1
|
Zhang H, Wang Z, Nguyen HTT, Cornejo Pontelli M, Qi W, Rao L, Liu Z, Whelan SPJ, Zhu J. Facilitating and restraining virus infection using cell-attachable soluble viral receptors. Proc Natl Acad Sci U S A 2024; 121:e2414583121. [PMID: 39480852 DOI: 10.1073/pnas.2414583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
SARS-CoV-2 uses the receptor binding domain (RBD) of its spike protein to recognize and infect host cells by binding to the cell surface receptor angiotensin converting enzyme 2 (ACE2). The ACE2 receptor is composed of peptidase domain (PD), collectrin-like domain, transmembrane domain, and short cytoplasmic domain, and may exist as a dimer on cell surface. The RBD binding site is located atop of the ACE2 PD, but the involvement of other domains in virus infection is uncertain. We found that the ACE2 PD alone, whether anchored to cell membrane via a glycosylphosphatidylinositol anchor or attached to another surface protein, is fully functional as a receptor for spike-mediated cell fusion and virus infection. However, for ACE2 to function as the viral receptor, the RBD binding site must be positioned in close proximity to the cell membrane. Elevating the surface height of ACE2 using long and rigid protein spacers reduces or eliminates cell fusion and virus infection. Moreover, we found that the RBD-targeting neutralizing antibodies, nanobodies, and de novo designed miniprotein binders, when present on cell surface, also act as viral receptors, facilitating cell fusion and virus infection. Our data demonstrate that RBD binding and close membrane proximity are essential properties for a receptor to effectively mediate SARS-CoV-2 infection. Importantly, we show that soluble RBD-binders can be engineered to make cells either susceptible or resistant to virus infection, which has significant implications for antiviral therapy and various virus-mediated applications.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
| | - Huong T T Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
| | | | - Wanrong Qi
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
| | - Liem Rao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
2
|
C L B Ferreira B, Hannard M, Lozano-Garcia M, Aston L, Tejeda G, Domena JB, Bernard B, Chen J, Bartoli M, Rech Tondin A, Zhou Y, Scorzari A, Perrone CS, Tagliaferro A, Deo S, Daunert S, Dumont CM, Leblanc RM. Investigating the Significances of Thiol Functionalities in SARS-CoV-2 Using Carbon Dots for Viral Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58439-58451. [PMID: 39422222 DOI: 10.1021/acsami.4c14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
While the World Health Organization has declared the end of the SARS-CoV-2 public health emergency, studies related to corona viruses are still under course. As of 2024, the severity of COVID-19 has diminished with current treatments and vaccinations. However, individuals can still face severe complications, highlighting the importance of ongoing research into innovative treatments for current and future coronavirus-related diseases. This study approaches the mechanism of viral entrance into the host cells and the current evidence on the use of sulfhydryl groups for the COVID-19 treatment. Certain thiol drugs, a key contributor to inflammatory processes, exhibit both viral inhibition properties and the potential to regulate cellular oxidative stress by scavenging free radicals. Herein, we developed biocompatible thiol-functionalized carbon dots (CDs) and investigated the correlation between the number of thiols and pseudo-SARS-CoV-2 inhibition, reactive oxygen species (ROS) scavenging, and anti-inflammatory response. The free-radical scavenging experiment and the ROS cellular assay indicate that thiolated CDs serve as effective reducing agents and potential regulators of cellular oxidative stress. The CDs also demonstrated good cell viability alongside significant antiviral capabilities, with inhibition levels up to 60.4%. Furthermore, the flow cytometry results suggest that in an inflammatory environment, the presence of thiolated CDs promotes an anti-inflammatory response. Overall, the results demonstrate a strong correlation between the number of thiols and the increased efficacy observed across experiments, presenting thiolated CDs as promising candidates to prevent and treat COVID-19 infection.
Collapse
Affiliation(s)
- Braulio C L B Ferreira
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Maxence Hannard
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Mercedes Lozano-Garcia
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Lillian Aston
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Justin B Domena
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Mattia Bartoli
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, Turin 10144, Italy
| | - Arthur Rech Tondin
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Annalise Scorzari
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Caitlyn S Perrone
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129 Italy
| | - Sapna Deo
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
3
|
Metko M, Tonne J, Veliz Rios A, Thompson J, Mudrick H, Masopust D, Diaz RM, Barry MA, Vile RG. Intranasal Prime-Boost with Spike Vectors Generates Antibody and T-Cell Responses at the Site of SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:1191. [PMID: 39460356 PMCID: PMC11511174 DOI: 10.3390/vaccines12101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity. METHODS Here, we tested the hypothesis that a heterologous prime and boost vaccine regimen delivered intranasally (IN) will generate improved immune responses locally at the site of virus infection compared to intramuscular vaccine/booster regimens. RESULTS In a transgenic human ACE2 murine model, both a Spike-expressing single-cycle adenovirus (SC-Ad) and an IFNß safety-enhanced replication-competent Vesicular Stomatitis Virus (VSV) platform generated anti-Spike antibody and T-cell responses that diminished with age. Although SC-Ad-Spike boosted a prime with VSV-Spike-mIFNß, SC-Ad-Spike alone induced maximal levels of IgG, IgA, and CD8+ T-cell responses. CONCLUSIONS There were significant differences in T-cell responses in spleens compared to lungs, and the intranasal boost was significantly superior to the intramuscular boost in generating sentinel immune effectors at the site of the virus encounter in the lungs. These data show that serious consideration should be given to intranasal boosting with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Alexa Veliz Rios
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - David Masopust
- Department of Microbiology & Immunology, University of Minnesota Medical School, 2101 6th St. SE, Minneapolis, MN 55455, USA;
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Rosen LE, Tortorici MA, De Marco A, Pinto D, Foreman WB, Taylor AL, Park YJ, Bohan D, Rietz T, Errico JM, Hauser K, Dang HV, Chartron JW, Giurdanella M, Cusumano G, Saliba C, Zatta F, Sprouse KR, Addetia A, Zepeda SK, Brown J, Lee J, Dellota E, Rajesh A, Noack J, Tao Q, DaCosta Y, Tsu B, Acosta R, Subramanian S, de Melo GD, Kergoat L, Zhang I, Liu Z, Guarino B, Schmid MA, Schnell G, Miller JL, Lempp FA, Czudnochowski N, Cameroni E, Whelan SPJ, Bourhy H, Purcell LA, Benigni F, di Iulio J, Pizzuto MS, Lanzavecchia A, Telenti A, Snell G, Corti D, Veesler D, Starr TN. A potent pan-sarbecovirus neutralizing antibody resilient to epitope diversification. Cell 2024:S0092-8674(24)01084-5. [PMID: 39383863 DOI: 10.1016/j.cell.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has resulted in viral escape from clinically authorized monoclonal antibodies (mAbs), creating a need for mAbs that are resilient to epitope diversification. Broadly neutralizing coronavirus mAbs that are sufficiently potent for clinical development and retain activity despite viral evolution remain elusive. We identified a human mAb, designated VIR-7229, which targets the viral receptor-binding motif (RBM) with unprecedented cross-reactivity to all sarbecovirus clades, including non-ACE2-utilizing bat sarbecoviruses, while potently neutralizing SARS-CoV-2 variants since 2019, including the recent EG.5, BA.2.86, and JN.1. VIR-7229 tolerates extraordinary epitope variability, partly attributed to its high binding affinity, receptor molecular mimicry, and interactions with RBM backbone atoms. Consequently, VIR-7229 features a high barrier for selection of escape mutants, which are rare and associated with reduced viral fitness, underscoring its potential to be resilient to future viral evolution. VIR-7229 is a strong candidate to become a next-generation medicine.
Collapse
Affiliation(s)
| | | | - Anna De Marco
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Dora Pinto
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - William B Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Dana Bohan
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Tyson Rietz
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Ha V Dang
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Martina Giurdanella
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Giuseppe Cusumano
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Qiqing Tao
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Brian Tsu
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rima Acosta
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbara Guarino
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Florian A Lempp
- Vir Biotechnology, San Francisco, CA 94158, USA; Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Elisabetta Cameroni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | | | - Fabio Benigni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Antonio Lanzavecchia
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Davide Corti
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Li Y, Molleston JM, Lovato C, Wright J, Erickson I, Bui D, Kim AH, Ingle H, Aggarwal S, Nolan LS, Hassan AO, Foster L, Diamond MS, Baldridge MT. Sequential early-life viral infections modulate the microbiota and adaptive immune responses to systemic and mucosal vaccination. PLoS Pathog 2024; 20:e1012557. [PMID: 39356719 PMCID: PMC11472911 DOI: 10.1371/journal.ppat.1012557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels. Beyond changes in the immune responses, these exposures also modulated the composition of the endogenous intestinal microbiota. Although sequentially-infected mice exhibited increased systemic immune activation and T cell responses after intramuscular and intranasal SARS-CoV-2 immunization, we observed decreased vaccine-induced antibody responses in these animals. These results suggest that early-life viral exposures are sufficient to diminish antibody responses to vaccination in mice, and highlight the potential importance of considering prior microbial exposures when investigating vaccine responses.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome M. Molleston
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Crystal Lovato
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jasmine Wright
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Isabel Erickson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Duyen Bui
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lila S. Nolan
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ahmed O. Hassan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
6
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. Nat Commun 2024; 15:8394. [PMID: 39333139 PMCID: PMC11437049 DOI: 10.1038/s41467-024-52803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Ying B, Liang CY, Desai P, Scheaffer SM, Elbashir SM, Edwards DK, Thackray LB, Diamond MS. Ipsilateral or contralateral boosting of mice with mRNA vaccines confers equivalent immunity and protection against a SARS-CoV-2 Omicron strain. J Virol 2024; 98:e0057424. [PMID: 39194250 PMCID: PMC11406931 DOI: 10.1128/jvi.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024:S0969-2126(24)00369-1. [PMID: 39326419 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O’Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606661. [PMID: 39149230 PMCID: PMC11326214 DOI: 10.1101/2024.08.08.606661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | | | | | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Julia Rosecrans
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Michael Matthay
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Saumya Gopalkrishnan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA
| | - Nevan J. Krogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub- San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Oliveira IS, Garcia MSA, Cassani NM, Oliveira ALC, Freitas LCF, Bertolini VKS, Castro J, Clauss G, Honorato J, Gadelha FR, Miguel DC, Jardim ACG, Abbehausen C. Exploring antiviral and antiparasitic activity of gold N-heterocyclic carbenes with thiolate ligands. Dalton Trans 2024. [PMID: 39171417 DOI: 10.1039/d4dt01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Gold(I) N-heterocyclic carbenes have been explored for their therapeutic potential against several diseases. Neglected tropical diseases, including leishmaniasis, Chagas disease, and viral infections, such as zika, mayaro, and chikungunya, urgently require new treatment options. The emergent SARS-CoV-2 also demands significant attention. Gold complexes have shown promise as alternative treatments for these conditions. Previously, gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)Cl (AuIMesCl) demonstrated significant leishmanicidal and anti-Chikungunya virus activities. In this study, we synthesized and fully characterized a series of gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)(SR) complexes, where SR includes thiolate donor species such as 1,3-thiazolidine-2-thione, 1,3-benzothiazole-2-thione, 2-mercaptopyrimidine, and 2-thiouracil. These compounds were stable in solution, and ligand exchange reactions with N-acetyl-L-cysteine indicated that complexes with SR ligands are more labile than those with chloride. Although the reactions are rapid, they reach equilibrium at varying molar ratios depending on the SR ligand. The increased lability of these compounds results in higher cytotoxicity to host cells, such as Vero E6 and bone marrow-differentiated macrophages, compared to AuIMesCl. Despite this, the compounds effectively inhibited viral replication, achieving 95.5% inhibition of Zika virus replication at 2 μM with 96% host cell viability. Although active at low concentrations (∼2 μM) against Leishmania (L.) amazonensis and Trypanosoma cruzi, their high cytotoxicity for macrophages confirmed AuIMesCl as a better candidate with a higher selectivity index. This work correlates the coordination chemistry of pyrimidines and thiazolidines with their in vitro biological activities against significant diseases.
Collapse
Affiliation(s)
- Igor S Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Marcus S A Garcia
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Natasha M Cassani
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Ana L C Oliveira
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Lara C F Freitas
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | | | - Jennyfer Castro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gustavo Clauss
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Honorato
- Institute of Chemistry, University of São Paulo, Brazil
| | - Fernanda R Gadelha
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana C G Jardim
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Hendricks GG, Grigoryan L, Navarro MJ, Catanzaro NJ, Hubbard ML, Powers JM, Mattocks M, Treichel C, Walls AC, Lee J, Ellis D, Wang JY(J, Cheng S, Miranda MC, Valdez A, Chao CW, Chan S, Men C, Johnson MR, Hui H, Wu SY, Lujan V, Muramatsu H, Lin PJ, Sung MM, Tam YK, Leaf EM, Pardi N, Baric RS, Pulendran B, Veesler D, Schäfer A, King NP. Computationally designed mRNA-launched protein nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604655. [PMID: 39091730 PMCID: PMC11291046 DOI: 10.1101/2024.07.22.604655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic1-6. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses7-10, while mRNA vaccines can be rapidly manufactured11 and elicit antigen-specific CD4 and CD8 T cells12,13. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells14 to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD)15, formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.
Collapse
Affiliation(s)
- Grace G. Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L. Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jing Yang (John) Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cara W. Chao
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Christine Men
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Max R. Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Elizabeth M. Leaf
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
14
|
Hu Z, López-Muñoz AD, Kosik I, Li T, Callahan V, Brooks K, Yee DS, Holly J, Santos JJS, Castro Brant A, Johnson RF, Takeda K, Zheng ZM, Brenchley JM, Yewdell JW, Fox JM. Recombinant OC43 SARS-CoV-2 spike replacement virus: An improved BSL-2 proxy virus for SARS-CoV-2 neutralization assays. Proc Natl Acad Sci U S A 2024; 121:e2310421121. [PMID: 38976733 PMCID: PMC11260102 DOI: 10.1073/pnas.2310421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.
Collapse
Affiliation(s)
- Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alberto Domingo López-Muñoz
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Victoria Callahan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Debra S. Yee
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jefferson J. S. Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
15
|
Marqués MC, Andreu-Moreno I, Sanjuán R, Elena SF, Geller R. An efficient plasmid-based system for the recovery of recombinant vesicular stomatitis virus encoding foreign glycoproteins. Sci Rep 2024; 14:14644. [PMID: 38918479 PMCID: PMC11199562 DOI: 10.1038/s41598-024-65384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Viral glycoproteins mediate entry into host cells, thereby dictating host range and pathogenesis. In addition, they constitute the principal target of neutralizing antibody responses, making them important antigens in vaccine development. Recombinant vesicular stomatitis virus (VSV) encoding foreign glycoproteins can provide a convenient and safe surrogate system to interrogate the function, evolution, and antigenicity of viral glycoproteins from viruses that are difficult to manipulate or those requiring high biosafety level containment. However, the production of recombinant VSV can be technically challenging. In this work, we present an efficient and robust plasmid-based system for the production of recombinant VSV encoding foreign glycoproteins. We validate the system using glycoproteins from different viral families, including arenaviruses, coronaviruses, and hantaviruses, as well as highlight their utility for studying the effects of mutations on viral fitness. Overall, the methods described herein can facilitate the study of both native and recombinant VSV encoding foreign glycoproteins and can serve as the basis for the production of VSV-based vaccines.
Collapse
Affiliation(s)
- María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, 46980, Paterna, Valencia, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, 46980, Paterna, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, 46980, Paterna, Valencia, Spain
| | - Santiago F Elena
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, 46980, Paterna, Valencia, Spain
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Liang CY, Raju S, Liu Z, Li Y, Asthagiri Arunkumar G, Case JB, Scheaffer SM, Zost SJ, Acreman CM, Gagne M, Andrew SF, Carvalho Dos Anjos DC, Foulds KE, McLellan JS, Crowe JE, Douek DC, Whelan SPJ, Elbashir SM, Edwards DK, Diamond MS. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 2024; 630:950-960. [PMID: 38749479 PMCID: PMC11419699 DOI: 10.1038/s41586-024-07539-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yuhao Li
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cory M Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Liu S, Zhang L, Fu W, Liang Z, Yu Y, Li T, Tong J, Liu F, Nie J, Lu Q, Lu S, Huang W, Wang Y. Optimization and validation of a virus-like particle pseudotyped virus neutralization assay for SARS-CoV-2. MedComm (Beijing) 2024; 5:e615. [PMID: 38881676 PMCID: PMC11176738 DOI: 10.1002/mco2.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.
Collapse
Affiliation(s)
- Shuo Liu
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | | | - Tao Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Fan Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming Yunnan, China Kunming China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Youchun Wang
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
18
|
Borgogna C, Ferrante D, Rosso G, Guglielmetti G, Lo Cigno I, Raviola S, Caneparo V, Quaglia M, Cantaluppi V, Gariglio M. A prospective humoral immune monitoring study of kidney transplant recipients receiving three doses of SARS-CoV-2 mRNA vaccine. J Med Virol 2024; 96:e29710. [PMID: 38804187 DOI: 10.1002/jmv.29710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Kidney transplant recipients (KTRs), like other solid organ transplant recipients display a suboptimal response to mRNA vaccines, with only about half achieving seroconversion after two doses. However, the effectiveness of a booster dose, particularly in generating neutralizing antibodies (NAbs), remains poorly understood, as most studies have mainly focused on non-neutralizing antibodies. Here, we have longitudinally assessed the humoral response to the SARS-CoV-2 mRNA vaccine in 40 KTRs over a year, examining changes in both anti-spike IgG and NAbs following a booster dose administered about 5 months post-second dose. We found a significant humoral response increase 5 months post-booster, a stark contrast to the attenuated response observed after the second dose. Of note, nearly a quarter of participants did not achieve protective plasma levels even after the booster dose. We also found that the higher estimated glomerular filtration rate (eGFR) correlated with a more robust humoral response postvaccination. Altogether, these findings underscore the effectiveness of the booster dose in enhancing durable humoral immunity in KTRs, as evidenced by the protective level of NAbs found in 65% of the patients 5 months post- booster, especially those with higher eGFR rates.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Daniela Ferrante
- Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Greta Rosso
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Stefano Raviola
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Intrinsic Immunity Unit, Department of Translational Medicine, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, Department of Translational Medicine, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco Quaglia
- Nephrology and Dialysis Unit, Department of Translational Medicine, "SS Biagio e Cesare" University Hospital, University of Piemonte Orientale, Alessandria, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, "Maggiore della Carità" University Hospital, University of Piemonte Orientale, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
19
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
20
|
Zhu Z, Han Y, Gong M, Sun B, Zhang R, Ding Q. Establishment of replication-competent vesicular stomatitis virus recapitulating SADS-CoV entry. J Virol 2024; 98:e0195723. [PMID: 38557247 PMCID: PMC11092325 DOI: 10.1128/jvi.01957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.
Collapse
Affiliation(s)
- Zihui Zhu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingli Gong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Sun
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Yu Y, Zhang M, Huang L, Chen Y, Wu X, Li T, Li Y, Wang Y, Huang W. COVID-19 Serum Drives Spike-Mediated SARS-CoV-2 Variation. Viruses 2024; 16:763. [PMID: 38793644 PMCID: PMC11126028 DOI: 10.3390/v16050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Neutralizing antibodies targeting the spike (S) protein of SARS-CoV-2, elicited either by natural infection or vaccination, are crucial for protection against the virus. Nonetheless, the emergence of viral escape mutants presents ongoing challenges by contributing to breakthrough infections. To define the evolution trajectory of SARS-CoV-2 within the immune population, we co-incubated replication-competent rVSV/SARS-CoV-2/GFP chimeric viruses with sera from COVID-19 convalescents. Our findings revealed that the E484D mutation contributes to increased viral resistant against both convalescent and vaccinated sera, while the L1265R/H1271Y double mutation enhanced viral infectivity in 293T-hACE2 and Vero cells. These findings suggest that under the selective pressure of polyclonal antibodies, SARS-CoV-2 has the potential to accumulate mutations that facilitate either immune evasion or greater infectivity, facilitating its adaption to neutralizing antibody responses. Although the mutations identified in this study currently exhibit low prevalence in the circulating SARS-CoV-2 populations, the continuous and meticulous surveillance of viral mutations remains crucial. Moreover, there is an urgent necessity to develop next-generation antibody therapeutics and vaccines that target diverse, less mutation-prone antigenic sites to ensure more comprehensive and durable immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuanling Yu
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Mengyi Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
- National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Lan Huang
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Yanhong Chen
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Xi Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Tao Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
| | - Yanbo Li
- Beijing Yunling Biotechnology Co., Ltd., Beijing 100176, China
| | - Youchun Wang
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
| |
Collapse
|
22
|
Carrascosa-Sàez M, Marqués MC, Geller R, Elena SF, Rahmeh A, Dufloo J, Sanjuán R. Cell type-specific adaptation of the SARS-CoV-2 spike. Virus Evol 2024; 10:veae032. [PMID: 38779130 PMCID: PMC11110937 DOI: 10.1093/ve/veae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia 46010, Spain
| | - Santiago F Elena
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Amal Rahmeh
- Departament de Medicina i Ciències de La Vida (MELIS), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Jérémy Dufloo
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| |
Collapse
|
23
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
24
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 2024; 57:904-911.e4. [PMID: 38490197 DOI: 10.1016/j.immuni.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaiti Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, Martins-de-Souza D. Diving into the proteomic atlas of SARS-CoV-2 infected cells. Sci Rep 2024; 14:7375. [PMID: 38548777 PMCID: PMC10978884 DOI: 10.1038/s41598-024-56328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.
Collapse
Affiliation(s)
- Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Veronica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro H Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo A Baldasso
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline F Valença
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - João Victor Virgillio-da-Silva
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | | | - Raphael Campos Guimarães
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
| | | | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tatiana Dandolini Saccon
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André R L Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio R Vinolo
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, 05403-000, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Luiz P Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
26
|
Todesco HM, Gafuik C, John CM, Roberts EL, Borys BS, Pawluk A, Kallos MS, Potts KG, Mahoney DJ. High-titer manufacturing of SARS-CoV-2 Spike-pseudotyped VSV in stirred-tank bioreactors. Mol Ther Methods Clin Dev 2024; 32:101189. [PMID: 38327804 PMCID: PMC10847022 DOI: 10.1016/j.omtm.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic highlighted the importance of vaccine innovation in public health. Hundreds of vaccines built on numerous technology platforms have been rapidly developed against SARS-CoV-2 since 2020. Like all vaccine platforms, an important bottleneck to viral-vectored vaccine development is manufacturing. Here, we describe a scalable manufacturing protocol for replication-competent SARS-CoV-2 Spike-pseudotyped vesicular stomatitis virus (S-VSV)-vectored vaccines using Vero cells grown on microcarriers in a stirred-tank bioreactor. Using Cytodex 1 microcarriers over 6 days of fed-batch culture, Vero cells grew to a density of 3.95 ± 0.42 ×106 cells/mL in 1-L stirred-tank bioreactors. Ancestral strain S-VSV reached a peak titer of 2.05 ± 0.58 ×108 plaque-forming units (PFUs)/mL at 3 days postinfection. When compared to growth in plate-based cultures, this was a 29-fold increase in virus production, meaning a 1-L bioreactor produces the same amount of virus as 1,284 plates of 15 cm. In addition, the omicron BA.1 S-VSV reached a peak titer of 5.58 ± 0.35 × 106 PFU/mL. Quality control testing showed plate- and bioreactor-produced S-VSV had similar particle-to-PFU ratios and elicited comparable levels of neutralizing antibodies in immunized hamsters. This method should enhance preclinical and clinical development of pseudotyped VSV-vectored vaccines in future pandemics.
Collapse
Affiliation(s)
- Hayley M. Todesco
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cini M. John
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Roberts
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Breanna S. Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Alexis Pawluk
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Michael S. Kallos
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Kyle G. Potts
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J. Mahoney
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Zeng Q, Antia A, Casorla-Perez LA, Puray-Chavez M, Kutluay SB, Ciorba MA, Ding S. Calpain-2 mediates SARS-CoV-2 entry via regulating ACE2 levels. mBio 2024; 15:e0228723. [PMID: 38349185 PMCID: PMC10936414 DOI: 10.1128/mbio.02287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.
Collapse
Affiliation(s)
- Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luis Alberto Casorla-Perez
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Diseases Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Diseases Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Garay E, Whelan SPJ, DuBois RM, O’Rourke SM, Salgado-Escobar AE, Muñoz-Medina JE, Arias CF, López S. Immune response to SARS-CoV-2 variants after immunization with different vaccines in Mexico. Epidemiol Infect 2024; 152:e30. [PMID: 38312015 PMCID: PMC10894899 DOI: 10.1017/s0950268824000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is limited information on the antibody responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in subjects from developing countries with populations having a high incidence of co-morbidities. Here, we analysed the immunogenicity of homologous schemes using the ChAdOx1-S, Sputnik V, or BNT162b2 vaccines and the effect of a booster dose with ChAdOx1-S in middle-aged adults who were seropositive or seronegative to the SARS-CoV-2 spike protein before vaccination. The study was conducted post-vaccination with a follow-up of 4 months for antibody titre using enzyme-linked immunosorbent assay (ELISA) and pseudovirus (PV) neutralization assays (PNAs). All three vaccines elicited a superior IgG anti-receptor-binding domain (RBD) and neutralization response against the Alpha and Delta variants when administered to individuals with a previous infection by SARS-CoV-2. The booster dose spiked the neutralization activity among individuals with and without a prior SARS-CoV-2 infection. The ChAdOx1-S vaccine induced weaker antibody responses in infection-naive subjects. A follow-up of 4 months post-vaccination showed a drop in antibody titre, with about 20% of the infection-naive and 100% of SARS-CoV-2 pre-exposed participants with detectable neutralization capacity against Alpha pseudovirus (Alpha-PV) and Delta PV (Delta-PV). Our observations support the use of different vaccines in a country with high seroprevalence at the vaccination time.
Collapse
Affiliation(s)
- Erika Garay
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, Saint Louis, United States
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, United States
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, United States
| | - Angel Eduardo Salgado-Escobar
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
29
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson S, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and Characterization of a Pan-betacoronavirus S2-binding antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575741. [PMID: 38293237 PMCID: PMC10827111 DOI: 10.1101/2024.01.15.575741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
Affiliation(s)
- Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C. Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D. Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Alexandria A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena 53100, Italy
- VisMederi S.r.l, Siena 53100, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University; Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University; Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
30
|
Atanasoff KE, Brambilla L, Adelsberg DC, Kowdle S, Stevens CS, Slamanig S, Hung CT, Fu Y, Lim R, Tran L, Allen R, Sun W, Duty JA, Bajic G, Lee B, Tortorella D. An in vitro experimental pipeline to characterize the epitope of a SARS-CoV-2 neutralizing antibody. mBio 2024; 15:e0247723. [PMID: 38054729 PMCID: PMC10870823 DOI: 10.1128/mbio.02477-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic remains a significant public health concern for the global population; the development and characterization of therapeutics, especially ones that are broadly effective, will continue to be essential as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants emerge. Neutralizing monoclonal antibodies remain an effective therapeutic strategy to prevent virus infection and spread so long as they recognize and interact with circulating variants. The epitope and binding specificity of a neutralizing anti-SARS-CoV-2 Spike receptor-binding domain antibody clone against many SARS-CoV-2 variants of concern were characterized by generating antibody-resistant virions coupled with cryo-EM structural analysis and VSV-spike neutralization studies. This workflow can serve to predict the efficacy of antibody therapeutics against emerging variants and inform the design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S. Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yanwen Fu
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Reyna Lim
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Linh Tran
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Robert Allen
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Whitworth I, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella
T. Whitworth
- Department
of Chemistry, University of Wisconsin-Madison
College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A. Knoener
- Department
of Chemistry, University of Wisconsin-Madison
College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle
Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine
and Public Health, Madison, Wisconsin 53705, United States
- Institute
for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza
Research Institute, Department of Pathobiological Sciences, School
of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle
Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine
and Public Health, Madison, Wisconsin 53705, United States
- Institute
for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M’bark Baddouh
- McArdle
Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine
and Public Health, Madison, Wisconsin 53705, United States
- Institute
for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department
of Chemistry, University of Wisconsin-Madison
College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza
Research Institute, Department of Pathobiological Sciences, School
of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division
of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The
Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic
Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M. Smith
- Department
of Chemistry, University of Wisconsin-Madison
College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M. Sherer
- McArdle
Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine
and Public Health, Madison, Wisconsin 53705, United States
- Institute
for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Wondeu ALD, Abakar MF, Frasca F, Nodjikouambaye AZ, Abdelrazakh F, Naibei N, Dzomo GRT, Djimtoibaye D, Mad‐Toingue J, Scagnolari C, Antonelli G, Linardos G, Russo C, Perno CF, Yandai FH, Atturo S, Hiscott J, Colizzi V, Cappelli G, Ngueadoum N, Haroun A, Choua O, Moussa AM. Presence of neutralizing SARS-CoV-2 antibodies in asymptomatic population of N'Djamena, Chad. Immun Inflamm Dis 2024; 12:e1154. [PMID: 38270301 PMCID: PMC10790679 DOI: 10.1002/iid3.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Neutralizing antibodies (NAbs) are an important specific defence against viral infections, as these antibodies bind to specific receptor(s) and block the viral entry. NAbs assessments are therefore useful in determining individual or herd immunity to SARS-CoV-2. This study aims to deepen the investigation by assessing the positivity rate of neutralizing anti-spike antibodies to understand the real protection of the studied population against SARS-CoV-2. METHODS This study involved 260 plasma samples from a larger cohort of 2,700 asymptomatic volunteer donors, enrolled between August and October 2021 in health facilities of N'Djamena. In this study four different kits and techniques including the pseudotype assay have been used and compared with detect the SARS-CoV-2 antibodies. Pseudotyped vesicular stomatitis virus (VSV), was used both the identify and measure the NAbs that to evaluate the performance of two cheaper and easy to use commercial kits, specific for the detection of receptor-binding domain antibodies (anti-RBD) against the SARS-CoV-2 spike protein. RESULTS The VSV spike neutralization assay showed that 59.0% (n = 59) samples were positive for NAbs with titers ranging from 1:10 to 1:4800. While 23 out the 41 negative NAbs samples were detected positive using anti-RBD (Abbott) test. Furthermore, a direct and significant strong correlation was found between NAbs and anti-RBD, specifically with Abbott kit. Taken together, the Roche and Abbott methods indicated agreement at the high concentrations of antibodies with the VSV-pseudovirus method. Abbott and Roche indicated a good sensitivity, but the Abbott system test appeared to have better specificity than the Roche test. CONCLUSION Our findings indicated a high presence of NAbs against SARS-CoV-2 spike protein among asymptomatic individuals in N'Djamena. This could be one of the reasons for the low severity of Covid-19 observed in this area, given the key role of NAbs in blocking SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Andrillene Laure Deutou Wondeu
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Department of Biology and Interdepartmental Centre for Comparative MedicineUniversity of Rome Tor VergataRomeItaly
- Laboratory of Molecular Biology and ImmunopathologyEvangelical University of CameroonMbouo‐BandjounCameroon
| | | | - Federica Frasca
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Aleyo Zita Nodjikouambaye
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Fatima Abdelrazakh
- Institut de Recherche en Elevage pour le Développement (IRED)N'DjamenaChad
| | - Nathan Naibei
- Communauté des Amis de l'Informatique pour le Développement (CAID‐Tchad)N'DjamenaChad
| | - Guy Rodrigue Takoudjou Dzomo
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Djallaye Djimtoibaye
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Joseph Mad‐Toingue
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Giulia Linardos
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Cristina Russo
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Carlo Federico Perno
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Fissou Henry Yandai
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
| | - Sabrina Atturo
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - John Hiscott
- Institute Pasteur Cenci‐Bolognetti FoundationRomeItaly
| | - Vittorio Colizzi
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Department of Biology and Interdepartmental Centre for Comparative MedicineUniversity of Rome Tor VergataRomeItaly
- Laboratory of Molecular Biology and ImmunopathologyEvangelical University of CameroonMbouo‐BandjounCameroon
| | - Giulia Cappelli
- Institute for Biological SystemsNational Research CouncilRomeItaly
| | - Nambatibe Ngueadoum
- Direction Générale des Laboratoires, Pharmacie & Médicaments, Ministère de la Santé PubliqueN'DjamenaChad
| | - Alsadick Haroun
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
- Direction Générale des Laboratoires, Pharmacie & Médicaments, Ministère de la Santé PubliqueN'DjamenaChad
| | - Ouchemi Choua
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| | - Ali Mahamat Moussa
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| |
Collapse
|
33
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
34
|
Trionfetti F, Alonzi T, Bontempi G, Terri M, Battistelli C, Montaldo C, Repele F, Rotili D, Valente S, Zwergel C, Matusali G, Maggi F, Goletti D, Tripodi M, Mai A, Strippoli R. HDAC1-3 inhibition increases SARS-CoV-2 replication and productive infection in lung mesothelial and epithelial cells. Front Cell Infect Microbiol 2023; 13:1257683. [PMID: 38162580 PMCID: PMC10757821 DOI: 10.3389/fcimb.2023.1257683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Despite the significant progress achieved in understanding the pathology and clinical management of SARS-CoV-2 infection, still pathogenic and clinical issues need to be clarified. Treatment with modulators of epigenetic targets, i.e., epidrugs, is a current therapeutic option in several cancers and could represent an approach in the therapy of viral diseases. Results Aim of this study was the analysis of the role of histone deacetylase (HDAC) inhibition in the modulation of SARS-CoV-2 infection of mesothelial cells (MCs).MeT5A cells, a pleura MC line, were pre-treated with different specific class I and IIb HDAC inhibitors. Unexpectedly, treatment with HDAC1-3 inhibitors significantly increased ACE2/TMPRSS2 expression, suggesting a role in favoring SARS-CoV-2 infection. We focused our analysis on the most potent ACE2/TMPRSS2 inducer among the inhibitors analysed, MS-275, a HDAC1-3 inhibitor. ACE2/TMPRSS2 expression was validated by Western Blot (WB) and immunofluorescence. The involvement of HDAC inhibition in receptor induction was confirmed by HDAC1/HDAC2 silencing. In accordance to the ACE2/TMPRSS2 expression data, MS-275 increased SARS-CoV-2 replication and virus propagation in Vero E6 cells.Notably, MS-275 was able to increase ACE2/TMPRSS2 expression and SARS-CoV-2 production, although to a lesser extent, also in the lung adenocarcinoma cell line Calu-3 cells.Mechanistically, treatment with MS-275 increased H3 and H4 histone acetylation at ACE2/TMPRSS2 promoters, increasing their transcription. Conclusion This study highlights a previously unrecognized effect of HDAC1-3 inhibition in increasing SARS-CoV-2 cell entry, replication and productive infection correlating with increased expression of ACE2 and TMPRSS2. These data, while adding basic insight into COVID-19 pathogenesis, warn for the use of HDAC inhibitors in SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Michela Terri
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | | | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Federica Repele
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
35
|
Zhang H, Wang Z, Nguyen HTT, Watson AJ, Lao Q, Li A, Zhu J. Integrin α 5β 1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc Natl Acad Sci U S A 2023; 120:e2311913120. [PMID: 38060559 PMCID: PMC10723138 DOI: 10.1073/pnas.2311913120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5β1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5β1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5β1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5β1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5β1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1β. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5β1 and suggest potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Huong T. T. Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Abigail J. Watson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Qifang Lao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - An Li
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
36
|
Wang S, Cui H, Zhang C, Li W, Wang W, He W, Feng N, Zhao Y, Wang T, Tang X, Yan F, Xia X. Oral delivery of a chitosan adjuvanted COVID-19 vaccine provides long-lasting and broad-spectrum protection against SARS-CoV-2 variants of concern in golden hamsters. Antiviral Res 2023; 220:105765. [PMID: 38036065 DOI: 10.1016/j.antiviral.2023.105765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens public health safety and the global economy, which warrant effective prophylactic and therapeutic approaches. Currently, vaccination and establishment of immunity have significantly reduced the severity and mortality of COVID-19. However, in regard to COVID-19 vaccines, the broad-spectrum protective efficacy against SARS-CoV-2 variants and the blocking of virus transmission need to be further improved. In this study, an optimum oral COVID-19 vaccine candidate, rVSVΔG-Sdelta, was selected from a panel of vesicular stomatitis virus (VSV)-based constructs bearing spike proteins from different SARS-CoV-2 strains. After chitosan modification, rVSVΔG-Sdelta induced both local and peripheral antibody response, particularly, broad-spectrum and long-lasting neutralizing antibodies against SARS-CoV-2 persisted for 1 year. Cross-protection against SARS-CoV-2 WT, Beta, Delta, BA.1, and BA.2 strains was achieved in golden hamsters, which presented as significantly reduced viral replication in the respiratory tract and alleviated pulmonary pathology post SARS-CoV-2 challenge. Overall, this study provides a convenient, oral-delivered, and effective oral mucosal vaccine against COVID-19, which would supplement pools and facilitate the distribution of COVID-19 vaccines.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen He
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Xiaoqing Tang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| |
Collapse
|
37
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse KR, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting after XBB.1.5 COVID vaccination in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569129. [PMID: 38076876 PMCID: PMC10705481 DOI: 10.1101/2023.11.28.569129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Immune imprinting - also known as 'original antigenic sin' - describes how the first exposure to a virus shapes the immunological outcome of subsequent exposures to antigenically related strains. SARS-CoV-2 Omicron breakthrough infections and bivalent COVID-19 vaccination were shown to primarily recall cross-reactive memory B cells and antibodies induced by prior mRNA vaccination with the Wuhan-Hu-1 spike rather than priming naive B cells that recognize Omicron-specific epitopes. These findings underscored a strong immune imprinting resulting from repeated Wuhan-Hu-1 spike exposures. To understand if immune imprinting can be overcome, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID mRNA vaccine booster. Our data show that the XBB.1.5 booster elicits neutralizing antibody responses against current variants that are dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. These results indicate that immune imprinting persists even after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 spike booster mRNA vaccination, which will need to be considered to guide the design of future vaccine boosters.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Albert J. Seo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Condor Capcha JM, Kamiar A, Robleto E, Saad AG, Cui T, Wong A, Villano J, Zhong W, Pekosz A, Medina E, Cai R, Sha W, Ranek MJ, Webster KA, Schally AV, Jackson RM, Shehadeh LA. Growth hormone-releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice. Proc Natl Acad Sci U S A 2023; 120:e2308342120. [PMID: 37983492 PMCID: PMC10691341 DOI: 10.1073/pnas.2308342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023] Open
Abstract
COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jose M. Condor Capcha
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali Kamiar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Emely Robleto
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali G. Saad
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Tengjiao Cui
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Amanda Wong
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - William Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Edgar Medina
- Qualityminds Gesellschaft mit beschränkter Haftung (GmbH), Munchen, Munich81549, Germany
| | - Renzhi Cai
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Wei Sha
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD21205
| | - Keith A. Webster
- Integene International Holdings, Miami, FL33179
- Baylor College of Medicine, Houston, TX77030
| | - Andrew V. Schally
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Robert M. Jackson
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| |
Collapse
|
39
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
40
|
Bottero D, Rudi E, Martin Aispuro P, Zurita E, Gaillard E, Gonzalez Lopez Ledesma MM, Malito J, Stuible M, Ambrosis N, Durocher Y, Gamarnik AV, Wigdorovitz A, Hozbor D. Heterologous booster with a novel formulation containing glycosylated trimeric S protein is effective against Omicron. Front Immunol 2023; 14:1271209. [PMID: 38022542 PMCID: PMC10667599 DOI: 10.3389/fimmu.2023.1271209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Maria M. Gonzalez Lopez Ledesma
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Malito
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Nicolas Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Andrea V. Gamarnik
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
41
|
Schröder S, Richter A, Veith T, Emanuel J, Gudermann L, Friedmann K, Jeworowski LM, Mühlemann B, Jones TC, Müller MA, Corman VM, Drosten C. Characterization of intrinsic and effective fitness changes caused by temporarily fixed mutations in the SARS-CoV-2 spike E484 epitope and identification of an epistatic precondition for the evolution of E484A in variant Omicron. Virol J 2023; 20:257. [PMID: 37940989 PMCID: PMC10633978 DOI: 10.1186/s12985-023-02154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.
Collapse
Affiliation(s)
- Simon Schröder
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Gudermann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kirstin Friedmann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lara M Jeworowski
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing St, CB2 3EJ, Cambridge, U.K
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Case JB, Scheaffer SM, Darling TL, Bricker TL, Adams LJ, Harastani HH, Trende R, Sanapala S, Fremont DH, Boon ACM, Diamond MS. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. J Virol 2023; 97:e0062823. [PMID: 37676002 PMCID: PMC10537574 DOI: 10.1128/jvi.00628-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The continued evolution and emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a recently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-human ACE2 (hACE2) transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, in C57BL/6J mice, 129S2 mice, and Syrian hamsters, BQ.1.1 did not cause increased respiratory tract infection or disease compared to animals administered BA.5.5. Moreover, the rates of direct contact or airborne transmission in hamsters were not significantly different after BQ.1.1 and BA.5.5 infections. Taken together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in rodent species that express hACE2, possibly due to the acquisition of unique spike mutations relative to earlier Omicron variants. IMPORTANCE As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be re-evaluated. Here, we determined the pathogenicity of the BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2 (hACE2), two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 and BA.5.5 infection resulted in similar levels of viral burden and clinical disease in hamsters and the conventional strains of laboratory mice tested, increases in lung infection were detected in hACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Taken together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Reed Trende
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Grosche VR, Souza LPF, Ferreira GM, Guevara-Vega M, Carvalho T, Silva RRDS, Batista KLR, Abuna RPF, Silva JS, Calmon MDF, Rahal P, da Silva LCN, Andrade BS, Teixeira CS, Sabino-Silva R, Jardim ACG. Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses 2023; 15:1886. [PMID: 37766292 PMCID: PMC10536204 DOI: 10.3390/v15091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Leandro Peixoto Ferreira Souza
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Giulia Magalhães Ferreira
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Tamara Carvalho
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | | | - Rodrigo Paolo Flores Abuna
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - Marília de Freitas Calmon
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Paula Rahal
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Jequié 45205-490, Brazil;
| | - Claudener Souza Teixeira
- Center of Agrarian Science and Biodiversity, Federal University of Cariri (UFCA), Crato 63130-025, Brazil; (R.R.d.S.S.); (C.S.T.)
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| |
Collapse
|
44
|
Lu M, Yao W, Li Y, Ma D, Zhang Z, Wang H, Tang X, Wang Y, Li C, Cheng D, Lin H, Yin Y, Zhao J, Zhong G. Broadly Effective ACE2 Decoy Proteins Protect Mice from Lethal SARS-CoV-2 Infection. Microbiol Spectr 2023; 11:e0110023. [PMID: 37395664 PMCID: PMC10434153 DOI: 10.1128/spectrum.01100-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.
Collapse
Affiliation(s)
- Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Weitong Yao
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Yujun Li
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Danting Ma
- Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haimin Wang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaojuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dechun Cheng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hua Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China
| | - Yandong Yin
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guocai Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Taha TY, Suryawanshi RK, Chen IP, Correy GJ, McCavitt-Malvido M, O’Leary PC, Jogalekar MP, Diolaiti ME, Kimmerly GR, Tsou CL, Gascon R, Montano M, Martinez-Sobrido L, Krogan NJ, Ashworth A, Fraser JS, Ott M. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathog 2023; 19:e1011614. [PMID: 37651466 PMCID: PMC10499221 DOI: 10.1371/journal.ppat.1011614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.
Collapse
Affiliation(s)
- Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Rahul K. Suryawanshi
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Galen J. Correy
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Maria McCavitt-Malvido
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Patrick C. O’Leary
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Manasi P. Jogalekar
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Morgan E. Diolaiti
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Gabriella R. Kimmerly
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Chia-Lin Tsou
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Ronnie Gascon
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Luis Martinez-Sobrido
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Alan Ashworth
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - James S. Fraser
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Jancy SV, Lupitha SS, Chandrasekharan A, Varadarajan SN, Nelson-Sathi S, Prasad R, Jones S, Easwaran S, Darvin P, Sivasailam A, Santhoshkumar TR. A high-throughput screening system for SARS-CoV-2 entry inhibition, syncytia formation and cell toxicity. Biol Proced Online 2023; 25:22. [PMID: 37495994 PMCID: PMC10373420 DOI: 10.1186/s12575-023-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is mediated through the binding of the SARS-CoV-2 Spike protein via the receptor binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2). Identifying compounds that inhibit Spike-ACE2 binding would be a promising and safe antiviral approach against COVID-19. METHODS In this study, we used a BSL-2 compatible replication-competent vesicular stomatitis virus (VSV) expressing Spike protein of SARS-CoV-2 with eGFP reporter system (VSV-eGFP-SARS-CoV-2) in a recombinant permissive cell system for high-throughput screening of viral entry blockers. The SARS-CoV-2 permissive reporter system encompasses cells that stably express hACE2-tagged cerulean and H2B tagged with mCherry, as a marker of nuclear condensation, which also enables imaging of fused cells among infected EGFP positive cells and could provide real-time information on syncytia formation. RESULTS A limited high-throughput screening identified six natural products that markedly inhibited VSV-eGFP-SARS-CoV-2 with minimum toxicity. Further studies of Spike-S1 binding using the permissive cells showed Scillaren A and 17-Aminodemethoxygeldanamycin could inhibit S1 binding to ACE2 among the six leads. A real-time imaging revealed delayed inhibition of syncytia by Scillaren A, Proscillaridin, Acetoxycycloheximide and complete inhibition by Didemnin B indicating that the assay is a reliable platform for any image-based drug screening. CONCLUSION A BSL-2 compatible assay system that is equivalent to the infectious SARS-CoV-2 is a promising tool for high-throughput screening of large compound libraries for viral entry inhibitors against SARS-CoV-2 along with toxicity and effects on syncytia. Studies using clinical isolates of SARS-CoV-2 are warranted to confirm the antiviral potency of the leads and the utility of the screening system.
Collapse
Affiliation(s)
- Shine Varghese Jancy
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Santhik Subhasingh Lupitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Shankara Narayanan Varadarajan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Shijulal Nelson-Sathi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Roshny Prasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Sara Jones
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Sreekumar Easwaran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Pramod Darvin
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aswathy Sivasailam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Thankayyan Retnabai Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
47
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Rocha VPC, Quadros HC, Fernandes AMS, Gonçalves LP, Badaró RJDS, Soares MBP, Machado BAS. An Overview of the Conventional and Novel Methods Employed for SARS-CoV-2 Neutralizing Antibody Measurement. Viruses 2023; 15:1504. [PMID: 37515190 PMCID: PMC10383723 DOI: 10.3390/v15071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of the coronavirus disease-19 (COVID-19) and is responsible for the pandemic that started in 2020. The virus enters the host cell through the interaction of its spike glycoprotein with the angiotensin converting enzyme-2 (ACE2) on the host cell's surface. Antibodies present an important role during the infection and pathogenesis due to many reasons, including the neutralization of viruses by binding to different spike epitopes. Therefore, measuring the neutralizing antibody titers in the whole population is important for COVID-19's epidemiology. Different methods are described in the literature, and some have been used to validate the main vaccines used worldwide. In this review, we discuss the main methods used to quantify neutralizing antibody titers, their advantages and limitations, as well as new approaches to determineACE2/spike blockage by antibodies.
Collapse
Affiliation(s)
- Vinícius Pinto Costa Rocha
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Helenita Costa Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Antônio Márcio Santana Fernandes
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Luana Pereira Gonçalves
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Roberto José da Silva Badaró
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| |
Collapse
|
49
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The Highly Conserved Stem-Loop II Motif Is Dispensable for SARS-CoV-2. J Virol 2023; 97:e0063523. [PMID: 37223945 PMCID: PMC10308922 DOI: 10.1128/jvi.00635-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B. Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A. Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
50
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|