1
|
Yoo S, Jeong YH, Choi HH, Chae S, Hwang D, Shin SJ, Ha SJ. Chronic LCMV infection regulates the effector T cell response by inducing the generation of less immunogenic dendritic cells. Exp Mol Med 2023:10.1038/s12276-023-00991-5. [PMID: 37121977 DOI: 10.1038/s12276-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-β, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.
Collapse
Affiliation(s)
- Seungbo Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yun Hee Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Lin Y, Li Y, Chen H, Meng J, Li J, Chu J, Zheng R, Wang H, Pan P, Su J, Jiang J, Ye L, Liang H, An S. Weighted gene co-expression network analysis revealed T cell differentiation associated with the age-related phenotypes in COVID-19 patients. BMC Med Genomics 2023; 16:59. [PMID: 36966292 PMCID: PMC10039774 DOI: 10.1186/s12920-023-01490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
The risk of severe condition caused by Corona Virus Disease 2019 (COVID-19) increases with age. However, the underlying mechanisms have not been clearly understood. The dataset GSE157103 was used to perform weighted gene co-expression network analysis on 100 COVID-19 patients in our analysis. Through weighted gene co-expression network analysis, we identified a key module which was significantly related with age. This age-related module could predict Intensive Care Unit status and mechanical-ventilation usage, and enriched with positive regulation of T cell receptor signaling pathway biological progress. Moreover, 10 hub genes were identified as crucial gene of the age-related module. Protein-protein interaction network and transcription factors-gene interactions were established. Lastly, independent data sets and RT-qPCR were used to validate the key module and hub genes. Our conclusion revealed that key genes were associated with the age-related phenotypes in COVID-19 patients, and it would be beneficial for clinical doctors to develop reasonable therapeutic strategies in elderly COVID-19 patients.
Collapse
Affiliation(s)
- Yao Lin
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yueqi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hubin Chen
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Meng
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingyi Li
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiemei Chu
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ruili Zheng
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hailong Wang
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peijiang Pan
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinming Su
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Ye
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Liang
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Biosafety Level 3 Laboratory and Guangxi Collaborative Innovation Centre for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sanqi An
- Medical Laboratory Centre, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Adamska JZ, Verma R, Gupta S, Hagan T, Wimmers F, Floyd K, Li Q, Valore EV, Wang Y, Trisal M, Vilches-Moure JG, Subramaniam S, Walkley CR, Suthar MS, Li JB, Pulendran B. Ablation of Adar1 in myeloid cells imprints a global antiviral state in the lung and heightens early immunity against SARS-CoV-2. Cell Rep 2023; 42:112038. [PMID: 36732946 PMCID: PMC9842623 DOI: 10.1016/j.celrep.2023.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Under normal homeostatic conditions, self-double-stranded RNA (self-dsRNA) is modified by adenosine deaminase acting on RNA 1 (ADAR1) to prevent the induction of a type I interferon-mediated inflammatory cascade. Antigen-presenting cells (APCs) sense pathogen-associated molecular patterns, such as dsRNA, to activate the immune response. The impact of ADAR1 on the function of APCs and the consequences to immunity are poorly understood. Here, we show that ADAR1 deletion in CD11c+ APCs leads to (1) a skewed myeloid cell compartment enriched in inflammatory cDC2-like cells, (2) enhanced numbers of activated tissue resident memory T cells in the lung, and (3) the imprinting of a broad antiviral transcriptional signature across both immune and non-immune cells. The resulting changes can be partially reversed by blocking IFNAR1 signaling and promote early resistance against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study provides insight into the consequences of self-dsRNA sensing in APCs on the immune system.
Collapse
Affiliation(s)
- Julia Z Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Katharine Floyd
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Erika V Valore
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Mehul S Suthar
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Jin Billy Li
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94304, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
T Cells Immunophenotyping and CD38 Overexpression as Hallmarks of the Severity of COVID-19 and Predictors of Patients' Outcomes. J Clin Med 2023; 12:jcm12020710. [PMID: 36675642 PMCID: PMC9861629 DOI: 10.3390/jcm12020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND By the end of 2019, the COVID-19 pandemic spread all around the world with a wide spectrum of clinical presentations ranging from mild to moderate to severe or critical cases. T cell subtype dysregulation is mostly involved in the immunopathogenic mechanism. The present study aimed to highlight the role of monitoring T cell subtypes and their activation (expression of CD38) in COVID-19 patients compared to healthy subjects and their role in predicting severity and patients' outcomes. MATERIALS The study involved 70 adult COVID-19 confirmed cases stratified into three groups: a mild/asymptomatic group, a clinically moderate group, and a clinically severe/critical group. Flow cytometry analysis was used for the assessment of CD3+ cells for total T cell count, CD4+ cells for helper T cells (Th), CD8+ cells for cytotoxic T cells (Tc), CD4+CD25+ cells for regulatory T cells (T reg), and CD38 expression in CD4+ T cells and CD8+ T cells for T cell activation. RESULTS A statistically significant difference was found between COVID-19 cases and healthy controls as regards low counts of all the targeted T cell subtypes, with the lowest counts detected among patients of the severe/critical group. Furthermore, CD38 overexpression was observed in both CD4+ and CD8+ T cells. CONCLUSION Decreased T cell count, specifically CD8+ T cell (Tc), with T cell overactivation which was indicated by CD38 overexpression on CD4+ and CD8+ T cells had a substantial prognostic role in predicting severity and mortality among COVID-19 patients. These findings can provide a preliminary tool for clinicians to identify high-risk patients requiring vigilant monitoring, customized supportive therapy, or ICU admission. Studies on larger patient groups are needed.
Collapse
|
5
|
Snell LM. CD4 + progenitor cells sustain helper responses during chronic infection. Immunity 2022; 55:1143-1145. [PMID: 35830820 DOI: 10.1016/j.immuni.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
How CD4+ T cell responses are maintained during chronic infection is unknown. In this issue of Immunity, Xia et al. (2022) identify a progenitor T cell subset that gives rise to effector and follicular helper T cells to sustain antiviral responses.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Programmed Cell Death-1/Programmed Cell Death-1 Ligand as Prognostic Markers of Coronavirus Disease 2019 Severity. Cells 2022; 11:cells11121978. [PMID: 35741107 PMCID: PMC9222173 DOI: 10.3390/cells11121978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Current research proves that immune dysregulation is a common feature of coronavirus disease 2019 (COVID-19), and immune exhaustion is associated with increased disease mortality. Immune checkpoint molecules, including the programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) axis, may serve as markers of disease severity. Accordingly, in this study, we evaluated the expression of PD-1/PD-L1 in patients with COVID-19. Blood immunophenotypes of hospitalized patients with moderate (n = 17, requiring oxygen support) and severe (n = 35, requiring mechanical ventilation in the intensive care setting) COVID-19 were compared and associated with clinical, laboratory, and survival data. The associations between severity and lymphocyte profiles were analysed at baseline and after 7 and 14 days of in-hospital treatment. Forty patients without COVID-19 infection were used as controls. For PD-1-positive T and B lymphocyte subsets, notable increases were observed between controls and patients with moderate or severe COVID-19 for CD4+PD-1+ T cells, CD8+PD-1+ T and CD19+PD-1+ B cells. Similar trends were observed for PD-L1-positive lymphocytes, namely, CD4+PD-L1+ T cells, CD8+PD-L1+ T cells and CD19+PD-L1+ B cells. Importantly, all markers associated with PD-1 and PD-L1 were stable over time for the analysed time points in the moderate and severe COVID-19 groups. Increased abundances of PD-1+ and PD-L1+ lymphocytes were associated with disease severity and mortality and were stable over time in patients with moderate to severe COVID-19. These immune exhaustion parameters may be attractive biomarkers of COVID-19 severity.
Collapse
|
7
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Palladino M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem Med (Zagreb) 2021; 31:030501. [PMID: 34658642 PMCID: PMC8495616 DOI: 10.11613/bm.2021.030501] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic represents a scientific and social crisis. One of the main unmet needs for coronavirus disease 2019 is its unpredictable clinical course, which can rapidly change in an irreversible outcome. COVID-19 patients can be classified into mild, moderate, and severe. Several haematological parameters, such as platelets, white blood cell total count, lymphocytes, neutrophils, (together with neutrophil-lymphocyte and platelet-lymphocyte ratio), and haemoglobin were described to be associated with COVID-19 infection and severity. The purpose of these review is to describe the current state of the art about complete blood count alterations during COVID-19 infection, and to summarize the crucial role of some haematological parameters during the course of the disease. Decreased platelet, lymphocyte, haemoglobin, eosinophil, and basophil count, increased neutrophil count and neutrophil-lymphocyte and platelet-lymphocyte ratio have been associated with COVID-19 infection and a worse clinical outcome. Our study adds some novelty about the identification of effective biomarkers of progressive disease, and might be helpful for diagnosis, prevention of complications, and effective therapy.
Collapse
|
9
|
Mahmoodpoor A, Hosseini M, Soltani-Zangbar S, Sanaie S, Aghebati-Maleki L, Saghaleini SH, Ostadi Z, Hajivalili M, Bayatmakoo Z, Haji-Fatahaliha M, Babaloo Z, Farid SS, Heris JA, Roshangar L, Rikhtegar R, Kafil HS, Yousefi M. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression. Mol Immunol 2021; 138:121-127. [PMID: 34392110 PMCID: PMC8343383 DOI: 10.1016/j.molimm.2021.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Aims Coronavirus disease 2019 (COVID-19) is a novel viral infection threatening worldwide health as currently there exists no effective treatment strategy and vaccination programs are not publicly available yet. T lymphocytes play an important role in antiviral defenses. However, T cell frequency and functionality may be affected during the disease. Material and methods Total blood samples were collected from patients with mild and severe COVID-19, and the total lymphocyte number, as well as CD4+ and CD8 + T cells were assessed using flowcytometry. Besides, the expression of exhausted T cell markers was evaluated. The levels of proinflammatory cytokines were also investigated in the serum of all patients using enzyme-linked immunesorbent assay (ELISA). Finally, the obtained results were analyzed along with laboratory serological reports. Results COVID-19 patients showed lymphopenia and reduced CD4+ and CD8 + T cells, as well as high percentage of PD-1 expression by T cells, especially in severe cases. Serum secretion of TNF-α, IL-1β, and IL-2 receptor (IL-2R) were remarkably increased in patients with severe symptoms, as compared with healthy controls. Moreover, high levels of triglyceride (TG) and low density lipoprotein cholesterol (LDL-C), were correlated with the severity of the disease. Conclusion Reduced number and function of T cells were observed in COVID-19 patients, especially in severe patients. Meanwhile, the secretion of proinflammatory cytokines was increased as the disease developed. High level of serum IL-2R was also considered as a sign of lymphopenia. Additionally, hypercholesterolemia and hyperlipidemia could be important prognostic factors in determining the severity of the infection.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | | | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Iran
| | | | - Seyed Hadi Saghaleini
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Ostadi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhinous Bayatmakoo
- Department of Infectious Diseases and Tropical Medicine, Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Haji-Fatahaliha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Shahmohammadi Farid
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rikhtegar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Madonna G, Sale S, Capone M, De Falco C, Santocchio V, Di Matola T, Fiorentino G, Pirozzi C, D’Antonio A, Sabatino R, Atripaldi L, Atripaldi U, Raffone M, Curvietto M, Grimaldi AM, Vanella V, Festino L, Scarpato L, Palla M, Spatarella M, Perna F, Cerino P, Botti G, Parrella R, Montesarchio V, Ascierto PA, Atripaldi L. Clinical Outcome Prediction in COVID-19 Patients by Lymphocyte Subsets Analysis and Monocytes' iTNF-α Expression. BIOLOGY 2021; 10:735. [PMID: 34439967 PMCID: PMC8389652 DOI: 10.3390/biology10080735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
In December 2019, a novel coronavirus, "SARS-CoV-2", was recognized as the cause of coronavirus disease 2019 (COVID-19). Several studies have explored the changes and the role of inflammatory cells and cytokines in the immunopathogenesis of the disease, but until today, the results have been controversial. Based on these premises, we conducted a retrospective assessment of monocyte intracellular TNF-α expression (iTNF-α) and on the frequencies of lymphocyte sub-populations in twenty-five patients with moderate/severe COVID-19. We found lymphopenia in all COVID-19 infected subjects compared to healthy subjects. On initial observation, in patients with favorable outcomes, we detected a high absolute eosinophil count and a high CD4+/CD8+ T lymphocytes ratio, while in the Exitus Group, we observed high neutrophil and CD8+ T lymphocyte counts. During infection, in patients with favorable outcomes, we observed a rise in the lymphocyte count, in the monocyte and in Treg lymphocyte counts, and in the CD4+ and in CD8+ T lymphocytes count but a reduction in the CD4+/CD8+ T lymphocyte ratio. Instead, in the Exitus Group, we observed a reduction in the Treg lymphocyte counts and a decrease in iTNF-α expression. Our preliminary findings point to a modulation of the different cellular mediators of the immune system, which probably play a key role in the outcomes of COVID-19.
Collapse
Affiliation(s)
- Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Silvia Sale
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Chiara De Falco
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Valentina Santocchio
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Tiziana Di Matola
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Giuseppe Fiorentino
- UOC Fisiopatologia e Riabilitazione Respiratoria, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy;
| | - Caterina Pirozzi
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Anna D’Antonio
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Rocco Sabatino
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| | - Lidia Atripaldi
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.A.); (U.A.)
| | - Umberto Atripaldi
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.A.); (U.A.)
| | - Marcello Raffone
- UOC Microbiologia e Virologia, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy;
| | - Marcello Curvietto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Antonio Maria Grimaldi
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Lucia Festino
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Luigi Scarpato
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Marco Palla
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Michela Spatarella
- UOSD di Farmacia, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy;
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Roberto Parrella
- UOC Malattie Infettive ad Indirizzo Respiratorio, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy;
| | | | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (M.C.); (A.M.G.); (V.V.); (L.F.); (L.S.); (M.P.)
| | - Luigi Atripaldi
- UOC Biochimica Clinica, AORN Ospedali dei Colli—Monaldi—Cotugno—CTO, 80131 Napoli, Italy; (S.S.); (C.D.F.); (V.S.); (T.D.M.); (C.P.); (A.D.); (R.S.); (L.A.)
| |
Collapse
|
11
|
Zhang HJ, Qi GQ, Gu X, Zhang XY, Fang YF, Jiang H, Zhao YJ. Lymphocyte blood levels that remain low can predict the death of patients with COVID-19. Medicine (Baltimore) 2021; 100:e26503. [PMID: 34260527 PMCID: PMC8284734 DOI: 10.1097/md.0000000000026503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly spreading on a global scale and poses a great threat to human health. However, efficient indicators for disease severity have not been fully investigated. Here, we aim to investigate whether dynamic changes of lymphocyte counts can predict the deterioration of patients with COVID-19.We collected data from 2923 patients with laboratory-confirmed COVID-19. Patients were then screened, and we focused on 145 severe cases and 60 critical cases (29 recovered cases, 31 deaths). The length of hospitalization was divided into five time points, namely admission, 25%, 50%, 75% and discharge or death, according to the principle of interquartile distance. A series of laboratory findings and clinical data were collected and analyzed during hospitalization. The results showed that there were differences in levels of leukocytes, neutrophils and lymphocytes at almost every time point in the severe cases and 60 critical cases (29 recovered cases, 31 deaths). Further analysis showed that 70.2% of the COVID-19 cases had low circulating lymphocyte count, of which 64.1% were severe cases and 85.0% were critical cases (75.9% recovered cases and 93.5% died). Moreover, the lymphocyte count in dead cases was significantly lower than that of critical cases who recovered, at almost every time point in the critical groups. We also divided critical patients into group A (<1.1 × 109/L) and group B (>1.1 × 109/L) according to number of lymphocytes. Through survival analysis, we found that there was no significant difference in survival between group A and group B at admission (P = .3065). However, the survival rate according to lymphocyte levels in group A was significantly lower than that of group B at 25% hospital stay (on average day 6.5), 50% and 75% time points (P < .001).Lymphocyte counts that remain lower after the first week following symptom onset are highly predictive of in-hospital death of adults with COVID-19. This predictor may help clinicians identify patients with a poor prognosis and may be useful for guiding clinical decision-making at an early stage.
Collapse
Affiliation(s)
- Hong-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, PR China
- Department of Infectious Diseases, Wuhan Huoshenshan Hospital, Wuhan, Hubei, PR China
| | - Gang-Qiang Qi
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, PR China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, PR China
| | - Xiao-Yan Zhang
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, PR China
| | - Yan-Feng Fang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, the Air Force Medical University, Xi’an, Shaanxi, PR China
| | - Hong Jiang
- Department of Infectious Diseases, Second Affiliated Hospital, the Air Force Medical University, Xi’an, Shaanxi, PR China
| | - Yan-Jun Zhao
- Department of Respiratory and Critical Care Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, PR China
| |
Collapse
|
12
|
Malik A, Naz A, Ahmad S, Hafeez M, Awan FM, Jafar TH, Zahid A, Ikram A, Rauff B, Hassan M. Inhibitory Potential of Phytochemicals on Interleukin-6-Mediated T-Cell Reduction in COVID-19 Patients: A Computational Approach. Bioinform Biol Insights 2021; 15:11779322211021430. [PMID: 34163151 PMCID: PMC8191067 DOI: 10.1177/11779322211021430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A recent COVID-19 pandemic has resulted in a large death toll rate globally and even no cure or vaccine has been successfully employed to combat this disease. Patients have been reported with multi-organ dysfunction along with acute respiratory distress syndrome which implies a critical situation for patients and made them difficult to breathe and survive. Moreover, pathology of COVID-19 is also related to cytokine storm which indicates the elevated levels of interleukin (IL)-1, IL-6, IL-12, and IL-18 along with tumor necrosis factor (TNF)-α. Among them, the proinflammatory cytokine IL-6 has been reported to be induced via binding of severe acute respiratory syndrome coronavirus 2 (SARS)-CoV-2 to the host receptors. METHODOLOGY Interleukin-6 blockade has been proposed to constitute novel therapeutics against COVID-19. Thus, in this study, 15 phytocompounds with known antiviral activity have been subjected to test for their inhibitory effect on IL-6. Based on the affinity prediction, top 3 compounds (isoorientin, lupeol, and andrographolide) with best scores were selected for 50 ns molecular dynamics simulation and MMGB/PBSA binding free energy analysis. RESULTS Three phytocompounds including isoorientin, lupeol, and andrographolide have shown strong interactions with the targeted protein IL-6 with least binding energies (-7.1 to -7.7 kcal/mol). Drug-likeness and ADMET profiles of prioritized phytocompounds are also very prominsing and can be further tested to be potential IL-6 blockers and thus benficial for COVID-19 treatment. The moelcular dynamics simulation couple with MMGB/PBSA binding free energy estimation validated conformational stability of the ligands and stronger intermolecular binding. The mean RMSD of the complexes is as: IL6-isoorientin complex (3.97 Å ± 0.77), IL6-lupeol (3.97 Å ± 0.76), and IL6-andrographolide complex (3.96 Å ± 0.77). In addition, the stability observation was affirmed by compounds mean RMSD: isoorientin (0.72 Å ± 0.32), lupeol (mean 0.38 Å ± 0.08), and andrographolide (1.09 Å ± 0.49). A similar strong agreement on systems stability was unraveled by MMGB/PBSA that found net binding net ~ -20 kcal/mol for the complexes dominated by van der Waal interaction energy. CONCLUSION It has been predicted that proposing potential IL-6 inhibitors with less side effects can help critical COVID-19 patients because it may control the cytokine storm, a major responsible factor of its pathogenesis. In this study, 3 potential phytocompounds have been proposed to have inhibitory effect on IL-6 that can be tested as potential therapeutic options against SARS-CoV-2.
Collapse
Affiliation(s)
- Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sajjad Ahmad
- Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Mansoor Hafeez
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Tassadaq Hussain Jafar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Bisma Rauff
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| |
Collapse
|
13
|
Persistent COVID-19 Symptoms Minimally Impact the Development of SARS-CoV-2-Specific T Cell Immunity. Viruses 2021; 13:v13050916. [PMID: 34063463 PMCID: PMC8155927 DOI: 10.3390/v13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 represents an unprecedented public health challenge. While the majority of SARS-CoV-2-infected individuals with mild-to-moderate COVID-19 resolve their infection with few complications, some individuals experience prolonged symptoms lasting for weeks after initial diagnosis. Persistent viral infections are commonly accompanied by immunologic dysregulation, but it is unclear if persistent COVID-19 impacts the development of virus-specific cellular immunity. To this end, we analyzed SARS-CoV-2-specific cellular immunity in convalescent COVID-19 patients who experienced eight days or fewer of COVID-19 symptoms or symptoms persisting for 18 days or more. We observed that persistent COVID-19 symptoms were not associated with the development of an overtly dysregulated cellular immune response. Furthermore, we observed that reactivity against the N protein from SARS-CoV-2 correlates with the amount of reactivity against the seasonal human coronaviruses 229E and NL63. These results provide insight into the processes that regulate the development of cellular immunity against SARS-CoV-2 and related human coronaviruses.
Collapse
|
14
|
Mahmoudi S, Yaghmaei B, Sharifzadeh Ekbatani M, Pourakbari B, Navaeian A, Parvaneh N, Haghi Ashtiani MT, Mamishi S. Effects of Coronavirus Disease 2019 (COVID-19) on Peripheral Blood Lymphocytes and Their Subsets in Children: Imbalanced CD4 +/CD8 + T Cell Ratio and Disease Severity. Front Pediatr 2021; 9:643299. [PMID: 33937149 PMCID: PMC8081049 DOI: 10.3389/fped.2021.643299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: While pathogenesis in COVID-19 is not fully known and the effects between SARS-CoV-2 and the immune system are complicated, it is known that lymphopenia, hyper-inflammatory responses, and cytokines play an important role in the pathology of COVID-19. While some hematological abnormalities have been described among the laboratory features of COVID-19, there have not been studies reported on lymphocyte subset analyses in children. The aim of this study was to describe lymphocyte subsets in pediatric patients with mild/moderate or severe COVID-19. Methods: The subjects in the study were children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia confirmed with the real-time RT-PCR. The subjects were admitted to the Children's Medical Center, affiliated with the Tehran University of Medical Sciences, between March 7th and June 10th of 2020. The complete blood counts and lymphocyte subpopulations were analyzed for each patient. Results: The study included 55 hospitalized patients with confirmed SARS-CoV-2 infection (34 patients (62%) with an observed mild/moderate case of the disease and 21 patients (38%) with severedisease). Lymphocyte counts were found to be lower in patients with a severe case (mean ± SD 1.6 ± 0.9 in the severe group vs. 2.3 ± 2.2 in the mild group). Compared to the group with mild/moderate pneumonia, children with severe pneumonia had an increased count of CD8+ T cell and a lower percentage of CD4+ T cell. However, the differences between the groups were negligible. Interestingly, the severe group had a lower CD4+/CD8+ T cell ratio compared to the mild group (1.1 ± 0.47 vs. 1.4 ± 0.8, p-value: 0.063). CD4+/CD8+ T cell ratio <2, 1.5, and 1 was found in 48 (87%), 40 (73%), and 19 cases (35%). All of the seven cases in which the subject passed (13%) had CD4+/CD8+ T cell ratio of <2, 86% had CD4+/CD8+ T cell ratio of <1.5, and 29% had CD4+/CD8+ T cell ratio of <1. Conclusion: The CD4+/CD8+ T cell ratio was lower in patients with severe COVID-19 compared to those with mild/moderate form of disease. However, although a decline in CD4+/CD8+ ratio may serve as a useful metric in analyzing of the derangement in immune responses in patients with severe COVID-19, further study with larger sample sizes is highly recommended.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Bahareh Yaghmaei
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh Ekbatani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Amene Navaeian
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Haghi Ashtiani
- Department of Pathology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Burns EA, Muhsen IN, Anand K, Xu J, Umoru G, Arain AN, Abdelrahim M. Hepatitis B Virus Reactivation in Cancer Patients Treated With Immune Checkpoint Inhibitors. J Immunother 2021; 44:132-139. [PMID: 33480637 PMCID: PMC7946380 DOI: 10.1097/cji.0000000000000358] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
There have been unique adverse events reported with targeted blockade of programmed death-1 (PD-1), programmed death-ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA4), including immune mediated toxicities. Recently, there have been reports of hepatitis B reactivation (HBVr) occurring with PD-1/PD-L1 inhibitors, which may result in treatment delays, interruptions, or discontinuation. This retrospective literature review and analysis of the Food and Drug Administration's (FDA) Adverse Events Reporting System (FAERS) queried reported cases of "Hepatitis B reactivation" reported with the PD-1/PD-L1 inhibitors "Pembrolizumab," "Atezolizumab," "Nivolumab," "Durvalumab," "Avelumab," and "Ipilimumab" from initial FDA approval to June 30, 2020. Disproportionality signal analysis was determined by calculating a reporting odds ratio (ROR) and 95% confidence intervals (CI). The ROR was considered significant when the lower and upper limits of the 95% CI were >1 and confirmed by the Fisher exact test (P<0.05). Pembrolizumab had a strong signal associated with HBVr, with a ROR of 2.32 (95% CI: 1.11-4.28) (P=0.013) and was the only statistically significant finding. There were no reports of HBVr with Ipilimumab or Avelumab. Additional prospective studies should be conducted to validate the findings of this retrospective pharmacovigilance analysis to determine the risk of HBVr in patients receiving immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Kartik Anand
- Department of Oncology, Great Plains Health, North Platte, NE
| | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist Research Institute
| | | | | | - Maen Abdelrahim
- Houston Methodist Cancer Center, Outpatient Center
- Cockrell Center of Advanced Therapeutics Phase I Program, Houston Methodist Research Institute, Outpatient Center
- Weill Cornell Medical College, Institute of Academic Medicine, Houston, TX
| |
Collapse
|
16
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Studstill CJ, Pritzl CJ, Seo YJ, Kim DY, Xia C, Wolf JJ, Nistala R, Vijayan M, Cho YB, Kang KW, Lee SM, Hahm B. Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. J Clin Invest 2021; 130:6523-6538. [PMID: 32897877 DOI: 10.1172/jci125297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.
Collapse
Affiliation(s)
- Caleb J Studstill
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Curtis J Pritzl
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
18
|
Yan W, Chen D, Bigambo FM, Wei H, Wang X, Xia Y. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: a network meta-analysis. BMC Infect Dis 2021; 21:156. [PMID: 33557779 PMCID: PMC7868864 DOI: 10.1186/s12879-021-05847-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Due to the rapid spread of coronavirus disease 2019 (COVID-19) worldwide, it is necessary to ascertain essential immune inflammatory parameters that describe the severity of the disease and provide guidance for treatment. We performed network meta-analyses to determine differences in blood cells, lymphocyte subsets, and cytokines in COVID-19 patients with different clinical stages. METHODS Databases were systematically searched to May 2, 2020, and updated on June 1, 2020. Network meta-analyses were conducted via Stata 15.0, and the mean difference (MD) and its 95% CI were used as the effect values of the pooled analysis. RESULTS Seventy-one studies were included involving 8647 COVID-19 patients, White blood cell (WBC), neutrophil (NEUT), IL-6, and IL-10 counts increased significantly with worsening of the COVID-19, while lymphocyte (LYM) counts decreased. The levels of platelet (PLT), CD3+, CD4+, CD8+, and CD19+ cells in severe and critical patients were significantly lower than those in mild patients. IL-1β count was significantly elevated in critical patients. CONCLUSIONS Immune suppression and inflammatory injury play crucial roles in the progression of COVID-19, and the identification of susceptible cells and cytokines provide guidance for the early and accurate treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No.101 Longmian Road, Nanjing, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No.101 Longmian Road, Nanjing, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No.101 Longmian Road, Nanjing, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No.101 Longmian Road, Nanjing, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No.101 Longmian Road, Nanjing, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
19
|
Liu LL, Zhang SW, Chao X, Wang CH, Yang X, Zhang XK, Wen YL, Yun JP, Luo RZ. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma. Cancer Immunol Immunother 2021; 70:417-429. [PMID: 32770259 PMCID: PMC7889680 DOI: 10.1007/s00262-020-02691-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
The "macrotrabecular-massive" (MTM) pattern of hepatocellular carcinoma (HCC) has been suggested to represent a distinct HCC subtype and is associated with specific molecular features. Since the immune microenvironment is heterogenous in HCC, it is important to evaluate the immune microenvironment of this novel variant. CMTM6, a key regulator of PD-L1, is an important immunocheckpoint inhibitor. This study aimed to evaluate the prognostic effect of CMTM6/PD-L1 coexpression and its relationship with inflammatory cells in HCC. We analyzed 619 HCC patients and tumors were classified into MTM and non-MTM HCC subtypes. The expression levels of CMTM6 and PD-L1 in tumor and inflammatory cells were evaluated by immunohistochemistry. The density of inflammatory cells in the cancer cell nest was calculated. Tumoral PD-L1 expression and inflammatory cell density were higher in the MTM type than in the non-MTM type. CMTM6-high expression was significantly associated with shorter OS and DFS than CMTM6-low expression in the whole HCC patient population and the MTM HCC patient population. Moreover, MTM HCC patients with CMTM6/PD-L1 coexpression experienced a higher risk of HCC progression and death. In addition, CMTM6/PD-L1 coexpression was shown to be related to a high density of inflammatory cells. Notably, a new immune classification, based on CMTM6/PD-L1 coexpression and inflammatory cells, successfully stratified OS and DFS in MTM HCC. CMTM6/PD-L1 coexpression has an adverse effect on the prognosis of HCC patients, especially MTM HCC patients. Our study provides evidence for the combination of immune status assessment with anti-CMTM6 and anti-PD-L1 therapy in MTM HCC patients.
Collapse
Affiliation(s)
- Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 51800, China
| | - Xue Chao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Chun-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xin-Ke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Yan-Lin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
20
|
Horspool AM, Kieffer T, Russ BP, DeJong MA, Wolf MA, Karakiozis JM, Hickey BJ, Fagone P, Tacker DH, Bevere JR, Martinez I, Barbier M, Perrotta PL, Damron FH. Interplay of Antibody and Cytokine Production Reveals CXCL13 as a Potential Novel Biomarker of Lethal SARS-CoV-2 Infection. mSphere 2021; 6:e01324-20. [PMID: 33472985 PMCID: PMC7845617 DOI: 10.1128/msphere.01324-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 pandemic is impacting the global population. This study was designed to assess the interplay of antibodies with the cytokine response in SARS-CoV-2 patients. We demonstrate that significant levels of anti-SARS-CoV-2 antibody to receptor binding domain (RBD), nucleocapsid, and spike S1 subunit of SARS-CoV-2 develop over the first 10 to 20 days of infection. The majority of patients produced antibodies against all three antigens (219/255 SARS-CoV-2+ patient specimens, 86%), suggesting a broad response to viral proteins. Antibody levels to SARS-CoV-2 antigens were different based on patient mortality, sex, blood type, and age. Analyses of these findings may help explain variation in immunity between these populations. To better understand the systemic immune response, we analyzed the levels of 20 cytokines by SARS-CoV-2 patients throughout infection. Cytokine analysis of SARS-CoV-2+ patients exhibited increases in proinflammatory markers (interleukin 6 [IL-6], IL-8, IL-18, and gamma interferon [IFN-γ]) and chemotactic markers (IP-10 and eotaxin) relative to healthy individuals. Patients who succumbed to infection produced decreased IL-2, IL-4, IL-12, RANTES, tumor necrosis factor alpha (TNF-α), GRO-α, and MIP-1α relative to patients who survived infection. We also observed that the chemokine CXCL13 was particularly elevated in patients who succumbed to infection. CXCL13 is involved in B cell activation, germinal center development, and antibody maturation, and we observed that CXCL13 levels in blood trended with anti-SARS-CoV-2 antibody levels. Furthermore, patients who succumbed to infection produced high CXCL13 and had a higher ratio of nucleocapsid to RBD antibodies. This study provides insights into SARS-CoV-2 immunity implicating the magnitude and specificity of response in relation to patient outcomes.IMPORTANCE The SARS-CoV-2 pandemic is continuing to impact the global population, and knowledge of the immune response to COVID-19 is still developing. This study assesses the interplay of different parts of the immune system during COVID-19 disease. We demonstrate that COVID-19 patients produce antibodies to three proteins of the COVID-19 virus (SARS-CoV-2) and identify many other immunological proteins that are involved during infection. The data suggest that one of these proteins (CXCL13) may be a novel biomarker for severe COVID-19 that can be readily measured in blood. This information combined with our broad-scale analysis of immune activity during COVID-19 provides new information on the immunological response throughout the course of disease and identifies a novel potential marker for assessing disease severity.
Collapse
Affiliation(s)
- Alexander M Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Theodore Kieffer
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Brynnan P Russ
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - M Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jacqueline M Karakiozis
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Brice J Hickey
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Paolo Fagone
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Danyel H Tacker
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Peter L Perrotta
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
de Candia P, Prattichizzo F, Garavelli S, Matarese G. T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol 2021; 42:18-30. [PMID: 33277181 PMCID: PMC7664351 DOI: 10.1016/j.it.2020.11.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
| |
Collapse
|
22
|
Kalpakci Y, Hacibekiroglu T, Trak G, Karacaer C, Demirci T, Kocayigit H, Sunu C, Varim C, Falay M. Comparative evaluation of memory T cells in COVID-19 patients and the predictive role of CD4+CD8+ double positive T lymphocytes as a new marker. ACTA ACUST UNITED AC 2020; 66:1666-1672. [PMID: 33331574 DOI: 10.1590/1806-9282.66.12.1666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/20/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND The COVID-19 pandemic has affected the entire world, posing a serious threat to human health. T cells play a critical role in the cellular immune response against viral infections. We aimed to reveal the relationship between T cell subsets and disease severity. METHODS 40 COVID-19 patients were randomly recruited in this cross-sectional study. All cases were confirmed by quantitative RT-PCR. Patients were divided into two equivalent groups, one severe and one nonsevere. Clinical, laboratory and flow cytometric data were obtained from both clinical groups and compared. RESULTS Lymphocyte subsets, CD4+ and CD8+ T cells, memory CD4+ T cells, memory CD8+ T cells, naive CD4+ T cells, effector memory CD4+ T cells, central memory CD4+ T cells, and CD3+CD4+ CD25+ T cells were significantly lower in severe patients. The naive T cell/CD4 + EM T cell ratio, which is an indicator of the differentiation from naive T cells to memory cells, was relatively reduced in severe disease. Peripheral CD4+CD8+ double-positive T cells were notably lower in severe presentations of the disease (median DP T cells 11.12 µL vs 1.95 µL; p< 0.001). CONCLUSIONS As disease severity increases in COVID-19 infection, the number of T cell subsets decreases significantly. Suppression of differentiation from naive T cells to effector memory T cells is the result of severe impairment in adaptive immune functions. Peripheral CD4+CD8+ double-positive T cells were significantly reduced in severe disease presentations and may be a useful marker to predict disease severity.
Collapse
Affiliation(s)
- Yasin Kalpakci
- Medical Doctor, Department of Hematology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Tuba Hacibekiroglu
- Associate Professor, Department of Hematology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Gulay Trak
- Medical Doctor, Department of Microbiology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Cengiz Karacaer
- Medical Doctor, Department of Internal Medicine, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Taner Demirci
- Assistant Professor, Department of Internal Medicine Division of Endocrinology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Havva Kocayigit
- Medical Doctor, Department of Anesthesiology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Cenk Sunu
- Associate Professor, Department of Internal Medicine, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Ceyhun Varim
- Medical Doctor, Department of Hematology, Duzen Laboratory Group, İstanbul, Turkey
| | - Mesude Falay
- Hematology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J, López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. J Exp Med 2020; 217:132619. [PMID: 31816635 PMCID: PMC7062515 DOI: 10.1084/jem.20190449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome. Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.
Collapse
Affiliation(s)
- Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Traveset
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Christos Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
24
|
Sodani P, Mucci L, Girolimetti R, Tedesco S, Monaco F, Campanozzi D, Brunori M, Maltoni S, Bedetta S, Di Carlo AM, Candoli P, Mancini M, Rebonato A, D'Adamo F, Capalbo M, Frausini G. Successful recovery from COVID-19 pneumonia after receiving baricitinib, tocilizumab, and remdesivir. A case report: Review of treatments and clinical role of computed tomography analysis. Respir Med Case Rep 2020; 31:101115. [PMID: 32670785 PMCID: PMC7320265 DOI: 10.1016/j.rmcr.2020.101115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic, threatening global public health. In the current paper, we describe our successful treatment of one COVID-19 pneumonia patient case with high mortality risk factors. Our experience underlines the importance of the use of a multidisciplinary therapeutic approach in order to achieve a favorable clinical outcome. Further, enhancing the capability of the COVID-19 diagnosis with the use of the chest imaging modalities is discussed.
Collapse
Affiliation(s)
- Pietro Sodani
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
- Charitè Hospital, Berlin, Germany
| | - Luciano Mucci
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Rita Girolimetti
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Silvia Tedesco
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Francesca Monaco
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | | | - Marino Brunori
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Stefania Maltoni
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Samuele Bedetta
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Anna M. Di Carlo
- Internal Medicine Center, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Piero Candoli
- Pneumology Department, Marche Nord Hospital, Pesaro, Fano, Italy
| | - Mauro Mancini
- Pharmacy Department, Marche Nord Hospital, Pesaro, Fano, Italy
| | | | - Francesca D'Adamo
- Hematology and Stem Cell Transplant Center, Marche Nord Hospital, Pesaro, Italy
| | | | | |
Collapse
|
25
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020; 11:827. [PMID: 32425950 PMCID: PMC7205903 DOI: 10.3389/fimmu.2020.00827] [Citation(s) in RCA: 1665] [Impact Index Per Article: 416.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4+ and CD8+ T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8+ T cells or CD4+ T cells lower than 800, 300, or 400/μL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/μL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
Collapse
Affiliation(s)
- Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yingjun Tan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Medical Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Lifen Ning
- Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Min Li
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020. [PMID: 32425950 DOI: 10.1101/2020.02.18.20024364] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4+ and CD8+ T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8+ T cells or CD4+ T cells lower than 800, 300, or 400/μL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/μL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
Collapse
Affiliation(s)
- Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yingjun Tan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Medical Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Lifen Ning
- Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Min Li
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Yueping Liu
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Gang Wang
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zilin Yuan
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
28
|
Argilaguet J, Pedragosa M, Esteve-Codina A, Riera G, Vidal E, Peligero-Cruz C, Casella V, Andreu D, Kaisho T, Bocharov G, Ludewig B, Heath S, Meyerhans A. Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Res 2019; 29:907-919. [PMID: 31138618 PMCID: PMC6581057 DOI: 10.1101/gr.241372.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.
Collapse
Affiliation(s)
- Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Graciela Riera
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Cristina Peligero-Cruz
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.,Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Burkhard Ludewig
- Institute for Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Simon Heath
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08003, Spain
| |
Collapse
|
29
|
Pedragosa M, Riera G, Casella V, Esteve-Codina A, Steuerman Y, Seth C, Bocharov G, Heath S, Gat-Viks I, Argilaguet J, Meyerhans A. Linking Cell Dynamics With Gene Coexpression Networks to Characterize Key Events in Chronic Virus Infections. Front Immunol 2019; 10:1002. [PMID: 31130969 PMCID: PMC6509617 DOI: 10.3389/fimmu.2019.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023] Open
Abstract
The host immune response against infection requires the coordinated action of many diverse cell subsets that dynamically adapt to a pathogen threat. Due to the complexity of such a response, most immunological studies have focused on a few genes, proteins, or cell types. With the development of “omic”-technologies and computational analysis methods, attempts to analyze and understand complex system dynamics are now feasible. However, the decomposition of transcriptomic data sets generated from complete organs remains a major challenge. Here, we combined Weighted Gene Coexpression Network Analysis (WGCNA) and Digital Cell Quantifier (DCQ) to analyze time-resolved mouse splenic transcriptomes in acute and chronic Lymphocytic Choriomeningitis Virus (LCMV) infections. This enabled us to generate hypotheses about complex immune functioning after a virus-induced perturbation. This strategy was validated by successfully predicting several known immune phenomena, such as effector cytotoxic T lymphocyte (CTL) expansion and exhaustion. Furthermore, we predicted and subsequently verified experimentally macrophage-CD8 T cell cooperativity and the participation of virus-specific CD8+ T cells with an early effector transcriptome profile in the host adaptation to chronic infection. Thus, the linking of gene expression changes with immune cell kinetics provides novel insights into the complex immune processes within infected tissues.
Collapse
Affiliation(s)
- Mireia Pedragosa
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Graciela Riera
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Yael Steuerman
- Cell Research and Immunology Department, Tel Aviv University, Tel Aviv, Israel
| | - Celina Seth
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.,Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Simon Heath
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Irit Gat-Viks
- Cell Research and Immunology Department, Tel Aviv University, Tel Aviv, Israel
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
30
|
Abstract
CD8+ T cells are important for the protective immunity against intracellular pathogens and tumor. In the case of chronic infection or cancer, CD8+ T cells are exposed to persistent antigen and/or inflammatory signals. This excessive amount of signals often leads CD8+ T cells to gradual deterioration of T cell function, a state called "exhaustion." Exhausted T cells are characterized by progressive loss of effector functions (cytokine production and killing function), expression of multiple inhibitory receptors (such as PD-1 and LAG3), dysregulated metabolism, poor memory recall response, and homeostatic proliferation. These altered functions are closely related with altered transcriptional program and epigenetic landscape that clearly distinguish exhausted T cells from normal effector and memory T cells. T cell exhaustion is often associated with inefficient control of persisting infections and cancers, but re-invigoration of exhausted T cells with inhibitory receptor blockade can promote improved immunity and disease outcome. Accumulating evidences support the therapeutic potential of targeting exhausted T cells. However, exhausted T cells comprise heterogenous cell population with distinct responsiveness to intervention. Understanding molecular mechanism of T cell exhaustion is essential to establish rational immunotherapeutic interventions.
Collapse
|
31
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
32
|
Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, Cheong HC, Yong YK, Larsson M, Shankar EM. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol 2018; 9:2569. [PMID: 30473697 PMCID: PMC6237934 DOI: 10.3389/fimmu.2018.02569] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
Collapse
Affiliation(s)
- Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Pediatrics School of Medicine Emory University, Atlanta, GA, United States
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Saeidi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kong Yong
- Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia.,Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
33
|
Sinha N, Subedi N, Tel J. Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Front Immunol 2018; 9:2373. [PMID: 30459757 PMCID: PMC6232771 DOI: 10.3389/fimmu.2018.02373] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of immunoengineering aims to develop novel therapies and modern vaccines to manipulate and modulate the immune system and applies innovative technologies toward improved understanding of the immune system in health and disease. Microfluidics has proven to be an excellent technology for analytics in biology and chemistry. From simple microsystem chips to complex microfluidic designs, these platforms have witnessed an immense growth over the last decades with frequent emergence of new designs. Microfluidics provides a highly robust and precise tool which led to its widespread application in single-cell analysis of immune cells. Single-cell analysis allows scientists to account for the heterogeneous behavior of immune cells which often gets overshadowed when conventional bulk study methods are used. Application of single-cell analysis using microfluidics has facilitated the identification of several novel functional immune cell subsets, quantification of signaling molecules, and understanding of cellular communication and signaling pathways. Single-cell analysis research in combination with microfluidics has paved the way for the development of novel therapies, point-of-care diagnostics, and even more complex microfluidic platforms that aid in creating in vitro cellular microenvironments for applications in drug and toxicity screening. In this review, we provide a comprehensive overview on the integration of microsystems and microfluidics with immunology and focus on different designs developed to decode single immune cell behavior and cellular communication. We have categorized the microfluidic designs in three specific categories: microfluidic chips with cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the ongoing research in the field of immunology at single-cell level.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
34
|
Marsico S, Caccuri F, Mazzuca P, Apostoli P, Roversi S, Lorenzin G, Zani A, Fiorentini S, Giagulli C, Caruso A. Human lung epithelial cells support human metapneumovirus persistence by overcoming apoptosis. Pathog Dis 2018; 76:4923026. [PMID: 29617859 DOI: 10.1093/femspd/fty013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/05/2018] [Indexed: 11/12/2022] Open
Abstract
Human metapneumovirus (hMPV) has been identified as a major cause of lower respiratory tract infection in children. Epidemiological and molecular evidence has highlighted an association between severe childhood respiratory viral infection and chronic lung diseases, such as asthma and chronic obstructive pulmonary disease. Currently, animal models have demonstrated the ability of hMPV to persist in vivo suggesting a role of the virus in asthma development in children. However, mechanisms involved in hMPV persistence in the respiratory tract are not yet understood. In the present study we monitored hMPV infection in human alveolar epithelial A549 cells in order to understand if the virus is able to persist in these cells upon acute infection. Our data show that hMPV initially induces an apoptotic process in A549 cells through poly (ADP-ribose) polymerase 1 cleavage, caspase-3/7 activation and Wee1 activity. The hMPV-infected cells were then able to overcome the apoptotic pathway and cell cycle arrest in G2/M by expressing B-cell lymphoma 2 and to acquire a reservoir cell phenotype with constant production of infectious virus. These findings provide evidence of the ability of hMPV to persist in alveolar epithelial cells and help in understanding the mechanisms responsible for hMPV persistence in the human respiratory tract.
Collapse
Affiliation(s)
- Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Apostoli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Lorenzin
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
35
|
Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection. Cell Rep 2018; 16:3286-3296. [PMID: 27653690 DOI: 10.1016/j.celrep.2016.08.065] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 12/24/2022] Open
Abstract
Viral persistence specifically inhibits CD4 Th1 responses and promotes Tfh immunity, but the mechanisms that suppress Th1 cells and the disease consequences of their loss are unclear. Here, we demonstrate that the loss of CD4 Th1 cells specifically leads to progressive CD8 T cell decline and dysfunction during viral persistence. Therapeutically reconstituting CD4 Th1 cells restored CD4 T cell polyfunctionality, enhanced antiviral CD8 T cell numbers and function, and enabled viral control. Mechanistically, combined interaction of PD-L1 and IL-10 by suppressive dendritic cell subsets inhibited new CD4 Th1 cells in both acute and persistent virus infection, demonstrating an unrecognized suppressive function for PD-L1 in virus infection. Thus, the loss of CD4 Th1 cells is a key event leading to progressive CD8 T cell demise during viral persistence with important implications for restoring antiviral CD8 T cell immunity to control persistent viral infection.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ivan Osokine
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas H Yamada
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Rafael De la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Yi X, Yuan Y, Li N, Yi L, Wang C, Qi Y, Gong L, Liu G, Kong X. A mouse model with age-dependent immune response and immune-tolerance for HBV infection. Vaccine 2018; 36:794-801. [PMID: 29306503 DOI: 10.1016/j.vaccine.2017.12.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Viral clearance of human HBV infection largely depends on the age of exposure. Thus, a mouse model with age-dependent immune response and immune-tolerance for HBV infection was established. METHODS HBVRag1 mice were generated by crossing Rag1-/- mice with HBV-Tg mice. Following adoptive transfer of splenocytes adult (8-9 weeks old) and young (3 weeks old) HBVRag1 mice were named as HBVRag-ReA and HBVRag-ReY mice respectively. The biochemical parameters that were associated with viral load and immune function, as well as the histological evaluation of the liver tissues between the two mouse models were detected. The immune tolerance of HBVRag-ReY mice that were reconstituted at the early stages of life was evaluated by quantitative hepatitis B core antibody assay, adoptive transfer, and modulation of gut microbiota with the addition of antibiotics. RESULTS HBVRag-ReA mice indicated apparent hepatocytes damage, clearance of HBsAg and production of HBsAb and HBcAb. HBVRag-ReY mice did not develop ALT elevation, and produced HBcAb and HBsAg. A higher number of hepatic CD8+ T and B cells promoted clearance of HBsAg in HBVRag-ReA mice following 30 days of lymphocyte transfer. In contrast to HBVRag-ReA mice, HBVRag-ReY mice exhibited higher levels of Th1/Th2 cytokines. HBVRag-ReY mice exhibited significantly higher (P < .01, approximately 10-fold) serum quantitative anti-HBc levels than HBV-Tg mice, which might be similar to the phase of immune clearance and immune tolerance in human HBV infection. Furthermore, the age-related tolerance in HBVRag-ReY mice that were sensitive to antibiotic treatment was different from that noted in HBV-Tg mice. GS-9620 could inhibit the production of HBsAg, whereas HBV vaccination could induce sustained seroconversion in HBVRag-ReY mice with low levels of HBsAg. CONCLUSIONS The present study described a mouse model with age-dependent immunity and immune-tolerance for HBV infection in vivo, which may mimic chronic HBV infection in humans.
Collapse
Affiliation(s)
- Xuerui Yi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China.
| | - Youcheng Yuan
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Na Li
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Lu Yi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Cuiling Wang
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Ying Qi
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Liang Gong
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Guangze Liu
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| | - Xiangping Kong
- Liver Diseases Research Center, The 458th Hospital of Guangzhou, Guangzhou 510600, China
| |
Collapse
|
37
|
Xu J, Sun Y, Li Y, Ruthel G, Weiss SR, Raj A, Beiting D, López CB. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat Commun 2017; 8:799. [PMID: 28986577 PMCID: PMC5630589 DOI: 10.1038/s41467-017-00909-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/02/2017] [Indexed: 12/03/2022] Open
Abstract
Replication defective viral genomes (DVGs) generated during virus replication are the primary triggers of antiviral immunity in many RNA virus infections. However, DVGs can also facilitate viral persistence. Why and how these two opposing functions of DVGs are achieved remain unknown. Here we report that during Sendai and respiratory syncytial virus infections DVGs selectively protect a subpopulation of cells from death, thereby promoting the establishment of persistent infections. We find that during Sendai virus infection this phenotype results from DVGs stimulating a mitochondrial antiviral-signaling (MAVS)-mediated TNF response that drives apoptosis of highly infected cells while extending the survival of cells enriched in DVGs. The pro-survival effect of TNF depends on the activity of the TNFR2/TRAF1 pathway that is regulated by MAVS signaling. These results identify TNF as a pivotal factor in determining cell fate during a viral infection and delineate a MAVS/TNFR2-mediated mechanism that drives the persistence of otherwise acute viruses. Replication defective viral genomes (DVGs) can facilitate persistence of paramyxoviruses, but the underlying mechanisms are unclear. Using FISH, Xu et al. here analyze the cellular response to DVGs on a single cell level and show that a MAVS-mediated TNF response specifically extends survival of cells enriched in DVGs.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Jofra T, Galvani G, Kuka M, Di Fonte R, Mfarrej BG, Iannacone M, Salek-Ardakani S, Battaglia M, Fousteri G. Extrinsic Protein Tyrosine Phosphatase Non-Receptor 22 Signals Contribute to CD8 T Cell Exhaustion and Promote Persistence of Chronic Lymphocytic Choriomeningitis Virus Infection. Front Immunol 2017; 8:811. [PMID: 28747914 PMCID: PMC5506075 DOI: 10.3389/fimmu.2017.00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
A genetic variant of the protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with a wide range of autoimmune diseases; however, the reasons behind its prevalence in the general population remain not completely understood. Recent evidence highlights an important role of autoimmune susceptibility genetic variants in conferring resistance against certain pathogens. In this study, we examined the role of PTPN22 in persistent infection in mice lacking PTPN22 infected with lymphocytic choriomeningitis virus clone 13. We found that lack of PTPN22 in mice resulted in viral clearance 30 days after infection, which was reflected in their reduced weight loss and overall improved health. PTPN22-/- mice exhibited enhanced virus-specific CD8 and CD4 T cell numbers and functionality and reduced exhausted phenotype. Moreover, mixed bone marrow chimera studies demonstrated no differences in virus-specific CD8 T cell accumulation and function between the PTPN22+/+ and PTPN22-/- compartments, showing that the effects of PTPN22 on CD8 T cells are T cell-extrinsic. Together, these findings identify a CD8 T cell-extrinsic role for PTPN22 in weakening early CD8 T cell responses to collectively promote persistence of a chronic viral infection.
Collapse
Affiliation(s)
- Tatiana Jofra
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Galvani
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Di Fonte
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bechara G Mfarrej
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Manuela Battaglia
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
39
|
Tsai HF, Hsu PN. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci 2017; 24:35. [PMID: 28545567 PMCID: PMC5445514 DOI: 10.1186/s12929-017-0341-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoints or coinhibitory receptors, such as cytotoxic T lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, play important roles in regulating T cell responses, and they were proven to be effective targets in treating cancer. In chronic viral infections and cancer, T cells are chronically exposed to persistent antigen stimulation. This is often associated with deterioration of T cell function with constitutive activation of immune checkpoints, a state called ‘exhaustion’, which is commonly associated with inefficient control of tumors and persistent viral infections. Immune checkpoint blockade can reinvigorate dysfunctional/exhausted T cells by restoring immunity to eliminate cancer or virus-infected cells. These immune checkpoint blocking antibodies have moved immunotherapy into a new era, and they represent paradigm-shifting therapeutic strategies for cancer treatment. A clearer understanding of the regulatory roles of these receptors and elucidation of the mechanisms of T cell dysfunction will provide more insights for rational design and development of cancer therapies that target immune checkpoints. This article reviews recent advance(s) in molecular understanding of T cell dysfunction in tumor microenvironments. In addition, we also discuss new immune checkpoint targets in cancer therapy.
Collapse
Affiliation(s)
- Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Gradute Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd, Taipei, 100, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, Zhou C, Fang Y, Liu J, Yang J, Chen X, Li T, Zang A, Yin S, Li B, Plumas J, Chaperot L, Zhang X, Xu G, Jiang L, Shen N, Xiong S, Gao X, Zhang Y, Xiao H. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med 2017; 214:1471-1491. [PMID: 28416650 PMCID: PMC5413332 DOI: 10.1084/jem.20161149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Ma and colleagues identify CXXC5 as an epigenetic regulator required for maintaining the hypomethylation of a subset of CGIs, thereby promoting the expression of transcriptional factors such as IRF7 in pDCs to enable robust IFN response to viral infection. TLR7/9 signals are capable of mounting massive interferon (IFN) response in plasmacytoid dendritic cells (pDCs) immediately after viral infection, yet the involvement of epigenetic regulation in this process has not been documented. Here, we report that zinc finger CXXC family epigenetic regulator CXXC5 is highly expressed in pDCs, where it plays a crucial role in TLR7/9- and virus-induced IFN response. Notably, genetic ablation of CXXC5 resulted in aberrant methylation of the CpG-containing island (CGI) within the Irf7 gene and impaired IRF7 expression in steady-state pDCs. Mechanistically, CXXC5 is responsible for the recruitment of DNA demethylase Tet2 to maintain the hypomethylation of a subset of CGIs, a process coincident with active histone modifications and constitutive transcription of these CGI-containing genes. Consequently, CXXC5-deficient mice had compromised early IFN response and became highly vulnerable to infection by herpes simplex virus and vesicular stomatitis virus. Together, our results identify CXXC5 as a novel epigenetic regulator for pDC-mediated antiviral response.
Collapse
Affiliation(s)
- Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoling Wan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congfang Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Chun Zhou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiyuan Fang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigang Yin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel Plumas
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, CAS Excellence Center in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lubin Jiang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoming Gao
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Yan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
41
|
Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, Carrillo M, Martin H, Kasparian S, Syed P, Rice N, Brooks DG, Kitchen SG. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest 2016; 127:260-268. [PMID: 27941243 DOI: 10.1172/jci89488] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic immune activation, immunosuppression, and T cell exhaustion are hallmarks of HIV infection, yet the mechanisms driving these processes are unclear. Chronic activation can be a driving force in immune exhaustion, and type I interferons (IFN-I) are emerging as critical components underlying ongoing activation in HIV infection. Here, we have tested the effect of blocking IFN-I signaling on T cell responses and virus replication in a murine model of chronic HIV infection. Using HIV-infected humanized mice, we demonstrated that in vivo blockade of IFN-I signaling during chronic HIV infection diminished HIV-driven immune activation, decreased T cell exhaustion marker expression, restored HIV-specific CD8 T cell function, and led to decreased viral replication. Antiretroviral therapy (ART) in combination with IFN-I blockade accelerated viral suppression, further decreased viral loads, and reduced the persistently infected HIV reservoir compared with ART treatment alone. Our data suggest that blocking IFN-I signaling in conjunction with ART treatment can restore immune function and may reduce viral reservoirs during chronic HIV infection, providing validation for IFN-I blockade as a potential therapy for HIV infection.
Collapse
|
42
|
Han L, He H, Qu X, Liu Y, He S, Zheng X, He F, Bai H, Bo X. The relationships among host transcriptional responses reveal distinct signatures underlying viral infection-disease associations. MOLECULAR BIOSYSTEMS 2016; 12:653-65. [PMID: 26699092 DOI: 10.1039/c5mb00657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome-scale DNA microarrays and computational biology facilitate new understanding of viral infections at the system level. Recent years have witnessed a major shift from microorganism-centric toward host-oriented characterization and categorization of viral infections and infection related diseases. We established host transcriptional response (HTR) relationships among 23 different types of human viral pathogens based on calculating HTR similarities using computational integration of 587 public available gene expression profiles. We further identified five virus clusters that show consensus internal HTRs and defined cluster signatures using common dysregulated genes. Individual cluster signature genes were distinguished from one another, and functional analysis revealed common and specific host cellular bioprocesses and signaling pathways involved in confronting viral infections. Through literature investigation and support from epidemiological studies, these were confirmed to be important gene factors associating viral infections with cluster-common and cluster-specific non-infectious human disease(s). Our analyses were the first to feature differential HTRs to viral infections as clusters, and they present a new perspective for understanding infection-disease associations and the underlying pathogeneses.
Collapse
Affiliation(s)
- Lu Han
- Department of Traditional Chinese Medicine and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China and Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haochen He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xinyan Qu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Song He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xiaofei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hui Bai
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China. and No. 451 Hospital of Chinese People's Liberation Army, Xi'an, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
43
|
Sriram U, Hill BL, Cenna JM, Gofman L, Fernandes NC, Haldar B, Potula R. Impaired Subset Progression and Polyfunctionality of T Cells in Mice Exposed to Methamphetamine during Chronic LCMV Infection. PLoS One 2016; 11:e0164966. [PMID: 27760221 PMCID: PMC5070876 DOI: 10.1371/journal.pone.0164966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host’s innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Beth L. Hill
- Verity Software House, Topsham, Maine, United States of America
| | - Jonathan M. Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nicole C. Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hurtado-Cordovi J, Davis-Yadley AH, Lipka S, Vardaros M, Shen H. Association between chronic hepatitis C and hepatitis C/HIV co-infection and the development of colorectal adenomas. J Gastrointest Oncol 2016; 7:609-14. [PMID: 27563452 DOI: 10.21037/jgo.2016.03.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Limited knowledge exists about the effects chronic hepatitis C virus (HCV) infection has in the development of colorectal adenomas (CRA). Data regarding the association between chronic HIV infection and the development of CRA is scarce as well. We aim to determine if there is an association between the development of CRA and chronic infection with HCV and HCV/HIV co-infection. METHODS From July 1, 2009 to March 31, 2011 a total of 2,051 patients that underwent colonoscopy were included in our study. The population was divided into 2 study groups: those patients who tested positive for HCV, and HCV/HIC; the control groups consisted of patients whose results were negative. Fisher's exact χ(2) test for categorical variables and t-test for continuous variables was used to analyze data between groups. Logistic regression was performed to obtain odds ratios (OR). RESULTS CRA detection was higher in the HCV than in the control group (26.3% vs. 20.2%; P=1.02); Likewise, the incidence of CRA (25.5% vs. 20.8%; P=0.63) was higher in the co-infection group. However, in both of the study groups this difference was non-statistical. CONCLUSIONS A higher detection rate of CRP was seen in the HCV population; however, it failed to reach statistical significance. Whether co-infection with HIV/HCV increases the incidence of CRA and/or has a synergistic effect remains to be determined. The small sample population and the retrospective single institution nature of our study, as well as other confounders may have contributed to our negative results. However, our findings question whether HCV and HIV/HCV co-infected patients will benefit from screening colonoscopy at an earlier age. This issue merits further investigation with a large multi-center prospective study.
Collapse
Affiliation(s)
- Jorge Hurtado-Cordovi
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, FL, USA
| | - Ashley H Davis-Yadley
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Seth Lipka
- Department of Gastroenterology, Division of Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Magdalene Vardaros
- Department of Internal Medicine, Division of Gastroenterology, Nassau University Medical Center Associated with North Shore-Long Island Jewish Health Care System, East Meadow, NY, USA
| | - Huafeng Shen
- Department of Medicine, Division of Gastroenterology, Hepatology University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
45
|
Wang X, Diao C, Yang X, Yang Z, Liu M, Li X, Tang H. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep 2016; 6:23205. [PMID: 26984403 PMCID: PMC4794718 DOI: 10.1038/srep23205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Hepes simplex Virus type 1 (HSV-1) is an enveloped DNA virus that can cause lytic and latent infection. miRNAs post-transcriptionally regulate gene expression, and our previous work has indicated that HSV-1 infection induces miR-101 expression in HeLa cells. The present study demonstrates that HSV-1-induced miR-101 is mainly derived from its precursor hsa-mir-101-2, and the HSV-1 immediate early gene ICP4 (infected-cell polypeptide 4) directly binds to the hsa-mir-101-2 promoter to activate its expression. RNA-binding protein G-rich sequence factor 1 (GRSF1) was identified as a new target of miR-101; GRSF1 binds to HSV-1 p40 mRNA and enhances its expression, facilitating viral proliferation. Together, ICP4 induces miR-101 expression, which downregulates GRSF1 expression and attenuates the replication of HSV-1. This allows host cells to maintain a permissive environment for viral replication by preventing lytic cell death. These findings indicate that HSV-1 early gene expression modulates host miRNAs to regulate molecular defense mechanisms. This study provides novel insight into host-virus interactions in HSV-1 infection and may contribute to the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Xiangling Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Caifeng Diao
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xi Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| |
Collapse
|
46
|
Dhanwani R, Zhou Y, Huang Q, Verma V, Dileepan M, Ly H, Liang Y. A Novel Live Pichinde Virus-Based Vaccine Vector Induces Enhanced Humoral and Cellular Immunity after a Booster Dose. J Virol 2015; 90:2551-60. [PMID: 26676795 PMCID: PMC4810697 DOI: 10.1128/jvi.02705-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Pichinde virus (PICV) is a bisegmented enveloped RNA virus that targets macrophages and dendritic cells (DCs) early in infection and induces strong innate and adaptive immunity in mice. We have developed a reverse genetics system to produce live recombinant PICV (strain P18) with a trisegmented RNA genome (rP18tri), which encodes all four PICV gene products and as many as two foreign genes. We have engineered the vector to express the green fluorescent protein (GFP) reporter gene (abbreviated as G in virus designations) and either the hemagglutination (HA [H]) or the nucleoprotein (NP [P]) gene of the influenza A/PR8 virus. The trisegmented viruses rP18tri-G/H and rP18tri-G/P showed slightly reduced growth in vitro and expressed HA and NP, respectively. Mice immunized with rP18tri-G/H were completely protected against lethal influenza virus challenge even 120 days after immunization. These rP18tri-based vectors could efficiently induce both neutralizing antibodies and antigen-specific T cell responses via different immunization routes. Interestingly, the immune responses were significantly increased upon a booster dose and remained at high levels even after three booster doses. In summary, we have developed a novel PICV-based live vaccine vector that can express foreign antigens to induce strong humoral and cell-mediated immunity and is ideal for a prime-and-boost vaccination strategy. IMPORTANCE We have developed a novel Pichinde virus (PICV)-based live viral vector, rP18tri, that packages three RNA segments and encodes as many as two foreign genes. Using the influenza virus HA and NP genes as model antigens, we show that this rP18tri vector can induce strong humoral and cellular immunity via different immunization routes and can lead to protection in mice. Interestingly, a booster dose further enhances the immune responses, a feature that distinguishes this from other known live viral vectors. In summary, our study demonstrates a unique feature of this live rP18tri vector to be used as a novel vaccine platform for a prime-and-boost vaccination strategy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Drug Carriers
- Female
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Guinea Pigs
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Male
- Mice, Inbred C57BL
- Nucleocapsid Proteins
- Orthomyxoviridae Infections/prevention & control
- Pichinde virus/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Survival Analysis
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Rekha Dhanwani
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yanqin Zhou
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vikram Verma
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
47
|
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Breed MW, Elser SE, Torben W, Jordan APO, Aye PP, Midkiff C, Schiro F, Sugimoto C, Alvarez-Hernandez X, Blair RV, Somasunderam A, Utay NS, Kuroda MJ, Pahar B, Wiseman RW, O'Connor DH, LaBranche CC, Montefiori DC, Marsh M, Li Y, Piatak M, Lifson JD, Keele BF, Fultz PN, Lackner AA, Hoxie JA. Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. J Virol 2015; 89:10156-75. [PMID: 26223646 PMCID: PMC4580161 DOI: 10.1128/jvi.01134-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4(+) T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4(+) T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4(+) T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4(+) T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8(+) cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection. IMPORTANCE The pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.
Collapse
Affiliation(s)
- Matthew W Breed
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Samra E Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Chie Sugimoto
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Roger W Wiseman
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - David H O'Connor
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | | | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Sriram U, Haldar B, Cenna JM, Gofman L, Potula R. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection. Front Microbiol 2015; 6:793. [PMID: 26322025 PMCID: PMC4531300 DOI: 10.3389/fmicb.2015.00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA ; Center for Substance Abuse Research, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
50
|
Molecular and cellular insights into T cell exhaustion. NATURE REVIEWS. IMMUNOLOGY 2015. [PMID: 26205583 DOI: 10.1038/nri3862.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
|