1
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Srirengaraj V, Razafindralambo HL, Rabetafika HN, Nguyen HT, Sun YZ. Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications. BIOLOGY 2023; 12:1498. [PMID: 38132324 PMCID: PMC10740583 DOI: 10.3390/biology12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.
Collapse
Affiliation(s)
| | - Hary L. Razafindralambo
- ProBioLab, 5004 Namur, Belgium;
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Sustainable Management of Bio-Agressors & Microbial Technologies, Gembloux Agro-Bio Tech—Université de Liège, 5030 Gembloux, Belgium
| | | | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Long Xuyen City 90000, Vietnam;
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen 361021, China;
| |
Collapse
|
3
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
4
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
6
|
García-Márquez J, Rico RM, Acién FG, Mancera JM, Figueroa FL, Vizcaíno AJ, Alarcón FJ, Moriñigo MÁ, Abdala-Díaz RT. Dietary Effects of a Short-Term Administration of Microalgae Blend on Growth Performance, Tissue Fatty Acids, and Predominant Intestinal Microbiota in Sparus aurata. Microorganisms 2023; 11:microorganisms11020463. [PMID: 36838428 PMCID: PMC9959988 DOI: 10.3390/microorganisms11020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Given the potential of microalgae as new aquafeed ingredients, this study focuses on using a blend of microalgae, Tisochrysis lutea, Nannochloropsis gaditana, and Scenedesmus almeriensis, as a dietary ingredient for feeding Sparus aurata juveniles. The growth performance, carcass composition, tissue fatty acid profile, and intestinal microbiota were evaluated after a 30 day-feeding period. A microalgae-free diet was used as control, and three experimental diets were formulated containing 5%, 15%, and 25% of the microalgae blend (MB-5%, MB-15%, and MB-25%, respectively). After 7, 15, and 30 days of feeding experimental diets, biological samples were taken. Growth performance and nutrient utilization were not significantly modified at the end of the experiment. Microalgae inclusion tended to decrease body lipids and affected the fatty acid profile, especially MB-25 diet increased DHA levels. Diet MB-25 promoted appropriate microbial diversity, favoring the presence of probiotic bacteria, such as Lactobacillus, and significantly influencing the fatty acid composition and lipid metabolism in fish. In conclusion, using a short pulse of dietary administration of 25% microalgal blend in S. aurata modulates the intestinal microbiota and lipid composition while maintaining growth performance.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Rosa María Rico
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Gabriel Acién
- Departamento de Ingeniería Química, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Ceimar-Universidad de Cádiz, 11510 Cádiz, Spain
| | - Félix L. Figueroa
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Antonio Jesús Vizcaíno
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| | - Roberto Teófilo Abdala-Díaz
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Hines IS, Santiago-Morales KD, Ferguson CS, Clarington J, Thompson M, Rauschenbach M, Levine U, Drahos D, Aylward FO, Smith SA, Kuhn DD, Stevens AM. Steelhead trout ( Oncorhynchus mykiss) fed probiotic during the earliest developmental stages have enhanced growth rates and intestinal microbiome bacterial diversity. FRONTIERS IN MARINE SCIENCE 2022; 9:1021647. [PMID: 39664599 PMCID: PMC11633451 DOI: 10.3389/fmars.2022.1021647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Sustainable aquaculture practices can help meet the increasing human demand for seafood, while easing pressures on natural fish populations. Studies aimed at increasing fish production in aquaculture have included supplementary dietary probiotics that often promote general health and enhanced growth rates by altering the microbiome of the host. Steelhead trout (Oncorhynchus mykiss) is anadromous, like salmon, and it is a subspecies of rainbow trout capable of rapid growth, making it an attractive fish to the aquaculture industry. In this study, the impact of feeding a Bacillus subtilis probiotic on the bacterial microbiome of steelhead trout was examined temporally across several stages of animal development, from eggs (day -19) through 184 days after hatching, in relation to physiological measures. Diets included: commercial feed only as a control (A), continually-fed probiotic top-coated on commercial feed (B), commercial then switch to probiotic feed (C), or probiotic then switch to commercial feed (D). Validation of probiotic concentrations on feed and in fish tissues was performed using CFU/g and qPCR, respectively. Fish growth was measured and samples for intestinal microbiome analyses were collected at multiple timepoints during fish development. Fish fed diet D yielded higher weights than the other three diets, with little impact on other biometric parameters. However, bacterial microbiome analysis indicated an increasing trend of overall alpha diversity from the egg stage to day 29 for fish fed the various diets with diet D having the highest diversity. Fish fed diets A and D maintained a high alpha diversity beyond day 29 in contrast to a decreased trend for fish still being fed probiotics in diets B and C. The fish fed diets B and C harbored a significantly higher relative abundance of Bacillus sp. in their total microbiomes (feces + mucosa). Interestingly, the mucosal-only microbiome indicated little variation between the four groups of fish. Feeding the probiotic earlier in development, during the hatchery phase, to influence bacterial microbiome composition in the intestine (rather than later after the microbiome has been established) appears to be a more effective aquaculture practice by enhancing microbiome diversity while enabling higher fish yields.
Collapse
Affiliation(s)
- Ian S. Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | | | - Clay S. Ferguson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Jireh Clarington
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Uri Levine
- Novozymes Biologicals Inc., Salem, VA, United States
| | - David Drahos
- Novozymes Biologicals Inc., Salem, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - Stephen A. Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - David D. Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Wei C, Luo K, Wang M, Li Y, Pan M, Xie Y, Qin G, Liu Y, Li L, Liu Q, Tian X. Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Front Microbiol 2022; 13:854131. [PMID: 35401447 PMCID: PMC8989281 DOI: 10.3389/fmicb.2022.854131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years the safety of probiotics has received increasing attention due to the possible transfer and spread of virulence factors (VFs) and antibiotic resistance genes (ARGs) among microorganisms. The safety of a strain of Lactobacillus plantarum named W2 was evaluated in phenotype and genotype in the present study. Its probiotic properties were also evaluated both in vivo and in vitro, including adherence properties, antibacterial properties and beneficial effects on the growth and immunity of Pacific white shrimp, Penaeus vannamei. Hemolysis tests, antibiotic resistance tests and whole genome sequence analysis showed that W2 had no significant virulence effects and did not carry high virulence factors. W2 was found to be sensitive to chloramphenicol, clindamycin, gentamicin, kanamycin and tetracycline, and to be resistant to ampicillin and erythromycin. Most ARGs have no transfer risk and a few have transfer risk but no significant enrichment in human-associated environments. The autoaggregation of W2 was 82.6% and the hydrophobicity was 81.0%. Coaggregation rate with Vibrio parahaemolyticus (24.9%) was significantly higher than Vibrio's autoaggregation rate (17.8%). This suggested that W2 had adhesion potential to mucosal/intestinal surfaces and was able to attenuate the adherence of V. parahaemolyticus. In addition, several adhesion-related protein genes, including 1 S-layer protein, 1 collagen-binding protein and 9 mucus-binding proteins were identified in the W2 genome. W2 had efficiently antagonistic activity against 7 aquatic pathogenic strains. Antagonistic components analysis indicated that active antibacterial substances might be organic acids. W2 can significantly promote the growth of shrimp when supplemented with 1 × 1010 cfu/kg live cells. Levels of 7 serological immune indicators and expression levels of 12 hepatopancreatic immune-related genes were up-regulated, and the mortality of shrimp exposed to V. parahaemolyticus was significantly reduced. Based on the above, L. plantarum W2 can be applied safely as a potential probiotic to enhance the growth performance, immunity capacity and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Cong Wei
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingyang Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongmei Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yijun Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Han R, Khan A, Ling Z, Wu Y, Feng P, Zhou T, Salama ES, El-Dalatony MM, Tian X, Liu P, Li X. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113216. [PMID: 35065503 DOI: 10.1016/j.ecoenv.2022.113216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Procambarus clarkii (crayfish) accumulates a high concentration of Arsenic (As) from the aquatic environment and causes considerable human health risks. In this study, Limosilactobacillus fermentum GR-3 strain was isolated from "Jiangshui" and applied for As(III) adsorption and antioxidant abilities. Strain GR-3 removed 50.67% of 50 mg/L As(III) and exhibited the high antioxidant potential of DPPH (1,1-Diphenyl-2-picrylhydrazyl) (87.63%) and hydroxyl radical (74.51%) scavenging rate in vitro. P. clarkii was feed with strain GR-3, the results showed that As(III) concentration reduced, and residual level in hepatopancreas was decreased by 36%, compared to As(III)-exposed group (control). Gut microbial sequencing showed that strain GR-3 restores gut microbiota dysbiosis caused by As(III) exposure. Further application in the field scale was performed and revealed a decrease in As(III) accumulation and increasing 50% aquaculture production of the total output. In summary, feed-additive probiotic is recommended as a novel strategy to minimize aquaculture foods toxicity and safe human health.
Collapse
Affiliation(s)
- Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Ying Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Marwa M El-Dalatony
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xirong Tian
- Hubei Kewang Animal Husbandry Co., Ltd, Qianjiang, Hubei, People's Republic of China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
10
|
Successful Inclusion of High Vegetable Protein Sources in Feed for Rainbow Trout without Decrement in Intestinal Health. Animals (Basel) 2021; 11:ani11123577. [PMID: 34944352 PMCID: PMC8698200 DOI: 10.3390/ani11123577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
The aquaculture of carnivorous fish is in continuous expansion, which leads to the need to reduce the dependence on fishmeal (FM). Plant proteins (PP) represent a suitable protein alternative to FM and are increasingly used in fish feed. However, PP may lead to stunted growth and enteritis. In the current study, the effect of high FM substitution by PP sources on the growth, mortality and intestinal health of rainbow trout (Oncorhynchus mykiss) was evaluated in terms of the histological intestine parameters and expression of genes related to inflammation (IL-1β, IL-8 and TGF-β) and immune responses (Transferrin, IgT and IFN-γ). The results show that a total substitution registered lower growth and survival rates, probably due to a disruption to the animal's health. Confirming this hypothesis, fish fed FM0 showed histological changes in the intestine and gene changes related to inflammatory responses, which in the long-term could have triggered an immunosuppression. The FM10 diet presented not only a similar expression to FM20 (control diet), but also similar growth and survival. Therefore, 90% of FM substitution was demonstrated as being feasible in this species using a PP blend of wheat gluten (WG) and soybean meal (SBM) as a protein source.
Collapse
|
11
|
Tekebayeva Z, Zakaryа K, Abzhalelov AB, Beisenova RR, Tazitdinova RM. Efficiency of a probiotic in carp lactococcosis in an in vitro experiment. Microb Pathog 2021; 161:105289. [PMID: 34785276 DOI: 10.1016/j.micpath.2021.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
The purpose of this article is to study the effect of the probiotic on experimental infections of carp's fingerlings with Lactococcus garvieae. Lactic acid bacteria (LAB) (Lactobacillus fermentum 24с, Pediococcus pentosaceus 10/9к, Lactobacillus paracasei 9c) for the probiotic were previously isolated from the intestines of mature carps from Maybalyk commercial fisheries, which provided fingerlings for this experiment too as well. The feed-contained probiotic was given to fish in the experimental group for 14 days before challenge with pathogen L. garvieae. Throughout ten days after the infection, death of the fish was regularly recorded in the group, where the probiotic was not given with the feeding. Ten days after, all fish in this group died. In the probiotic group, the mortality on the tenth day after the challenge with pathogen was 10%. It was concluded the effect of the probiotic is not due to antibacterial action to the pathogen. The effectiveness of the probiotic can be associated with the displacement of the pathogen, due to the competitive adhesion and/or more likely, with the activation of the immune response from the fish organism due to the addition of the probiotic to the feed.
Collapse
Affiliation(s)
- Zhanar Tekebayeva
- Laboratory of Microbiology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 010000, 13/1 Valikhanov Str., Nur-Sultan, Kazakhstan.
| | - Kunsulu Zakaryа
- Research Institute of Biological Safety Problems, Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 080409, 15 Momyshuly Str., Guardeyskiy, Kazakhstan
| | - Akhan B Abzhalelov
- Department of Management and Engineering in the Field of Environmental Protection, L.N. Gumilyov Eurasian National University, 010000, 2 Satpayev Str., Nur-Sultan, Kazakhstan
| | - Raikhan R Beisenova
- Department of Management and Engineering in the Field of Environmental Protection, L.N. Gumilyov Eurasian National University, 010000, 2 Satpayev Str., Nur-Sultan, Kazakhstan
| | - Rumiуa M Tazitdinova
- Department of Geography, Ecology and Tourism, Kokshetau State University Named After Sh. Ualikhanov, 020000, 76 Abay Str., Kokshetau, Kazakhstan
| |
Collapse
|
12
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
13
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
14
|
Chuphal N, Singha KP, Sardar P, Sahu NP, Shamna N, Kumar V. Scope of Archaea in Fish Feed: a New Chapter in Aquafeed Probiotics? Probiotics Antimicrob Proteins 2021; 13:1668-1695. [PMID: 33821466 DOI: 10.1007/s12602-021-09778-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
The outbreak of diseases leading to substantial loss is a major bottleneck in aquaculture. Over the last decades, the concept of using feed probiotics was more in focus to address the growth and health of cultivable aquatic organisms. The objective of this review is to provide an overview of the distinct functionality of archaea from conventional probiotics in nutrient utilization, specific caloric contribution, evading immune response and processing thermal resistance. The prime limitation of conventional probiotics is the viability of desired microbes under harsh feed processing conditions. To overcome the constraints of commercial probiotics pertaining to incompatibility towards industrial processing procedure, a super microbe, archaea, appears to be a potential alternative approach in aquaculture. The peculiarity of the archaeal cell wall provides them with heat stability and rigidity under industrial processing conditions. Besides, archaea being one of the gut microbial communities participates in various health-oriented biological functions in animals. Thus, the current review devoted that administration of archaea in aquafeed could be a promising strategy in aquaculture. Archaea may be used as a potential probiotic with the possible modes of functions and advantages over conventional probiotics in aquafeed preparation. The present review also provides the challenges associated with the use of archaea for aquaculture and a brief outline of the patents on archaea to highlight the various use of archaea in different sectors.
Collapse
Affiliation(s)
- Nisha Chuphal
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Krishna Pada Singha
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India.,Aquaculture Research Institute, Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844-3020, USA
| | - Parimal Sardar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India.
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Naseemashahul Shamna
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Vikas Kumar
- Aquaculture Research Institute, Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844-3020, USA.
| |
Collapse
|
15
|
Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319-328. [PMID: 33776297 PMCID: PMC7994123 DOI: 10.14202/vetworld.2021.319-328] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Smolyakova L. Andreevna
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | | | - Bassa Z. Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Razan Marouf
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Ibrahim Khelifi
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
16
|
Ulva lactuca as a functional ingredient and water bioremediator positively influences the hepatopancreas and water microbiota in the rearing of Litopenaeus vannamei. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Mora-Sánchez B, Fuertes H, Balcázar JL, Pérez-Sánchez T. Effect of a multi-citrus extract-based feed additive on the survival of rainbow trout (Oncorhynchus mykiss) following challenge with Lactococcus garvieae. Acta Vet Scand 2020; 62:38. [PMID: 32611367 PMCID: PMC7329414 DOI: 10.1186/s13028-020-00536-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Growing global concerns about antibiotic resistance have generated a considerable interest in the search for alternative environmental-friendly approaches. This study was aimed to assess the antimicrobial activity of a multi-citrus extract-based feed additive (Biocitro®) against some fish pathogens, as well as evaluate its capacity to protect rainbow trout (Oncorhynchus mykiss) to lactococcosis. A broth dilution method was used to determine the minimum inhibitory concentration (MIC) of Biocitro®, and the results showed a strong antibacterial activity against Aeromonas salmonicida, Lactococcus garvieae and Yersinia ruckeri with MIC values of 2.0 µg/mL. Afterwards, rainbow trout juveniles were fed a Biocitro®-enriched diet (750 mg/kg feed) at a daily rate of 1.5% body weight for 4 weeks, then they were challenged with L. garvieae by the cohabitation method. At the end of the experimental period, fish treated with Biocitro® showed significantly (P < 0.001) improved protection against L. garvieae compared to control fish. Although further studies are needed to understand how Biocitro® increases rainbow trout resistance to L. garvieae, this feed additive could be considered as a useful alternative to chemotherapeutic treatment in aquaculture.
Collapse
|
18
|
Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol Lett 2020; 42:1957-1962. [PMID: 32449071 DOI: 10.1007/s10529-020-02919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was aimed to assess the effect of a novel postbiotic on bacterial community composition and structure within the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss), as well as evaluate its capacity to protect rainbow trout from Lactococcus garvieae infection. RESULTS After 30 days of dietary postbiotic supplementation, high-throughput 16S rRNA gene sequencing revealed that bacterial community composition, diversity and richness were significantly higher in treated fish than in control fish. The proportion of sequences affiliated to the phylum Tenericutes, and to a lesser extent, the phyla Spirochaetes and Bacteroidetes was increased in fish fed a postbiotic-enriched diet compared to control fish, whereas the abundance of Fusobacteria was higher in control fish. Moreover, the treated fish showed significantly (p < 0.05) improved protection against L. garvieae compared to control fish. CONCLUSIONS These findings suggest that dietary postbiotic supplementation may represent an environmentally friendly strategy for preventing and controlling diseases in aquaculture.
Collapse
|
19
|
Dai J, Zheng J, Ou W, Xu W, Ai Q, Zhang W, Niu J, Zhang Y, Mai K. The effect of dietary cecropin AD on intestinal health, immune response and disease resistance of juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 100:117-125. [PMID: 32109613 DOI: 10.1016/j.fsi.2020.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Cecropin AD (CAD) is a commercial cationic antimicrobial peptide that has been seldom studied in marine fish. This study investigated the effects of dietary CAD on intestinal health, immune response, disease resistance, and growth performance of turbot. A diet using fishmeal and plant protein as the main protein resources was used as the control (crude protein 53%, crude lipid 12%). CAD was supplemented into the control diet at the level of 250, 500, 750, and 1000 mg kg-1 to formulate four experimental diets, C1, C2, C3, and C4, respectively. No significant difference was observed in fish growth performance, feed utilization efficiency and whole-body composition among all groups. Dietary CAD significantly increased the activity of lysozyme and complement component 3 level in both serum and distal intestine (DI), as well as the immunoglobulin M content in DI. The gene expression of immune cytokines such as IFN-γ, IL-1β, and chemokine SmCCL19, and the goblet cell number in DI were also significantly increased by dietary CAD supplementation. Compared with the control group, the microbiota analysis indicated group C4 showed significantly decreased α-diversity, obvious alternation in dominant bacteria composition at phylum level, different clustering, and significantly decreased relative abundance of Lactobacillus. Besides, the relative abundance of Bacteroides was significantly decreased in groups C1, C3, and C4. In addition, the lowest mortality of turbot challenged with Edwardsiella tarda was observed in fish fed diets C2 and C3. In conclusion, moderate levels of CAD in diet of turbot improved the intestinal immune response without disrupting the intestinal bacterial community, and enhanced the disease resistance. However, dietary CAD at 1000 mg kg-1 greatly affected the intestinal bacterial composition and showed potentially inhibitory effects towards Lactobacillus.
Collapse
Affiliation(s)
- Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jing Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
20
|
Pérez-Sánchez T, Mora-Sánchez B, Vargas A, Balcázar JL. Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microb Pathog 2020; 142:104060. [PMID: 32058028 DOI: 10.1016/j.micpath.2020.104060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
This experimental study was aimed to investigate whether the dietary supplementation of a postbiotic obtained as a food product fermented with two lactic acid bacteria could induce changes in the intestinal microbiota and prevent the development of Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). After 30 days of dietary postbiotic supplementation, bacterial community composition and structure was significantly different between the treated and control groups. A higher bacterial diversity and richness in the intestinal samples was found in treated fish, as compared to those samples from untreated fish. Dietary postbiotic supplementation also conferred increased protection against L. garvieae infection. These findings suggest that the establishment of a beneficial microbiota is essential to prevent diseases or protect the host from foreign agents.
Collapse
Affiliation(s)
- Tania Pérez-Sánchez
- Navarran European Business Innovation Center (CEIN), 31110, Noáin (Navarra), Spain; Pentabiol S.L., 31191, Esquíroz (Navarra), Spain
| | - Brenda Mora-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, 50013, Zaragoza, Spain; Department of Animal Health, Centro Veterinario de Diagnóstico e Investigación (CEVEDI), School of Veterinary Medicine, Universidad Nacional Autónoma de Nicaragua-León, Nicaragua
| | - Augusto Vargas
- Laboratory of Biotechnology and Aquatic Pathology, Faculty of Veterinary Sciences, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain.
| |
Collapse
|
21
|
Won S, Hamidoghli A, Choi W, Park Y, Jang WJ, Kong IS, Bai SC. Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile tilapia, Oreochromis niloticus. Microorganisms 2020; 8:E67. [PMID: 31906334 PMCID: PMC7023347 DOI: 10.3390/microorganisms8010067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023] Open
Abstract
An eight-week feeding trial was conducted to evaluate the effects of a basal control diet (CON), Bacillus subtilis at 107 (BS7) and at 108 CFU/g diet (BS8), Lactococcus lactis at 107 CFU/g (LL7) and at 108 CFU/g diet (LL8), and oxytetracycline (OTC) at 4 g/kg diet on Nile tilapia. Fish with initial body weight of 2.83 ± 0.05 g (mean ± SD) were fed two times a day. Weight gain, specific growth rate, feed efficiency, protein efficiency ratio and lysozyme activity of fish fed BS8, LL8 and LL7 diets were significantly higher than those of fish fed CON diet (p < 0.05). Superoxide dismutase and myeloperoxidase activity of fish fed BS8, LL8, BS7, LL7 and OTC diets were significantly higher than those of fish fed CON diet. Intestinal villi length and muscular layer thickness of fish fed BS8, LL8 and LL7 diets were significantly higher than those of fish fed CON and OTC diets. Also, heat shock protein 70 (HSP70), interleukin (IL-1β), interferon-gamma (IFN-γ) and tumour necrosis factor (TNF-α) gene expression of fish fed BS8 and LL8 diets were significantly higher than those of fish fed CON diet. After 13 days of challenge test, cumulative survival rate of fish fed BS8 and LL8 diets were significantly higher than those of fish fed CON, BS7 and OTC diets. Based on these results, B. subtilis and L. lactis at 108 (CFU/g) could replace antibiotics, and have beneficial effects on growth, immunity, histology, gene expression, and disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Seonghun Won
- Department of Marine Bio-materials and Aquaculture, Feeds and Foods Nutrition Research Center (FFNRC), Pukyong National University, Busan 608-737, Korea; (S.W.); (A.H.); (W.C.)
| | - Ali Hamidoghli
- Department of Marine Bio-materials and Aquaculture, Feeds and Foods Nutrition Research Center (FFNRC), Pukyong National University, Busan 608-737, Korea; (S.W.); (A.H.); (W.C.)
| | - Wonsuk Choi
- Department of Marine Bio-materials and Aquaculture, Feeds and Foods Nutrition Research Center (FFNRC), Pukyong National University, Busan 608-737, Korea; (S.W.); (A.H.); (W.C.)
| | - Youngjin Park
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsallen 11, 8049 Bodo, Norway;
| | - Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan 608-737, Korea;
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan 608-737, Korea;
| | - Sungchul C. Bai
- Department of Marine Bio-materials and Aquaculture, Feeds and Foods Nutrition Research Center (FFNRC), Pukyong National University, Busan 608-737, Korea; (S.W.); (A.H.); (W.C.)
| |
Collapse
|
22
|
Zhang H, Wang H, Hu K, Jiao L, Zhao M, Yang X, Xia L. Effect of Dietary Supplementation of Lactobacillus Casei YYL3 and L. Plantarum YYL5 on Growth, Immune Response and Intestinal Microbiota in Channel Catfish. Animals (Basel) 2019; 9:E1005. [PMID: 31757039 PMCID: PMC6941169 DOI: 10.3390/ani9121005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study is to investigate the effect of probiotics L. casei YYL3 (Lc) and L. plantarum YYL5 (Lp) on growth performance, innate immunity, disease resistance and intestinal microbiota of channel catfish. A total of 252 catfish (67.20 ± 1.46 g) were randomly divided into 3 groups which were fed with basal diet, Lc-added (3.0 × 108 cfu/g) or Lp-added (3.0 × 108 cfu/g) diets, respectively. After 4 weeks of feeding, Lc significantly enhanced the growth and feed utilization of channel catfish compared with the control group (CG). Following that, the catfish were challenged with an intraperitoneal injection of 200 μL of the pathogenic E.ictaluri (2.0 × 106 cfu/mL), the relative percent survival of Lc and Lp were 38.28% and 12.76%, respectively. High-throughput sequencing indicated Lc and Lp reduced the alpha diversity of the intestinal microbiota in channel catfish. Lactobacillus were overwhelming in the guts during probiotics treatment, but almost vanished away after 2 weeks post-cessation of probiotics administration. Compared to CG, Lc and Lp resulted in an increased abundance of Pseudomonas and decreased amount of Aeromonas. Functional analysis revealed that Lc treatment upregulated the relative abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including lipid metabolism, metabolism of other amino acids, metabolism of terpenoids and polyketides, xenobiotics biodegradation and metabolism, and nucleotide metabolism. Combined, our data revealed that Lc, as a feed additive at 3.0 × 108 cfu/g, could promote the growth performance, disease resistance and dramatically change the composition of intestinal microbiota of channel catfish.
Collapse
Affiliation(s)
- Hongyu Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 210306, China; (H.Z.); (K.H.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.W.); (L.J.); (M.Z.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 210306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 210306, China
| | - Haibo Wang
- Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.W.); (L.J.); (M.Z.)
- Beijing Seasun Aquaculture BIO TECH. Co.LTD, Beijing 102488, China
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 210306, China; (H.Z.); (K.H.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 210306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 210306, China
| | - Liting Jiao
- Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.W.); (L.J.); (M.Z.)
- Beijing Seasun Aquaculture BIO TECH. Co.LTD, Beijing 102488, China
| | - Mingjun Zhao
- Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.W.); (L.J.); (M.Z.)
| | - Xianle Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 210306, China; (H.Z.); (K.H.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 210306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 210306, China
| | - Lei Xia
- Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.W.); (L.J.); (M.Z.)
| |
Collapse
|
23
|
Effect of a Probiotic Lactobacillus plantarum CR1T5 Dietary Supplements on Non-specific Immunity in Black Eared Catfish (Pangasius larnaudii). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Mohammadian T, Nasirpour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:269-279. [PMID: 30468893 DOI: 10.1016/j.fsi.2018.11.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
The present study was tested how Oncorhynchus mykiss can respond to dietary supplementations of autochthonous probiotics, including Lactobacillus delbrukei subsp. bulgaricus and Lactobacillus acidophilus and Citrobacter farmeri by measuring different parameters. To address that, 300 fish weighing 19.08-32.9 g were fed by probiotics-enriched diets, containing 5 × 107 CFU g-1 for 60 days. Our results indicated that probiotics, especially L. acidophilus and L. bulgaricus are involved in enhancing the growth performance of this species as compared with the control group. Blood profile (Hemoglobin and Hematocrit) showed significant (P < 0.05) increases in probiotic fed groups compared with the control. Serum lysozyme and complement activities were higher in probiotic-fed fish while similar changes were not observed in the case of bactericidal activity and Nitroblue Tetrazolium (NBT) reduction. Better colonization of lactic acid bacteria in fish intestine was observed following L. acidophilus and L. bulgaricus administrations (P < 0.001). Digestive enzyme activities of intestine, including amylase, trypsin, lipase and alkaline phosphatase were elevated either significant or insignificant while protease activity did not act the same. All probiotic treatments led to mild or strong (P < 0.001) up-regulation of cytokine and growth gene expressions of intestine in comparison with the control group. Higher in vitro antagonist activities of L. acidophilus and L. bulgaricus against the Lactococcus garvieae were coincident with in vivo challenge test. The relative percentage of survival (RPS) was obtained 63.71 and 51.56 for L. bulgaricus and L. acidophilus, respectively, which were higher in those treated fish as compared to control fish. Our results may suggest that the probiotics, applied here, can promote growth performance by improving digestive enzyme activity, gut micro flora and growth gene expression. Up-regulation of immune regulatory proteins may increase the non-specific immune responses and bacterial resistance in this species as well.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mahdieh Nasirpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Ali Heidary
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Reza Ghanei-Motlagh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Samad Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
25
|
Mohammadian T, Jangaran-Nejad A, Mesbah M, Shirali T, Malekpouri P, Tabandeh MR. Effect of Lactobacillus casei on Innate Immunity Responses and Aeromonas hydrophila Resistance in Shabot, Tor grypus. Probiotics Antimicrob Proteins 2019; 12:224-235. [PMID: 30637563 DOI: 10.1007/s12602-018-9510-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For investigating the possible effect of Lactobacillus casei on the immune status of Shabot, Tor grypus, 480 fish weighing 40 ± 10 g were randomly divided into four groups in triplicate. The first group (control) was fed on a commercial diet without probiotic supplementation. Other groups (A, B, and C) were received diet supplemented by different levels of L. casei, i.e., 5 × 106, 5 × 107, and 5 × 108 CFU g-1, respectively. The feeding trial was performed for 60 continuous days followed by 15 days as withdraw period, i.e., day 75. Serum immune responses were determined on days 0, 30, 60, and 75 of feeding trial. Gene expression in the kidneys was analyzed on days 0, 60, and 75 as well as following bacterial challenge. The results showed that dietary L. casei supplementation significantly (P < 0.05) increased serum lysozyme, serum bactericidal, complement, and respiratory burst activities as compared with control group, while it was observed that treated fish did not show any significant differences in immune responses on day 75 (P < 0.05). Results of gene expression (TNF-α, IL-1β, and IL-8) showed significant increases among different experimental times (P < 0.05). According to obtained results, it might be concluded that the feeding by L. casei could likely enhance the immune responses and gene expression in T. grypus. Treatments A and C were better than B, but the lower concentration is better as an economic viewpoints and biosecurity. Therefore, concentration A is suggested.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61357-831351, Iran.
| | - Abdolhossein Jangaran-Nejad
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61357-831351, Iran
| | - Mehrzad Mesbah
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61357-831351, Iran
| | - Tahereh Shirali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61357-831351, Iran
| | - Pedram Malekpouri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
26
|
Hoseinifar SH, Sun YZ, Wang A, Zhou Z. Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Front Microbiol 2018; 9:2429. [PMID: 30369918 PMCID: PMC6194580 DOI: 10.3389/fmicb.2018.02429] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Along with the intensification of culture systems to meet the increasing global demands, there was an elevated risk for diseases outbreak and substantial loss for farmers. In view of several drawbacks caused by prophylactic administration of antibiotics, strict regulations have been established to ban or minimize their application in aquaculture. As an alternative to antibiotics, dietary administration of feed additives has received increasing attention during the past three decades. Probiotics, prebiotics, synbiotics and medicinal plants were among the most promising feed supplements for control or treatments of bacterial, viral and parasitic diseases of fish and shellfish. The present review summarizes and discusses the topic of potential application of probiotics as a means of disease control with comprehensive look at the available literature. The possible mode of action of probiotics (Strengthening immune response, competition for binding sites, production of antibacterial substances, and competition for nutrients) in providing protection against diseases is described. Besides, we have classified different pathogens and separately described the effects of probiotics as protective strategy. Furthermore, we have addressed the gaps of existing knowledge as well as the topics that merit further investigations. Overall, the present review paper revealed potential of different probiont to be used as protective agent against various pathogens.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Yun-Zhang Sun
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Anran Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Baños A, Ariza JJ, Nuñez C, Gil-Martínez L, García-López JD, Martínez-Bueno M, Valdivia E. Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo. Food Microbiol 2018; 77:69-77. [PMID: 30297058 DOI: 10.1016/j.fm.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/15/2023]
Abstract
The aim of this study was to evaluate the effects of Enterococcus faecalis UGRA10 and its enterocin AS-48 against the fish pathogen Lactococcus garvieae. The minimum bactericidal concentrations of AS-48 against L. garvieae CECT 5807, 5806, and 5274 were 15.62, 15.62, and 7.81 μg/ml respectively. In broth cultures, enterocin at 100, 50, and 25 μg/ml reduced 108 CFU/ml lactococci after 2, 5, and 10 h, respectively. In co-cultures of UGRA10/L. garvieae at a 1/10 CFU/ml ratio, lactococci were eliminated after 24 h. Studies on UGRA10 biosafety and AS-48 toxicity in R1 cells and in rainbow trout have shown a lack of adverse effects from both the strain and bacteriocin. Trout challenged with L. garvieae and UGRA10 administered in diet 30 days before infection had a cumulative survival rate of 50% compared with 0% for control fish. Trout inoculated with the pathogen and treated by regular dipping in AS-48 baths had a survival rate of 60% after 20 days compared with that of untreated fish (0%). These results indicate the protective effect of the UGRA10 strain and the bacteriocin AS-48 against L. garvieae and the potential of these natural products as alternatives to antibiotics for controlling diseases in aquaculture.
Collapse
Affiliation(s)
- Alberto Baños
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Juan José Ariza
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Cristina Nuñez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Lidia Gil-Martínez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - J David García-López
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Fuente Nueva s/n, 19071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, University of Granada, Fuente Nueva s/n, 19071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
28
|
El-Jeni R, Böhme K, El Bour M, Calo-Mata P, Kefi R, Barros-Velázquez J, Bouhaouala-Zahar B. Rapid genus identification of selected lactic acid bacteria isolated from Mugil cephalis and Oreochromis niloticus organs using MALDI-TOF. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
Mohammadian T, Alishahi M, Tabandeh MR, Ghorbanpoor M, Gharibi D. Changes in Immunity, Expression of some Immune-Related Genes of Shabot Fish, Tor grypus, Following Experimental Infection with Aeromonas hydrophila: Effects of Autochthonous Probiotics. Probiotics Antimicrob Proteins 2017; 10:616-628. [DOI: 10.1007/s12602-017-9373-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, Lazado CC. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 2016; 36:228-241. [PMID: 27075688 DOI: 10.1080/01652176.2016.1172132] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.
Collapse
Affiliation(s)
- Mohammad Jalil Zorriehzahra
- a Department of Aquatic Animal Health and Diseases , Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO) , Tehran , I.R. Iran
| | - Somayeh Torabi Delshad
- b Department of Aquatic Animal Health and Diseases , School of Veterinary Medicine, Shiraz University , Shiraz , I.R. Iran
| | - Milad Adel
- a Department of Aquatic Animal Health and Diseases , Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO) , Tehran , I.R. Iran
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - K Karthik
- d Division of Bacteriology and Mycology , Indian Veterinary Research Institute, Izatnagar , Bareilly , India
| | - Kuldeep Dhama
- e Division of Pathology , Indian Veterinary Research Institute, Izatnagar , Bareilly , India
| | - Carlo C Lazado
- f Section for Aquaculture , National Institute of Aquatic Resources, Technical University of Denmark , Hirtshals , Denmark
| |
Collapse
|
31
|
Lee W, Ahn G, Oh JY, Kim SM, Kang N, Kim EA, Kim KN, Jeong JB, Jeon YJ. A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. FISH & SHELLFISH IMMUNOLOGY 2016; 51:313-320. [PMID: 26921543 DOI: 10.1016/j.fsi.2016.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/20/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Olive flounder (Paralichthys olivaceus), also known as the Japanese flounder in Japan, is one of the most important commercial marine finfish species cultured in Korea and Japan. The purpose of this study was to evaluate how a species of brown algae (Ecklonia cava, E. cava) affects the growth rate of olive flounder and its immune response to pathogenic bacteria. First, the experimental fish were divided into four groups: the control group was fed the diet containing only 1.0% Lactobacillus plantarum (L. plantarum), group I was fed 1.0% L. plantarum and 1.0% E. cava (EC), group II was fed 1.0% L. plantarum and 0.1% ethanol extract of EC (EE), and group III was fed 1.0% L. plantarum and 0.5% EE. The diets fed to the fish twice a day for 16 weeks. The results indicated that supplementation with 1.0% EC and 0.1% EE improved the growth and body weight of olive flounder, and decreased its mortality. This diet, however, did not significantly affect the biochemical profiles of the experimental flounder. The supplementation of 1.0% EC also enhanced the innate immune response of the fish, as evidenced by the high respiratory burst, and increased serum lysozyme and myeloperoxidase activity. The addition of 1.0% EC and either 0.1% or 0.5% EE also decreased the accumulative mortality of olive flounder infected by pathogenic bacteria (Edwardsiella tarda, Streptococcus iniae, and Vibrio harveyi). Overall, these results suggest that E. cava can act as a prebiotic by improving the innate immune response in fish infected with pathogenic bacteria as increased the growth of the probiotic.
Collapse
Affiliation(s)
- WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Seung Min Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Nalae Kang
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun A Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Kil-Nam Kim
- Marine Bio Research Team, Korea Basic Science Institute (KBSI), 690-140, Republic of Korea
| | - Joon Bum Jeong
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
32
|
Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss AS. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2016; 49:275-285. [PMID: 26766177 DOI: 10.1016/j.fsi.2015.12.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan; Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan; Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Shunsuke Koshio
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Manabu Ishikawa
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Saichiro Yokoyama
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Mohammed F El Basuini
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan; Department of Animal Production, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Md Sakhawat Hossain
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan; Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Truong H Nhu
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan; Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Serge Dossou
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan; Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| | - Amina S Moss
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima 890-0056, Japan
| |
Collapse
|
33
|
Etyemez M, Balcazar JL. Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Res Vet Sci 2016; 105:62-4. [PMID: 27033910 DOI: 10.1016/j.rvsc.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 01/19/2023]
Abstract
One hundred and twenty bacterial isolates were obtained from the intestinal mucus of Nile tilapia (Oreochromis niloticus) and screened for antagonistic activity and adherence abilities. Based on in vitro antagonism against two pathogens (Streptococcus iniae and Edwardsiella piscicida), five isolates were selected and identified by 16S rRNA gene sequence analysis. All antagonistic isolates were affiliated to the genus Bacillus, which showed inhibitory activity against S. iniae. Only the isolate B191 (closely related to Bacillus mojavensis) inhibited the growth of both pathogens. Moreover, isolate B191 adhered significantly better to fish intestinal mucus than other antagonistic isolates. According to our results, these bacterial isolates, particularly isolate B191, should be further studied to explore their probiotic effects under in vivo conditions.
Collapse
Affiliation(s)
- Miray Etyemez
- Department of Aquaculture and Fish Diseases, Faculty of Fisheries, University of Cukurova, Adana 01330, Turkey
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona 17003, Spain.
| |
Collapse
|
34
|
Farias THV, Levy-Pereira N, Alves LDO, Dias DDC, Tachibana L, Pilarski F, Belo MADA, Ranzani-Paiva MJT. Probiotic feeding improves the immunity of pacus, Piaractus mesopotamicus, during Aeromonas hydrophila infection. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Ghosh B, Cain KD, Nowak BF, Bridle AR. Microencapsulation of a putative probiotic Enterobacter species, C6-6, to protect rainbow trout, Oncorhynchus mykiss (Walbaum), against bacterial coldwater disease. JOURNAL OF FISH DISEASES 2016; 39:1-11. [PMID: 25272249 DOI: 10.1111/jfd.12311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD), which has a major impact on salmonid aquaculture globally. An Enterobacter species, C6-6, isolated from the gut of rainbow trout, Oncorhynchus mykiss (Walbaum), has been identified as a potential probiotic species providing protection against BCWD. This study examined the effects of alginate microencapsulation on the protective efficacy of C6-6 against BCWD in vivo when administered to rainbow trout fry orally or by intraperitoneal (IP) injection. Viable C6-6 bacteria were microencapsulated successfully, and this process (microencapsulation) did not significantly deteriorate its protective properties as compared to the administration of non-microencapsulated C6-6 bacteria. Both oral and IP delivery of C6-6 achieved significantly better protection than control treatments that did not contain C6-6 bacteria. The highest relative percent survival (RPS) resulted from IP delivery (71.4%) and was significantly greater than the highest oral RPS (38.6%). Successful intestinal colonization was not critical to protective effects of C6-6. The study showed that C6-6 administration, with or without encapsulation, was a viable choice for protecting fry from BCWD especially when administered intraperitoneally.
Collapse
Affiliation(s)
- B Ghosh
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - K D Cain
- Department of Fish and Wildlife Resources and the Aquaculture Research Institute, University of Idaho, Moscow, Idaho, USA
| | - B F Nowak
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - A R Bridle
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
36
|
Araújo C, Muñoz-Atienza E, Pérez-Sánchez T, Poeta P, Igrejas G, Hernández PE, Herranz C, Ruiz-Zarzuela I, Cintas LM. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:820-830. [PMID: 26307018 DOI: 10.1007/s10126-015-9660-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.
Collapse
Affiliation(s)
- Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
- Centre for Animal Science and Veterinary, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Tania Pérez-Sánchez
- Laboratory of Fish Pathology, Faculty of Veterinary, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Patrícia Poeta
- Centre for Animal Science and Veterinary, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Imanol Ruiz-Zarzuela
- Laboratory of Fish Pathology, Faculty of Veterinary, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain.
| |
Collapse
|
37
|
Hai N. The use of probiotics in aquaculture. J Appl Microbiol 2015; 119:917-35. [DOI: 10.1111/jam.12886] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
Affiliation(s)
- N.V. Hai
- Sustainable Aquatic Resources and Biotechnology; Curtin University of Technology; Bentley WA Australia
| |
Collapse
|
38
|
Sequeiros C, Garcés ME, Vallejo M, Marguet ER, Olivera NL. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol 2014; 197:449-58. [PMID: 25549984 DOI: 10.1007/s00203-014-1076-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/03/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.
Collapse
Affiliation(s)
- Cynthia Sequeiros
- Centro Nacional Patagónico (CENPAT-CONICET), Blvd. Brown Nº 2915, U9120ACD, Puerto Madryn, Chubut, Argentina,
| | | | | | | | | |
Collapse
|
39
|
de Paula AT, Jeronymo-Ceneviva AB, Todorov SD, Penna ALB. The Two Faces ofLeuconostoc mesenteroidesin Food Systems. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.981825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Reyes-Becerril M, Angulo C, Estrada N, Murillo Y, Ascencio-Valle F. Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper (Lutjanus peru). FISH & SHELLFISH IMMUNOLOGY 2014; 40:208-216. [PMID: 25014313 DOI: 10.1016/j.fsi.2014.06.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the effect of dietary microalgae Navicula sp single or in combination with Lactobacillus sakei on growth performance, humoral immune parameters and intestinal morphology in Pacific red snapper, Lutjanus peru. The experimental fish were grouped into four treatment diets which were a control diet (commercial diet, Control), silage microalgae Navicula sp plus L. sakei (10(6) CFU g(-1), Navicula + L. sakei), lyophilized microalgae (Navicula) and L. sakei (10(6) CFU g(-1), L. sakei). The blood and intestine samples were collected on week 4 and 8. The weight gain showed an additive effect of Navicula + L. sakei at 8 weeks of treatment compared with fish fed control diet. Overall, physiological parameters such as total protein and hemoglobin were increased in fish fed with Navicula and L. sakei diets at 4 and 8 weeks of feeding assay, respectively. There was a significant improvement in immune parameters, principally in myeloperoxidase, lysozyme, total antiproteases activities and IgM in fish fed with Navicula + L. sakei and L. sakei diets at 4 or 8 weeks of treatments. Serum antioxidant capabilities revealed significant increase in phosphatase alkaline, esterase, protease, superoxide dismutase and catalase in groups which received diet supplemented with Navicula + L. sakei and L. sakei diets. Finally, light microscopy observations revealed no effect of experimental diets on microvilli height. Curiously, the presence of vacuoles inside the enterocytes was significant higher in the intestine of L. sakei group after four or six weeks of feeding. Elevated intraepithelial leucocyte levels and melanomacrophages centers were observed in fish fed Navicula or control diets at any time of the experiment. To conclude, the results of the present study demonstrate that the fish that were fed with Navicula + L. sakei or L. sakei diets yielded significantly better immune status and antioxidant capabilities.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | - Carlos Angulo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | - Norma Estrada
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | - Ylenia Murillo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | - Felipe Ascencio-Valle
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico.
| |
Collapse
|
41
|
Reyes-Becerril M, Ascencio F, Gracia-Lopez V, Macias ME, Roa MC, Esteban MÁ. Single or combined effects of Lactobacillus sakei and inulin on growth, non-specific immunity and IgM expression in leopard grouper (Mycteroperca rosacea). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1169-1180. [PMID: 24464476 DOI: 10.1007/s10695-014-9913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the single or combined effects of Lactobacillus sakei with inulin suitable for immunological in vivo studies in farmed fish. By in vitro assays, L. sakei strain 5-4 showed antibacterial activities against all assayed fish pathogens (except the Vibrio harveyi strain CAIM-1793). L. sakei was able to survive at high fish bile concentrations. Fermentation of the agave inulin resulted in a large increase in number of lactobacilli. For the in vivo study, fish were fed for 8 weeks four practical diets: control diet (control), L. sakei 5-4 (10(7) CFU/g), inulin (1% or 10 g/kg) and L. sakei + inulin (10(7) CFU/g + 10 g/kg). The weight gain showed clearly the synergistic effect of L. sakei 5-4 and inulin at 6 and 8 weeks of treatments. Leopard grouper fed with L. sakei alone or combined with inulin have significantly increased the assayed physiological and humoral immune parameters. By real-time PCR assays, the mRNA transcripts of immunoglobulin M (IgM) were found to be higher expressed in intestine, head kidney, mucus, gill, spleen and skin. Moreover, mRNA expression levels of IgM in head kidney and anterior intestine were measured by real-time PCR. L. sakei 5-4 and L. sakei + inulin supplemented diet up-regulated the expression of IgM at week 4 and 8 in intestine and head kidney, respectively. These results support the idea that the L. sakei 5-4 alone or combined with agave inulin improved growth performance and stimulates the immune system of leopard grouper.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, 23090, La Paz, B.C.S., Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE. Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol 2014; 23:4831-45. [PMID: 24975397 DOI: 10.1111/mec.12846] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host-specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among-individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next-generation sequencing to genotype the sticklebacks' gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC-microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex-dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis-associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite-driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.
Collapse
Affiliation(s)
- Daniel I Bolnick
- Howard Hughes Medical Institute and Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lazado CC, Caipang CMA. Mucosal immunity and probiotics in fish. FISH & SHELLFISH IMMUNOLOGY 2014; 39:78-89. [PMID: 24795079 DOI: 10.1016/j.fsi.2014.04.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 04/23/2014] [Indexed: 05/13/2023]
Abstract
Teleost mucosal immunity has become the subject of unprecedented research studies in recent years because of its diversity and defining characteristics. Its immune repertoire is governed by the mucosa-associated lymphoid tissues (MALT) which are divided into gut-associated lymphoid tissues (GALT), skin-associated lymphoid tissues (SALT), and gill-associated lymphoid tissues (GIALT). The direct contact with its immediate environment makes the mucosal surfaces of fish susceptible to a wide variety of pathogens. The inherent immunocompetent cells and factors in the mucosal surfaces together with the commensal microbiota have pivotal role against pathogens. Immunomodulation is a popular prophylactic strategy in teleost and probiotics possess this beneficial feature. Most of the studies on the immunomodulatory properties of probiotics in fish mainly discussed their impacts on systemic immunity. In contrast, few of these studies discussed the immunomodulatory features of probiotics in mucosal surfaces and are concentrated on the influences in the gut. Significant attention should be devoted in understanding the relationship of mucosal immunity and probiotics as the present knowledge is limited and are mostly based on extrapolations of studies in humans and terrestrial vertebrates. In the course of the advancement of mucosal immunity and probiotics, new perspectives in probiotics research, e.g., probiogenomics have emerged. This review affirms the relevance of probiotics in the mucosal immunity of fish by revisiting and bridging the current knowledge on teleost mucosal immunity, mucosal microbiota and immunomodulation of mucosal surfaces by probiotics. Expanding the knowledge of immunomodulatory properties of probiotics especially on mucosal immunity is essential in advancing the use of probiotics as a sustainable and viable strategy for successful fish husbandry.
Collapse
Affiliation(s)
- Carlo C Lazado
- Aquaculture Genomics Research Unit, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| | - Christopher Marlowe A Caipang
- Disease and Pathogen Transmission Research Group, Institute of Marine Research, P.O. Box 1870, Nordnes, Bergen 5817, Norway.
| |
Collapse
|
44
|
C De B, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:921-971. [PMID: 24419543 DOI: 10.1007/s10695-013-9897-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Aquaculture is emerging as one of the most viable and promising enterprises for keeping pace with the surging need for animal protein, providing nutritional and food security to humans, particularly those residing in regions where livestock is relatively scarce. With every step toward intensification of aquaculture practices, there is an increase in the stress level in the animal as well as the environment. Hence, disease outbreak is being increasingly recognized as one of the most important constraints to aquaculture production in many countries, including India. Conventionally, the disease control in aquaculture has relied on the use of chemical compounds and antibiotics. The development of non-antibiotic and environmentally friendly agents is one of the key factors for health management in aquaculture. Consequently, with the emerging need for environmentally friendly aquaculture, the use of alternatives to antibiotic growth promoters in fish nutrition is now widely accepted. In recent years, probiotics have taken center stage and are being used as an unconventional approach that has numerous beneficial effects in fish and shellfish culture: improved activity of gastrointestinal microbiota and enhanced immune status, disease resistance, survival, feed utilization and growth performance. As natural products, probiotics have much potential to increase the efficiency and sustainability of aquaculture production. Therefore, comprehensive research to fully characterize the intestinal microbiota of prominent fish species, mechanisms of action of probiotics and their effects on the intestinal ecosystem, immunity, fish health and performance is reasonable. This review highlights the classifications and applications of probiotics in aquaculture. The review also summarizes the advancement and research highlights of the probiotic status and mode of action, which are of great significance from an ecofriendly, sustainable, intensive aquaculture point of view.
Collapse
Affiliation(s)
- Bidhan C De
- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | | | | | | | | | | |
Collapse
|
45
|
Talpur AD, Memon AJ, Khan MI, Ikhwanuddin M, Abdullah MDD, Bolong AMA. GutLactobacillussp. bacteria as probiotics forPortunus pelagicus(Linnaeus, 1758) larviculture: effects on survival, digestive enzyme activities and water quality. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2012.714406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 2013; 79:4336-46. [PMID: 23666326 DOI: 10.1128/aem.00830-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus garvieae 21881, isolated in a human clinical case, produces a novel class IId bacteriocin, garvicin A (GarA), which is specifically active against other L. garvieae strains, including fish- and bovine-pathogenic isolates. Purification from active supernatants, sequence analyses, and plasmid-curing experiments identified pGL5, one of the five plasmids found in L. garvieae [M. Aguado-Urda et al., PLoS One 7(6):e40119, 2012], as the coding plasmid for the structural gene of GarA (lgnA), its putative immunity protein (lgnI), and the ABC transporter and its accessory protein (lgnC and lgnD). Interestingly, pGL5-cured strains were still resistant to GarA. Other putative bacteriocins encoded by the remaining plasmids were not detected during purification, pointing to GarA as the main inhibitor secreted by L. garvieae 21881. Mode-of-action studies revealed a potent bactericidal activity of GarA. Moreover, transmission microscopy showed that GarA seems to act by inhibiting septum formation in L. garvieae cells. This potent and species-specific inhibition by GarA holds promise for applications in the prevention or treatment of infections caused by pathogenic strains of L. garvieae in both veterinary and clinical settings.
Collapse
|
47
|
Burbank DR, Lapatra SE, Fornshell G, Cain KD. Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2012; 35:809-816. [PMID: 22913277 DOI: 10.1111/j.1365-2761.2012.01432.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/31/2011] [Accepted: 11/22/2011] [Indexed: 06/01/2023]
Abstract
In this study, 318 bacterial strains were isolated from the gastrointestinal (GI) tracts of 29 rainbow trout, Oncorhynchus mykiss (Walbaum). These bacteria were screened in vitro for their ability to inhibit growth of Flavobacterium psychrophilum, the causative agent of coldwater disease. Bacteria observed to inhibit F. psychrophilum growth were further screened against rainbow trout bile, as an indicator of their ability to survive in the GI tract. This screening resulted in narrowing the pool to 24 bacterial isolates. Those 24 isolates were then tested for pathogenicity in rainbow trout by intraperitoneal injection. Following a 28-day challenge, eight isolates were shown to cause direct mortality and were eliminated from further study. As a result, 16 bacterial isolates were identified as probiotic candidates with the potential to control or reduce disease caused by F. psychrophilum.
Collapse
Affiliation(s)
- D R Burbank
- Department of Fish and Wildlife, University of Idaho, Moscow, ID, USA
| | | | | | | |
Collapse
|
48
|
Kamgar M, Ghane M. Evaluation of Bacillus subtilis Effect as Probiotic on Hematological Parameters of Rainbow Trout, Oncorhynchus mykiss (Walbaum) Following Experimental Infection with Streptococcus iniae. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jfas.2012.422.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Reyes-Becerril M, Ascencio-Valle F, Macias ME, Maldonado M, Rojas M, Esteban MÁ. Effects of marine silages enriched with Lactobacillus sakei 5-4 on haemato-immunological and growth response in Pacific red snapper (Lutjanus peru) exposed to Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:984-992. [PMID: 22940556 DOI: 10.1016/j.fsi.2012.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Combined effects of marine silages enriched with Lactobacillus sakei 5-4 were evaluated on growth performance, immune activity and disease resistance of Pacific red snapper (Lutjanus peru) against Aeromonas veronii infection. The experimental fish were divided into three groups which were fed with each one of the following diets: silage-probiotic-free diet (control, C group), Pacific creole-fish silage diet supplemented with live L. sakei (10(6) CFU g(-1)) (FSLact group) and Humboldt squid silage diet supplemented with live L. sakei (10(6) CFU g(-1)) (SSLact group) for 6 weeks. After 6 weeks, fish were immunocompromised with pathogenic A. veronii and spleen and liver samples were processed for histopathological studies. Generally, the results showed enhanced growth performance in fish fed the diet containing SSLact at 6 and 7 weeks compared with fish fed control diet. Addition of SSLact had an increase in plasmatic protein at week 6 and post-challenge. Hemoglobin concentration increased after challenge in fish fed with SSLact compared to control group. At week 6 and post-challenge the results indicated that, the fish groups which received diet supplemented with SSLact revealed significant increase in humoral immune parameters. Histologically, fish fed C diets showed marked fatty degeneration and great activation of melanomacrophage centers compare with SSLact and FSLact groups. These results support the idea that the marine silages with squid as protein source enriched or combined with L. sakei 5-4 increases the body weight and stimulates the physiological and humoral immune parameters in Pacific red snapper infected with A. veronii.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | | | | | | | | | | |
Collapse
|
50
|
Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 2012; 97:405-30. [PMID: 22512693 DOI: 10.1111/j.1439-0396.2012.01301.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.
Collapse
Affiliation(s)
- S Mohapatra
- Laboratory of Freshwater Fish Reproduction and Development, School of Life Science, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|