1
|
Wang L, Feng C, Chen Y, Meng Q, Li J, Liu Y, Zhang W, Li Z, Qu J, Zhang Y. Study on the mechanism and degradation behavior of Encifer adhaerens DNM-S1 capturing dimethyl phthalate. CHEMOSPHERE 2024; 358:141919. [PMID: 38641291 DOI: 10.1016/j.chemosphere.2024.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
The global concern surrounding pollution caused by phthalates is escalating, with dimethyl phthalate (DMP) emerging as one of the most prevalent contaminants within the phthalates (PAEs) category. Although the biodegradation of DMP is considered both safe and efficient, its underlying degradation mechanism is not yet fully elucidated, and the degradation performance can be somewhat inconsistent. To address this issue, our study isolated a DMP-degrading bacterium (DNM-S1) from a vegetable greenhouse. The resulting data revealed that DNM-S1 exhibited a remarkable degradation performance, successfully degrading 84.98% of a 2000 mg L-1 DMP solution within 72 h. Remarkably, it achieved complete degradation of a 50 mg L-1 DMP solution within just 3 h. DMP degradation by DNM-S1 was also found to be efficient even under low-temperature conditions (10 °C). Our research further indicates that DNM-S1 is capable of capturing DMP through the ester bond in the bacterium's cell wall fatty acids, forming hydrogen bonds through hydrophobic interactions. The DMP was then transported into the DNM-S1 protoplasm using an active transport mechanism. Interestingly, the secondary metabolites of DNM-S1 contained natural carotenoids, which could potentially counteract the damaging effects of PAEs on cell membrane permeability. In summary, these findings highlight the potential of DNM-S1 in addressing PAEs pollution and provide new insights into the metabolic mechanism of PAEs degradation.
Collapse
Affiliation(s)
- Lei Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Chengcheng Feng
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yuxin Chen
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Qingqing Meng
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Jingwei Li
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yi Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Wenqian Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Zhe Li
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Jianhua Qu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
2
|
Lai YH, Sun HC, Chang MH, Li CC, Shyu JG, Perng YS. Feasibility of substituting old corrugated carton pulp with thermal alkali and enzyme pretreated semichemical mechanical rice straw pulp. Sci Rep 2022; 12:3493. [PMID: 35241751 PMCID: PMC8894457 DOI: 10.1038/s41598-022-07482-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we separately used a laboratory Hollander beater, a pilot scale 12″ single-disc refiner and an expanded trial with a commercial paper mold mill to investigate the feasibility of using thermal-alkali/enzyme pretreated rice straw semi-chemical mechanical pulp to substitute portions of old corrugated carton board (OCC) pulp in the paper industry. In the laboratory plan, sequential treatments of NaOH at a 5–10% dosage and enzymes at a 0.2–4% dosage were applied to rice straw, followed by beating using a Hollander beater for 1–2 h to complete the rice straw semi-chemical mechanical pulping process. When the NaOH dosage, enzyme dosage and refining time were 10%, 0.2% and 1 h, the best quality rice straw pulp was obtained. Along with the increase in NaOH dosage, the pulp freeness decreased significantly, and the pulp accepted rate increased. Enzymatic treatment enhanced rice straw quality only after NaOH dosage treatment, which then reacted with rice straw to increase the quality of pulp. In the expanded trial, the rice straw semi-chemical mechanical pulp was blended with OCC pulp (0%, 25%, 50%, 75% and 100%) to form handsheets. Along with an increase in rice straw proportions, the tensile index, burst index, and ring-crush index increased by 109–200%, 13–196%, and 124–187%, respectively. In an online commercial paper mold mill trial, blending rice straw pulp with OCC could successfully make paper-mold egg cartons, with both mill operation and product smoothness appearance being highly acceptable.
Collapse
Affiliation(s)
- Yu-Hsun Lai
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hao-Chen Sun
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ming-Hui Chang
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung, 413008, Taiwan
| | - Ching-Chin Li
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung, 413008, Taiwan
| | - Jiann-Gwo Shyu
- Wood Cellulose Division, Taiwan Forestry Research Institute, Taipei, 100051, Taiwan
| | - Yuan-Shing Perng
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
3
|
Liu Y, Huang YH, Lü H, Li H, Li YW, Mo CH, Cai QY. Persistent contamination of polycyclic aromatic hydrocarbons (PAHs) and phthalates linked to the shift of microbial function in urban river sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125416. [PMID: 33662795 DOI: 10.1016/j.jhazmat.2021.125416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Urban rivers were heavily polluted, which resulted in blackening and odorization (i.e., black-odor rivers). Nevertheless, very limited information is available on sediment contamination levels of black-odor rivers and their linkage to the patterns of microbial functional genes. This study investigated distribution of polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) and their linkages to bacterial community and related functional genes in river sediments. The results demonstrate that higher average levels of ∑16PAHs (1405 μg/kg, dry weight) and ∑6PAEs (7120 μg/kg) were observed in sediments from heavy black-odor rivers than the moderate ones (∑16PAHs: 462 μg/kg; ∑6PAEs: 2470 μg/kg). The taxon composition and diversities of bacterial community in sediments varied with significantly lower diversity indices in heavy black-odor rivers than moderate ones. Sediments from heavy black-odor rivers enriched certain PAH and PAE degrading bacteria and genes. Unfortunately, PAH and PAE contamination demonstrated negative influences on nitrogen and phosphorus metabolism related bacteria and function genes but significant positive influences on certain sulfur metabolism related bacterial taxa and sulfur reduction gene, which might cause nitrogen and phosphorus accumulation and black-odor phenomenon in heavy black-odor rivers. This study highlights PAH and PAE contamination in urban rivers may shift bacterial community and detrimentally affect their ecological functions.
Collapse
Affiliation(s)
- Yue Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Lü H, Chen XH, Mo CH, Huang YH, He MY, Li YW, Feng NX, Katsoyiannis A, Cai QY. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. BIORESOURCE TECHNOLOGY 2021; 328:124847. [PMID: 33609883 DOI: 10.1016/j.biortech.2021.124847] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge contains various classes of organic pollutants, limiting its land application. Sludge composting can effectively remove some organic pollutants. This review summarizesrecent researches on concentration changes and dissipation of different organic pollutants including persistent organic pollutants during sludge composting, and discusses their dissipation pathways and the current understanding on dissipation mechanism. Some organic pollutants like PAHs and phthalates were removed mainly through biodegradation or mineralization, and their dissipation percentages were higher than those of PCDD/Fs and PCBs. Nevertheless, some recalcitrant organic pollutants could be sequestrated in organic fractions of sludge mixtures, and their levels and ARG abundance even increased after sludge composting in some studies, posing potential risks for land application. This review demonstrated that microbial community and their corresponding degradation for organic pollutants were influenced by different pollutants, bulking agents, composting methods and processes. Further research perspectives on removing organic pollutants during sludge composting were highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min-Ying He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296, Tromsø, Norway
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Barčauskaitė K, Žydelis R, Mažeika R. Screening of chemical composition and risk index of different origin composts produced in Lithuania. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24480-24494. [PMID: 32304063 DOI: 10.1007/s11356-020-08605-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The application of composts could be accompanied by potential hazards to soil and humans, caused by heavy metals and organic persistent pollutants. A total of 115 compost samples from four different origins (green waste composts, sewage sludge composts, mixed municipal waste composts after mechanical-biological treatment and mixed municipal waste compost) were collected to analyse the chemical composition, nutrients levels, seven heavy metals, 15 polycyclic aromatic hydrocarbons (PAHs) and seven polychlorobiphenyls (PCBs). Simulation models were used to estimate the heavy metal accumulation risk in soil and to evaluate the potential ecological risk to environment. After analysing chemical parameters of compost quality, it was found that sewage sludge composts contained the highest amounts of nitrogen (2.98%), phosphorus (4.44%) and organic matter (47.6%), and the highest potassium content (1.20%) was found in mixed municipal composts after mechanical-biological treatment. After having tested all the composts, green waste composts had the lowest content of the following nutrients: nitrogen, phosphorus, potassium and sulphur. High molecular weight PAHs dominated in green waste, sewage sludge and mixed municipal waste composts, and the opposite tendency was observed on mixed municipal waste composts after mechanical-biological treatment; low molecular weight PAHs were abundant. It was determined that, according to the total amount of 15 PAHs (16.54 mg kg-1 d.w.) and 7 PCBs (233.53 μg kg-1 d.w.), the most contaminated composts were produced from mixed municipal waste. As it was expected, the lowest level of PCBs (13.85 μg kg-1 d.w.) was found in green waste composts. Monte Carlo simulations showed that the shortest period in which zinc concentration in soil could increase twice is 2 years when applying continuously mixed municipal waste compost after mechanical-biological treatment. Based on Monte Carlo simulation results from repeated application of green waste composts, mixed municipal waste compost and mixed municipal waste compost after mechanical-biological treatment could double the soil background level of copper in 6 and 3 years respectively. Reducing the content of heavy metals in composts would be of great significance for minimising the damage caused by them.
Collapse
Affiliation(s)
- Karolina Barčauskaitė
- Lithuanian Research Centre for Agriculture and Forestry Instituto Al. 1, Akademija, Kėdainiai Distr, Lithuania.
| | - Renaldas Žydelis
- Lithuanian Research Centre for Agriculture and Forestry Instituto Al. 1, Akademija, Kėdainiai Distr, Lithuania
| | - Romas Mažeika
- Lithuanian Research Centre for Agriculture and Forestry Instituto Al. 1, Akademija, Kėdainiai Distr, Lithuania
| |
Collapse
|
6
|
Djandja OS, Wang ZC, Wang F, Xu YP, Duan PG. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01546] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Oraléou Sangué Djandja
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, No. 28, West Xianning Road, Xi’an, Shaanxi 710049, P. R. China
| | - Zhi-Cong Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, No. 28, West Xianning Road, Xi’an, Shaanxi 710049, P. R. China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Department of Energy and Chemical Engineering, Henan Polytechnic University, No. 2001, Century Avenue, Jiaozuo, Henan 454003, P. R. China
| | - Yu-Ping Xu
- College of Chemistry and Chemical Engineering, Department of Energy and Chemical Engineering, Henan Polytechnic University, No. 2001, Century Avenue, Jiaozuo, Henan 454003, P. R. China
| | - Pei-Gao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, No. 28, West Xianning Road, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
7
|
Song M, Wang Y, Jiang L, Peng K, Wei Z, Zhang D, Li Y, Zhang G, Luo C. The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:733-740. [PMID: 30743959 DOI: 10.1016/j.scitotenv.2019.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The indigenous microorganisms with the ability of metabolising di-(2-ethylhexyl) phthalate (DEHP) in agricultural soils and their interactions with non-degrading microbes were revealed by DNA-based stable isotope probing coupled with molecular ecological network. Aside from the previously reported DEHP degraders (family Planococcaceae and genus Sphingobacterium), five OTUs representing bacteria affiliated with genus Brevundimona, class Spartobacteria, genus Singulisphaera, genus Dyella and class Ktedonobacteria were linked with DEHP biodegradation. The analysis of the constructed ecological network based on soil microbial communities demonstrated the negative relationships between DEHP degraders and the dominant family Oxalobacteraceae in soils. Additionally, two cultivable bacteria isolated from the same soils, Rhizobium-1 and Ensifer-1, had strong capabilities in degrading DEHP but their involvement in in situ DEHP degradation was questioned, as their DNA was not labelled with 13C from DEHP. These findings provide deeper understanding on the indigenous DEHP-degrading communities and will benefit the remediation of phthalate esters contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zikai Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Huang YH, Huang XJ, Chen XH, Cai QY, Chen S, Mo CH, Lü H, Wong MH. Biodegradation of di-butyl phthalate (DBP) by a novel endophytic bacterium Bacillus subtilis and its bioaugmentation for removing DBP from vegetation slurry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:1-9. [PMID: 30025259 DOI: 10.1016/j.jenvman.2018.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 07/07/2018] [Indexed: 05/26/2023]
Abstract
Di-butyl phthalate (DBP) is a widely used plasticizer, recalcitrant and hazardous organic compound with high detection frequencies and concentrations in water and soil that pose a great threat to human health. A novel endphytic bacterium strain N-1 capable of efficiently degrading DBP and utilizing it as sole carbon source was isolated from Ageratum conyzoides. This bacterium was identified as Bacillus subtilis based on its morphological characteristics and 16S rDNA sequence analysis. Under the optimal culture conditions (pH 7.0, 30 °C), degradation percentage of DBP (12.5-100 mg/L) was up to 95% within five days, and its biodegradation half-life was less than 7.23 h. Degradation percentage of high DBP concentration (200 mg/L) was relatively lower (89%) with half-life of 56.8 h. DBP was degraded by Bacillus subtilis N-1 into mono-butyl phthalate and phthalic acid as evidenced by GC-MS analysis. Bioaugmentation of Youngia japonica plant slurry with strain N-1 greatly accelerated DBP dissipation with 97.5% removal percentage (higher by 47% than non-inoculation). The results highlighted that strain N-1 has great potential for bioremediation by plant-endophyte partnerships and for lowering PAE accumulation in crops.
Collapse
Affiliation(s)
- Yu-Hong Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xue-Jing Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Integrate Microbiology Research Center, South China Agriculture University, Guangzhou, 510642, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Integrate Microbiology Research Center, South China Agriculture University, Guangzhou, 510642, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Shi J, Long T, Ying R, Wang L, Zhu X, Lin Y. Chemical oxidation of bis(2-chloroethyl) ether in the Fenton process: Kinetics, pathways and toxicity assessment. CHEMOSPHERE 2017; 180:117-124. [PMID: 28395149 DOI: 10.1016/j.chemosphere.2017.03.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/16/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Bis(2-chloroethyl) ether (BCEE) is a common chemical material and a frequently detected contaminant in groundwater. It has a strong toxicity and some other chemicals such as poly(vinyl chloride-co-isobutyl vinyl ether) contain similar chloroaliphatic ether structure. So the effective degradation method and transformation pathways for BCEE need to be learned. The present study compared the degradation rate of BCEE by Fenton's reagent and other common oxidation methods, and optimized the reaction conditions. Oxidation intermediates and pathways were also proposed and toxicities of the intermediates were investigated. Results showed that Fenton was highly effective to degrade BCEE. pH, Fe2+ and H2O2 concentration all affected the oxidation rate, among which Fe2+ was the most significant variable. A total of twelve chlorinated intermediates were detected. Three main reaction pathways involved cleavage of the ether bond, hydroxyl substitution for hydrogen, and radical coupling. The pathways could be well interpreted and supported by theoretical calculations. The reaction mixture showed a decreasing trend in TOC concentration and toxicity until totally harmless to Vibrio fischeri after 15 min, but it was noteworthy that toxicities of some dimeric intermediates were stronger than BCEE by calculation.
Collapse
Affiliation(s)
- Jiaqi Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China.
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China
| | - Lei Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China
| | - Yusuo Lin
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210042, China
| |
Collapse
|
10
|
Cai QY, Xiao PY, Zhao HM, Lü H, Zeng QY, Li YW, Li H, Xiang L, Mo CH. Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7298-7309. [PMID: 28102498 DOI: 10.1007/s11356-017-8365-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is a typical endocrine-disrupting chemical with higher detection frequency and concentration in agricultural soil (particularly in paddy-field soil of Guangdong Province) of China. In this study, a greenhouse experiment was conducted to investigate variation in uptake and accumulation of DBP by 20 rice cultivars and to screen low DBP-accumulating cultivars. DBP concentrations in plants varied greatly with rice cultivars, growth stages, and tissues. The highest DBP concentrations in both roots and shoots were observed at the ripening stage, with concentrations 2-100-fold higher than those at tillering, jointing, and flowering stages. At the ripening stage, DBP concentrations decreased in the order of leaf > root > stem > grain, and significant differences of DBP concentrations were observed among various rice cultivars. Moreover, the magnitude of variation in DBP concentrations among various cultivars was greater in stems and grains than in roots and leaves. The translocation factors of DBP from roots to stems and from shoots to grains were <1.0, and those from stems to leaves were almost >1.0. Overall, cultivars Yuxiangyouzhan, Jinnongsimiao, Tianyou 122, and Wuyou 380 accumulated relatively lower DBP in grains, resulting in lower DBP exposure. The DBP uptake and translocation pathways in rice require further investigation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Pei-Yun Xiao
- Management School, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiao-Yun Zeng
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Zhao HM, Du H, Xiang L, Li YW, Li H, Cai QY, Mo CH, Cao G, Wong MH. Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:840-849. [PMID: 26608873 DOI: 10.1016/j.envpol.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
To increase understanding on the mechanisms of cultivar difference in contaminant accumulation in crops, this study was designed to compare the physiological responses to di-n-butyl phthalate (DBP) exposure between low (Lvbao70) and high (Huaguan) DBP cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Under high DBP exposure, significant differences in various physiological responses were observed between the two cultivars, which might account for the variation in DBP accumulation. Ultrastructure observation also showed different alterations or damages in the mesophyll cell structures between both cultivars, especially for the chloroplast disintegration, starch grain quantity, and plastoglobuli accumulation. Compared with Huaguan, Lvbao70 suffered greater decreases in biomass, chlorophyll content, carbon assimilation, gas exchange parameters, photosynthetic electron transport capacity, and antioxidase activities, which would have resulted in a great reduction of photosynthetic capacity. Although Lvbao70 enhanced energy dissipation and activities of some antioxidant enzymes, they did not provide sufficient protection against oxidative damage caused by DBP. The result suggested that the lower DBP tolerance of Lvbao70 might be associated with its poor physiological performances, which was responsible for its lower DBP accumulation to protect itself from toxicity. Additionally, Lvbao70 had a significantly lower transpiration rate and stomatal conductance than Huaguan, which might be the factors regulating DBP-accumulation variation.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Gang Cao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Healthy, School of Environment, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Hong Kong, China
| |
Collapse
|
12
|
Karaca G, Baskaya HS, Tasdemir Y. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:242-252. [PMID: 26531715 DOI: 10.1007/s11356-015-5676-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.
Collapse
Affiliation(s)
- Gizem Karaca
- Department of Environmental Engineering, Faculty of Engineering, Uludag University, 16059, Nilüfer, Bursa, Turkey.
| | - Hüseyin S Baskaya
- Department of Environmental Engineering, Faculty of Engineering, Uludag University, 16059, Nilüfer, Bursa, Turkey.
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Uludag University, 16059, Nilüfer, Bursa, Turkey.
| |
Collapse
|
13
|
Zhao HM, Du H, Xiang L, Chen YL, Lu LA, Li YW, Li H, Cai QY, Mo CH. Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:95-103. [PMID: 26160669 DOI: 10.1016/j.envpol.2015.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Phthalate ester (PAE) accumulation in crops poses great risks to human health and has aroused great concern. Here, we investigated variations in di-n-butylphthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) accumulation by various Chinese flowering cabbage cultivars and revealed their variation mechanism. There were significant differences (p < 0.05) in shoot PAE concentrations of 28 cultivars. Moreover, significant positive correlations between DBP and DEHP concentrations in shoots of all cultivars indicated that they could be taken up simultaneously by various cultivars. Due to the lower translocation factor of low-PAE accumulator, its shoot PAEs concentrations were much lower than root compared to high-PAE accumulator. Further, subcellular distribution showed that PAE concentrations of root cell walls and organelles were much higher than those of shoots in low-PAE accumulator. Therefore, lower translocation from root to shoot and more PAEs accumulating in cell walls and organelles of root might act as main formation mechanism of low-PAE accumulator.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan Du
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi-Liang Chen
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei-An Lu
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Li
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- School of Environment, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Cai QY, Xiao PY, Chen T, Lü H, Zhao HM, Zeng QY, Li YW, Li H, Xiang L, Mo CH. Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:50-58. [PMID: 25768422 DOI: 10.1016/j.ecoenv.2015.02.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Agricultural soil in China contains high levels of di-(2-ethylhexyl) phthalate (DEHP), especially in paddy-field soil of Guangdong province of China, but the accumulation and translocation of DEHP by rice (Oryza sativa L.) remains unknown. In the present study, twenty rice cultivars were cultivated in paddy soil spiked with DEHP, and variations in DEHP accumulation and translocation among various cultivars were investigated. Our results showed that DEHP concentrations in roots and shoots of different rice cultivars at four growth stages (i.e., ripening, tillering, jointing, and flowering stages) varied greatly from 0.26 to 11.8 mg/kg (dry weight, dw) and 0.40 to 7.58 mg/kg (dw), respectively. No obvious change over time was observed. The greatest variation in DEHP concentrations among the rice cultivars occurred at ripening stage, whereas the lowest variation at flowering stage. During ripening stage, the largest variation in DEHP concentrations among cultivars were observed in stems (varying from 0.35 to 13.2 mg/kg), whereas the least one was observed in roots (ranging from 1.01 to 5.72 mg/kg). Significant differences in DEHP concentrations in the roots, stems, leaves and grains of most rice cultivars were found. The translocation factors of DEHP from roots to stems or stems to leaves were higher than those from shoots to grains. Overall, cultivars Tianfengyou 316, Wuyou 308, and Peizataifeng, which contained low levels of DEHP in grains but high levels in shoots, were ideal cultivars for simultaneous production of safe food and phytoremediation of contaminated soil.
Collapse
Affiliation(s)
- Quan-Ying Cai
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Pei-Yun Xiao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China; Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tong Chen
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huixiong Lü
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qiao-Yun Zeng
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Geng C, Haudin CS, Zhang Y, Lashermes G, Houot S, Garnier P. Modeling the release of organic contaminants during compost decomposition in soil. CHEMOSPHERE 2015; 119:423-431. [PMID: 25078972 DOI: 10.1016/j.chemosphere.2014.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Composts, incorporated in soils as amendments, may release organic contaminants during their decomposition. COP-Soil is presented here as a new model to simulate the interaction between organic contaminants and compost, using one module for organic matter and one for organic pollutants, with these modules being linked by several assumptions. Published results of laboratory soil incubations using labeled carbon pollutants from compost were used to test the model for one polycyclic aromatic hydrocarbon (PAH), two surfactants and one herbicide. Several simulation scenarios were tested using (i) the organic pollutant module either alone or coupled to the organic matter module, (ii) various methods to estimate the adsorption coefficients (Kd) of contaminants on organic matter and (iii) different degrading biomasses. The simulations were improved if the organic pollutant module was coupled with the organic matter module. Multiple linear regression model for Kd as a function of organic matter quality yielded the most accurate simulation results. The inclusion of specific biomass in the model made it possible to successfully predict the PAH mineralization.
Collapse
Affiliation(s)
- Chunnu Geng
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France; Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Claire-Sophie Haudin
- AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France
| | - Yuan Zhang
- Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Gwenaëlle Lashermes
- INRA, UMR 614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - Sabine Houot
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France
| | - Patricia Garnier
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
16
|
Russo MV, Avino P, Perugini L, Notardonato I. Extraction and GC-MS analysis of phthalate esters in food matrices: a review. RSC Adv 2015. [DOI: 10.1039/c5ra01916h] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the Scopus database, using “phthalate” and “GC” as keywords, 758 papers have been found between 1990 and 2014, showing strong and increasing interest in this class of compounds from the scientific community.
Collapse
Affiliation(s)
- Mario Vincenzo Russo
- Dipartimento Agricoltura
- Ambiente e Alimenti
- Università del Molise
- 86100 Campobasso
- Italy
| | | | - Luisa Perugini
- Dipartimento Agricoltura
- Ambiente e Alimenti
- Università del Molise
- 86100 Campobasso
- Italy
| | - Ivan Notardonato
- Dipartimento Agricoltura
- Ambiente e Alimenti
- Università del Molise
- 86100 Campobasso
- Italy
| |
Collapse
|
17
|
Chai C, Cheng H, Ge W, Ma D, Shi Y. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China. PLoS One 2014; 9:e95701. [PMID: 24747982 PMCID: PMC3991724 DOI: 10.1371/journal.pone.0095701] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.
Collapse
Affiliation(s)
- Chao Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Hongzhen Cheng
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dong Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yanxi Shi
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- * E-mail:
| |
Collapse
|
18
|
Li YW, Cai QY, Mo CH, Zeng QY, Lü H, Li QS, Xu GS. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:609-620. [PMID: 24912246 DOI: 10.1080/15226514.2013.803021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 +/- 5.2 mg kg(-1)) by eleven plants including eight maize (Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3-122 mg pot(-1) for DEHP, and a net removal of 2.2%-20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was < 0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars.
Collapse
|
19
|
Qiu JR, Guo XF, Cai QY, Liu W, Zhang MW, Wei ZB, Wu QT. Phytotreatment of sewage sludge contaminated by heavy metals and PAHs by co-planting Sedum alfredii and Alocasia marorrhiza. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:1-13. [PMID: 24912211 DOI: 10.1080/15226514.2012.716095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High concentrations of heavy metals and organic pollutants in municipal sewage sludge are key factors limiting its use in agriculture. The objectives of this study were to decrease the heavy metal and polycyclic aromatic hydrocarbon concentrations in sewage sludge by phytotreatment and to determine, in a field experiment, whether co-planting is more effective than using a mono-crop of Sedum alfredii. Four treatments were used in the plot experiment: no sludge, no plants, S. alfredii and co-planting S. alfredii and Alocasia marorrhiza. The results showed that co-planting produced tubers and shoots of A. marorrhiza that were suitable as a safe animal feed and good organic K fertilizer, respectively. Co-planting was more effective than mono-planting at reducing concentrations of total Zn and diethylenetriaminepentaacetic acid (DTPA)-extractable Zn, Cd, and Cu in the sludge. Co-planting decreased the concentrations of DTPA-extractable heavy metals and benzo[a]pyrene (B[a]P) in the sludge significantly compared with the unplanted sludge. Decreases of 87, 75, 85, 31, and 64% were obtained for B[a]P and DTPA-extractable Zn, Cd, Cu, and Pb, respectively, compared with the fresh sludge. These results indicate that co-planting can reduce significantly the environmental risks associated with heavy metals and B[a]P in sewage sludge for further disposal.
Collapse
|
20
|
Liang X, Ning XA, Chen G, Lin M, Liu J, Wang Y. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:128-34. [PMID: 24094414 DOI: 10.1016/j.ecoenv.2013.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 05/22/2023]
Abstract
The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge.
Collapse
Affiliation(s)
- Xin Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | | | | | | | | |
Collapse
|
21
|
Wang J, Luo Y, Teng Y, Ma W, Christie P, Li Z. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:265-273. [PMID: 23792387 DOI: 10.1016/j.envpol.2013.05.036] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | |
Collapse
|
22
|
Cai QY, Mo CH, Lü H, Zeng QY, Wu QT, Li YW. Effect of composting on the removal of semivolatile organic chemicals (SVOCs) from sewage sludge. BIORESOURCE TECHNOLOGY 2012; 126:453-457. [PMID: 22142505 DOI: 10.1016/j.biortech.2011.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
In order to investigate the occurrence and removal of semivolatile organic chemicals (SVOCs) in the compost of sewage sludge, three different composting treatments, including manual turned compost (MTC), intermittent aerated compost (IAC), and naturally aerated compost (NAC) were conducted. Thirty SVOCs in composts were Soxhlet-extracted and analyzed by GC/MS. After 56 days of composting, the total concentrations of 16 polycyclic aromatic hydrocarbons (∑PAHs) ranged from 0.55 to 8.20 mg kg(-1) dry weight, decreasing in order of IAC>MTC>NAC. The total concentrations of six phthalic acid esters (∑PAEs), five chlorobenzenes or three nitroaromatic compounds were less than 5.0 mg kg(-1). Compared with the initial concentrations in sewage sludge, a significant reduction of ∑PAHs, ∑PAEs and chlorobenzenes was observed. The removal rates of ∑PAHs and ∑PAEs ranged from 54.6% to 75.9% and from 58.3% to 90.6%, respectively. Compared with different composting processes, MTC showed the highest potential for removal of SVOCs.
Collapse
Affiliation(s)
- Quan-Ying Cai
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | |
Collapse
|
23
|
Kong S, Ji Y, Liu L, Chen L, Zhao X, Wang J, Bai Z, Sun Z. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 170:161-8. [PMID: 22813629 DOI: 10.1016/j.envpol.2012.06.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 05/26/2023]
Abstract
The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 μg g(-1), with the median value as 0.32 μg g(-1). Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization.
Collapse
Affiliation(s)
- Shaofei Kong
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cantarero S, Prieto CA, López I. Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S149-S153. [PMID: 21652141 DOI: 10.1016/j.jenvman.2011.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 05/12/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
Agricultural application has become the most widespread method of sewage sludge disposal, being the most economical outlet for sludge and also recycling beneficial plant nutrients and organic matter to soil for crop production. As a matter of fact, the European Sewage Sludge Directive 86/278/EEC seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. At the present time, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals may be implemented. Linear alkylbenzene sulphonate (LAS), the main synthetic anionic surfactant, has been included in the draft list of chemicals to be limited. The present research work deals with the monitoring of LAS and soap in Spanish sewage sludge. The average concentration of LAS found in anaerobic sewage sludge samples was 8.06 g/kg, higher than the average values for European sludge. Besides, it has been also found that more than 55% of Spanish anaerobic sludge would not fulfil the limit proposed by the 3rd European Working paper on sludge. As a consequence, the implementation of the limit for LAS would make the disposal of most Spanish biosolids for agricultural applications almost impossible. Regarding the mechanisms why anionic surfactants are found in sludge, two surfactants are compared: LAS and soap, both readily biodegraded in aerobic conditions. Irrespective of the anaerobic biodegradability of soap, its concentration found in sludge is higher than LAS (only anaerobically biodegradable under particular conditions). The relevance of anaerobic biodegradation to assure environmental protection is discussed for this case.
Collapse
Affiliation(s)
- Samuel Cantarero
- Dpto. Química Analítica, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | | | | |
Collapse
|
25
|
Lü J, Zhou P. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. BIORESOURCE TECHNOLOGY 2011; 102:6966-6971. [PMID: 21561766 DOI: 10.1016/j.biortech.2011.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
In this study, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize microwave-assisted FeCl(3) pretreatment conditions of rice straw with respect to FeCl(3) concentration, microwave intensity, irradiation time and substrate concentration. When rice straw was pretreated at the optimal conditions of FeCl(3) concentration, 0.14 mol/L; microwave intensity, 160°C; irradiation time, 19 min; substrate concentration, 109 g/L; and inoculated with Trichoderma viride and Bacillus pumilus, the production of reducing sugars was 6.62 g/L. This yield was 2.9 times higher than that obtained with untreated rice straw. The microorganisms degraded 37.8% of pretreated rice straw after 72 h. The structural characteristic analyses suggest that microwave-assisted FeCl(3) pretreatment damaged the silicified waxy surface of rice straw, disrupted almost all the ether linkages between lignin and carbohydrates, and removed lignin.
Collapse
Affiliation(s)
- Jiliang Lü
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | | |
Collapse
|
26
|
Cantarero S, Zafra-Gómez A, Ballesteros O, Navalón A, Reis MS, Saraiva PM, Vílchez JL. Environmental monitoring study of linear alkylbenzene sulfonates and insoluble soap in Spanish sewage sludge samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:617-626. [PMID: 21526451 DOI: 10.1080/10934529.2011.562857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work we present a monitoring study of linear alkylbenzene sulfonates (LAS) and insoluble soap performed on Spanish sewage sludge samples. This work focuses on finding statistical relations between LAS concentrations and insoluble soap in sewage sludge samples and variables related to wastewater treatment plants such as water hardness, population and treatment type. It is worth to mention that 38 samples, collected from different Spanish regions, were studied. The statistical tool we used was Principal Component Analysis (PC), in order to reduce the number of response variables. The analysis of variance (ANOVA) test and a non-parametric test such as the Kruskal-Wallis test were also studied through the estimation of the p-value (probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true) in order to study possible relations between the concentration of both analytes and the rest of variables. We also compared LAS and insoluble soap behaviors. In addition, the results obtained for LAS (mean value) were compared with the limit value proposed by the future Directive entitled "Working Document on Sludge". According to the results, the mean obtained for soap and LAS was 26.49 g kg(-1) and 6.15 g kg(-1) respectively. It is worth noting that LAS mean was significantly higher than the limit value (2.6 g kg(-1)). In addition, LAS and soap concentrations depend largely on water hardness. However, only LAS concentration depends on treatment type.
Collapse
Affiliation(s)
- Samuel Cantarero
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Du Q, Fu X, Xia H. Uptake of di-(2-ethylhexyl)phthalate from plastic mulch film by vegetable plants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2009. [DOI: 10.1080/02652030903081952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Ma H, Liu WW, Chen X, Wu YJ, Yu ZL. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. BIORESOURCE TECHNOLOGY 2009; 100:1279-84. [PMID: 18930389 DOI: 10.1016/j.biortech.2008.08.045] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 05/13/2023]
Abstract
In this study, Box-Behnken design and response surface methodology were employed to plan experiments and optimize the microwave pretreatment of rice straw. Experimental results show that microwave intensity (MI), irradiation time (IT) and substrate concentration (SC) were main factors governing the enzymatic saccharification of rice straw. The maximal efficiencies of cellulose, hemicellulose and total saccharification were respectively increased by 30.6%, 43.3% and 30.3% under the optimal conditions of MI 680 W, IT 24 min and SC 75 g/L. The chemical composition analysis of straw further confirmed that microwave pretreatment could disrupt the silicified waxy surface, break down the lignin-hemicellulose complex and partially remove silicon and lignin.
Collapse
Affiliation(s)
- Huan Ma
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
| | | | | | | | | |
Collapse
|
29
|
Mo CH, Cai QY, Tang SR, Zeng QY, Wu QT. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:181-189. [PMID: 18491175 DOI: 10.1007/s00244-008-9177-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/07/2008] [Indexed: 05/26/2023]
Abstract
This study investigated the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) in 11 vegetable species collected from nine farms of the Pearl River Delta, South China. Twelve PAH compounds and all PAE compounds were detected by gas chromatography coupled with mass spectrometry (GC-MS) in vegetables. The total concentrations of PAHs (Sigma(PAHs)) and PAEs (Sigma(PAEs)) ranged from 7.0 to 5353 microg kg(-1) dry weight (d.w.), with a mean value of 1173 microg kg(-1) d.w., and from 0.073 to 11.2 mg kg(-1) d.w., with a mean value of 3.2 mg kg(-1) (d.w.), respectively. The highest levels of Sigma(PAHs) and Sigma(PAEs) were found in Brassica juncea and Brassica parachinensis, respectively. For the same vegetable, the bioconcentration factors (BCFs; the ratio of contaminant concentration in plant tissue to the soil concentration) of PAHs (between 0.0037 and 5.5) are generally higher than those of PAEs (between <0.0001 and 0.61). It was also noted that there were great variations of organic contaminant levels, BCFs, and benzo[a]pyrene equivalent concentrations, which depend on the various contaminants, sampling locations, and vegetable species. The occurrences of PAHs and PAEs in this study are compared with those in other studies and their sources are discussed.
Collapse
Affiliation(s)
- Ce-Hui Mo
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
30
|
Oleszczuk P. Forms of polycyclic aromatic hydrocarbon in the formation of sewage sludge toxicity to Heterocypris incongruens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 404:94-102. [PMID: 18684487 DOI: 10.1016/j.scitotenv.2008.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 06/03/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to evaluate to what degree polycyclic aromatic hydrocarbon (PAH) determines sewage sludge toxicity in relation to Heterocypris incongruens. Six differing sewage sludges with increasing contents of polycyclic aromatic hydrocarbons were selected for the present study. As well as total PAH content, the content of the potentially bioavailable fraction was also determined in the sewage sludges using a method of mild-solvent extraction (with n-butanol). The PAH content was also calculated in the sewage sludge pore water by the equilibrium partitioning method. The total PAH content in the sewage sludges studied were in the range 3.60 to 27.95 mg kg(-1). The contribution of the n-butanol extracted fraction was in the range 38.7 to 75.4%. In the group of individual PAHs, 4- and 5-ring compounds had the highest content in the potentially bioavailable group. H. incongruens mortality in the range 6.7 to 100%, depending both on the sewage sludge and the dose applied. An increase of the sewage sludge dose usually resulted in an increase in toxicity. At the highest dose, a 100% mortality of H. incongruens was found in half of the sludges. The lowest dose, irrespective of the sludge type, caused over 40% growth inhibition. However, the results obtained did not allow for the establishing of an unambiguous relationship between various sludge toxicity levels and the content of potentially bio-available PAHs. In some cases only, the extraction using n-butanol explained the high difference in toxicity despite a slight differentiation in the PAH content.
Collapse
Affiliation(s)
- Patryk Oleszczuk
- Laboratory of Soil Reclamation and Waste Management, Institute of Soil Science and Environmental Management, Agriculture University, ul. Leszczyńskiego 7, 20-069 Lublin, Poland.
| |
Collapse
|
31
|
Cai QY, Mo CH, Wu QT, Zeng QY. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. BIORESOURCE TECHNOLOGY 2008; 99:1830-6. [PMID: 17502135 DOI: 10.1016/j.biortech.2007.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 05/15/2023]
Abstract
We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in a latosolic red soil and radish (Raphanus sativus) with application of sewage sludge at rates of 10, 20 and 40 g kg(-1) soil or compost at rate of 10 g kg(-1) soil. In radish the concentrations of individual PAHs and PAEs varied from non-detectable to 803 microg kg(-1) dry weight (d.w.) and from non-detectable to 2048 microg kg(-1) d.w., respectively. Compared to the control, higher application rates of sewage sludge resulted in pronounced increases in shoot, root and soil concentrations of PAHs and PAEs. PAE concentrations in radish grown in soil spiked with sludge compost were higher while the PAH concentrations were comparable to those receiving 10 g kg(-1) of sewage sludge. However, the root biomass of radish in soil amended with compost was significantly higher and the shoot-to-root ratio was significantly lower than in the other treatments. The bioconcentration factors (BCFs, the ratio of contaminant concentration in plant tissue to the soil concentration) of di-n-butyl phthalate and di(2-ethylhexyl) phthalate in both shoots and roots and of total PAH concentrations in roots were less than 1.0, but some BCFs for individual PAHs were high with a maximum value of 80.
Collapse
Affiliation(s)
- Quan-Ying Cai
- College of Resources and Environment, South China Agricultural University, Guangzhou, China.
| | | | | | | |
Collapse
|
32
|
Oleszczuk P. Application of hydroxypropyl[beta]cyclodextrin to evaluation of polycyclic aromatic hydrocarbon losses during sewage sludges composting. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2008; 43:10-17. [PMID: 18161553 DOI: 10.1080/10934520701750355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aims of the present study were to test the application of the non-exhaustive extraction technique (NEET) with hydroxypropyl[beta]cyclodextrin (HPCD) for the evaluation of the content of potentially bioavailable polycyclic aromatic hydrocarbon (PAH) fraction as well as the evaluation of changes in the content of this fraction during composting of municipal sewage sludges. A possibility to apply this method for the forecasting of PAH losses during composting was also studied. Four sludges (from different sewage treatment plants) with varied properties have been selected for the present experiment. The sludges were composted for 76 days. PAH content was determined as extracted with dichloromethane (exhaustive extraction technique) and potentially bioavailable PAH content by means of HPCD (non-exhaustive extraction technique) in both sewage sludges and composts obtained from them. The content of fraction extracted with HPCD ranged from 63.5 to 83.1% depending on the sludge. After composting, a significant lowering of this fraction contribution was noted for 3 sludges. However, in the composts obtained, the fraction extracted with HPCD still constituted 54.7-62.1% of the total PAH content. The composting process clearly influenced a decrease in the bioavailable fraction in the case of 3- and 5-ring PAHs. However, the 4-ring PAHs content of bioavailable fraction did not undergo any significant changes. No satisfactory results were obtained when HPCD was used as a tool to forecast PAH losses. In a number of cases only, PAH remaining after HPCD extraction achieved a value similar to that of PAH after the composting process. In the case of a number of PAH, the method with HPCD application changed the values of the bioavailable fraction.
Collapse
Affiliation(s)
- Patryk Oleszczuk
- Laboratory of Soil Reclamation and Waste Management, Institute of Soil Science and Environmental Management, Agriculture University, Lublin, Poland.
| |
Collapse
|
33
|
Cai QY, Mo CH, Wu QT, Zeng QY, Katsoyiannis A. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China. CHEMOSPHERE 2007; 68:1751-62. [PMID: 17509650 DOI: 10.1016/j.chemosphere.2007.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 02/06/2007] [Accepted: 03/26/2007] [Indexed: 05/13/2023]
Abstract
This study presents the occurrence of 43 semi-volatile organic compounds (SVOCs) listed as priority pollutants by both China and the United States Environmental Protection Agency, in sewage sludges collected from eleven wastewater treatment plants (WWTPs) of mainland and Hong Kong, China. Thirty-six SVOCs were detected by gas chromatography coupled with mass spectrometer (GC-MS) and at least 14 in each sample. The most abundant compounds were phthalic acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) with total concentrations ranging from 10 to 114mgkg(-1) dry weight (d.w.) (with a mean of 30mgkg(-1) d.w.) and from 1.4 to 33mgkg(-1)d.w. (with a mean of 16mgkg(-1) d.w.), respectively, followed by chlorobenzenes, nitroaromatics, haloethers and halogenated hydrocarbons which occurred generally at concentrations lower than 10mgkg(-1) d.w. Large variations were observed between the concentrations of individual compounds as well as their total concentrations in sludge samples from different WWTPs. The highest values of sum concentration of 16 PAHs and of 6 PAEs were found in sewage sludge from Beijing. The mean total concentration of each class of SVOCs in sewage sludge from mainland was remarkably higher than that from Hong Kong. The concentrations of di(2-ethylhexyl) phthalate in 91% sludge samples met the limit (100mgkg(-1)d.w.) proposed by the Europe Union for land application, whereas the PAH concentrations of 64% sludge samples exceeded the maximum permissible concentration (6.0mgkg(-1)d.w.). The occurrence of SVOCs in this study are compared with other studies and their sources are discussed.
Collapse
Affiliation(s)
- Quan-Ying Cai
- College of Resources and Environment, South China Agricultural University, Guangzhou, China.
| | | | | | | | | |
Collapse
|