1
|
Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, Mazeaud C, Sow AA, Léveillé A, Gilbert C, Tremblay N, Owen JE, Bemis CL, Laulhé X, Lamarre A, Neufeldt CJ, Rodrigue-Gervais IG, Pichlmair A, Girard D, Scaturro P, Hulea L, Chatel-Chaix L. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience 2025; 28:111599. [PMID: 39834870 PMCID: PMC11743106 DOI: 10.1016/j.isci.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles. Furthermore, virus infection modulated the mitochondrial oxygen consumption rate. Consistently, metabolomic and mitoproteomic analyses revealed a decrease in the abundance of several metabolites of the Krebs cycle and changes in the stoichiometry of the electron transport chain. Most importantly, ERMC destabilization by protein knockdown increased virus replication while dampening ZIKV-induced apoptosis. Overall, our results support the notion that flaviviruses hijack ERMCs to generate a cytoplasmic environment beneficial for sustained and efficient replication.
Collapse
Affiliation(s)
- Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Viviana Andrea Barragan Torres
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olus Uyar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Mathilde Broquière
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alexanne Léveillé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Jonathan Eintrez Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheyanne L. Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- German Center of Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Denis Girard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Pietro Scaturro
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- Leibniz Institute of Virology 20251 Hamburg, Germany
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
- Center of Excellence in Orphan Diseases Research-Fondation Courtois, Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Québec, Canada
| |
Collapse
|
2
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Nishimura EO, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. PLoS Pathog 2025; 21:e1012855. [PMID: 39869679 PMCID: PMC11793825 DOI: 10.1371/journal.ppat.1012855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/04/2025] [Accepted: 12/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells (EE), suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L. Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Osborne Nishimura E, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.603613. [PMID: 39091762 PMCID: PMC11291174 DOI: 10.1101/2024.07.23.603613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis - an extremely efficient vector of West Nile virus (WNV) - nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells, suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L. Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Mazeaud C, Pfister S, Owen JE, Pereira HS, Charbonneau F, Robinson ZE, Anton A, Bemis CL, Sow AA, Patel TR, Neufeldt CJ, Scaturro P, Chatel-Chaix L. Zika virus remodels and hijacks IGF2BP2 ribonucleoprotein complex to promote viral replication organelle biogenesis. eLife 2024; 13:RP94347. [PMID: 39565347 DOI: 10.7554/elife.94347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3' nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.
Collapse
Affiliation(s)
- Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | | | - Jonathan E Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, United States
| | - Higor Sette Pereira
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Canada
| | - Flavie Charbonneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Zachary E Robinson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Cheyanne L Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, United States
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Canada
| | - Christopher J Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, United States
| | | | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois, Quebec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l'Université du Québec, Quebec, Canada
- Swine and Poultry Infectious Diseases Research Centre, Quebec, Canada
| |
Collapse
|
5
|
Boytz R, Keita K, Pawlak JB, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. NPJ VIRUSES 2024; 2:47. [PMID: 39371935 PMCID: PMC11452341 DOI: 10.1038/s44298-024-00057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are essential eukaryotic organelles that regulate a range of cellular processes, from metabolism to calcium homeostasis and programmed cell death. They serve as essential platforms for antiviral signaling proteins during the innate immune response to viral infections. Mitochondria are dynamic structures, undergoing frequent fusion and fission processes that regulate various aspects of mitochondrial biology, including innate immunity. Pathogens have evolved sophisticated mechanisms to manipulate mitochondrial morphology and function to facilitate their replication. In this review, we examine the emerging literature on how flaviviruses modulate mitochondrial processes.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Maudry Laurent-Rolle
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
6
|
Muccilli SG, Schwarz B, Jessop F, Shannon JG, Bohrnsen E, Shue B, Hong SH, Hsu T, Ashbrook AW, Guarnieri JW, Lack J, Wallace DC, Bosio CM, MacDonald MR, Rice CM, Yewdell JW, Best SM. Mitochondrial Hyperactivity and Reactive Oxygen Species Drive Innate Immunity to the Yellow Fever Virus-17D Live-Attenuated Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611167. [PMID: 39282299 PMCID: PMC11398391 DOI: 10.1101/2024.09.04.611167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The yellow fever virus 17D (YFV-17D) live attenuated vaccine is considered one of the successful vaccines ever generated associated with high antiviral immunity, yet the signaling mechanisms that drive the response in infected cells are not understood. Here, we provide a molecular understanding of how metabolic stress and innate immune responses are linked to drive type I IFN expression in response to YFV-17D infection. Comparison of YFV-17D replication with its parental virus, YFV-Asibi, and a related dengue virus revealed that IFN expression requires RIG-I-like Receptor signaling through MAVS, as expected. However, YFV-17D uniquely induces mitochondrial respiration and major metabolic perturbations, including hyperactivation of electron transport to fuel ATP synthase. Mitochondrial hyperactivity generates reactive oxygen species (mROS) and peroxynitrite, blocking of which abrogated IFN expression in non-immune cells without reducing YFV-17D replication. Scavenging ROS in YFV-17D-infected human dendritic cells increased cell viability yet globally prevented expression of IFN signaling pathways. Thus, adaptation of YFV-17D for high growth uniquely imparts mitochondrial hyperactivity generating mROS and peroxynitrite as the critical messengers that convert a blunted IFN response into maximal activation of innate immunity essential for vaccine effectiveness.
Collapse
Affiliation(s)
- Samantha G. Muccilli
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD
| | | | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, NIAID, NIH, Hamilton, MT
| | - Jeffrey G. Shannon
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Eric Bohrnsen
- Research Technologies Branch, NIAID, NIH, Hamilton, MT
| | - Byron Shue
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Thomas Hsu
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, NIAID, NIH, Hamilton, MT
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
| |
Collapse
|
7
|
Nelemans T, Tas A, Kikkert M, van Hemert MJ. Usutu virus NS4A suppresses the host interferon response by disrupting MAVS signaling. Virus Res 2024; 347:199431. [PMID: 38969013 PMCID: PMC11292556 DOI: 10.1016/j.virusres.2024.199431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-β production and signaling. In particular NS4A was very effective at suppressing IFN-β production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-β production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
9
|
Lebeau G, Paulo-Ramos A, Hoareau M, El Safadi D, Meilhac O, Krejbich-Trotot P, Roche M, Viranaicken W. Metabolic Dependency Shapes Bivalent Antiviral Response in Host Cells in Response to Poly:IC: The Role of Glutamine. Viruses 2024; 16:1391. [PMID: 39339867 PMCID: PMC11436187 DOI: 10.3390/v16091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The establishment of effective antiviral responses within host cells is intricately related to their metabolic status, shedding light on immunometabolism. In this study, we investigated the hypothesis that cellular reliance on glutamine metabolism contributes to the development of a potent antiviral response. We evaluated the antiviral response in the presence or absence of L-glutamine in the culture medium, revealing a bivalent response hinging on cellular metabolism. While certain interferon-stimulated genes (ISGs) exhibited higher expression in an oxidative phosphorylation (OXPHOS)-dependent manner, others were surprisingly upregulated in a glycolytic-dependent manner. This metabolic dichotomy was influenced in part by variations in interferon-β (IFN-β) expression. We initially demonstrated that the presence of L-glutamine induced an enhancement of OXPHOS in A549 cells. Furthermore, in cells either stimulated by poly:IC or infected with dengue virus and Zika virus, a marked increase in ISGs expression was observed in a dose-dependent manner with L-glutamine supplementation. Interestingly, our findings unveiled a metabolic dependency in the expression of specific ISGs. In particular, genes such as ISG54, ISG12 and ISG15 exhibited heightened expression in cells cultured with L-glutamine, corresponding to higher OXPHOS rates and IFN-β signaling. Conversely, the expression of viperin and 2'-5'-oligoadenylate synthetase 1 was inversely related to L-glutamine concentration, suggesting a glycolysis-dependent regulation, confirmed by inhibition experiments. This study highlights the intricate interplay between cellular metabolism, especially glutaminergic and glycolytic, and the establishment of the canonical antiviral response characterized by the expression of antiviral effectors, potentially paving the way for novel strategies to modulate antiviral responses through metabolic interventions.
Collapse
Affiliation(s)
- Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Aurélie Paulo-Ramos
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Mathilde Hoareau
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| |
Collapse
|
10
|
Ogire E, Perrin-Cocon L, Figl M, Kundlacz C, Jacquemin C, Hubert S, Aublin-Gex A, Toesca J, Ramière C, Vidalain PO, Mathieu C, Lotteau V, Diaz O. Dengue Virus dependence on glucokinase activity and glycolysis Confers Sensitivity to NAD(H) biosynthesis inhibitors. Antiviral Res 2024; 228:105939. [PMID: 38909960 DOI: 10.1016/j.antiviral.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.
Collapse
Affiliation(s)
- Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Marianne Figl
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cindy Kundlacz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Sophie Hubert
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire P4-Jean Mérieux, INSERM, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France.
| |
Collapse
|
11
|
Sousa BG, Mebus-Antunes NC, Fernandes-Siqueira LO, Caruso MB, Saraiva GN, Carvalho CF, Neves-Martins TC, Galina A, Zingali RB, Zeidler JD, Da Poian AT. Dengue virus non-structural protein 3 inhibits mitochondrial respiration by impairing complex I function. mSphere 2024; 9:e0040624. [PMID: 38980068 PMCID: PMC11288018 DOI: 10.1128/msphere.00406-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Dengue virus (DENV) infection is known to affect host cell metabolism, but the molecular players involved are still poorly known. Using a proteomics approach, we identified six DENV proteins associated with mitochondria isolated from infected hepatocytes, and most of the peptides identified were from NS3. We also found an at least twofold decrease of several electron transport system (ETS) host proteins. Thus, we investigated whether NS3 could modulate the ETS function by incubating recombinant DENV NS3 constructs in mitochondria isolated from mouse liver. We found that NS3pro (NS3 protease domain), but not the correspondent catalytically inactive mutant (NS3proS135A), impairs complex I (CI)-dependent NADH:ubiquinone oxidoreductase activity, but not the activities of complexes II, III, IV, or V. Accordingly, using high-resolution respirometry, we found that both NS3pro and full-length NS3 decrease the respiratory rates associated with malate/pyruvate oxidation in mitochondria. The NS3-induced impairment in mitochondrial respiration occurs without altering either leak respiration or mitochondria's capacity to maintain membrane potential, suggesting that NS3 does not deeply affect mitochondrial integrity. Remarkably, CI activity is also inhibited in DENV-infected cells, supporting that the NS3 effects observed in isolated mitochondria may be relevant in the context of the infection. Finally, in silico analyses revealed the presence of potential NS3 cleavage sites in 17 subunits of mouse CI and 16 subunits of human CI, most of them located on the CI surface, suggesting that CI is prone to undergo proteolysis by NS3. Our findings suggest that DENV NS3 can modulate mitochondrial bioenergetics by directly affecting CI function. IMPORTANCE Dengue virus (DENV) infection is a major public health problem worldwide, affecting about 400 million people yearly. Despite its importance, many molecular aspects of dengue pathogenesis remain poorly known. For several years, our group has been investigating DENV-induced metabolic alterations in the host cells, focusing on the bioenergetics of mitochondrial respiration. The results of the present study reveal that the DENV non-structural protein 3 (NS3) is found in the mitochondria of infected cells, impairing mitochondrial respiration by directly targeting one of the components of the electron transport system, the respiratory complex I (CI). NS3 acts as the viral protease during the DENV replication cycle, and its proteolytic activity seems necessary for inhibiting CI function. Our findings uncover new nuances of DENV-induced metabolic alterations, highlighting NS3 as an important player in the modulation of mitochondria function during infection.
Collapse
Affiliation(s)
- Bruna G. Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane C. Mebus-Antunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia N. Saraiva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara F. Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C. Neves-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julianna D. Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Shin HJ, Lee W, Ku KB, Yoon GY, Moon HW, Kim C, Kim MH, Yi YS, Jun S, Kim BT, Oh JW, Siddiqui A, Kim SJ. SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct Target Ther 2024; 9:125. [PMID: 38734691 PMCID: PMC11088672 DOI: 10.1038/s41392-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun-Woo Moon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chonsaeng Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Mi-Hwa Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Bum-Tae Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Aleem Siddiqui
- Division of Infectious Diseases, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
14
|
Stelitano D, Cortese M. Electron microscopy: The key to resolve RNA viruses replication organelles. Mol Microbiol 2024; 121:679-687. [PMID: 37777341 DOI: 10.1111/mmi.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA viruses significantly reshape intracellular membranes to generate viral replication organelles that form a controlled niche in which nucleic acids, enzymes, and cofactors accumulate to assure an efficient replication of the viral genome. In recent years, advancements in electron microscopy (EM) techniques have enabled imaging of these viral factories in a near-native state providing significantly higher molecular details that have led to progress in our general understanding of virus biology. In this review, we describe the contribution of the cutting-edge EM approaches to the current knowledge of replication organelles biogenesis, structure, and functions.
Collapse
Affiliation(s)
- Debora Stelitano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Università della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
15
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
16
|
Blanchet M, Angelo L, Tétreault Y, Khabir M, Sureau C, Vaillant A, Labonté P. HepG2BD: A Novel and Versatile Cell Line with Inducible HDV Replication and Constitutive HBV Expression. Viruses 2024; 16:532. [PMID: 38675875 PMCID: PMC11053718 DOI: 10.3390/v16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals chronically infected with hepatitis B virus (HBV) and hepatitis Delta virus (HDV) present an increased risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV mono-infected individuals. Although HDV only replicates in individuals coinfected or superinfected with HBV, there is currently no in vitro model that can stably express both viruses simultaneously, mimicking the chronic infections seen in HBV/HDV patients. Here, we present the HepG2BD cell line as a novel in vitro culture system for long-term replication of HBV and HDV. HepG2BD cells derive from HepG2.2.15 cells in which a 2 kb HDV cDNA sequence was inserted into the adeno-associated virus safe harbor integration site 1 (AAVS1) using CRISPR-Cas9. A Tet-Off promoter was placed 5' of the genomic HDV sequence for reliable initiation/repression of viral replication and secretion. HBV and HDV replication were then thoroughly characterized. Of note, non-dividing cells adopt a hepatocyte-like morphology associated with an increased production of both HDV and HBV virions. Finally, HDV seems to negatively interfere with HBV in this model system. Altogether, HepG2BD cells will be instrumental to evaluate, in vitro, the fundamental HBV-HDV interplay during simultaneous chronic replication as well as for antivirals screening targeting both viruses.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
- Replicor Inc., Montréal, QC H4P 2R2, Canada;
| | - Léna Angelo
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Yasmine Tétreault
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Marwa Khabir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | | | | | - Patrick Labonté
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| |
Collapse
|
17
|
Hofstadter WA, Tsopurashvili E, Cristea IM. Viral regulation of organelle membrane contact sites. PLoS Biol 2024; 22:e3002529. [PMID: 38442090 PMCID: PMC10914265 DOI: 10.1371/journal.pbio.3002529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
At the core of organelle functions lies their ability and need to form dynamic organelle-organelle networks that drive intracellular communication and coordination of cellular pathways. These networks are facilitated by membrane contact sites (MCSs) that promote both intra-organelle and inter-organelle communication. Given their multiple functions, MCSs and the proteins that form them are commonly co-opted by viruses during infection to promote viral replication. This Essay discusses mechanisms acquired by diverse human viruses to regulate MCS functions in either proviral processes or host defense. It also examines techniques used for examining MCSs in the context of viral infections.
Collapse
Affiliation(s)
- William A. Hofstadter
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elene Tsopurashvili
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
18
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
19
|
Li X, Yan Z, Ma J, Li G, Liu X, Peng Z, Zhang Y, Huang S, Luo J, Guo X. TRIM28 promotes porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway. Int J Biol Macromol 2024; 254:127722. [PMID: 37907173 DOI: 10.1016/j.ijbiomac.2023.127722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes immunosuppression and clinical symptoms such as vomiting, watery diarrhea, dehydration, and even death in piglets. TRIM28, an E3 ubiquitin ligase, is involved in the regulation of autophagy. However, the role of TRIM28 in PEDV infection is unknown. This study aimed to determine whether TRIM28 acts as a host factor for PEDV immune escape. We found that depletion of TRIM28 inhibited PEDV replication, whereas overexpression of TRIM28 promoted the viral replication in host cells. Furthermore, knockdown of TRIM28 reversed PEDV-induced downregulation of the JAK/STAT1 pathway. Treatment with the mitophagic activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP) attenuated the activating effect of TRIM28 depletion on the expression of the STAT1 pathway-related proteins. Treatment with CCCP also reduced the nuclear translocation of pSTAT1. Moreover, TRIM28, via its RING domain, interacted with PEDV N. Overexpression of TRIM28 induced mitophagy, which could be enhanced by co-expression with PEDV N. The results indicate that PEDV infection upregulates the expression of TRIM28, which induces mitophagy, leading to inhibition of the JAK-STAT1 pathway. This research unveils a new mechanism by which PEDV can hijack host cellular TRIM28 to promote its own replication.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Jiaojie Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinhui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoen Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| |
Collapse
|
20
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
21
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
22
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
23
|
Lai JH, Wu DW, Wu CH, Hung LF, Huang CY, Ka SM, Chen A, Ho LJ. USP18 enhances dengue virus replication by regulating mitochondrial DNA release. Sci Rep 2023; 13:20126. [PMID: 37978268 PMCID: PMC10656416 DOI: 10.1038/s41598-023-47584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Dengue virus (DENV) infection remains a challenging health threat worldwide. Ubiquitin-specific protease 18 (USP18), which preserves the anti-interferon (IFN) effect, is an ideal target through which DENV mediates its own immune evasion. However, much of the function and mechanism of USP18 in regulating DENV replication remains incompletely understood. In addition, whether USP18 regulates DENV replication merely by causing IFN hyporesponsiveness is not clear. In the present study, by using several different approaches to block IFN signaling, including IFN neutralizing antibodies (Abs), anti-IFN receptor Abs, Janus kinase inhibitors and IFN alpha and beta receptor subunit 1 (IFNAR1)knockout cells, we showed that USP18 may regulate DENV replication in IFN-associated and IFN-unassociated manners. Localized in mitochondria, USP18 regulated the release of mitochondrial DNA (mtDNA) to the cytosol to affect viral replication, and mechanisms such as mitochondrial reactive oxygen species (mtROS) production, changes in mitochondrial membrane potential, mobilization of calcium into mitochondria, 8-oxoguanine DNA glycosylase 1 (OGG1) expression, oxidation and fragmentation of mtDNA, and opening of the mitochondrial permeability transition pore (mPTP) were involved in USP18-regulated mtDNA release to the cytosol. We therefore identify mitochondrial machineries that are regulated by USP18 to affect DENV replication and its association with IFN effects.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
24
|
Dong Z, Wu L, Hong H. Mitochondrial Dysfunction in the Pathogenesis and Treatment of Oral Inflammatory Diseases. Int J Mol Sci 2023; 24:15483. [PMID: 37895162 PMCID: PMC10607498 DOI: 10.3390/ijms242015483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oral inflammatory diseases (OIDs) include many common diseases such as periodontitis and pulpitis. The causes of OIDs consist microorganism, trauma, occlusal factors, autoimmune dis-eases and radiation therapy. When treated unproperly, such diseases not only affect oral health but also pose threat to people's overall health condition. Therefore, identifying OIDs at an early stage and exploring new therapeutic strategies are important tasks for oral-related research. Mitochondria are crucial organelles for many cellular activities and disruptions of mitochondrial function not only affect cellular metabolism but also indirectly influence people's health and life span. Mitochondrial dysfunction has been implicated in many common polygenic diseases, including cardiovascular and neurodegenerative diseases. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development and progression of OIDs and its associated systemic diseases. In this review, we elucidated the critical insights into mitochondrial dysfunction and its involvement in the inflammatory responses in OIDs. We also summarized recent research progresses on the treatment of OIDs targeting mitochondrial dysfunction and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Liping Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hong Hong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
25
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
26
|
Lee JK, Shin OS. Zika virus modulates mitochondrial dynamics, mitophagy, and mitochondria-derived vesicles to facilitate viral replication in trophoblast cells. Front Immunol 2023; 14:1203645. [PMID: 37781396 PMCID: PMC10539660 DOI: 10.3389/fimmu.2023.1203645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Zika virus (ZIKV) remains a global public health threat with the potential risk of a future outbreak. Since viral infections are known to exploit mitochondria-mediated cellular processes, we investigated the effects of ZIKV infection in trophoblast cells in terms of the different mitochondrial quality control pathways that govern mitochondrial integrity and function. Here we demonstrate that ZIKV (PRVABC59) infection of JEG-3 trophoblast cells manipulates mitochondrial dynamics, mitophagy, and formation of mitochondria-derived vesicles (MDVs). Specifically, ZIKV nonstructural protein 4A (NS4A) translocates to the mitochondria, triggers mitochondrial fission and mitophagy, and suppresses mitochondrial associated antiviral protein (MAVS)-mediated type I interferon (IFN) response. Furthermore, proteomics profiling of small extracellular vesicles (sEVs) revealed an enrichment of mitochondrial proteins in sEVs secreted by ZIKV-infected JEG-3 cells, suggesting that MDV formation may also be another mitochondrial quality control mechanism manipulated during placental ZIKV infection. Altogether, our findings highlight the different mitochondrial quality control mechanisms manipulated by ZIKV during infection of placental cells as host immune evasion mechanisms utilized by ZIKV at the placenta to suppress the host antiviral response and facilitate viral infection.
Collapse
Affiliation(s)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
27
|
Fu F, Shao Q, Zhang J, Wang J, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Bat STING drives IFN-beta production in anti-RNA virus innate immune response. Front Microbiol 2023; 14:1232314. [PMID: 37744905 PMCID: PMC10514486 DOI: 10.3389/fmicb.2023.1232314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
The ability of stimulator of interferon genes (STING) to activate interferon (IFN) responses during RNA virus infection has been demonstrated in different mammalian cells. Despite being the host of numerous RNA viruses, the role of STING in bats during RNA virus infection has not been elucidated. In this study, we identified and cloned the STING gene of the Brazilian free-tailed bat Tadarida brasiliensis (T. brasiliensis) and tested its ability to induce IFN-β by overexpressing and knocking down bat STING (BatSTING) in T. brasiliensis 1 lung (TB1 Lu) cells. In addition, we used green fluorescent protein (GFP)-labeled vesicular stomatitis virus (VSV) VSV-GFP as a model to detect the antiviral activity of BatSTING. The results showed that overexpression of STING in TB1 Lu cells stimulated by cGAS significantly inhibited RNA virus replication, and the antiviral activities were associated with its ability to regulate basal expression of IFN-β and some IFN stimulated genes (ISGs). We also found that BatSTING was able to be activated after stimulation by diverse RNA viruses. The results of TB1 Lu cells with STING deficiency showed that knockdown of BatSTING severely hindered the IFN-β response triggered by VSV-GFP. Based on this, we confirm that BatSTING is required to induce IFN-β expression during RNA virus infection. In conclusion, our experimental data clearly show that STING in bat hosts plays an irreplaceable role in mediating IFN-β responses and anti-RNA virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Huang Y, Li Q, Kang L, Li B, Ye H, Duan X, Xie H, Jiang M, Li S, Zhu Y, Tan Q, Chen L. Mitophagy Activation Targeting PINK1 Is an Effective Treatment to Inhibit Zika Virus Replication. ACS Infect Dis 2023; 9:1424-1436. [PMID: 37300493 DOI: 10.1021/acsinfecdis.3c00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitophagy is a selective degradation mechanism that maintains mitochondrial homeostasis by eliminating damaged mitochondria. Many viruses manipulate mitophagy to promote their infection, but its role in Zika virus (ZIKV) is unclear. In this study, we investigated the effect of mitophagy activation on ZIKV replication by the mitochondrial uncoupling agent niclosamide. Our results demonstrate that niclosamide-induced mitophagy inhibits ZIKV replication by eliminating fragmented mitochondria, both in vitro and in a mouse model of ZIKV-induced necrosis. Niclosamide induces autophosphorylation of PTEN-induced putative kinase 1 (PINK1), leading to the recruitment of PRKN/Parkin to the outer mitochondrial membrane and subsequent phosphorylation of ubiquitin. Knockdown of PINK1 promotes ZIKV infection and rescues the anti-ZIKV effect of mitophagy activation, confirming the role of ubiquitin-dependent mitophagy in limiting ZIKV replication. These findings demonstrate the role of mitophagy in the host response in limiting ZIKV replication and identify PINK1 as a potential therapeutic target in ZIKV infection.
Collapse
Affiliation(s)
- Yike Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Qingyuan Li
- North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Bin Li
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning 530007, Guangxi, China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xian 710077, Shaanxi, China
| | - Man Jiang
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Ya Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Qi Tan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning 530007, Guangxi, China
- The Hospital of Xidian Group, Xian 710077, Shaanxi, China
| |
Collapse
|
29
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
30
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
31
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
32
|
Pawlak JB, Hsu JCC, Xia H, Han P, Suh HW, Grove TL, Morrison J, Shi PY, Cresswell P, Laurent-Rolle M. CMPK2 restricts Zika virus replication by inhibiting viral translation. PLoS Pathog 2023; 19:e1011286. [PMID: 37075076 PMCID: PMC10150978 DOI: 10.1371/journal.ppat.1011286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/01/2023] [Accepted: 03/09/2023] [Indexed: 04/20/2023] Open
Abstract
Flaviviruses continue to emerge as global health threats. There are currently no Food and Drug Administration (FDA) approved antiviral treatments for flaviviral infections. Therefore, there is a pressing need to identify host and viral factors that can be targeted for effective therapeutic intervention. Type I interferon (IFN-I) production in response to microbial products is one of the host's first line of defense against invading pathogens. Cytidine/uridine monophosphate kinase 2 (CMPK2) is a type I interferon-stimulated gene (ISG) that exerts antiviral effects. However, the molecular mechanism by which CMPK2 inhibits viral replication is unclear. Here, we report that CMPK2 expression restricts Zika virus (ZIKV) replication by specifically inhibiting viral translation and that IFN-I- induced CMPK2 contributes significantly to the overall antiviral response against ZIKV. We demonstrate that expression of CMPK2 results in a significant decrease in the replication of other pathogenic flaviviruses including dengue virus (DENV-2), Kunjin virus (KUNV) and yellow fever virus (YFV). Importantly, we determine that the N-terminal domain (NTD) of CMPK2, which lacks kinase activity, is sufficient to restrict viral translation. Thus, its kinase function is not required for CMPK2's antiviral activity. Furthermore, we identify seven conserved cysteine residues within the NTD as critical for CMPK2 antiviral activity. Thus, these residues may form an unknown functional site in the NTD of CMPK2 contributing to its antiviral function. Finally, we show that mitochondrial localization of CMPK2 is required for its antiviral effects. Given its broad antiviral activity against flaviviruses, CMPK2 is a promising potential pan-flavivirus inhibitor.
Collapse
Affiliation(s)
- Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States of America
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maudry Laurent-Rolle
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
33
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
34
|
Chan YT, Cheok YY, Cheong HC, Tang TF, Sulaiman S, Hassan J, Looi CY, Tan KK, AbuBakar S, Wong WF. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines 2023; 11:biomedicines11020642. [PMID: 36831177 PMCID: PMC9952926 DOI: 10.3390/biomedicines11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-(3)-7967-6672
| |
Collapse
|
35
|
Sow AA, Pahmeier F, Ayotte Y, Anton A, Mazeaud C, Charpentier T, Angelo L, Woo S, Cerikan B, Falzarano D, Abrahamyan L, Lamarre A, Labonté P, Cortese M, Bartenschlager R, LaPlante SR, Chatel-Chaix L. N-Phenylpyridine-3-Carboxamide and 6-Acetyl-1H-Indazole Inhibit the RNA Replication Step of the Dengue Virus Life Cycle. Antimicrob Agents Chemother 2023; 67:e0133122. [PMID: 36700643 PMCID: PMC9933715 DOI: 10.1128/aac.01331-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue virus (DENV) is a Flavivirus that causes the most prevalent arthropod-borne viral disease. Clinical manifestation of DENV infection ranges from asymptomatic to severe symptoms that can lead to death. Unfortunately, no antiviral treatments against DENV are currently available. In order to identify novel DENV inhibitors, we screened a library of 1,604 chemically diversified fragment-based compounds using DENV reporter viruses that allowed quantification of viral replication in infected cells. Following a validation screening, the two best inhibitor candidates were N-phenylpyridine-3-carboxamide (NPP3C) and 6-acetyl-1H-indazole (6A1HI). The half maximal effective concentration of NPP3C and 6A1H1 against DENV were 7.1 μM and 6.5 μM, respectively. 6A1H1 decreased infectious DENV particle production up to 1,000-fold without any cytotoxicity at the used concentrations. While 6A1HI was DENV-specific, NPP3C also inhibited the replication of other flaviviruses such as West Nile virus and Zika virus. Structure-activity relationship (SAR) studies with 151 analogues revealed key structural elements of NPP3C and 6A1HI required for their antiviral activity. Time-of-drug-addition experiments identified a postentry step as a target of these compounds. Consistently, using a DENV subgenomic replicon, we demonstrated that these compounds specifically impede the viral RNA replication step and exhibit a high genetic barrier-to-resistance. In contrast, viral RNA translation and the de novo biogenesis of DENV replication organelles were not affected. Overall, our data unveil NPP3C and 6A1H1 as novel DENV inhibitors. The information revealed by our SAR studies will help chemically optimize NPP3C and 6A1H1 in order to improve their anti-flaviviral potency and to challenge them in in vivo models.
Collapse
Affiliation(s)
- Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Felix Pahmeier
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Yann Ayotte
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Tania Charpentier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Léna Angelo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Simon Woo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Levon Abrahamyan
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Patrick Labonté
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Steven R. LaPlante
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
- Center of Excellence in Orphan Diseases Research-Foundation Courtois, Quebec, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec, Quebec, Canada
| |
Collapse
|
36
|
Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 2023; 19:e1011125. [PMID: 36787339 PMCID: PMC9970071 DOI: 10.1371/journal.ppat.1011125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
Collapse
Affiliation(s)
- Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sarah Victoria Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marie Lindgren
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Bally
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Lundmark
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail: (SJB); (RL)
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (SJB); (RL)
| |
Collapse
|
37
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Ul Fatima N, Ananthanarayanan V. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport. Curr Opin Cell Biol 2023; 80:102150. [PMID: 36580830 DOI: 10.1016/j.ceb.2022.102150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo rapid morphological adaptations influencing their number, transport, cellular distribution, and function, which in turn facilitate the integration of mitochondrial function with physiological changes in the cell. These mitochondrial dynamics are dependent on tightly regulated processes such as fission, fusion, and attachment to the cytoskeleton, and their defects are observed in various pathophysiological conditions including cancer, cardiovascular disease, and neurodegeneration. Various studies over the years have identified key molecular players and uncovered the mechanisms that mediate and regulate these processes and have highlighted their complexity and context-specificity. This review focuses on the recent studies that have contributed to the understanding of processes that influence mitochondrial morphology including fission, fusion, and transport in the cell.
Collapse
Affiliation(s)
- Nida Ul Fatima
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| |
Collapse
|
39
|
Saini J, Thapa U, Bandyopadhyay B, Vrati S, Banerjee A. Knockdown of NEAT1 restricts dengue virus replication by augmenting interferon alpha-inducible protein 27 via the RIG-I pathway. J Gen Virol 2023; 104. [PMID: 36748518 DOI: 10.1099/jgv.0.001823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The lncRNA NEAT1 plays a vital role in mitochondrial function and antiviral response. We have previously identified NEAT1 as dysregulated lncRNAs and found an inverse correlation with interferon alpha-inducible protein 27 (IFI27) expression associated with developing dengue severity. However, the role of NEAT1 in dengue virus (DV) infection remains elusive. Here, we undertook a study to evaluate the functional consequences of NEAT1 and IFI27 modulation on antiviral response and viral replication in dengue infection. We observed that the knockdown of NEAT1 augmented IFI27 expression and antiviral response via the RIG-I pathway. Increased antiviral response leads to a decrease in dengue viral replication. Further study suggested that the knockdown of IFI27 augmented expression of the activating transcription factor 3 (ATF3), a negative regulator of antiviral response, and increased dengue virus replication suggesting an important role played by IFI27 in mediating antiviral response. RNA sequencing study confirmed several mitochondrial genes significantly altered upon knockdown of NEAT1 in DV-infected cells. We further verified the effect of NEAT1 knockdown on mitochondrial functions. We observed a reduced level of phospho-DRP1(S616) expression along with elongated mitochondria in DV2-infected cells. Further, NEAT1 knockdown or ectopic expression of IFI27 increased mitochondrial ROS production and cell death via activation of caspase 3. Our study points to the crucial role of NEAT1 and IFI27 in mediating antiviral response and mitochondrial dysfunction in dengue infection.
Collapse
Affiliation(s)
- Jaya Saini
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad-121001, Haryana, India
| | - Umesh Thapa
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad-121001, Haryana, India
| | - Bhaswati Bandyopadhyay
- Department of Microbiology, Calcutta School of Tropical Medicine, 08, Chittaranjan Ave, Kolkata-700073, West Bengal, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad-121001, Haryana, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
40
|
Chojnacki AK, Navaneetha Krishnan S, Jijon H, Shutt TE, Colarusso P, McKay DM. Tissue imaging reveals disruption of epithelial mitochondrial networks and loss of mitochondria-associated cytochrome-C in inflamed human and murine colon. Mitochondrion 2023; 68:44-59. [PMID: 36356719 DOI: 10.1016/j.mito.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction as defined by transcriptomic and proteomic analysis of biopsies or ultra-structure in transmission electron microscopy occurs in inflammatory bowel disease (IBD); however, mitochondrial dynamics in IBD have received minimal attention, with most investigations relying on cell-based in vitro models. We build on these studies by adapting the epithelial cell immunofluorescence workflow to imaging mitochondrial networks in normal and inflamed colonic tissue (i.e., murine di-nitrobenzene sulphonic acid (DNBS)-induced colitis, human ulcerative colitis). Using antibodies directed to TOMM20 (translocase of outer mitochondrial membrane 20) and cytochrome-C, we have translated the cell-based protocol for high-fidelity imaging to examine epithelial mitochondria networks in intact intestine. In epithelia of non-inflamed small or large intestinal tissue, the mitochondrial networks were dense and compact. This pattern was more pronounced in the basal region of the cell compared to that between the nucleus and apical surface facing the gut lumen. In comparison, mitochondrial networks in inflamed tissue displayed substantial loss of TOMM20+ staining. The remaining networks were less dense and fragmented, and contained isolated spherical mitochondrial fragments. The degree of mitochondrial network fragmentation mirrored the severity of inflammation, as assessed by blinded semi-quantitative scoring. As an indication of poor cell 'health' or viability, cytosolic cytochrome-C was observed in enterocytes with highly fragmented mitochondria. Thus, high-resolution and detailed visualization of mitochondrial networks in tissue is a feasible and valuable approach to assess disease, suited to characterizing mitochondrial abnormalities in tissue. We speculate that drugs that maintain a functional remodelling mitochondrial network and limit excess fragmentation could be a valuable addition to current therapies for IBD.
Collapse
Affiliation(s)
- Andrew K Chojnacki
- Live Cell Imaging Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saranya Navaneetha Krishnan
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Humberto Jijon
- Division of Gastroenterology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Live Cell Imaging Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
41
|
Srivastava S, Chaudhary N, Dhembla C, Sundd M, Gupta S, Patel AK. STAT3 inhibition mediated upregulation of multiple immune response pathways in dengue infection. Virology 2023; 578:81-91. [PMID: 36473280 DOI: 10.1016/j.virol.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Dengue infection is a world-wide public health threat infecting millions of people annually. Till date no specific antiviral or vaccine is available against dengue virus. Recent evidence indicates that targeting host STAT3 could prove to be an effective antiviral therapy against dengue infection. To explore the potential of STAT3 inhibition as an antiviral strategy, we utilized a STAT3 inhibitor stattic as antiviral agent and performed whole proteome analysis of mammalian cells by mass spectrometry. Differentially expressed proteins among the infected and stattic treated groups were sorted based on their fold change expression and their functional annotation studies were carried out to establish their biological networks. The results presented in the current study indicated that treatment with stattic induces several antiviral pathways to counteract dengue infection. Together with this, we also observed that treatment with stattic downregulates pathways involved in viral transcription and translation thus establishing STAT3 as a suitable target for the development of antiviral interventions. This study establishes the role of STAT3 inhibition as an alternative strategy to counteract DENV pathogenesis. Targeting STAT3 by stattic or similar molecules may help in identifying novel therapeutic interventions against DENV and probably other flaviviruses.
Collapse
Affiliation(s)
- Shikha Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nidhi Chaudhary
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
42
|
Zhu H, Li Z, Bai J, Jiang P, Wang X, Liu X. A Systemic Study of Subcellular Localization of Porcine Epidemic Diarrhea Virus Proteins. Pathogens 2022; 11:1555. [PMID: 36558889 PMCID: PMC9781403 DOI: 10.3390/pathogens11121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly pathogenic enteric coronavirus, is regarded as one of the most severe porcine pathogens. To date, there are still no commercial vaccines or drugs that can provide full protection against the epidemic strains. A better understanding of the subcellular location of individual proteins could benefit from studying the protein functions and mechanisms of how the virus regulates key cellular processes, finally leading to the development of antiviral agents. In this study, we characterized the subcellular localization of PEDV proteins using multi-labeled fluorescent immunocytochemistry. As a result, 11 proteins showed cytoplasmic distribution and 10 proteins showed both cytoplasmic and nuclear distribution. Furthermore, we demonstrated that four proteins (Nsp3, Nsp4, Nsp6, and S1) were co-localized in the endoplasmic reticulum (ER), while four proteins (Nsp2, S2, N, and ORF3) were partially observed in the ER, two proteins (E and M) were co-localized in the Golgi apparatus, and two proteins (Nsp2 and E) were partially co-localized with the mitochondria. These viral proteins may perform specific functions at specific cellular locations. Together, these results describe a subcellular localization map of PEDV proteins, which will help to characterize the functions of these proteins in the future.
Collapse
Affiliation(s)
- Huixin Zhu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zitong Li
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Díaz-Resendiz KJG, Toledo-Ibarra GA, Ruiz-Manzano R, Giron Perez DA, Covantes-Rosales CE, Benitez-Trinidad AB, Ramirez-Ibarra KM, Hermosillo Escobedo AT, González-Navarro I, Ventura-Ramón GH, Romero Castro A, Alam Escamilla D, Bueno-Duran AY, Girón-Pérez MI. Ex vivo treatment with fucoidan of mononuclear cells from SARS-CoV-2 infected patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2634-2652. [PMID: 34689674 DOI: 10.1080/09603123.2021.1982875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 is a worldwide health emergency, therapy for this disease is based on antiviral drugs and immunomodulators, however, there is no treatment to effectively reduce the COVID-19 mortality rate. Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, antiviral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for the recovery of COVID-19. This work aimed to determine the effects of ex-vivo treatment with fucoidan on cytotoxicity, apoptosis, necrosis, and senescence, besides functional parameters of calcium flux and mitochondrial membrane potential (ΔΨm) on human peripheral blood mononuclear cells isolated from SARS-CoV-2 infected, recovered and healthy subjects. Data suggest that fucoidan does not exert cytotoxicity or senescence, however, it induces the increment of intracellular calcium flux. Additionally, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered females. Data suggest that fucoidan could ameliorate the immune response in COVID-19 patients.
Collapse
Affiliation(s)
- K J G Díaz-Resendiz
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G A Toledo-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - R Ruiz-Manzano
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - D A Giron Perez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - C E Covantes-Rosales
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A B Benitez-Trinidad
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - K M Ramirez-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A T Hermosillo Escobedo
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - I González-Navarro
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G H Ventura-Ramón
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A Romero Castro
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - D Alam Escamilla
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - A Y Bueno-Duran
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| |
Collapse
|
44
|
Singh B, Avula K, Sufi SA, Parwin N, Das S, Alam MF, Samantaray S, Bankapalli L, Rani A, Poornima K, Prusty B, Mallick TP, Shaw SK, Dodia H, Kabi S, Pagad TT, Mohanty S, Syed GH. Defective Mitochondrial Quality Control during Dengue Infection Contributes to Disease Pathogenesis. J Virol 2022; 96:e0082822. [PMID: 36197108 PMCID: PMC9599662 DOI: 10.1128/jvi.00828-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.
Collapse
Affiliation(s)
- Bharati Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Kalinga Institute of Information and Technology, Bhubaneswar, Odisha, India
| | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Nahid Parwin
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sayani Das
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | | | | | | | | | | - Hiren Dodia
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Shobhitendu Kabi
- Department of Medicine, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, Odisha, India
| | - Trupti T. Pagad
- Department of Medicine, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
45
|
Chengcheng Z, Xiuling W, Jiahao S, Mengjiao G, Xiaorong Z, Yantao W. Mitophagy induced by classical swine fever virus nonstructural protein 5A promotes viral replication. Virus Res 2022; 320:198886. [PMID: 35948130 DOI: 10.1016/j.virusres.2022.198886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022]
Abstract
The classical swine fever virus (CSFV) is one of the most harmful pathogens of swine and causes considerable economic loss. Mitophagy is a selective form of autophagy that degrades damaged mitochondria by combining with lysosomes. Previous studies have been reported that CSFV infection can induce mitophagy, but which effector protein is responsible for this process remains unclear. Herein, we revealed here that the CSFV nonstructural protein 5A (NS5A) plays a critical role in inducing cellular mitophagy. Specifically, the expression of CSFV NS5A in the PK-15 cells induces membrane potential loss and mitochondrial fission, and the quantities of mitophagosomes, the expression of Parkin and PINK1 were significantly increased compared with mock cells. Intriguingly, we found that Parkin-overexpression promotes CSFV propagation. Furthermore, the expression level of reactive oxygen species (ROS) was increased by CSFV NS5A protein, while NS5A-induced mitophagy correlated with the quantity of ROS production. In summary, our results reveal a new function of NS5A in inducing cellular mitophagy and broaden our understanding of the mechanism of CSFV-induced mitophagy, which may provide a new way to develop an antiviral strategy.
Collapse
Affiliation(s)
- Zhang Chengcheng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Wang Xiuling
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Sun Jiahao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Guo Mengjiao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhang Xiaorong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Wu Yantao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
46
|
Lebeau G, El Safadi D, Paulo-Ramos A, Hoareau M, Desprès P, Krejbich-Trotot P, Chouchou F, Roche M, Viranaicken W. The Efficient Antiviral Response of A549 Cells Is Enhanced When Mitochondrial Respiration Is Promoted. Pathogens 2022; 11:pathogens11101168. [PMID: 36297225 PMCID: PMC9611969 DOI: 10.3390/pathogens11101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
When exposed to a viral infection, the attacked cells promptly set up defense mechanisms. As part of the antiviral responses, the innate immune interferon pathway and associated interferon-stimulated genes notably allow the production of proteins bearing antiviral activity. Numerous viruses are able to evade the interferon response, highlighting the importance of controlling this pathway to ensure their efficient replication. Several viruses are also known to manipulate the metabolism of infected cells to optimize the availability of amino acids, nucleotides, and lipids. They then benefit from a reprogramming of the metabolism that favors glycolysis instead of mitochondrial respiration. Given the increasingly discussed crosstalk between metabolism and innate immunity, we wondered whether this switch from glycolysis to mitochondrial respiration would be beneficial or deleterious for an efficient antiviral response. We used a cell-based model of metabolic reprogramming. Interestingly, we showed that increased mitochondrial respiration was associated with an enhanced interferon response following polyriboinosinic:polyribocytidylic acid (poly:IC) stimulation. This suggests that during viral infection, the metabolic reprogramming towards glycolysis is also part of the virus’ strategies to inhibit the antiviral response.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
- Correspondence:
| | - Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis, La Réunion, France
| | - Mathilde Hoareau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| | - Florian Chouchou
- IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, 97430 Le Tampon, La Réunion, France
| | - Marjolaine Roche
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France
| |
Collapse
|
47
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
48
|
Zhao Y, Wu P, Liu L, Ma B, Pan M, Huang Y, Du N, Yu H, Sui L, Wang ZD, Hou Z, Liu Q. Characterization and subcellular localization of Alongshan virus proteins. Front Microbiol 2022; 13:1000322. [PMID: 36238596 PMCID: PMC9551281 DOI: 10.3389/fmicb.2022.1000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alongshan virus (ALSV) in the Jingmenvirus group within the family Flaviviridae is a newly discovered tick-borne virus associated with human disease, whose genome includes four segments and encodes four structural proteins (VP1a, VP1b, VP2, VP3, and VP4) and two non-structural proteins (NSP1 and NSP2). Here, we characterized the subcellular distribution and potential function of ALSV proteins in host cells. We found that viral proteins exhibited diverse subcellular distribution in multiple tissue-deriving cells and induced various morphological changes in the endoplasmic reticulum (ER), and NSP2, VP1b, VP2, and VP4 were all co-localized in the ER. The nuclear transfer and co-localization of VP4 and calnexin (a marker protein of ER), which were independent of their interaction, were unique to HepG2 cells. Expression of NSP1 could significantly reduce mitochondria quantity by inducing mitophagy. These findings would contribute to better understanding of the pathogenesis of emerging segmented flaviviruses.
Collapse
Affiliation(s)
- Yinghua Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ping Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Li Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Baohua Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Nianyan Du
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hongyan Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Ze-Dong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- *Correspondence: Zhijun Hou,
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Quan Liu,
| |
Collapse
|
49
|
Babu G, Nobel FA. Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101038. [PMID: 35966126 PMCID: PMC9357445 DOI: 10.1016/j.imu.2022.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus causes Coronavirus disease, an infectious disease. The majority of people who are infected with this virus will have mild to moderate respiratory symptoms. Multiple studies have proved that there is a substantial pathophysiological link between COVID-19 disease and patients having comorbidities such as cystic fibrosis and chronic kidney disease. In this study, we attempted to identify differentially expressed genes as well as genes that intersected among them in order to comprehend their compatibility. Gene expression profiling indicated that 849 genes were mutually exclusive and functional analysis was done within the context of gene ontology and key pathways involvement. Three genes (PRPF31, FOXN2, and RIOK3) were commonly upregulated in the analysed datasets of three disease categories. These genes could be potential biomarkers for patients with COVID-19 and cystic fibrosis, and COVID-19 and chronic kidney disease. Further extensive analyses have been performed to describe how these genes are regulated by various transcription factors and microRNAs. Then, our analyses revealed six hub genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL). As they were involved in the interaction between COVID-19 and the patient with CF and CKD, they could help researchers identify potential therapeutic molecules. Some drugs have been predicted based on the upregulated genes, which may have a significant impact on reducing the burden of these diseases in the future.
Collapse
Affiliation(s)
- Golap Babu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Fahim Alam Nobel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
50
|
Neufeldt CJ, Cortese M. Membrane architects: how positive-strand RNA viruses restructure the cell. J Gen Virol 2022; 103. [PMID: 35976091 DOI: 10.1099/jgv.0.001773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus infection is a process that requires combined contributions from both virus and host factors. For this process to be efficient within the crowded host environment, viruses have evolved ways to manipulate and reorganize host structures to produce cellular microenvironments. Positive-strand RNA virus replication and assembly occurs in association with cytoplasmic membranes, causing a reorganization of these membranes to create microenvironments that support viral processes. Similarities between virus-induced membrane domains and cellular organelles have led to the description of these structures as virus replication organelles (vRO). Electron microscopy analysis of vROs in positive-strand RNA virus infected cells has revealed surprising morphological similarities between genetically diverse virus species. For all positive-strand RNA viruses, vROs can be categorized into two groups: those that make invaginations into the cellular membranes (In-vRO), and those that cause the production of protrusions from cellular membranes (Pr-vRO), most often in the form of double membrane vesicles (DMVs). In this review, we will discuss the current knowledge on the structure and biogenesis of these two different vRO classes as well as comparing morphology and function of vROs between various positive-strand RNA viruses. Finally, we will discuss recent studies describing pharmaceutical intervention in vRO formation as an avenue to control virus infection.
Collapse
Affiliation(s)
- Christopher John Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| |
Collapse
|