1
|
Keating PM, Lee J. Assignment of the Lassa virus transmembrane domain in the prefusion and postfusion states in detergent micelles. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:165-169. [PMID: 38916786 DOI: 10.1007/s12104-024-10184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the 1H, 15N, and 13C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the 1H, 15N, and 13C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.
Collapse
Affiliation(s)
- Patrick M Keating
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Insausti S, Ramos-Caballero A, Wiley B, González-Resines S, Torralba J, Elizaga-Lara A, Shamblin C, Ojida A, Caaveiro JMM, Zwick MB, Rujas E, Domene C, Nieva JL. Generation of a Nonbilayer Lipid Nanoenvironment after Epitope Binding Potentiates Neutralizing HIV-1 MPER Antibody. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59934-59948. [PMID: 39446590 PMCID: PMC11551957 DOI: 10.1021/acsami.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood. To approach this issue, we computationally and experimentally investigated lipid interactions of broadly neutralizing antibody 10E8 and optimized versions engineered to enhance their epitope and membrane affinity by grafting bulky aromatic compounds. Our data revealed a correlation between neutralization potency and the establishment of favorable interactions with small headgroup lipids cholesterol and phosphatidylethanolamine, evolving after specific engagement with MPER. Molecular dynamics simulations of chemically modified Fabs in complex with an MPER-Transmembrane Domain helix supported the generation of a nanoenvironment causing localized deformation of the thick, rigid viral membrane and identified sphingomyelin preferentially occupying a phospholipid-binding site of 10E8. Together, these interactions appear to facilitate insertion of the Fabs through their engagement with the MPER epitope. These findings implicate individual lipid molecules in the neutralization function of MPER bnAbs, validate targeted chemical modification as a method to optimize MPER antibodies, and suggest pathways for MPER peptide-liposome vaccine development.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Ander Ramos-Caballero
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Brian Wiley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Saul González-Resines
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Johana Torralba
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Anne Elizaga-Lara
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Christine Shamblin
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Akio Ojida
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jose M. M. Caaveiro
- Laboratory
of Protein Drug Discovery, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Michael B. Zwick
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Edurne Rujas
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria 01006, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao48013, Spain
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - José L. Nieva
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| |
Collapse
|
3
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
4
|
Fu Y, Wang S, Hao Y, Li D, Ren L, Wang Z, Chen R, Tang W, Shen X, Ni W, Shi Y, Zhu M, Shao Y, Liu Y. Amino acid substitution of the membrane-proximal external region alter neutralization sensitivity in a chronic HIV-1 clade B infected patient. Virus Res 2024; 345:199377. [PMID: 38643858 PMCID: PMC11067532 DOI: 10.1016/j.virusres.2024.199377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
The membrane-proximal external region (MPER) represents a highly conserved region of the Human Immunodeficiency Virus (HIV) envelope glycoprotein (env) targeted by several broadly neutralizing antibodies (bnAbs). In this study, we employed single genome amplification to amplify 34 full-length env sequences from the 2005 plasma sample of CBJC504, a chronic HIV-1 clade B infected individual. We identified three amino acid changes (N671S, D674N, and K677R) in the MPER. A longitudinal analysis revealed that the proportion of env sequences with MPER mutations increased from 26.5 % in 2005 to 56.0 % in 2009, and the sequences with the same mutation clustered together. Nine functional pseudoviruses were generated from the 34 env sequences to examine the effect of these mutations on neutralizing activity. Pseudoviruses carrying N674 or R677 mutations demonstrate increased sensitivity to autologous plasma and monoclonal antibodies 2F5, 4E10, and 10E8. Reverse mutations were performed in env including N674, R677, D659, and S671/N677 mutations, to validate the impact of the mutations on neutralizing sensitivity. Neutralization assays indicated that the N671S mutation increased neutralization sensitivity to 2F5 and 10E8. The amino acid R at position 677 increased viral resistance to 10E8, whereas N enhanced viral resistance to 4E10 and 10E8. It has been proposed that critical amino acids in the extra-MPER and the number of potential N-like glycosylation sites (PNGSs) in the V1 loop may have an impact on neutralizing activity. Understanding the mutations and evolution of MPER in chronically infected patients with HIV-1 is crucial for the design and development of vaccines that trigger bnAbs against MPER.
Collapse
Affiliation(s)
- Yuyu Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuhui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zheng Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ran Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenqi Tang
- Department of TB/AIDS Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xiuli Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Wanqi Ni
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yutao Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Meiling Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiming Shao
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
5
|
Schiffner T, Phung I, Ray R, Irimia A, Tian M, Swanson O, Lee JH, Lee CCD, Marina-Zárate E, Cho SY, Huang J, Ozorowski G, Skog PD, Serra AM, Rantalainen K, Allen JD, Baboo S, Rodriguez OL, Himansu S, Zhou J, Hurtado J, Flynn CT, McKenney K, Havenar-Daughton C, Saha S, Shields K, Schultze S, Smith ML, Liang CH, Toy L, Pecetta S, Lin YC, Willis JR, Sesterhenn F, Kulp DW, Hu X, Cottrell CA, Zhou X, Ruiz J, Wang X, Nair U, Kirsch KH, Cheng HL, Davis J, Kalyuzhniy O, Liguori A, Diedrich JK, Ngo JT, Lewis V, Phelps N, Tingle RD, Spencer S, Georgeson E, Adachi Y, Kubitz M, Eskandarzadeh S, Elsliger MA, Amara RR, Landais E, Briney B, Burton DR, Carnathan DG, Silvestri G, Watson CT, Yates JR, Paulson JC, Crispin M, Grigoryan G, Ward AB, Sok D, Alt FW, Wilson IA, Batista FD, Crotty S, Schief WR. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat Immunol 2024; 25:1073-1082. [PMID: 38816615 PMCID: PMC11147780 DOI: 10.1038/s41590-024-01833-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Collapse
Affiliation(s)
- Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Adriana Irimia
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun D Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - So Yeon Cho
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jiachen Huang
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Skog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Andreia M Serra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia T Flynn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chi-Hui Liang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Toy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Fabian Sesterhenn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaoya Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer Ruiz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jillian Davis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan D Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Skye Spencer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Marc A Elsliger
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Generate Biomedicines, Inc., Somerville, MA, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| |
Collapse
|
6
|
Ray R, Schiffner T, Wang X, Yan Y, Rantalainen K, Lee CCD, Parikh S, Reyes RA, Dale GA, Lin YC, Pecetta S, Giguere S, Swanson O, Kratochvil S, Melzi E, Phung I, Madungwe L, Kalyuzhniy O, Warner J, Weldon SR, Tingle R, Lamperti E, Kirsch KH, Phelps N, Georgeson E, Adachi Y, Kubitz M, Nair U, Crotty S, Wilson IA, Schief WR, Batista FD. Affinity gaps among B cells in germinal centers drive the selection of MPER precursors. Nat Immunol 2024; 25:1083-1096. [PMID: 38816616 PMCID: PMC11147770 DOI: 10.1038/s41590-024-01844-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.
Collapse
Affiliation(s)
- Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yu Yan
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun David Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shivang Parikh
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Raphael A Reyes
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Gordon A Dale
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | - Sophie Giguere
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Eleonora Melzi
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Madungwe
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Stephanie R Weldon
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Lamperti
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
García-Porras M, Torralba J, Insausti S, Valle J, Andreu D, Apellániz B, Nieva JL. A two-step mechanism for the binding of the HIV-1 MPER epitope by the 10E8 antibody onto biosensor-supported lipid bilayers. FEBS Lett 2024; 598:787-800. [PMID: 38339834 DOI: 10.1002/1873-3468.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
HIV-1 antibodies targeting the carboxy-terminal area of the membrane-proximal external region (ctMPER) are close to exerting viral pan-neutralization. Here, we reconstituted the ctMPER epitope as the N-terminal extremity of the Env glycoprotein transmembrane domain helix and immobilized it onto biosensor-supported lipid bilayers. We assessed the binding mechanism of anti-MPER antibody 10E8 through Surface Plasmon Resonance, and found, through equilibrium and kinetic binding analyses as a function of bilayer thickness, peptide length, and paratope mutations, that 10E8 engages first with the epitope peptide (encounter), limited by ctMPER helix accessibility at the membrane surface, and then inserts into the lipid bilayer assisted by favorable Fab-membrane interactions (docking). This mechanistic information may help in devising new strategies to develop more efficient MPER-targeting vaccines.
Collapse
Affiliation(s)
- Miguel García-Porras
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Javier Valle
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
8
|
Hsieh CL, Leist SR, Miller EH, Zhou L, Powers JM, Tse AL, Wang A, West A, Zweigart MR, Schisler JC, Jangra RK, Chandran K, Baric RS, McLellan JS. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat Commun 2024; 15:1553. [PMID: 38378768 PMCID: PMC10879192 DOI: 10.1038/s41467-024-45404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine-Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Pennington H, Birtles D, Shi ZW, Lee J. A Salt Bridge and Disulfide Bond within the Lassa Virus Fusion Domain Are Required for the Initiation of Membrane Fusion. ACS OMEGA 2024; 9:4920-4930. [PMID: 38313535 PMCID: PMC10831964 DOI: 10.1021/acsomega.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infection with Lassa virus (LASV), an Old-World arenavirus that is endemic to West Africa, causes Lassa fever, a lethal hemorrhagic fever. Delivery of LASV's genetic material into the host cell is an integral component of its lifecycle. This is accomplished via membrane fusion, a process initiated by a hydrophobic sequence known as the fusion domain (FD). The LASV FD (G260-N295) consists of two structurally distinct regions: an N-terminal fusion peptide (FP: G260-T274) and an internal fusion loop (FL: C279-N295) that is connected by a short linker region (P275-Y278). However, the molecular mechanisms behind how the LASV FD initiates fusion remain unclear. Here, we demonstrate that the LASV FD adopts a fusogenic, helical conformation at a pH akin to that of the lysosomal compartment. Additionally, we identified a conserved disulfide bond (C279 and C292) and salt bridge (R282 and E289) within the FL that are pertinent to fusion. We found that the disulfide bond must be present so that the FD can bind to the lipid bilayer and subsequently initiate fusion. Moreover, the salt bridge is essential for the secondary structure of the FD such that it can associate with the lipid bilayer in the proper orientation for full functionality. In conclusion, our findings indicate that the LASV FD preferentially initiates fusion at a pH akin to that of the lysosome through a mechanism that requires a conserved salt bridge and, to a lesser extent, an intact disulfide bond within the internal FL.
Collapse
Affiliation(s)
- Hallie
N. Pennington
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Daniel Birtles
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Zoe W. Shi
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Jinwoo Lee
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| |
Collapse
|
10
|
Keating PM, Schifano NP, Wei X, Kong MY, Lee J. pH-dependent conformational change within the Lassa virus transmembrane domain elicits efficient membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184233. [PMID: 37734457 DOI: 10.1016/j.bbamem.2023.184233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines, which poses LASV as a significant global public health threat. One of the key steps in LASV infection is the delivery of its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain during the fusion process. Here, we used CD and NMR spectroscopy to show that the transmembrane domain has pH-dependent conformational changes that result in an extension of the alpha helix at the N-terminal end. Proline mutants of key residues in that region prevent the helical extension, as seen in CD and NMR. We developed a modified lipid mixing assay to study the importance of this extension on the function of GP2. Our assay shows that membrane fusion efficiency is optimal at low pH values but introducing the proline mutants results in lower fusion efficiency. These results indicate that these pH-dependent conformational changes are important to the fusion mechanism. This information can be used to design therapeutics to combat Lassa virus infections and prevent its potential spread.
Collapse
Affiliation(s)
- Patrick M Keating
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Nicholas P Schifano
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Xinrui Wei
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Matthew Y Kong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Nat Commun 2023; 14:7218. [PMID: 37940661 PMCID: PMC10632514 DOI: 10.1038/s41467-023-42097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Junjian Chen
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Immunology, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kaku
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- NeoCura Bio-Medical Technology Co., Ltd., Beijing, China
| | - Luke Donius
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, MA, USA
| | - Rafiq Ahmad Khan
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Li
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mikyung Kim
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
14
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546734. [PMID: 37425731 PMCID: PMC10327024 DOI: 10.1101/2023.06.27.546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace". During natural infection, the flexible hinge of IgG3 partially mitigates steric occlusion of less pliable IgG1 subclass Abs with identical MPER specificity, until affinity maturation refines entry mechanisms. The IgG3 subclass maintains B-cell competitiveness, exploiting bivalent ligation resulting from greater intramolecular Fab arm length, offsetting weak antibody affinity. These findings suggest future immunization strategies.
Collapse
|
15
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
16
|
Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. J Virol 2023; 97:e0164722. [PMID: 36541800 PMCID: PMC9888200 DOI: 10.1128/jvi.01647-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Collapse
|
17
|
Choi S, Yang Z, Wang Q, Qiao Z, Sun M, Wiggins J, Xiang SH, Lu Q. Displaying and delivering viral membrane antigens via WW domain-activated extracellular vesicles. SCIENCE ADVANCES 2023; 9:eade2708. [PMID: 36706192 PMCID: PMC9882979 DOI: 10.1126/sciadv.ade2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Membrane proteins expressed on the surface of enveloped viruses are conformational antigens readily recognized by B cells of the immune system. An effective vaccine would require the synthesis and delivery of these native conformational antigens in lipid membranes that preserve specific epitope structures. We have created an extracellular vesicle-based technology that allows viral membrane antigens to be selectively recruited onto the surface of WW domain-activated extracellular vesicles (WAEVs). Budding of WAEVs requires secretory carrier-associated membrane protein 3, which through its proline-proline-alanine-tyrosine motif interacts with WW domains to recruit fused viral membrane antigens onto WAEVs. Immunization with influenza and HIV viral membrane proteins displayed on WAEVs elicits production of virus-specific neutralizing antibodies and, in the case of influenza antigens, protects mice from the lethal viral infection. WAEVs thus represent a versatile platform for presenting and delivering membrane antigens as vaccines against influenza, HIV, and potentially many other viral pathogens.
Collapse
Affiliation(s)
- Sengjin Choi
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhiping Yang
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qiyu Wang
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhi Qiao
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maoyun Sun
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joshua Wiggins
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
18
|
Keating PM, Pennington HN, Collins SD, Lee J. Purification and characterization of the Lassa virus transmembrane domain. Biochem Biophys Rep 2022; 33:101409. [PMID: 36583076 PMCID: PMC9792740 DOI: 10.1016/j.bbrep.2022.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Lassa virus (LASV) is the most prevalent arenavirus afflicting humans and has high potential to become a threat to global public health. The transmembrane domain (TM) of the LASV glycoprotein complex forms critical interactions with the LASV stable signal peptide that are important for the maturation and fusion activity of the virus. A further study of the structure-based molecular mechanisms is required to understand the role of the TM in the lifecycle of LASV in greater detail. However, it is challenging to obtain the TM in high quantity and purity due to its hydrophobic nature which results in solubility issues that makes it prone to aggregation in typical buffer systems. Here, we designed a purification and detergent screen protocol for the highly insoluble TM to enhance the yield and purity for structural studies. Based on the detergents tested, the TM had the highest incorporation in LMPG. Circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy were utilized to confirm the best detergent system for structural studies. Through CD spectroscopy, we were able to characterize the secondary structure of the TM as largely alpha-helical, while NMR spectroscopy showed a well-structured and stable TM in LMPG. From these results, LMPG was determined to be the optimal detergent for further structural studies.
Collapse
|
19
|
Boswell KL, Watkins TA, Cale EM, Samsel J, Andrews SF, Ambrozak DR, Driscoll JI, Messina MA, Narpala S, Hopp CS, Cagigi A, Casazza JP, Yamamoto T, Zhou T, Schief WR, Crompton PD, Ledgerwood JE, Connors M, Gama L, Kwong PD, McDermott A, Mascola JR, Koup RA. Application of B cell immortalization for the isolation of antibodies and B cell clones from vaccine and infection settings. Front Immunol 2022; 13:1087018. [PMID: 36582240 PMCID: PMC9794141 DOI: 10.3389/fimmu.2022.1087018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The isolation and characterization of neutralizing antibodies from infection and vaccine settings informs future vaccine design, and methodologies that streamline the isolation of antibodies and the generation of B cell clones are of great interest. Retroviral transduction to express Bcl-6 and Bcl-xL and transform primary B cells has been shown to promote long-term B cell survival and antibody secretion in vitro, and can be used to isolate antibodies from memory B cells. However, application of this methodology to B cell subsets from different tissues and B cells from chronically infected individuals has not been well characterized. Here, we characterize Bcl-6/Bcl-xL B cell immortalization across multiple tissue types and B cell subsets in healthy and HIV-1 infected individuals, as well as individuals recovering from malaria. In healthy individuals, naïve and memory B cell subsets from PBMCs and tonsil tissue transformed with similar efficiencies, and displayed similar characteristics with respect to their longevity and immunoglobulin secretion. In HIV-1-viremic individuals or in individuals with recent malaria infections, the exhausted CD27-CD21- memory B cells transformed with lower efficiency, but the transformed B cells expanded and secreted IgG with similar efficiency. Importantly, we show that this methodology can be used to isolate broadly neutralizing antibodies from HIV-infected individuals. Overall, we demonstrate that Bcl-6/Bcl-xL B cell immortalization can be used to isolate antibodies and generate B cell clones from different B cell populations, albeit with varying efficiencies.
Collapse
Affiliation(s)
- Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Timothy A. Watkins
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evan M. Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jakob Samsel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute for Biomedical Sciences, George Washington University, Washington, DC, United States
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jefferson I. Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christine S. Hopp
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Takuya Yamamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William R. Schief
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Caskey M, Kuritzkes DR. Monoclonal Antibodies as Long-Acting Products: What Are We Learning From Human Immunodeficiency Virus (HIV) and Coronavirus Disease 2019 (COVID-19)? Clin Infect Dis 2022; 75:S530-S540. [PMID: 36410387 PMCID: PMC10200322 DOI: 10.1093/cid/ciac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Broadly neutralizing antibodies directed against human immunodeficiency virus (HIV) offer promise as long-acting agents for prevention and treatment of HIV. Progress and challenges are discussed. Lessons may be learned from the development of monoclonal antibodies to treat and prevent COVID-19.
Collapse
Affiliation(s)
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Torralba J, de la Arada I, Partida-Hanon A, Rujas E, Arribas M, Insausti S, Valotteau C, Valle J, Andreu D, Caaveiro JMM, Jiménez MA, Apellániz B, Redondo-Morata L, Nieva JL. Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope. Commun Biol 2022; 5:1265. [DOI: 10.1038/s42003-022-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractAntibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.
Collapse
|
22
|
Insausti S, Garcia-Porras M, Torralba J, Morillo I, Ramos-Caballero A, de la Arada I, Apellaniz B, Caaveiro JMM, Carravilla P, Eggeling C, Rujas E, Nieva JL. Functional Delineation of a Protein-Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8. Int J Mol Sci 2022; 23:ijms231810767. [PMID: 36142694 PMCID: PMC9504841 DOI: 10.3390/ijms231810767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab-peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab-Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody-membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein-membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Miguel Garcia-Porras
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Izaskun Morillo
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Ander Ramos-Caballero
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Igor de la Arada
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Beatriz Apellaniz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - Jose M. M. Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Pablo Carravilla
- Leibniz Institute of Photonic Technology e.V., 07745 Jena, Germany
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology e.V., 07745 Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, 07743 Jena, Germany
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Edurne Rujas
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Bioaraba, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.R.); (J.L.N.)
| | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Correspondence: (E.R.); (J.L.N.)
| |
Collapse
|
23
|
Broadly neutralizing antibodies against HIV-1 and concepts for application. Curr Opin Virol 2022; 54:101211. [DOI: 10.1016/j.coviro.2022.101211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
24
|
Sette A, Saphire EO. Inducing broad-based immunity against viruses with pandemic potential. Immunity 2022; 55:738-748. [PMID: 35545026 PMCID: PMC10286218 DOI: 10.1016/j.immuni.2022.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
The brutal toll of another viral pandemic can be blunted by investing now in research that uncovers mechanisms of broad-based immunity so we may have vaccines and therapeutics at the ready. We do not know exactly what pathogen may trigger the next wave or next pandemic. We do know, however, that the human immune system must respond and must be bolstered with effective vaccines and other therapeutics to preserve lives and livelihoods. These countermeasures must focus on features conserved among families of pathogens in order to be responsive against something yet to emerge. Here, we focus on immunological approaches to mitigate the impact of the next emerging virus pandemic by developing vaccines that elicit both broadly protective antibodies and T cells. Identifying human immune mechanisms of broad protection against virus families with pandemic potential will be our best defense for humanity in the future.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
25
|
Legg MSG, Gagnon SML, Powell CJ, Boulanger MJ, Li AJJ, Evans SV. Monoclonal antibody 7H2.2 binds the C-terminus of the cancer-oocyte antigen SAS1B through the hydrophilic face of a conserved amphipathic helix corresponding to one of only two regions predicted to be ordered. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:623-632. [DOI: 10.1107/s2059798322003011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
The structure of the antigen-binding fragment (Fab) of mouse monoclonal antibody 7H2.2 in complex with a 15-residue fragment from the metalloproteinase sperm acrosomal SLLP1 binding protein (SAS1B), which is a molecular and cellular candidate for both cancer therapy and female contraception, has been determined at 2.75 Å resolution by single-crystal X-ray diffraction. Although the crystallization conditions contained the final 148 C-terminal residues of SAS1B, the Fab was observed to crystallize in complex with a 15-residue fragment corresponding to one of only two elements of secondary structure that are predicted to be ordered within the C-terminal region of SAS1B. The antigen forms an amphipathic α-helix that binds the 7H2.2 combining site via hydrophilic residues in an epitope that spans the length of the antigen α-helix, with only two CH–π interactions observed along the edge of the interface between the antibody and antigen. Interestingly, the paratope contains two residues mutated away from the germline (YL32F and YH58R), as well as a ProH96-ThrH97-AspH98-AspH99 insertion within heavy chain CDR3. The intact 7H2.2 antibody exhibits high affinity for the SAS1B antigen, with 1:1 binding and nanomolar affinity for both the SAS1B C-terminal construct used for crystallization (3.38 ± 0.59 nM) and a 15-amino-acid synthetic peptide construct corresponding to the helical antigen observed within the crystal structure (1.60 ± 0.31 nM). The SAS1B–antibody structure provides the first structural insight into any portion of the subdomain architecture of the C-terminal region of the novel cancer-oocyte tumor surface neoantigen SAS1B and provides a basis for the targeted use of SAS1B.
Collapse
|
26
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
27
|
Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC, Zatta F, Zepeda SK, Bowen JE, Sprouse KR, Joshi A, Giurdanella M, Guarino B, Noack J, Abdelnabi R, Foo SYC, Rosen LE, Lempp FA, Benigni F, Snell G, Neyts J, Whelan SPJ, Virgin HW, Bloom JD, Corti D, Pizzuto MS, Veesler D. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 2022; 375:449-454. [PMID: 34990214 PMCID: PMC9400459 DOI: 10.1126/science.abm8143] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023]
Abstract
Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Betacoronavirus/immunology
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- Broadly Neutralizing Antibodies/therapeutic use
- COVID-19/immunology
- COVID-19/therapy
- Cross Reactions
- Cryoelectron Microscopy
- Epitopes
- Humans
- Immune Evasion
- Mesocricetus
- Models, Molecular
- Molecular Mimicry
- Mutation
- Protein Conformation
- Protein Domains
- Receptors, Coronavirus/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Giurdanella
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesse D. Bloom
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
29
|
Carlon-Andres I, Malinauskas T, Padilla-Parra S. Structure dynamics of HIV-1 Env trimers on native virions engaged with living T cells. Commun Biol 2021; 4:1228. [PMID: 34707229 PMCID: PMC8551276 DOI: 10.1038/s42003-021-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env-T cell interactions in real time and therefore might control immune evasion.
Collapse
Affiliation(s)
- Irene Carlon-Andres
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergi Padilla-Parra
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
30
|
Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC, Zatta F, Zepeda SK, Bowen J, Sprouse KS, Joshi A, Giurdanella M, Guarino B, Noack J, Abdelnabi R, Foo SYC, Lempp FA, Benigni F, Snell G, Neyts J, Whelan SPJ, Virgin HW, Bloom JD, Corti D, Pizzuto MS, Veesler D. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.13.464254. [PMID: 34671770 PMCID: PMC8528076 DOI: 10.1101/2021.10.13.464254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures effective against SARS-CoV-2 variants and future spillovers of other sarbecoviruses. Here we describe the isolation and characterization of a human monoclonal antibody, designated S2K146, broadly neutralizing viruses belonging to all three sarbecovirus clades known to utilize ACE2 as entry receptor and protecting therapeutically against SARS-CoV-2 beta challenge in hamsters. Structural and functional studies show that most of the S2K146 epitope residues are shared with the ACE2 binding site and that the antibody inhibits receptor attachment competitively. Viral passaging experiments underscore an unusually high barrier for emergence of escape mutants making it an ideal candidate for clinical development. These findings unveil a key site of vulnerability for the development of a next generation of vaccines eliciting broad sarbecovirus immunity.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin S Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Giurdanella
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | | | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Sean PJ Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Richardson SI, Ayres F, Manamela NP, Oosthuysen B, Makhado Z, Lambson BE, Morris L, Moore PL. HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Front Immunol 2021; 12:733958. [PMID: 34566999 PMCID: PMC8462932 DOI: 10.3389/fimmu.2021.733958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelia P Manamela
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Rujas E, Leaman DP, Insausti S, Carravilla P, García-Porras M, Largo E, Morillo I, Sánchez-Eugenia R, Zhang L, Cui H, Iloro I, Elortza F, Julien JP, Eggeling C, Zwick MB, Caaveiro JM, Nieva JL. Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. iScience 2021; 24:102987. [PMID: 34505005 PMCID: PMC8413895 DOI: 10.1016/j.isci.2021.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 are frequently associated with the presence of autoreactivity/polyreactivity, a property that can limit their use as therapeutic agents. The bnAb 4E10, targeting the conserved Membrane proximal external region (MPER) of HIV-1, displays almost pan-neutralizing activity across globally circulating HIV-1 strains but exhibits nonspecific off-target interactions with lipid membranes. The hydrophobic apex of the third complementarity-determining region of the heavy chain (CDRH3) loop, which is essential for viral neutralization, critically contributes to this detrimental effect. Here, we have replaced the aromatic/hydrophobic residues from the apex of the CDRH3 of 4E10 with a single aromatic molecule through chemical modification to generate a variant that preserves the neutralization potency and breadth of 4E10 but with reduced autoreactivity. Collectively, our study suggests that the localized accumulation of aromaticity by chemical modification provides a pathway to ameliorate the adverse effects triggered by the CDRH3 of anti-HIV-1 MPER bnAbs.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Daniel P. Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Miguel García-Porras
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Izaskun Morillo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Michael B. Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose M.M. Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - José L. Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
33
|
van Dorsten RT, Wagh K, Moore PL, Morris L. Combinations of Single Chain Variable Fragments From HIV Broadly Neutralizing Antibodies Demonstrate High Potency and Breadth. Front Immunol 2021; 12:734110. [PMID: 34603312 PMCID: PMC8481832 DOI: 10.3389/fimmu.2021.734110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are currently being assessed in clinical trials for their ability to prevent HIV infection. Single chain variable fragments (scFv) of bNAbs have advantages over full antibodies as their smaller size permits improved diffusion into mucosal tissues and facilitates vector-driven gene expression. We have previously shown that scFv of bNAbs individually retain significant breadth and potency. Here we tested combinations of five scFv derived from bNAbs CAP256-VRC26.25 (V2-apex), PGT121 (N332-supersite), 3BNC117 (CD4bs), 8ANC195 (gp120-gp41 interface) and 10E8v4 (MPER). Either two or three scFv were combined in equimolar amounts and tested in the TZM-bl neutralization assay against a multiclade panel of 17 viruses. Experimental IC50 and IC80 data were compared to predicted neutralization titers based on single scFv titers using the Loewe additive and the Bliss-Hill model. Like full-sized antibodies, combinations of scFv showed significantly improved potency and breadth compared to single scFv. Combinations of two or three scFv generally followed an independent action model for breadth and potency with no significant synergy or antagonism observed overall although some exceptions were noted. The Loewe model underestimated potency for some dual and triple combinations while the Bliss-Hill model was better at predicting IC80 titers of triple combinations. Given this, we used the Bliss-Hill model to predict the coverage of scFv against a 45-virus panel at concentrations that correlated with protection in the AMP trials. Using IC80 titers and concentrations of 1μg/mL, there was 93% coverage for one dual scFv combination (3BNC117+10E8v4), and 96% coverage for two of the triple combinations (CAP256.25+3BNC117+10E8v4 and PGT121+3BNC117+10E8v4). Combinations of scFv, therefore, show significantly improved breadth and potency over individual scFv and given their size advantage, have potential for use in passive immunization.
Collapse
Affiliation(s)
- Rebecca T. van Dorsten
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kshitij Wagh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Parker Miller E, Finkelstein MT, Erdman MC, Seth PC, Fera D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021; 13:v13091774. [PMID: 34578355 PMCID: PMC8472920 DOI: 10.3390/v13091774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies that can neutralize diverse HIV-1 strains develop in ~10–20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.
Collapse
|
35
|
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, Di Iulio J, Wang Z, De Marco A, Zepeda SK, Pinto D, Liu Z, Beltramello M, Bartha I, Housley MP, Lempp FA, Rosen LE, Dellota E, Kaiser H, Montiel-Ruiz M, Zhou J, Addetia A, Guarino B, Culap K, Sprugasci N, Saliba C, Vetti E, Giacchetto-Sasselli I, Fregni CS, Abdelnabi R, Foo SYC, Havenar-Daughton C, Schmid MA, Benigni F, Cameroni E, Neyts J, Telenti A, Virgin HW, Whelan SPJ, Snell G, Bloom JD, Corti D, Veesler D, Pizzuto MS. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021; 597:103-108. [PMID: 34280951 PMCID: PMC9341430 DOI: 10.1038/s41586-021-03817-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | | | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | - Amin Addetia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | - Michael A Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW HIV-1 elite controllers encompass small populations of people infected with HIV-1 who can spontaneously control plasma viral loads below the limit of detection, in the absence of antiretroviral treatment. Antiviral immune responses are likely to contribute to such an impressive HIV-1 disease outcome. In this review, we discuss recent novel findings regarding antiviral innate and adaptive immune responses in elite controllers. RECENT FINDINGS Elite controllers maintain a pool of infected cells in which intact HIV-1 proviruses are more frequently integrated into noncoding regions of the host genome, likely conferring a state of deep latency. This atypical viral reservoir configuration is best explained by potent antiviral immune responses that can successfully eliminate virally infected cells in which proviruses are integrated into permissive chromatin. However, identifying the specific type and nature of this immune selection pressure represents a formidable challenge. Recent studies continue to support the role of HIV-1-specific CD8+ T cells as the main driver of elite immune control of HIV-1, however, increasing evidence suggests that their role is complemented by a fine-tuned interplay with innate immune cell subsets. Therefore, the combination of different immune effector mechanisms may shape antiviral immunity in elite controllers. SUMMARY Understanding the complex immune mechanisms responsible for natural, drug-free HIV-1 control represents a premier avenue to find and develop interventions for a cure of HIV-1 infection. Future single-cell assays designed to uncover the full genetic, epigenetic, transcriptional and functional complexity of antiviral immune responses in elite controllers may allow us to define correlates of antiviral immune protection in greater detail.
Collapse
Affiliation(s)
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
37
|
McIlwain BC, Erwin AL, Davis AR, Ben Koff B, Chang L, Bylund T, Chuang GY, Kwong PD, Ohi MD, Lai YT, Stockbridge RB. N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. J Mol Biol 2021; 433:166909. [PMID: 33676924 PMCID: PMC8292168 DOI: 10.1016/j.jmb.2021.166909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Alexander R Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - B Ben Koff
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States.
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, United States.
| | - Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
38
|
Walsh SR, Seaman MS. Broadly Neutralizing Antibodies for HIV-1 Prevention. Front Immunol 2021; 12:712122. [PMID: 34354713 PMCID: PMC8329589 DOI: 10.3389/fimmu.2021.712122] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Given the absence of an effective vaccine for protection against HIV-1 infection, passive immunization strategies that utilize potent broadly neutralizing antibodies (bnAbs) to block acquisition of HIV-1 are being rigorously pursued in the clinical setting. bnAbs have demonstrated robust protection in preclinical animal models, and several leading bnAb candidates have shown favorable safety and pharmacokinetic profiles when tested individually or in combinations in early phase human clinical trials. Furthermore, passive administration of bnAbs in HIV-1 infected individuals has resulted in prolonged suppression of viral rebound following interruption of combination antiretroviral therapy, and robust antiviral activity when administered to viremic individuals. Recent results from the first efficacy trials testing repeated intravenous administrations of the anti-CD4 binding site bnAb VRC01 have demonstrated positive proof of concept that bnAb passive immunization can confer protection against HIV-1 infection in humans, but have also highlighted the considerable barriers that remain for such strategies to effectively contribute to control of the epidemic. In this review, we discuss the current status of clinical studies evaluating bnAbs for HIV-1 prevention, highlight lessons learned from the recent Antibody Mediated Prevention (AMP) efficacy trials, and provide an overview of strategies being employed to improve the breadth, potency, and durability of antiviral protection.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Caillat C, Guilligay D, Torralba J, Friedrich N, Nieva JL, Trkola A, Chipot CJ, Dehez FL, Weissenhorn W. Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies. eLife 2021; 10:65005. [PMID: 33871352 PMCID: PMC8084527 DOI: 10.7554/elife.65005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
The HIV-1 gp120/gp41 trimer undergoes a series of conformational changes in order to catalyze gp41-induced fusion of viral and cellular membranes. Here, we present the crystal structure of gp41 locked in a fusion intermediate state by an MPER-specific neutralizing antibody. The structure illustrates the conformational plasticity of the six membrane anchors arranged asymmetrically with the fusion peptides and the transmembrane regions pointing into different directions. Hinge regions located adjacent to the fusion peptide and the transmembrane region facilitate the conformational flexibility that allows high-affinity binding of broadly neutralizing anti-MPER antibodies. Molecular dynamics simulation of the MPER Ab-stabilized gp41 conformation reveals a possible transition pathway into the final post-fusion conformation with the central fusion peptides forming a hydrophobic core with flanking transmembrane regions. This suggests that MPER-specific broadly neutralizing antibodies can block final steps of refolding of the fusion peptide and the transmembrane region, which is required for completing membrane fusion.
Collapse
Affiliation(s)
- Christophe Caillat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jose L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christophe J Chipot
- Laboratoire de Physique et Chimie Théoriques (LPCT), University of Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - François L Dehez
- Laboratoire de Physique et Chimie Théoriques (LPCT), University of Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-lès-Nancy, France
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
40
|
Shah P, Canziani GA, Carter EP, Chaiken I. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front Immunol 2021; 12:637651. [PMID: 33767706 PMCID: PMC7985173 DOI: 10.3389/fimmu.2021.637651] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
As COVID-19 cases continue to rise, it is imperative to learn more about antibodies and T-cells produced against the causative virus, SARS-CoV-2, in order to guide the rapid development of therapies and vaccines. While much of the current antibody and vaccine research focuses on the receptor-binding domain of S1, a less-recognized opportunity is to harness the potential benefits of the more conserved S2 subunit. Similarities between the spike proteins of both SARS-CoV-2 and HIV-1 warrant exploring S2. Possible benefits of employing S2 in therapies and vaccines include the structural conservation of S2, extant cross-reactive neutralizing antibodies in populations (due to prior exposure to common cold coronaviruses), the steric neutralization potential of antibodies against S2, and the stronger memory B-cell and T-cell responses. More research is necessary on the effect of glycans on the accessibility and stability of S2, SARS-CoV-2 mutants that may affect infectivity, the neutralization potential of antibodies produced by memory B-cells, cross-reactive T-cell responses, antibody-dependent enhancement, and antigen competition. This perspective aims to highlight the evidence for the potential advantages of using S2 as a target of therapy or vaccine design.
Collapse
Affiliation(s)
- Priyanka Shah
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | | | | | | |
Collapse
|
41
|
Alfageme-Abello O, Porret R, Perreau M, Perez L, Muller YD. Chimeric antigen receptor T-cell therapy for HIV cure. Curr Opin HIV AIDS 2021; 16:88-97. [PMID: 33560017 DOI: 10.1097/coh.0000000000000665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapies have made enormous progress over the last decade with the approval of several anti-CD19-chimeric antigen receptor (CAR)-T cell therapies for haemato-oncological diseases. CARs are synthetic receptors comprising an antigen-specific extracellular domain fused to a hinge, transmembrane and intracellular signalling domains. The success obtained with CD19 CAR-T cells rekindled interest in using CAR-T cells to treat HIV seropositive patients. The purpose of this review is to discuss historical and recent developments of anti-HIV CARs. RECENT FINDINGS Since the first description of CD4+-based CARs in the early 90s, new generations of anti-HIV CARs were developed. They target the hetero-trimeric glycoprotein gp120/gp41 and consist of either a CD4+ extracellular domain or a VH/VL segment derived from broadly neutralizing antibodies. Recent efforts were employed in multiplexing CAR specificities, intracellular signalling domains and T cells resistance to HIV. SUMMARY Several new-anti HIV CAR-T cells were successfully tested in preclinical mice models and are now waiting to be evaluated in clinical trials. One of the key parameters to successfully using CAR-T cells in HIV treatment will depend on their capacity to control the HIV reservoir without causing off-targeting activities.
Collapse
Affiliation(s)
- Oscar Alfageme-Abello
- Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Spencer DA, Malherbe DC, Vázquez Bernat N, Ádori M, Goldberg B, Dambrauskas N, Henderson H, Pandey S, Cheever T, Barnette P, Sutton WF, Ackerman ME, Kobie JJ, Sather DN, Karlsson Hedestam GB, Haigwood NL, Hessell AJ. Polyfunctional Tier 2-Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:999-1012. [PMID: 33472907 PMCID: PMC7887735 DOI: 10.4049/jimmunol.2001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 μg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.
Collapse
Affiliation(s)
- David A Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Néstor Vázquez Bernat
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Monika Ádori
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Heidi Henderson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - James J Kobie
- Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98105; and
| | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
43
|
de la Arada I, Torralba J, Tascón I, Colom A, Ubarretxena-Belandia I, Arrondo JLR, Apellániz B, Nieva JL. Conformational plasticity underlies membrane fusion induced by an HIV sequence juxtaposed to the lipid envelope. Sci Rep 2021; 11:1278. [PMID: 33446748 PMCID: PMC7809034 DOI: 10.1038/s41598-020-80156-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/13/2020] [Indexed: 01/05/2023] Open
Abstract
Envelope glycoproteins from genetically-divergent virus families comprise fusion peptides (FPs) that have been posited to insert and perturb the membranes of target cells upon activation of the virus-cell fusion reaction. Conserved sequences rich in aromatic residues juxtaposed to the external leaflet of the virion-wrapping membranes are also frequently found in viral fusion glycoproteins. These membrane-proximal external regions (MPERs) have been implicated in the promotion of the viral membrane restructuring event required for fusion to proceed, hence, proposed to comprise supplementary FPs. However, it remains unknown whether the structure–function relationships governing canonical FPs also operate in the mirroring MPER sequences. Here, we combine infrared spectroscopy-based approaches with cryo-electron microscopy to analyze the alternating conformations adopted, and perturbations generated in membranes by CpreTM, a peptide derived from the MPER of the HIV-1 Env glycoprotein. Altogether, our structural and morphological data support a cholesterol-dependent conformational plasticity for this HIV-1 sequence, which could assist cell-virus fusion by destabilizing the viral membrane at the initial stages of the process.
Collapse
Affiliation(s)
- Igor de la Arada
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Adai Colom
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L R Arrondo
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006, Vitoria-Gasteiz, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain. .,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
| |
Collapse
|
44
|
Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. JOURNAL OF CLINICAL PEDIATRICS AND NEONATOLOGY 2021; 1:9-20. [PMID: 34553192 PMCID: PMC8454918 DOI: 10.46439/pediatrics.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Sabin Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maureen M. Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
46
|
Aisenbrey C, Rifi O, Bechinger B. Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Sci Rep 2020; 10:22278. [PMID: 33335248 PMCID: PMC7746737 DOI: 10.1038/s41598-020-79327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Omar Rifi
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
47
|
Yao L, Wang JY, Bao LN, Fan MX, Bai Y, Chen WJ, Yuan C, Yuan L, Wang J, Li Y, Zhuang M, Ling H. DNA adjuvant Amiloride conjunct long immunization interval promote higher antibody responses to HIV-1 gp41 and gp140 immunogens. Vaccine 2020; 38:7445-7454. [PMID: 33041100 DOI: 10.1016/j.vaccine.2020.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Recent studies have revealed that the interface of gp120 and gp41 and some parts of gp41 are also critical epitopes for elicitation of broadly neutralizing antibodies. Therefore, potential trimeric gp41 or gp140 immunogen candidates are needed. Previously, we developed a trimer motif MTQ and demonstrated that it could help formation of trimeric gp120 and gp140 proteins. In the present study, we immunized Balb/c mice using trimeric gp41-expressing plasmid for prime and monomeric gp41 or trimeric gp140 protein as well as a mutant (Q577A) for boost. The antibody responses in the context of regimens with various immunization intervals and DNA adjuvants including praziquantel (PZQ), cimetidine (CIM), and amiloride (AML) were evaluated. We found that these three adjuvants were not enough to elicit remarkable specific Abs after gp41 DNA immunization, while AML could significantly promote humoral immune responses after protein boosts. Long immunization interval could induce the specific binding Abs earlier and higher and maintain a high level of Abs in the following 27 weeks after final protein boost. Moreover, two times of protein boosts with DNA adjuvant and a longer time interval achieved a higher titer of specific Abs than three times of protein boosts with a shorter time interval. Q577A mutant was benefit for trimeric gp140 boost in the production of binding Abs but harmful to inducing neutralizing Abs, while this mutant in monomeric gp41 presented the opposite trend which may be associated with the immunogen structures. This study highlights the significance of DNA adjuvant Amiloride and long immunization interval in promoting antibody responses and provides new insights into effective HIV immunization regimen design in the future.
Collapse
Affiliation(s)
- Lan Yao
- Department of Parasitology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li-Na Bao
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Meng-Xuan Fan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yang Bai
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jing Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China.
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
48
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
49
|
Cao J, Zhang G, Zhou M, Liu Y, Xiao G, Wang W. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virol Sin 2020; 36:273-280. [PMID: 32897505 DOI: 10.1007/s12250-020-00286-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Rujas E, Insausti S, Leaman DP, Carravilla P, González-Resines S, Monceaux V, Sánchez-Eugenia R, García-Porras M, Iloro I, Zhang L, Elortza F, Julien JP, Saéz-Cirión A, Zwick MB, Eggeling C, Ojida A, Domene C, Caaveiro JMM, Nieva JL. Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Rep 2020; 32:108037. [PMID: 32814041 PMCID: PMC7861656 DOI: 10.1016/j.celrep.2020.108037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pablo Carravilla
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asier Saéz-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Akio Ojida
- Department of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; Department of Chemistry, University of Oxford, Oxford OX1 3TF, UK
| | - Jose M M Caaveiro
- Laboratory of Global Health Care, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - José L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|