- Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Tingting Chen
- Meishan Vocational & Technical College, Meishan, 620010, PR China
| | - Chen He
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
7
|
Guan J, Zhang Y, Li D, Shan Q, Hu Z, Chai T, Zhou A, Qiao K. Synergistic role of phenylpropanoid biosynthesis and citrate cycle pathways in heavy metal detoxification through secretion of organic acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135106. [PMID: 38970974 DOI: 10.1016/j.jhazmat.2024.135106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Excessive heavy metal contaminants in soils have serious ecological and environmental impacts, and affect plant growth and crop yields. Phytoremediation is an environmentally friendly means of lowering heavy metal concentrations in soils. In this study, we analyzed phenotypic and physiological traits, and the transcriptome and metabolome, of sheepgrass (Leymus chinensis) exposed to cadmium (Cd), lead (Pb), or zinc (Zn). Phenotypic and physiological analysis indicated that sheepgrass had strong tolerance to Cd/Pb/Zn. Transcriptomic analysis revealed that phenylpropanoid biosynthesis and organic acid metabolism were enriched among differentially expressed genes, and metabolomic analysis indicated that the citrate cycle was enriched in response to Cd/Pb/Zn exposure. Genes encoding enzymes involved in the phenylpropanoid and citrate cycle pathways were up-regulated under the Cd/Pb/Zn treatments. Organic acids significantly reduced heavy metal accumulation and improved sheepgrass tolerance of heavy metals. The results suggest that synergistic interaction of the phenylpropanoid and citrate cycle pathways in sheepgrass roots induced organic acid secretion to alleviate heavy metal toxicity. A cascade of enzymes involved in the interacting pathways could be targeted in molecular design breeding to enhance phytoremediation.
Collapse
Affiliation(s)
- Jing Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yixin Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Defang Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
9
|
Saladin G, Soubrand M, Joussein E, Benjelloun I. Efficiency of metal(loid) phytostabilization by white lupin (Lupinus albus L.), common vetch (Vicia sativa L.), and buckwheat (Fagopyrum esculentum Moench). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55822-55835. [PMID: 39245670 DOI: 10.1007/s11356-024-34911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Erosion and leaching of metal(loid)s from contaminated sites can spread pollution to adjacent ecosystems and be a source of toxicity for living organisms. Phytostabilization consists of selecting plant species accumulating little or no metal(loid)s in aerial parts to establish a vegetation cover and thus to stabilize the contaminants in the soil. Seeds of white lupin, common vetch, and buckwheat were sown in greenhouse on soils from former French mines (Pontgibaud and Vaulry) contaminated with metal(loid)s including high concentrations of As and Pb (772 to 1064 and 121 to 12,340 mg kg-1, respectively). After 3 weeks of exposure, the growth of white lupin was less affected than that of the 2 other species probably because metal(loid) concentrations in roots and aerial parts of lupins were lower (5-20 times less Pb in lupin leaves on Pontgibaud soil and 5-10 times less As in lupin leaves on Vaulry soil than in vetch and buckwheat). To limit oxidation and/or scavenge metal(loid)s, white lupin increased the content of proline and total phenolic compounds (TPC) in leaves and roots by a factor 2 whereas buckwheat stimulated the production of TPC by a factor 1.5-2, and non-protein thiols (NPT) by factors around 1.75 in leaves and 6-12 in roots. Vetch accumulated more proline than white lupin but less NPT than buckwheat and less TPC than the 2 other plant species. The level of oxidation was however higher than in control plants for the 3 species indicating that defense mechanisms were not completely effective. Overall, our results showed that white lupin was the best species for phytostabilization but amendments should be tested to improve its tolerance to metal(loid)s.
Collapse
Affiliation(s)
- Gaëlle Saladin
- Laboratoire E2Lim Eau & Environnement, UR 24133, Université de Limoges, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France.
| | - Marilyne Soubrand
- Laboratoire E2Lim Eau & Environnement, UR 24133, Université de Limoges, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Emmanuel Joussein
- Laboratoire E2Lim Eau & Environnement, UR 24133, Université de Limoges, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Ilham Benjelloun
- Laboratoire E2Lim Eau & Environnement, UR 24133, Université de Limoges, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
| |
Collapse
|
10
|
Niekerk LA, Gokul A, Basson G, Badiwe M, Nkomo M, Klein A, Keyster M. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2793-2810. [PMID: 38650576 DOI: 10.1111/pce.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mihlali Badiwe
- Plant Pathology Department, AgriScience Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, KwaDlangezwa, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Gatasheh MK, Shah AA, Kaleem M, Usman S, Shaffique S. Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC PLANT BIOLOGY 2024; 24:667. [PMID: 38997682 PMCID: PMC11245830 DOI: 10.1186/s12870-024-05359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Korea
| |
Collapse
|
12
|
Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, Xiao W, Peng L, Zou L, Han J, Li Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int J Mol Sci 2024; 25:6717. [PMID: 38928423 PMCID: PMC11203628 DOI: 10.3390/ijms25126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| |
Collapse
|
13
|
Zhakypbek Y, Kossalbayev BD, Belkozhayev AM, Murat T, Tursbekov S, Abdalimov E, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1534. [PMID: 38891342 PMCID: PMC11174537 DOI: 10.3390/plants13111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species. This review discusses in detail the basic principles of phytoremediation and emphasizes its ecological advantages over other methods for cleaning contaminated areas and its technical viability. Much attention has been given to the selection of hyperaccumulator plants for phytoremediation that can grow on heavy metal-contaminated soils, and the biochemical mechanisms that allow these plants to isolate, detoxify, and accumulate heavy metals are discussed in detail. The novelty of our study lies in reviewing the mechanisms of plant-microorganism interactions that greatly enhance the efficiency of phytoremediation as well as in discussing genetic modifications that could revolutionize the cleanup of contaminated soils. Moreover, this manuscript discusses potential applications of phytoremediation beyond soil detoxification, including its role in bioenergy production and biodiversity restoration in degraded habitats. This review concludes by listing the serious problems that result from anthropogenic environmental pollution that future generations still need to overcome and suggests promising research directions in which the integration of nano- and biotechnology will play an important role in enhancing the effectiveness of phytoremediation. These contributions are critical for environmental scientists, policy makers, and practitioners seeking to utilize phytoremediation to maintain the ecological stability of the environment and its restoration.
Collapse
Affiliation(s)
- Yryszhan Zhakypbek
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Bekzhan D. Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Ayaz M. Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan;
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Toktar Murat
- Department of Agronomy and Forestry, Faculty of Agrotechnology, Kozybayev University, Petropavlovsk 150000, Kazakhstan;
- Department of Soil Ecology, Kazakh Research Institute of Soil Science and Agrochemistry named after U.U. Uspanov, Al-Farabi Ave. 75, Almaty 050060, Kazakhstan
| | - Serik Tursbekov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Elaman Abdalimov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| |
Collapse
|
14
|
Raina R, Sharma P, Batish DR, Singh HP. Assessment of natural low molecular weight organic acids in facilitating cadmium phytoextraction by Lepidium didymus (Brassicaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38990-38998. [PMID: 37277587 DOI: 10.1007/s11356-023-27719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
The present study examined the ability of three naturally occurring low molecular weight organic acids (tartaric, TA; citric, CA; and oxalic, OA) to improve the efficiency of cadmium (Cd) phytoextraction in Lepidium didymus L. (Brassicaceae). The plants were grown in soil containing three different concentrations, i.e., 35, 105, and 175 mg kg-1, of total Cd and 10 mM of TA, CA, and OA. After 6 weeks, plant height, dry biomass, photosynthetic traits, and metal accumulation were determined. All three organic chelants significantly increased the Cd accumulation in L. didymus plants; however, the greatest accumulation was seen with TA (TA > OA > CA). In general, Cd accumulation was the highest in the roots, followed by the stems, and the leaves. Highest BCFStem was observed upon the addition of TA (7.02) and CA (5.90) at Cd35, compared to Cd-alone (3.52) treatment. The BCF was the highest in the stem (7.02) and leaves (3.97) under Cd35 treatment supplemented with TA. The BCFRoot in the plants under different chelant treatments were in the following order: Cd35 + TA (~ 100) > Cd35 + OA (~ 84) > Cd35 + TA (~ 83). The stress tolerance index and translocation factor (root-stem) were maximal at Cd175 with TA and OA supplementation, respectively. The study concludes that L. didymus could be a viable option for Cd-remediation projects, and the addition of TA improved its phytoextraction efficiency.
Collapse
Affiliation(s)
- Riya Raina
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
15
|
Zhang L, Zengin G, Ozfidan-Konakci C, Yildiztugay E, Arikan B, Ekim R, Koyukan B, Elbasan F, Lucini L. Exogenous curcumin mitigates As stress in spinach plants: A biochemical and metabolomics investigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108713. [PMID: 38739963 DOI: 10.1016/j.plaphy.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 μM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Rumeysa Ekim
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Buket Koyukan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
16
|
Zhang H, Lv X, Yang Z, Li Q, Wang P, Zhang S, Xu Y, Wang X, Ali EF, Hooda PS, Lee SS, Li R, Shaheen SM, Zhang Z. A field trial for remediation of multi-metal contaminated soils using the combination of fly ash stabilization and Zanthoxylumbungeanum- Lolium perenne intercropping system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121231. [PMID: 38810463 DOI: 10.1016/j.jenvman.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xiaoyong Lv
- China Nonferrous Metal Industry Xi 'an Survey and Design Institute Co., LTD, Xian, Shaanxi Province, 710054, China.
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Qian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shuqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University, London, Kingston Upon Thames, KT1 2EE, London, UK.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
17
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
18
|
Mushtaq M, Ali B, Ali M, BiBi N, Raut R, Suliman GM, Swelum AA. Different levels of single-strain probiotic (Bacillus subtilis) with proteolytic enzyme (serratiopeptidase) can be used as an alternative to antibiotic growth promoters in broiler. Poult Sci 2024; 103:103400. [PMID: 38295498 PMCID: PMC10844863 DOI: 10.1016/j.psj.2023.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
In the current study, the proteolytic enzyme (serratiopeptidase) was used to enhance the efficacy of Bacillus subtilis (B. subtilis) probiotic as a growth promotor in broiler chicken. The effects of serratiopeptidase on the efficacy of different levels of B. subtilis as a growth promotor in broiler chicks were evaluated regarding growth performance traits, villus histomorphometric characterization, and intestinal microbiota count. Day-old broiler chicks (n = 120) were allocated into 4 groups having 3 replicates/group. In the control group (C), the basal diet was kept without supplementation. In treatment groups (P100, P150, and P200), the basal diet was supplemented with 100, 150, and 200 mg probiotics, respectively besides 30 mg proteolytic enzyme in the 3 treated groups for 4 wk. The performance parameters were significantly affected by the supplementation of serratiopeptidase to the B. subtilis treatment groups. Feed intake (FI), body weight gain (WG), feed conversion ratio (FCR), and dressing percent were significantly improved in the treatment groups as compared to the control group. Significantly, the lowest feed intake was recorded for the P200 group. The highest body weight gain and dressing percentage were recorded for the P200 group. An improved FCR was recorded in the P200 group (1.7) as compared to the control group. The different levels of B. subtilis supplemented with serratiopeptidase revealed significant improvements (P<0.05) in the morphology of the intestine by showing increases in villus height and width and crypt depth of the small intestine. The microbial count revealed that E. coli and salmonella colonies were significantly reduced in the P200 group as compared to the control and other treatment groups. In conclusion, the supplementation of B. subtilis with serratiopeptidase as a growth promoter in broiler chicks significantly improved the overall performance, and intestinal health and reduced microbial load contributing to optimizing the performance of broiler chickens. The greatest improvement was observed in the P200 group fed with B. subtilis as a probiotic and serratiopeptidase enzyme (200 mg:30 mg).
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Baseerat Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Majid Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Neelam BiBi
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rabin Raut
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 3720 USA
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
20
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
21
|
Parera V, Pérez-Chaca MV, Gallardo LV, Gatica-Aguilar CV, Parera CA, Feresin GE. Adesmia pinifolia, a Native High-Andean Species, as a Potential Candidate for Phytoremediation of Cd and Hg. PLANTS (BASEL, SWITZERLAND) 2024; 13:464. [PMID: 38498429 PMCID: PMC10891624 DOI: 10.3390/plants13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
This study highlights Adesmia pinifolia, a native high-Andean species, as a potential candidate for the phytoremediation of soils contaminated with Cd and Hg. In this work, a semi-hydronic assay with different doses of Cd (3, 4.5, and 6 mg L-1) and Hg (0.8, 1.2, and 1.6 mg L-1) was analysed to evaluate the establishment of plants, antioxidant defence systems, oxidative stress, and the ability to accumulate heavy metals. The results indicate high survival rates (>80%); however, Cd significantly reduced shoot and root biomass, while Hg increased root biomass with the 1.6 mg L-1 treatment. Cd and Hg tend to accumulate more in roots (2534.24 µg/g and 596.4 µg g-1, respectively) compared to shoots (398.53 µg g-1 and 140.8 µg g-1, respectively). A significant decrease in the bioconcentration factor of Cd and Hg in roots was observed as metal levels increased, reaching the maximum value at 3 mg L-1 (805.59 ± 54.38) and 0.8 mg L-1 (804.54 ± 38.09). The translocation factor, <1 for both metals, suggests that translocation from roots to shoots is limited. An overproduction of reactive oxygen species (ROS) was observed, causing lipid peroxidation and oxidative damage to plant membranes. Tolerance strategies against subsequent toxicity indicate that enhanced glutathione reductase (GR) activity and glutathione (GSH) accumulation modulate Cd and Hg accumulation, toxicity, and tolerance.
Collapse
Affiliation(s)
- Victoria Parera
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| | - M. Verónica Pérez-Chaca
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Laura V. Gallardo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Camila V. Gatica-Aguilar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Carlos A. Parera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Avenida Rivadavia 1439, Cuidad Autónoma de Buenos Aires (CABA) C1033AAE, Argentina;
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| |
Collapse
|
22
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
23
|
Tamirat F, Adane WD, Tessema M, Tesfaye E, Tesfaye G. Determination of Major and Trace Metals in Date Palm Fruit ( Phoenix dactylifera) Samples Using Flame Atomic Absorption Spectrometry and Assessment of the Associated Public Health Risks. Int J Anal Chem 2024; 2024:9914300. [PMID: 39149623 PMCID: PMC11325699 DOI: 10.1155/2024/9914300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 08/17/2024] Open
Abstract
This study aimed to assess the concentrations of major and trace metals (Na, Ca, Fe, Zn, Ni, Mn, Cu, Cd, and Pb) in date palm fruit samples collected from diverse regions, including Afar (Ethiopia), Iraq, and Saudi Arabia, utilizing flame atomic absorption spectrometry (FAAS). The wet acid digestion method was employed for sample treatment, with optimization of the key parameters such as reagent volume ratio, oven temperature, and digestion time for analytical applications. Under the optimized parameters, average metal concentrations in date palm fruit samples ranged from 205-299, 134-320, 38.8-115, 25.1-42.2, 9.27-27.9, 7.11-16.3, and 0.002-1.15 mg/kg for Ca, Na, Fe, Ni, Zn, Mn, and Cu, respectively. Cd and Pb levels were below detection limits within the linear range. Generally, date palm samples exhibited higher Ca and Na contents and lower concentrations of Cu and Mn than other metals. Pearson correlation analysis revealed very strong positive correlations between Fe and Na, Na and Zn, Na and Mn, Ca and Zn, Fe and Ni, Fe and Mn, and Mn and Ni. Strong negative correlations were observed for Ni and Na, Fe and Cu, and Cu and Ni. Weak correlations were noted among Na and Cu, Ca and Fe, Ca and Ni, Ca and Mn, Ca and Cu, Fe and Zn, Ni and Zn, Zn and Mn, and Zn and Cu. A recovery study using the spiking method demonstrated acceptable percentage recoveries ranging from 91.6% to 97.8%. Health risk assessment, including chronic daily intake (CDI), hazard quotient (HQ), total exposure hazard index (HI), and carcinogenic risk (CR), indicated CDI, HQ, and HI values below 1.0, except for the HI value for Ni. This suggests that the metals pose no probable public health risk, with the absence of Cd and Pb in date palm samples affirming no carcinogenic threats associated with their consumption.
Collapse
Affiliation(s)
- Feven Tamirat
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Wondimeneh Dubale Adane
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Merid Tessema
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Endale Tesfaye
- Department of Chemistry, College of Natural and Computational Sciences, Gambella University, P.O. Box 126, Gambella, Ethiopia
| | - Gizaw Tesfaye
- Department of Chemistry, Fitche College of Teacher Education, P.O. Box 260, Fitche, Ethiopia
| |
Collapse
|
24
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
25
|
Kim YO, Safdar M, Kang H, Kim J. Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:187. [PMID: 38256744 PMCID: PMC10818801 DOI: 10.3390/plants13020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of AtGRP7 in plants under heavy metal stress remain unclear. In the present study, in Arabidopsis, the transcript level of AtGRP7 was markedly increased by Ni but was decreased by Pb. AtGRP7-overexpressing plants improved Ni tolerance, whereas the knockout mutant (grp7) was more susceptible than the wild type to Ni. In addition, grp7 showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in grp7, whereas Pb accumulation in grp7 was lower than that in overexpression lines. Ni induced glutathione synthase genes GS1 and GS2 in overexpression lines, whereas Pb increased metallothionein genes MT4a and MT4b and phytochelatin synthase genes PCS1 and PCS2 in grp7. Furthermore, Ni increased CuSOD1 and GR1 in grp7, whereas Pb significantly induced FeSOD1 and FeSOD2 in overexpression lines. The mRNA stability of GS2 and PCS1 was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that AtGRP7 plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Mahpara Safdar
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
26
|
Zheng ZC, Chen HH, Yang H, Shen Q, Chen XF, Huang WL, Yang LT, Guo J, Chen LS. Citrus sinensis manganese tolerance: Insight from manganese-stimulated secretion of root exudates and rhizosphere alkalization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108318. [PMID: 38159548 DOI: 10.1016/j.plaphy.2023.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
We used manganese (Mn)-tolerant 'Xuegan' (Citrus sinensis) seedlings as materials and examined the characterization of Mn uptake and Mn-activated-release of root exudates under hydroponic conditions. We observed that root and shoot Mn bioaccumulation factor (BCF) reduced with the increase of Mn supply, and that Mn transfer factor (Tf) reduced greatly as Mn supply increased from 0 to 500 μM, beyond which Tf slightly increased with increasing Mn supply, suggesting that Mn supply reduced the ability to absorb and accumulate Mn in roots and shoots, as well as root-to-shoot Mn translocation. Without Mn, roots alkalized the solution pH from 5.0 to above 6.2, while Mn supply reduced root-induced alkalization. As Mn supply increased from 0 to 2000 μM, the secretion of root total phenolics (TPs) increased, while the solution pH decreased. Mn supply did not alter the secretion of root total free amino acids, total soluble sugars, malate, and citrate. Mn-activated-release of TPs was inhibited by low temperature and anion channel inhibitors, but not by protein biosynthesis inhibitor. Using widely targeted metabolome, we detected 48 upregulated [35 upregulated phenolic compounds + 13 other secondary metabolites (SMs)] and three downregulated SMs, and 39 upregulated and eight downregulated primary metabolites (PMs). These findings suggested that reduced ability to absorb and accumulate Mn in roots and shoots and less root-to-shoot Mn translocation in Mn-toxic seedlings, rhizosphere alkalization, and Mn-activated-release of root exudates (especially phenolic compounds) contributed to the high Mn tolerance of C. sinensis seedlings.
Collapse
Affiliation(s)
- Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hui Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Shen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
27
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
28
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
30
|
Maslennikova D, Koryakov I, Yuldashev R, Avtushenko I, Yakupova A, Lastochkina O. Endophytic Plant Growth-Promoting Bacterium Bacillus subtilis Reduces the Toxic Effect of Cadmium on Wheat Plants. Microorganisms 2023; 11:1653. [PMID: 37512826 PMCID: PMC10386265 DOI: 10.3390/microorganisms11071653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Heavy metal ions, in particular cadmium (Cd), have a negative impact on the growth and productivity of major crops, including wheat. The use of environmentally friendly approaches, in particular, bacteria that have a growth-stimulating and protective effect, can increase the resistance of plants. The effects of the pre-sowing seed treatment with the plant growth-promoting endophyte Bacillus subtilis 10-4 (BS) on cadmium acetate (Cd)-stressed Triticum aestivum L. (wheat) growth, photosynthetic pigments, oxidative stress parameters, roots' lignin content, and Cd ions accumulation in plants were analyzed. The results showed that the tested Cd-tolerant BS improved the ability of wheat seeds to germinate in the presence of different Cd concentrations (0, 0.1, 0.5, and 1 mM). In addition, the bacterial treatment significantly decreased the damaging effects of Cd stress (1 mM) on seedlings' linear dimensions (lengths of roots and shoots), biomass, as well as on the integrity and permeability of the cell walls (i.e., lipid peroxidation and electrolyte leakage) and resulted in reduced H2O2 generation. The pretreatment with BS prevented the Cd-induced degradation of the leaf photosynthetic pigments chlorophyll (Chl) a, Chl b, and carotenoids. Moreover, the bacterial treatment intensified the lignin deposition in the roots under normal and, especially, Cd stress conditions, thereby enhancing the barrier properties of the cell wall. This manifested in a reduced Cd ions accumulation in the roots and in the restriction of its translocation to the aboveground parts (shoots) of the bacterized plants under Cd stress in comparison with non-bacterized controls. Thus, the pre-sowing seed treatment with the endophyte BS may serve as an eco-friendly approach to improve wheat production in Cd-contaminated areas.
Collapse
Affiliation(s)
| | - Igor Koryakov
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
| | - Irina Avtushenko
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia
| | - Albina Yakupova
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia
| | | |
Collapse
|
31
|
Ahammed GJ, Shamsy R, Liu A, Chen S. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121597. [PMID: 37031849 DOI: 10.1016/j.envpol.2023.121597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops. Therefore, remediation of polluted soil is imperative not only for agricultural sustainability but also for food safety. Arbuscular mycorrhizal fungi (AMF) are widespread soil-borne endophytic fungi that form mutualistic relationships with the vast majority of land plants. In mycorrhizal symbiosis, AMF are largely dependent on the host plant-supplied carbohydrates and lipids, in return, AMF aid the host plants in acquiring water and mineral nutrients, especially phosphorus, nitrogen and sulfur from distant soils, and this distinguishing feature of the two-way exchange of resources is a functional requirement for such mutualism and ecosystem services. In addition to supplying nutrients and water to plants, the AMF symbiosis enhances plant resilience to biotic and abiotic stresses including Cr stress. Studies have revealed vital physiological and molecular mechanisms by which AMF alleviate Cr phytotoxicity and aid plants in nutrient acquisition under Cr stress. Notably, plant Cr tolerance is enhanced by both the direct effects of AMF on Cr stabilization and transformation, and the indirect effects of AMF symbiosis on plant nutrient uptake and physiological regulation. In this article, we summarized the research progress on AMF and associated mechanisms of Cr tolerance in plants. In addition, we reviewed the present understanding of AMF-assisted Cr remediation. Since AMF symbiosis can enhance plant resilience to Cr pollution, AMF may have promising prospects in agricultural production, bioremediation, and ecological restoration in Cr-polluted soils.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| | - Rubya Shamsy
- Microbiology Program, Department of Mathematics & Natural Sciences, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| |
Collapse
|
32
|
Shi A, Hu Y, Zhang X, Zhou D, Xu J, Rensing C, Zhang L, Xing S, Ni W, Yang W. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121559. [PMID: 37023890 DOI: 10.1016/j.envpol.2023.121559] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Biochar and metal-tolerant bacteria have been widely used in the remediation of heavy metal contaminated soil. However, the synergistic effect of biochar-functional microbes on phytoextraction by hyperaccumulators remains unclear. In this study, the heavy metal-tolerant strain Burkholderia contaminans ZCC was selected and loaded on biochar to produce biochar-resistant bacterial material (BM), and the effects of BM on Cd/Zn phytoextraction by Sedum alfredii Hance and rhizospheric microbial community were explored. The results showed that, BM application significantly enhanced the Cd and Zn accumulation of S. alfredii by 230.13% and 381.27%, respectively. Meanwhile, BM alleviated metal toxicity of S. alfredii by reducing oxidative damage and increasing chlorophyll and antioxidant enzyme activity. High-throughput sequencing revealed that BM significantly improved soil bacterial and fungal diversity, and increased the abundance of genera with plant growth promoting and metal solubilizing functions such as Gemmatimonas, Dyella and Pseudarthrobacter. Co-occurrence network analysis showed that BM significantly increased the complexity of the rhizospheric bacterial and fungal network. Structural equation model analysis revealed that soil chemistry property, enzyme activity and microbial diversity contributed directly or indirectly to Cd and Zn extraction by S. alfredii. Overall, our results suggested that biochar- B. contaminans ZCC was able to enhance the growth and Cd/Zn accumulation by S. alfredii. This study enhanced our understanding on the hyperaccumulator-biochar-functional microbe interactions, and provided a feasible strategy for promoting the phytoextraction efficiency of heavy metal contaminated soils.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
33
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
34
|
Yalcin IE, Altay V. Investigation of water-soil-plant relationships based on hazardous and macro-micro element concentrations on Orontes River, Türkiye. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1859-1880. [PMID: 37118908 DOI: 10.1080/15226514.2023.2202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Arundo donax and Phragmites australis were examined in 4 different periods (June and October for 2 years), heavy metal and mineral element accumulations in plants were evaluated, and water-soil-plant relationships were revealed. Element distributions, bioaccumulation factors (BAF) and translocation factors (TF) in different parts of the investigated plant species were also determined. BAFs of elements calculated by using the concentration values in underground parts and sediment samples were between 1.02 and 4.96. While the highest TF was determined as 8.07 for Zn between washed leaf and stem in A. donax, the lowest TF was determined as 0.05 for Fe between stem and underground part. Corresponding highest and lowest TFs for P. australis were 11.80 for Cu between washed leaf and stem, and 0.02 for Fe between stem and underground part, respectively. The results were supported by MANOVA statistical analyzes. Additionally, the macro-micro elements and heavy metal accumulation levels in the parts of the Orontes River ecosystem were significantly higher in the fall periods compared to the spring periods. Our research revealed that the versatile accumulation properties and high accumulation ability of A. donax for Cd, Cr, and Ni and of P. australis for Cd, Co, Cu, Ni, Pb, and Zn.
Collapse
Affiliation(s)
- Ibrahim Ertugrul Yalcin
- Faculty of Engineering and Natural Sciences, Department of Civil Engineering, Bahcesehir University, Istanbul, Türkiye
- Natural and Applied Sciences, Biology Program, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Volkan Altay
- Faculty of Arts & Sciences, Department of Biology, Hatay Mustafa Kemal University, Hatay, Türkiye
| |
Collapse
|
35
|
Cai X, Li X, Peng L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X, Du J, Li N, Cai S. Effects of mowing on Pb accumulation and transport in Cynodon dactylon (L.) Pers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57571-57586. [PMID: 36973620 DOI: 10.1007/s11356-023-26623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Bermudagrass is a perennial herb with the potential to remediate Pb pollution in soils, and it has mechanical resistance to shearing. However, the effects of mowing on Pb absorption and accumulation in bermudagrass are still unclear. In this study, we investigated the effects of different quantities (0, 1, 2, 4 applications) of mowing treatments under 200 mg L-1 Pb application on Pb accumulation and transport in bermudagrass and explored the related mechanisms. Compared to the Pb treatment, all of the mowing treatments greatly decreased root Pb concentration/accumulation, significantly enhanced Pb concentrations/accumulations in stubble stems and stubble leaves, and ultimately promoted Pb enrichment and transport. Of the treatments in this study, two applications of mowing best promoted Pb enrichment, and four applications of mowing best promoted Pb transport efficiency. Furthermore, mowing mediated the microdistribution and physiological patterns of Pb in bermudagrass and affected the Pb transport by changing the subcellar distribution patterns and chemical forms of Pb in various tissues. Additionally, mowing promoted the transport of all mineral elements and showed a synergistic relationship with Pb absorption and transport. The change in mineral element metabolism patterns may be an important reason why mowing promoted Pb accumulation in bermudagrass. Our study provides the first comprehensive evidence regarding mowing facilitating the absorption, accumulation and transport of Pb in bermudagrass. Moderate mowing may be an effective strategy to assist in soil Pb remediation using bermudagrass.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Nian Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shizhen Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
36
|
Serafini RJM, Arreghini S, Troiani HE, de Iorio ARF. Copper, zinc, and chromium accumulation in aquatic macrophytes from a highly polluted river of Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31242-31255. [PMID: 36443549 DOI: 10.1007/s11356-022-24380-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The aims of this study were to assess Cu, Zn, and Cr pollution in a highly polluted river in Argentina (Matanza-Riachuelo) and to evaluate tolerance strategies and toxic effects in aquatic macrophytes. Chemical techniques were used to assess the bioavailability of these metals and to evaluate their uptake and translocation by plants. The ultrastructure of the roots of a free-floating plant (Eichhornia crassipes) and the leaves of an emergent macrophyte (Sagittaria montevidensis) was examined using transmission electron microscopy. In the lower basin of the river, the highest concentrations of total heavy metals were detected in water (179 µgZn/g; 54 µgCu/g; 240 µgCr/g) and sediments (1499 µgZn/g; 393 µgCu/g; 4886 µgCr/g). In the upper basin of the river, low percentages of Zn and Cu (8 to 25%) were extracted with DTPA and EDTA, probably due to the lithogenic origin of these metals. Higher extraction percentages (24 to 66%) were obtained in the lower basin, in accordance with anthropogenic pollution. For Cr, extraction percentages were low in the upper basin of the river (< 4.5%) and extremely low in the lower basin (< 0.03%). In S. montevidensis, the BCF (bioconcentration factor) and TF (translocation factor) indexes were compatible with heavy metal exclusion mechanisms in sediments, whereas in the E. crassipes, root compartmentalization could be the main tolerance strategy. The leaves of S. montevidensis showed no evidence of damage, whereas ultrastructural alterations (plasmolyzed cells, disorganized membranes) were observed in E. crassipes.
Collapse
Affiliation(s)
- Roberto José María Serafini
- Departamento de Recursos Naturales y Ambiente, Cátedra de Química Inorgánica y Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Av. San Martin 4453, CP1417, Buenos Aires, Argentina.
| | - Silvana Arreghini
- Departamento de Recursos Naturales y Ambiente, Cátedra de Química Inorgánica y Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Av. San Martin 4453, CP1417, Buenos Aires, Argentina
| | - Horacio Esteban Troiani
- Departamento de Caracterización de Materiales, Centro Atómico Bariloche, CNEA-CONICET, Universidad Nacional de Río Negro, Av. Bustillo 9500, CP8400, San Carlos de Bariloche, Argentina
| | - Alicia Rosa Fabrizio de Iorio
- Departamento de Recursos Naturales y Ambiente, Cátedra de Química Inorgánica y Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Av. San Martin 4453, CP1417, Buenos Aires, Argentina
| |
Collapse
|
37
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
38
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Song Y, Ashraf A. Role of biochar-based free radicals in immobilization and speciation of metals in the contaminated soil-plant environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116620. [PMID: 36323123 DOI: 10.1016/j.jenvman.2022.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The structure of biochar produced at various pyrolysis temperatures influences metal geochemical behavior. Here, the impact of wheat straw-derived biochar (300, 500, and 700 °C) on the immobilization and transformation of metals in the contaminated soil-plant system was assessed. The findings of the sequential extraction revealed that biochar additives had a substantial influence on the speciation of Cr, Ni, Pb, and Zn in the contaminated soil. The lowest F1 (exchangeable and soluble fraction) + F2 (carbonate fraction) accounted for Cr (44%) in WB-300, Ni (43.87%) in WB-500, Pb (43.79%), and Zn (49.78%) in WB-700 with applied amendments of their total amounts. The characterization results indicated that high pyrolysis temperatures (300-700 °C) increased the carbon-containing groups with the potential to adsorb metals from the soil-plant environment. The bioconcentration and translocation factors (BCF and TF) were less than 1, indicating that metal concentration was restricted to maize roots and translocation to shoots. Reactive oxygen species (ROS) intracellularly influence metal interactions with plants. Electron paramagnetic resonance (EPR) was performed to determine hydroxyl radical generation (•OH) in plant segments to assess the dominance of free radicals (FRs). Consequently, the formation of •OH significantly depends on the pyrolysis temperature and the interaction with a contaminated soil-plant environment. Thus, metal transformation can be effectively decreased in the soil-plant environment by applying WB amendments.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
39
|
Li X, Li B, Jin T, Chen H, Zhao G, Qin X, Yang Y, Xu J. Rhizospheric microbiomics integrated with plant transcriptomics provides insight into the Cd response mechanisms of the newly identified Cd accumulator Dahlia pinnata. FRONTIERS IN PLANT SCIENCE 2022; 13:1091056. [PMID: 36589044 PMCID: PMC9798219 DOI: 10.3389/fpls.2022.1091056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation that depends on excellent plant resources and effective enhancing measures is important for remediating heavy metal-contaminated soils. This study investigated the cadmium (Cd) tolerance and accumulation characteristics of Dahlia pinnata Cav. to evaluate its Cd phytoremediation potential. Testing in soils spiked with 5-45 mg kg-1 Cd showed that D. pinnata has a strong Cd tolerance capacity and appreciable shoot Cd bioconcentration factors (0.80-1.32) and translocation factors (0.81-1.59), indicating that D. pinnata can be defined as a Cd accumulator. In the rhizosphere, Cd stress (45 mg kg-1 Cd) did not change the soil physicochemical properties but influenced the bacterial community composition compared to control conditions. Notably, the increased abundance of the bacterial phylum Patescibacteria and the dominance of several Cd-tolerant plant growth-promoting rhizobacteria (e.g., Sphingomonas, Gemmatimonas, Bryobacter, Flavisolibacter, Nocardioides, and Bradyrhizobium) likely facilitated Cd tolerance and accumulation in D. pinnata. Comparative transcriptomic analysis showed that Cd significantly induced (P < 0.001) the expression of genes involved in lignin synthesis in D. pinnata roots and leaves, which are likely to fix Cd2+ to the cell wall and inhibit Cd entry into the cytoplasm. Moreover, Cd induced a sophisticated signal transduction network that initiated detoxification processes in roots as well as ethylene synthesis from methionine metabolism to regulate Cd responses in leaves. This study suggests that D. pinnata can be potentially used for phytoextraction and improves our understanding of Cd-response mechanisms in plants from rhizospheric and molecular perspectives.
Collapse
Affiliation(s)
- Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Jin
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huafang Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Gaojuan Zhao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
40
|
Li X, Xiao J, Salam MMA, Chen G. Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158232. [PMID: 36007636 DOI: 10.1016/j.scitotenv.2022.158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Woody plants have gained considerable attention for remediating soils contaminated with heavy metals because of their cost-efficient and ecologically friendly nature. However, most studies on potential phytoremediation evaluation are limited to short-term experiments in greenhouse or field, meaning that differences may exist between laboratory results and application in natural environment. In this study, ten Quercus spp. were tested in a consecutive 3-year field trial (2018-2020) to assess their dendroremediation abilities for Cd and Zn contaminated soil. The results revealed that nine Quercus spp. demonstrated good survival ability without any stress, except for Quercus velutina Lam., in the 3-year growth period. In 2020, Quercus texana Buckley and Quercus fabri Hance plants produced the greatest biomass (2100 and 1880 g plant-1) among the nine Quercus spp. Quercus texana had the highest total Cd accumulation (39.3 mg plant-1) in 2020, which was 8.5 times higher than that in 2018, followed by Quercus pagoda Raf. (8.85 mg plant-1) and Q. fabri (8.07 mg plant-1) plants, respectively, whereas Cd accumulation increased by 7.4 times for Q. pagoda and 22 times for Q. fabri compared to 2018. The results from 2020 indicated that Q. fabri had the highest Zn accumulation (205 mg plant-1), followed by Quercus nigra L. (149 mg plant-1) and Q. texana (140 mg plant-1), respectively, and these values increased 14, 6.4, and 6.2 times in comparison to 2018. The comprehensive bioaccumulation index (CBAI) was proposed to evaluate the dendroremediation potential of Quercus spp., suggesting that Q. texana and Q. fabri had the most outstanding potential for remediation of Cd and Zn polluted soil, with the values of 0.82 and 0.60, respectively. In summary, Q. texana and Q. fabri are ideal for remediating Cd/Zn-contaminated soil, and long-term field trials and the CBAI method are helpful for comprehensively evaluating the remediation capacity of trees.
Collapse
Affiliation(s)
- Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100 Joensuu, Finland; Natural Resources Institute Finland (LUKE), Yliopistokatu 6B, 80100 Joensuu, Finland
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
41
|
Li D, Zhou C, Li JQ, Dong Q, Miao P, Lin Y, Cheng H, Wang Y, Luo L, Pan C. Metabolomic analysis on the mechanism of nanoselenium alleviating cadmium stress and improving the pepper nutritional value. J Nanobiotechnology 2022; 20:523. [PMID: 36496437 PMCID: PMC9741789 DOI: 10.1186/s12951-022-01739-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) maintains soil-plant homeostasis in the rhizosphere and regulates signaling molecules to mitigate cadmium (Cd) toxicity. However, there has been no systematic investigation of the effects of nano-selenium (nano-Se) on the regulation of non-target metabolites and nutritional components in pepper plants under Cd stress. This study investigated the effects of Cd-contaminated soil stress and nano-Se (1, 5, and 20 mg/L) on the metabolic mechanism, fruit nutritional quality, and volatile organic compounds (VOCs) composition of pepper plants. The screening of differential metabolites in roots and fruit showed that most were involved in amino acid metabolism and capsaicin production. Amino acids in roots (Pro, Trp, Arg, and Gln) and fruits (Phe, Glu, Pro, Arg, Trp, and Gln) were dramatically elevated by nano-Se biofortification. The expression of genes of the phenylpropane-branched fatty acid pathway (BCAT, Fat, AT3, HCT, and Kas) was induced by nano-Se (5 mg/L), increasing the levels of capsaicin (29.6%), nordihydrocapsaicin (44.2%), and dihydrocapsaicin (45.3%). VOCs (amyl alcohol, linalool oxide, E-2-heptaldehyde, 2-hexenal, ethyl crotonate, and 2-butanone) related to crop resistance and quality were markedly increased in correspondence with the nano-Se concentration. Therefore, nano-Se can improve the health of pepper plants by regulating the capsaicin metabolic pathway and modulating both amino acid and VOC contents.
Collapse
Affiliation(s)
- Dong Li
- grid.428986.90000 0001 0373 6302Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou, Hainan 570228 People’s Republic of China
| | - Chunran Zhou
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Jia-Qi Li
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China ,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311 China
| | - Qinyong Dong
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China ,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311 China
| | - Peijuan Miao
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Yongxi Lin
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Haiyan Cheng
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Yuwei Wang
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Luna Luo
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Canping Pan
- grid.22935.3f0000 0004 0530 8290Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
42
|
Chen HH, Chen XF, Zheng ZC, Huang WL, Guo J, Yang LT, Chen LS. Characterization of copper-induced-release of exudates by Citrus sinensis roots and their possible roles in copper-tolerance. CHEMOSPHERE 2022; 308:136348. [PMID: 36087738 DOI: 10.1016/j.chemosphere.2022.136348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu) excess is often observed in old Citrus orchards. Little information is available on the characterization of Cu-induced-release of root exudates and their possible roles in plant Cu-tolerance. Using sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] seedlings as materials, we investigated the impacts of 0, 0.5, 25, 150, 350, 550, 1000, 2000 or 5000 μM CuCl2 (pH 4.8) on Cu uptake, root exudates [malate, citrate, total phenolics (TP), total soluble sugars (TSS) and total free amino acids (TFAA)], electrolyte leakage and malondialdehyde, and solution pH under hydroponic conditions; the time-course of root exudates and solution pH in response to Cu; and the impacts of protein synthesis and anion-channel inhibitors, and temperature on Cu-induced-secretion of root exudates and solution pH. About 70% of Cu was accumulated in 0 and 0.5 μM Cu-exposed roots, while over 97% of Cu was accumulated in ≥25 μM Cu-exposed roots. Without Cu, the seedlings could alkalize the solution pH from 4.8 to above 6.0. Cu-stimulated-secretion of root exudates elevated with the increment of Cu concentration from 0 to 1000 μM, then decreased or remained unchanged with the further increment of Cu concentration, while root electrolyte leakage and malondialdehyde (root-induced alkalization) increased (lessened) with the increment of Cu concentration from 0 to 5000 μM. Further analysis indicated that Cu-stimulated-secretion of root exudates was an energy-dependent process and could repressed by inhibitors, and that there was no discernible delay between the onset of exudate release and the addition of Cu. To conclude, both root-induced alkalization and Cu-stimulated-release of root exudates played a key role in sweet orange Cu-tolerance via increasing root Cu accumulation and reducing Cu uptake and phytotoxicity.
Collapse
Affiliation(s)
- Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
43
|
Klik B, Holatko J, Jaskulska I, Gusiatin MZ, Hammerschmiedt T, Brtnicky M, Liniauskienė E, Baltazar T, Jaskulski D, Kintl A, Radziemska M. Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8331. [PMID: 36499826 PMCID: PMC9735557 DOI: 10.3390/ma15238331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Growing awareness of the risks posed by pollution of the soil environment is leading to the development of new remediation strategies. The technique of aided phytostabilization, which involves the evaluation of new heavy-metal (HM)-immobilizing amendments, together with appropriately selected plant species, is a challenge for environmental protection and remediation of the soil environment, and seems to be promising. In this study, the suitability of bentonite for the technique of aided phytostabilization of soils contaminated with high HM concentrations was determined, using a mixture of two grass species. The HM contents in the tested plants and in the soil were determined by flame atomic absorption spectrometry. The application of bentonite had a positive effect on the biomass of the tested plants, and resulted in an increase in soil pH. The concentrations of copper, nickel, cadmium, lead and chromium were higher in the roots than in the above-ground parts of the plants, especially when bentonite was applied to the soil. The addition of the analyzed soil additive contributed significantly to a decrease in the levels of zinc, copper, cadmium and nickel in the soil at the end of the experiment. In view of the above, it can be concluded that the use of bentonite in the aided phytostabilization of soils polluted with HMs, is appropriate.
Collapse
Affiliation(s)
- Barbara Klik
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Iwona Jaskulska
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Mariusz Z. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ernesta Liniauskienė
- Hydrotechnical Construction Department, Kaunas University of Applied Sciences, Liepu Str. 1, Girionys, LT-53101 Šlienava, Lithuania
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dariusz Jaskulski
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Agricultural Research, Ltd., Zahradni 1, 664 41 Troubsko, Czech Republic
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|
44
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
45
|
Naz M, Dai Z, Hussain S, Tariq M, Danish S, Khan IU, Qi S, Du D. The soil pH and heavy metals revealed their impact on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115770. [PMID: 36104873 DOI: 10.1016/j.jenvman.2022.115770] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial community is the main indicator having a crucial role in the remediation of polluted soils. These microbes can alter soil pH, organic matter in soils (SOM), soil physic-chemical properties, and potential soil respiration rate via their enzymatic activities. Similarly, heavy metals also have a crucial role in soil enzymatic activities. For this purpose, a number of methods are studied to evaluate the impact of soil pH (a key factor in the formation of biogeographic microbial patterns in bacteria) on bacterial diversity. The effects of pH on microbial activity are glamorous but still unclear. Whereas, some studies also indicate that soil pH alone is not the single key player in the diversity of soil bacteria. Ecological stability is achieved in a pollution-free environment and pH value. The pH factor has a significant impact on the dynamics of microbes' communities. Here, we try to discuss factors that directly or indirectly affect soil pH and the impact of pH on microbial activity. It is also discussed the environmental factors that contribute to establishing a specific bacterial community structure that must be determined. From this, it can be concluded that the environmental impact on soil pH, reducing soil pH and interaction with this factor, and reducing the effect of soil pH on soil microbial community.
Collapse
Affiliation(s)
- Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology Suzhou, 215009, Jiangsu Province, PR China.
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang Province, PR China
| | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College, Lahore, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| |
Collapse
|
46
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
47
|
Abou El-Ela AS, Ntiri ES, Munawar A, Shi XX, Zhang C, Pilianto J, Zhang Y, Chen M, Zhou W, Zhu ZR. Silver and copper-oxide nanoparticles prepared with GA 3 induced defense in rice plants and caused mortalities to the brown planthopper, Nilaparvata lugens (Stål). NANOIMPACT 2022; 28:100428. [PMID: 36126900 DOI: 10.1016/j.impact.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nanoparticles have been employed as nanopesticides for pest control in agriculture. However, the harmful effects of their chemical synthesis on human and environmental health have resulted in increased use of green synthetic approaches, including the use of plant extracts. The brown planthopper, Nilaparvata lugens (Stål) (BPH), is a severe pest of rice plants (Oryza sativa L.), especially in Asia. It is usually controlled chemically but has developed resistance against many insecticides. RESULTS In this study, we synthesized metallic silver (Ag-NPs) and copper-oxide (CuO-NPs) nanoparticles using the exogenous phytohormone, gibberellic acid (GA3), as a reducing agent. We then sprayed them separately on rice plants and BPH together and evaluated their effects on the plants and insects. SEM and TEM images showed that the synthesis was successful, indicated by the sizes (25-60 nm), uniform shape and spherical and cubical structures of Ag-NPs, as well as by the rugby sheet-like of CuO-NPs with lateral sizes of 150-340 nm and thickness of 30-70 nm. Independent applications of the nanoparticles and GA3 on rice plants induced different volatile profiles, of which the highest number emitted was under Ag-NPs, including the highest emission of linalool. Transcriptome analysis showed that Ag-NPs-treated rice plants showed different transcriptome profiles compared to the control, 24 h after treatment, including the upregulation of the linalool synthase gene, genes of plants transcription factors such as WRKY, bHLH and NAC and other genes involved in plant defense responses. In all treatments, the mortality rate of BPH increased with an increase in NPs concentrations over time but was prominent under Ag-NPs treatment. The LC50 values for Ag-NPs and CuO-NPs decreased with an increase in time. Also, the nanoparticles increased the activities of protective enzymes (POD, SOD and CAT), inhibited that of detoxification enzymes (A-CHE, ACP and AKP), and reduced total protein concentrations in the BPH. CONCLUSIONS These results show that synthesizing nanoparticles using phytohormones may be a safer and environmentally friendly option, which also holds promise for controlling the BPH in rice production.
Collapse
Affiliation(s)
- Amr S Abou El-Ela
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eric Siaw Ntiri
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Joko Pilianto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Research Institute, Zhejiang University, Sanya 572000, China.
| |
Collapse
|
48
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Munir MAM, Arif M, Ahmed R, Song Y. Assessing the influence of sewage sludge and derived-biochar in immobilization and transformation of heavy metals in polluted soil: Impact on intracellular free radical formation in maize. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119768. [PMID: 35841993 DOI: 10.1016/j.envpol.2022.119768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
As one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced the potential mobility of heavy metals while increasing the residual fraction in polluted soils. The translocation and bioconcentration factors showed that heavy metals were slightly transferred into shoots from roots and lowered accumulation in roots from contaminated soils. Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS) comprehensive characterization results indicated the significant role of applied amendments for heavy metals transformation from the exchangeable-soluble fractions to the least available form by lowering their mobility to confirm the adsorption-based complexes, which results in the surface adsorption of heavy metals with functional groups. The electron paramagnetic resonance (EPR) results indicated the dominance of reactive oxygen species (ROS) in the intracellular formation of hydroxyl radicals (•OH) in maize plant roots and shoots. ROS (•OH) generation plays a critical influence in the interaction between the physiological processes of plants and heavy metals. Moreover, all the amendments increased maize growth and biomass production. Our study suggests that alone and combined application of SS and SSB have great potential to remediate heavy metals contaminated soil for environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
49
|
Qian F, Huang X, Su X, Bao Y. Responses of microbial communities and metabolic profiles to the rhizosphere of Tamarix ramosissima in soils contaminated by multiple heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129469. [PMID: 35820335 DOI: 10.1016/j.jhazmat.2022.129469] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) contamination around smelters poses serious stress to soil microbiome. However, the co-effect of multiple HMs and native vegetation rhizosphere on the soil ecosystem remains unclear. Herein, effects of high HMs level and the rhizosphere (Tamarix ramosissima) on soil bacterial community structure and metabolic profiles in sierozem were analyzed by coupling high-throughput sequencing and soil metabolomics. Plant roots alleviated the threat of HMs by absorbing and stabilizing them in soil. High HMs level decreased the richness and diversity of soil bacterial community and increased numbers of special bacteria. Plant roots changed the contribution of HMs species shaping the bacterial community. Cd and Zn were the main contributors to bacterial distribution in non-rhizosphere soil, however, Pb and Cu became the most important HMs in rhizosphere soil. HMs induced more dominant metal-tolerant bacteria in non-rhizosphere than rhizosphere soil. Meanwhile, critical metabolites varied by rhizosphere in co-occurrence networks. Moreover, the same HMs-tolerant bacteria were regulated by different metabolites, e.g. unclassified family AKYG1722 was promoted by Dodecanoic acid in non-rhizosphere soil, while promoted by Octadecane, 2-methyl- in rhizosphere soil. The study illustrated that high HMs level and rhizosphere affected soil properties and metabolites, by which soil microbial community structure was reshaped.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangmiao Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
50
|
Cai X, Fu J, Li X, Peng L, Yang L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X. Low-molecular-weight organic acid-mediated tolerance and Pb accumulation in centipedegrass under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113755. [PMID: 35689889 DOI: 10.1016/j.ecoenv.2022.113755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/01/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 μM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liqi Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|