1
|
Martín-Faivre L, Prince L, Cornu C, Villeret B, Sanchez-Guzman D, Rouzet F, Sallenave JM, Garcia-Verdugo I. Pulmonary delivery of silver nanoparticles prevents influenza infection by recruiting and activating lymphoid cells. Biomaterials 2025; 312:122721. [PMID: 39106817 DOI: 10.1016/j.biomaterials.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.
Collapse
Affiliation(s)
- Lydie Martín-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Lisa Prince
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Clémentine Cornu
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Bérengère Villeret
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - François Rouzet
- Nuclear Medicine Department, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris Cité and Inserm U1148, F-75018, Paris, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| |
Collapse
|
2
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Constantinesco NJ, Srikanth S, De Vito L, Moras C, Ramasubramanian V, Chinnappan B, Hartwick S, Schwab KE, Wu Y, Gopal R. STAT1 regulates neutrophil gelatinase B-associated lipocalin induction in influenza-induced myocarditis. Sci Rep 2024; 14:11124. [PMID: 38750107 PMCID: PMC11096373 DOI: 10.1038/s41598-024-61953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.
Collapse
Affiliation(s)
- Nicholas J Constantinesco
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sashwath Srikanth
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Louis De Vito
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Crystal Moras
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vennila Ramasubramanian
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baskaran Chinnappan
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean Hartwick
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristina E Schwab
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Radha Gopal
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Montone RA, Camilli M, Calvieri C, Magnani G, Bonanni A, Bhatt DL, Rajagopalan S, Crea F, Niccoli G. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur Heart J 2024; 45:419-438. [PMID: 38238478 PMCID: PMC10849374 DOI: 10.1093/eurheartj/ehae001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Ischaemic heart disease represents the leading cause of morbidity and mortality, typically induced by the detrimental effects of risk factors on the cardiovascular system. Although preventive interventions tackling conventional risk factors have helped to reduce the incidence of ischaemic heart disease, it remains a major cause of death worldwide. Thus, attention is now shifting to non-traditional risk factors in the built, natural, and social environments that collectively contribute substantially to the disease burden and perpetuate residual risk. Of importance, these complex factors interact non-linearly and in unpredictable ways to often enhance the detrimental effects attributable to a single or collection of these factors. For this reason, a new paradigm called the 'exposome' has recently been introduced by epidemiologists in order to define the totality of exposure to these new risk factors. The purpose of this review is to outline how these emerging risk factors may interact and contribute to the occurrence of ischaemic heart disease, with a particular attention on the impact of long-term exposure to different environmental pollutants, socioeconomic and psychological factors, along with infectious diseases such as influenza and COVID-19. Moreover, potential mitigation strategies for both individuals and communities will be discussed.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Magnani
- Department of Medicine, University of Parma, Parma, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
5
|
Santos FM, Costa VRDM, de Araújo S, de Sousa CDF, Moreira TP, Gonçalves MR, dos Santos ACPM, Ferreira HAS, Costa PAC, Barrioni BR, Bargi-Souza P, Pereira MDM, Nogueira ML, Souza DDG, Guimarães PPG, Teixeira MM, Queiroz-Junior CM, Costa VV. Essential role of the CCL2-CCR2 axis in Mayaro virus-induced disease. J Virol 2024; 98:e0110223. [PMID: 38169294 PMCID: PMC10805060 DOI: 10.1128/jvi.01102-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.
Collapse
Affiliation(s)
- Franciele Martins Santos
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victor Rodrigues de Melo Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone de Araújo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla Daiane Ferreira de Sousa
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Rodrigues Gonçalves
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Clara Paiva Menezes dos Santos
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Lacerda Nogueira
- Virology Research Laboratory, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Danielle da Glória Souza
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Liang X, Qin Y, Wu D, Wang Q, Wu H. Pyroptosis: a double-edged sword in lung cancer and other respiratory diseases. Cell Commun Signal 2024; 22:40. [PMID: 38225586 PMCID: PMC10790448 DOI: 10.1186/s12964-023-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus on the multifaceted roles of pyroptosis in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Ya Qin
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dan Wu
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| |
Collapse
|
7
|
Cortellino S, Quagliariello V, Delfanti G, Blaževitš O, Chiodoni C, Maurea N, Di Mauro A, Tatangelo F, Pisati F, Shmahala A, Lazzeri S, Spagnolo V, Visco E, Tripodo C, Casorati G, Dellabona P, Longo VD. Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects. Nat Commun 2023; 14:5529. [PMID: 37684243 PMCID: PMC10491752 DOI: 10.1038/s41467-023-41066-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Immune checkpoint inhibitors cause side effects ranging from autoimmune endocrine disorders to severe cardiotoxicity. Periodic Fasting mimicking diet (FMD) cycles are emerging as promising enhancers of a wide range of cancer therapies including immunotherapy. Here, either FMD cycles alone or in combination with anti-OX40/anti-PD-L1 are much more effective than immune checkpoint inhibitors alone in delaying melanoma growth in mice. FMD cycles in combination with anti-OX40/anti-PD-L1 also show a trend for increased effects against a lung cancer model. As importantly, the cardiac fibrosis, necrosis and hypertrophy caused by immune checkpoint inhibitors are prevented/reversed by FMD treatment in both cancer models whereas immune infiltration of CD3+ and CD8+ cells in myocardial tissues and systemic and myocardial markers of oxidative stress and inflammation are reduced. These results indicate that FMD cycles in combination with immunotherapy can delay cancer growth while reducing side effects including cardiotoxicity.
Collapse
Affiliation(s)
- S Cortellino
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - V Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - G Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - O Blaževitš
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - C Chiodoni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - N Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Di Mauro
- Pathology and Cytopathology Unit, Department of Support to Cancer Pathways Diagnostics Area, Istituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - F Tatangelo
- Pathology and Cytopathology Unit, Department of Support to Cancer Pathways Diagnostics Area, Istituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - F Pisati
- Histopathology Unit, Cogentech Società Benefit srl, 20139, Milan, Italy
| | - A Shmahala
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - S Lazzeri
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - V Spagnolo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - E Visco
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - C Tripodo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- University of Palermo School of Medicine, Palermo, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V D Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
8
|
Ehsani F, Bagheri R, Darban M, Hemati M, Bahrami M, Sharafieh F. Effects of Photobiomodulation Therapy on Lung Function and Inflammatory Factors in Patients with COVID-19 During Acute Stage. Photobiomodul Photomed Laser Surg 2023; 41:483-489. [PMID: 37738370 DOI: 10.1089/photob.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Objective: We aimed to evaluate the effects of photobiomodulation therapy on the respiratory function and laboratory parameters in COVID-19 participants with respiratory involvement. Methods: A randomized, double-blind controlled design was used. This study was conducted at Koosar Hospital. Thirty participants with COVID-19 who were hospitalized met the inclusion criteria and were randomly assigned to two groups. Patients were treated with a program of five sessions of high-power photobiomodulation (intervention group) and placebo photobiomodulation (control group). Both groups received standard treatment. Outcomes were assessed before and after the intervention (two sessions), according to the immune system function and laboratory tests for the respiratory rate (RR), oxygen saturation, and inflammatory factors, including C-reactive protein (CRP), white blood cells, and interleukin-6 (IL-6), as well as complete blood count (CBC), hematocrit, hemoglobin, and ferritin. Results: Findings indicated that the values of ferritin, erythrocyte sedimentation ratio, CRP, IL-6, O2 saturation, and RR were significantly improved after the intervention in both groups (p < 0.05). Independent T-test analyses also indicated significant differences in the CRP, IL-6, and O2 saturation in the photobiomodulation group compared with the control group after the five-session intervention (p < 0.05). Conclusions: Application of photobiomodulation is recommended for treatment of respiratory problems in patients with COVID-19 to improve clinical signs and control inflammatory factors. Clinical Trial Registration: IRCT2017070934969N1.
Collapse
Affiliation(s)
- Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasool Bagheri
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahbubeh Darban
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Bahrami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Sharafieh
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
9
|
Ling L, Ren A, Lu Y, Zhang Y, Zhu H, Tu P, Li H, Chen D. The synergistic effect and mechanisms of flavonoids and polysaccharides from Houttuynia cordata on H1N1-induced pneumonia in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115761. [PMID: 36309113 DOI: 10.1016/j.jep.2022.115761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (HC, Saururaceae family) is a classical Traditional Chinese Medicine used to treat pneumonia clinically. The total flavonoids (HCF) and polysaccharides (HCP) are key medicinal components of H. cordata involved in its beneficial effect on viral pneumonia. AIM OF THE STUDY The purpose of the study is to investigate the synergistic or complementary effects of combination of HCF and HCP on viral pneumonia as well as the mechanisms underlying. MATERIALS AND METHODS HCF or HCP were administrated separately or combined in different proportions on influenza virus H1N1 - infected mice. The survival and lung weight of mice were recorded. The synergistic effect on HCF and HCP combination was calculated by Chou-Talalay method. H&E staining was performed to detect lung histomorphology. Western blot, immunohistochemistry and enzyme linked immunosorbent assay were done to analyze the representative protein expression in lung and intestine tissues. AB - PAS staining on intestine tissue sections was performed to evaluate the histopathology of intestines. Bacterial genomic DNA was extracted and sequenced for gut microbiota analysis. RESULTS In H1N1 lethally infected mice, the combined administration of HCF and HCP significantly increased the survival rate and prolonged the life span of mice, compared with mono-drug therapy. The viral pneumonia was remarkably improved by HCF and HCP combination reflected by lower lung index, more intact lung morphology, and less inflammatory cells and mediators. Furthermore, the combination of HCF and HCP regulated intestinal microbiota, significantly reduced the proportion of pathogenic Proteobacteria and the secretion of proinflammatory cytokine in gut. The combined HCF and HCP showed synergistic effect on reducing lung and intestine injury. The complementary interaction was also found in HCF and HCP combined therapy, as HCF provided the significant antiviral activity and HCP markedly improved intestinal physical barrier and increased the protein expression involving removal of edema. CONCLUSIONS Our findings indicated that combination of HCF and HCP from H. cordata synergistically alleviated H1N1-induced viral pneumonia in mice via multimodal regulation of both pulmonary and intestinal homeostasis, which might imply novel therapeutic strategy for treating viral pneumonia.
Collapse
Affiliation(s)
- Lijun Ling
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Anqi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Haiyan Zhu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peng Tu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
10
|
Nayebi A, Navashenaq JG, Soleimani D, Nachvak SM. Probiotic supplementation: A prospective approach in the treatment of COVID-19. Nutr Health 2022; 28:163-175. [PMID: 34747257 PMCID: PMC9160438 DOI: 10.1177/02601060211049631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Despite strategies based on social distancing, the coronavirus disease 2019 (COVID-19) expands globally, and so far, many attempts have been made to achieve effective treatment for patients with COVID-19. This disease infects the lower respiratory tract and may lead to severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 also can cause gastrointestinal infections. Therefore, COVID-19 patients with gastrointestinal symptoms are more likely to be complicated by SARS-CoV. In this disease, acquired immune responses are impaired, and uncontrolled inflammatory responses result in cytokine storms, leading to acute lung injury and thrombus formation. Probiotics are living microorganisms that contribute to the health of the host if administered in appropriate doses. Aim: This study aimed to provide evidence to show the importance of gut dysbiosis in viral disease, especially COVID-19. Therefore, we have focused on the impact of probiotics consumption on preventing severe symptoms of the disease. Methods: We have entirely searched SCOPUS, PubMed, and Google Scholar databases to collect evidence regarding the relationship between probiotics and viral infections to expand this relationship to the COVID-19. Results: It has been shown that probiotics directly counteract SARS-CoV in the gastrointestinal and respiratory tracts. Moreover, probiotics suppress severe immune responses and prevent cytokine storms to inhibit pathologic inflammatory conditions in the body via modulation of immune responses. Conclusion: According to available evidence based on their antiviral and respiratory activities, using probiotics might be an adjuvant therapy to reduce the burden and severity of this disease.
Collapse
Affiliation(s)
- Atiyeh Nayebi
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Davood Soleimani
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Kim EH, Nguyen TQ, Casel MAB, Rollon R, Kim SM, Kim YI, Yu KM, Jang SG, Yang J, Poo H, Jung JU, Choi YK. Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4 + T Cell Responses. J Virol 2022; 96:e0187321. [PMID: 35107382 PMCID: PMC8941868 DOI: 10.1128/jvi.01873-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Thiruvengadam M, Subramanian U, Venkidasamy B, Thirupathi P, Samynathan R, Shariati MA, Rebezov M, Chung IM, Rengasamy KRR. Emerging role of nutritional short-chain fatty acids (SCFAs) against cancer via modulation of hematopoiesis. Crit Rev Food Sci Nutr 2021; 63:827-844. [PMID: 34319824 DOI: 10.1080/10408398.2021.1954874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The understanding of gut microbiota has emerged as a significant frontier in development of strategies to maintain normal human body's homeostasis and preventing the disease development over the last decade. The composition of the gut microbiota influences the clinical benefit of immune checkpoints in patients with advanced cancer, but the mechanisms underlying this relationship are unclear. Cancer is among the leading causes of mortality worldwide. So far, there is no universal treatment for cancer and despite significant advances, a lot of improvement on cancer therapy is required. Owing to its role in preserving the host's health and maintaining cellular integrity, the human gut microbiome has recently drawn a lot of interest as a target for cancer treatment. Dietary fiber is fermented by the gut microbiota to generate short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, which are physiologically active metabolites. SCFAs can modulate the pathophysiology of the tumor environment through various critical signaling pathways. In addition, SCFAs can bind to carcinogens and other toxic chemicals, thus facilitating their biotransformation and elimination through different excretory mechanisms. This review discusses the mechanisms of action of short-chain fatty acids in modulating hematopoiesis of various immune system cells and the resultant beneficial anti-cancer effects. It also provides future perspectives on cancer therapy.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Prabhu Thirupathi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation.,Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| |
Collapse
|
13
|
Zhang Y, Wang R, Shi W, Zheng Z, Wang X, Li C, Zhang S, Zhang P. Antiviral effect of fufang yinhua jiedu (FFYH) granules against influenza A virus through regulating the inflammatory responses by TLR7/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114063. [PMID: 33813013 PMCID: PMC9759603 DOI: 10.1016/j.jep.2021.114063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang-Yinhua-Jiedu Granules (FFYH) optimized from a Yin-Qiao-San, as traditional Chinese medicine (TCM), was used to treat influenza and upper respiratory tract infection and was recommended for the prevention and treatment of SARS in 2003 and current COVID-19 in Anhui Province in 2020. AIM OF STUDY In the clinical studies, FFYH was very effective for the treatment of influenza, but the mechanism of action against influenza A virus remains unclear. In the present study, we investigated the antiviral effect of FFYH against influenza A virus in vitro and vivo. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was investigated for the first time. MATERIALS AND METHODS CPE inhibition assay and HA assay were used to evaluate the in vitro antiviral effects of FFYH against influenza A virus H1N1, H3N2, H5N1, H7N9 and H9N2. Mice were used to evaluate the antiviral effect of FFYH in vivo with ribavirin and lianhuaqingwen as positive controls. RT-PCR was used to quantify the mRNA transcription of TNF-α, IL-6, IFN-γ, IP10, and IL-1β mRNA. ELISA was used to examine the expression of inflammatory factors such as TNF-α, IL-6, IFN-γ, IP10, and IL-1β in sera. The blood parameters were analyzed with auto hematology analyzer. Moreover, the potential mechanism of FFYH against influenza A virus in vivo was also investigated. RESULTS FFYH showed a broad-spectrum of antiviral activity against H1N1, H3N2, H5N1, H7N9, and H9N2 influenza A viruses. Furthermore, FFYH dose-dependently increased the survival rate, significantly prolonged the median survival time of mice, and markedly reduced lung injury caused by influenza A virus. Also, FFYH significantly improve the sick signs, food taken, weight loss, blood parameters, lung index, and lung pathological changes. Moreover, FFYH could markedly inhibit the inflammatory cytokine expression of TNF-α, IL-6, IFN-γ, IP10, IL-10, and IL-1β mRNA or protein via inhibition of the TLR7/MyD88/NF-κB signaling pathway in vivo. CONCLUSION FFYH not only showed a broad-spectrum of anti-influenza virus activity in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. Furthermore, our results indicated that the in vivo antiviral effect of FFYH against influenza virus may be attributed to suppressing the expression of inflammatory cytokines via regulating the TLR7/MyD88/NF-κB signaling pathway. These findings provide evidence for the clinical treatment of influenza A virus infection with FFYH.
Collapse
Affiliation(s)
- Yuqian Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Ronghua Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Weiqing Shi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zhihui Zheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine & Jiangsu Provincial Key Laboratory of Human Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Cheng Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shuofeng Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China; College of Veterinary Medicine & Jiangsu Provincial Key Laboratory of Human Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Gu Y, Zuo X, Zhang S, Ouyang Z, Jiang S, Wang F, Wang G. The Mechanism behind Influenza Virus Cytokine Storm. Viruses 2021; 13:1362. [PMID: 34372568 PMCID: PMC8310017 DOI: 10.3390/v13071362] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses are still a serious threat to human health. Cytokines are essential for cell-to-cell communication and viral clearance in the immune system, but excessive cytokines can cause serious immune pathology. Deaths caused by severe influenza are usually related to cytokine storms. The recent literature has described the mechanism behind the cytokine-storm network and how it can exacerbate host pathological damage. Biological factors such as sex, age, and obesity may cause biological differences between different individuals, which affects cytokine storms induced by the influenza virus. In this review, we summarize the mechanism behind influenza virus cytokine storms and the differences in cytokine storms of different ages and sexes, and in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| |
Collapse
|
15
|
Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathog 2021; 17:e1009381. [PMID: 34197564 PMCID: PMC8248730 DOI: 10.1371/journal.ppat.1009381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions. Exacerbated complement activation and immune deregulation are at the basis of several pathologies induced by respiratory viruses. Here, we report that complement decay-accelerating factor (DAF), which inhibits complement activation in healthy cells, increases disease severity upon influenza A virus (IAV) infection. Remarkably, DAF interaction with IAV proteins, hemagglutinin (HA) and neuraminidase (NA), resulted in excessive complement activation and recruitment of innate and adaptive immune cells, without affecting viral loads. Furthermore, we observed that viral NA directly cleaves DAF and promotes complement activation, providing a possible link between IAV-DAF interaction and pathology. Therefore, our results unveil a novel pathway that could modulate disease severity, which may help to understand the increased pathogenicity of zoonotic and pandemic IAV infections.
Collapse
|
16
|
Wilden JJ, Jacob JC, Ehrhardt C, Ludwig S, Boergeling Y. Altered Signal Transduction in the Immune Response to Influenza Virus and S. pneumoniae or S. aureus Co-Infections. Int J Mol Sci 2021; 22:5486. [PMID: 34067487 PMCID: PMC8196994 DOI: 10.3390/ijms22115486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| | - Jasmin C. Jacob
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- CiM-IMPRS, The Joined Graduate School of the Cells in Motion Interfaculty Centre, University of Muenster and the International Max Planck Research School—Molecular Biomedicine, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Center for Molecular Biomedicine (CMB), Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany;
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- “Cells in Motion Interfaculty Center (CIMIC)”, WWU Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| |
Collapse
|
17
|
Heidari Z, Tajbakhsh A, Gheibi-Hayat SM, Moattari A, Razban V, Berenjian A, Savardashtaki A, Negahdaripour M. Probiotics/ prebiotics in viral respiratory infections: implication for emerging pathogens. Recent Pat Biotechnol 2021; 15:112-136. [PMID: 33874878 DOI: 10.2174/1872208315666210419103742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect the pulmonary health and the gastrointestinal system. OBJECTIVE This review aimed to discuss the impact of probiotics/ prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS The data were searched were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULT Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to the intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics efficiency. CONCLUSION Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Afagh Moattari
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton. New Zealand
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| |
Collapse
|
18
|
Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S. Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 2021; 17:e1009487. [PMID: 33905460 PMCID: PMC8078786 DOI: 10.1371/journal.ppat.1009487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Barbara Drobits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Gabriel M. Richard
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| |
Collapse
|
19
|
Liu S, Huang Z, Deng X, Zou X, Li H, Mu S, Cao B. Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation. J Cell Mol Med 2021; 25:1725-1738. [PMID: 33448094 PMCID: PMC7875920 DOI: 10.1111/jcmm.16275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
One of the key barriers for early identification and intervention of severe influenza cases is a lack of reliable immunologic indicators. In this study, we utilized differentially expressed genes screening incorporating weighted gene co‐expression network analysis in one eligible influenza GEO data set (GSE111368) to identify hub genes associated with clinical severity. A total of 10 genes (PBI, MMP8, TCN1, RETN, OLFM4, ELANE, LTF, LCN2, DEFA4 and HP) were identified. Gene set enrichment analysis (GSEA) for single hub gene revealed that these genes had a close association with antimicrobial response and neutrophils activity. To further evaluate these genes' ability for diagnosis/prognosis of disease developments, we adopted double validation with (a) another new independent data set (GSE101702); and (b) plasma samples collected from hospitalized influenza patients. We found that 10 hub genes presented highly correlation with disease severity. In particular, BPI and MMP8 encoding proteins in plasma achieved higher expression in severe and dead cases, which indicated an adverse disease development and suggested a frustrating prognosis. These findings provide new insight into severe influenza pathogenesis and identify two significant candidate genes that were superior to the conventional clinical indicators. These candidate genes or encoding proteins could be biomarker for clinical diagnosis and therapeutic targets for severe influenza infection.
Collapse
Affiliation(s)
- Shuai Liu
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Zhisheng Huang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Deng
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Zou
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shengrui Mu
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol 2020; 11:570681. [PMID: 33193350 PMCID: PMC7642610 DOI: 10.3389/fimmu.2020.570681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza virus infection causes 3-5 million cases of severe illness and 250,000-500,000 deaths worldwide annually. Although pneumonia is the most common complication associated with influenza, there are several reports demonstrating increased risk for cardiovascular diseases. Several clinical case reports, as well as both prospective and retrospective studies, have shown that influenza can trigger cardiovascular events including myocardial infarction (MI), myocarditis, ventricular arrhythmia, and heart failure. A recent study has demonstrated that influenza-infected patients are at highest risk of having MI during the first seven days of diagnosis. Influenza virus infection induces a variety of pro-inflammatory cytokines and chemokines and recruitment of immune cells as part of the host immune response. Understanding the cellular and molecular mechanisms involved in influenza-associated cardiovascular diseases will help to improve treatment plans. This review discusses the direct and indirect effects of influenza virus infection on triggering cardiovascular events. Further, we discussed the similarities and differences in epidemiological and pathogenic mechanisms involved in cardiovascular events associated with coronavirus disease 2019 (COVID-19) compared to influenza infection.
Collapse
Affiliation(s)
- Radha Gopal
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
21
|
Lehtoranta L, Latvala S, Lehtinen MJ. Role of Probiotics in Stimulating the Immune System in Viral Respiratory Tract Infections: A Narrative Review. Nutrients 2020; 12:nu12103163. [PMID: 33081138 PMCID: PMC7602805 DOI: 10.3390/nu12103163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Viral respiratory tract infection (RTI) is the most frequent cause of infectious illnesses including the common cold. Pharmacological solutions for treating or preventing viral RTIs are so far limited and thus several self-care products are available in the market. Some dietary supplements such as probiotics have been shown to modulate immune system function and their role in reducing the risk and the course of RTIs has been investigated extensively within the past decade. However, the mechanism of action and the efficacy of probiotics against viral RTIs remains unclear. We searched PubMed, Google Scholar, and Web of Knowledge for pre-clinical and clinical studies investigating the effect of probiotics on respiratory virus infections, immune response, and the course of upper and lower respiratory tract illness. The literature summarized in this narrative review points out that specific probiotic strains seem effective in pre-clinical models, through stimulating the immune system and inhibiting viral replication. Clinical studies indicate variable efficacy on upper respiratory illnesses and lack proof of diagnosed viral infections. However, meta-analyses of clinical studies indicate that probiotics could be beneficial in upper respiratory illnesses without specific etiology. Further studies aiming at discovering the mechanisms of action of probiotics and clinical efficacy are warranted.
Collapse
|
22
|
van de Ven K, de Heij F, van Dijken H, Ferreira JA, de Jonge J. Systemic and respiratory T-cells induced by seasonal H1N1 influenza protect against pandemic H2N2 in ferrets. Commun Biol 2020; 3:564. [PMID: 33037319 PMCID: PMC7547016 DOI: 10.1038/s42003-020-01278-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional influenza vaccines primarily induce a narrow antibody response that offers no protection against heterosubtypic infections. Murine studies have shown that T cells can protect against a broad range of influenza strains. However, ferrets are a more potent model for studying immune correlates of protection in influenza infection. We therefore set out to investigate the role of systemic and respiratory T cells in the protection against heterosubtypic influenza A infections in ferrets. H1N1-priming induced systemic and respiratory T cells that responded against pandemic H2N2 and correlated with reduced viral replication and disease. CD8-positive T cell responses in the upper and lower respiratory tract were exceptionally high. We additionally confirmed that H2N2-responsive T cells are present in healthy human blood donors. These findings underline the importance of the T cell response in influenza immunity and show that T cells are a potent target for future universal influenza vaccines.
Collapse
Affiliation(s)
- Koen van de Ven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Femke de Heij
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - José A Ferreira
- Department of Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
23
|
Besteman SB, Callaghan A, Langedijk AC, Hennus MP, Meyaard L, Mokry M, Bont LJ, Calis JJA. Transcriptome of airway neutrophils reveals an interferon response in life-threatening respiratory syncytial virus infection. Clin Immunol 2020; 220:108593. [PMID: 32920212 DOI: 10.1016/j.clim.2020.108593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Neutrophils are the most abundant cell type infiltrating the airways during severe respiratory syncytial virus (RSV) infection. Their exact role in disease pathophysiology remains enigmatic. Therefore, we determined genome-wide RNA expression profiles of local and systemic neutrophils in RSV bronchiolitis to provide further insight into local neutrophil biology. METHODS We performed a single-center analysis, in 16 infants, admitted to the pediatric intensive care unit with severe RSV bronchiolitis. Neutrophils were isolated from blood and tracheobronchial aspirates (sputum). After low input RNA sequencing, differential expression of genes was determined followed by gene set analysis. RESULTS Paired transcriptomic analysis of airway versus blood neutrophils showed an inflammatory phenotype, characterized by NF-kB signaling and upregulated expression of IL-6 and interferon pathways. We observed distinct expression of neutrophil activation genes (TNFSF13B, FCER1G). DISCUSSION Our data indicate that airway neutrophils regulate their function at the transcriptional level in response to viral infection. It also suggests that local interferon drives the neutrophil response of severe RSV bronchiolitis.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Amie Callaghan
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Annefleur C Langedijk
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Marije P Hennus
- Department of Paediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Michal Mokry
- Department of cardiology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Jorg J A Calis
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Department of cardiology, University Medical Centre Utrecht, Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
24
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
25
|
Mokmeli S, Vetrici M. Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2020; 56:25-31. [PMID: 32844112 PMCID: PMC7428000 DOI: 10.29390/cjrt-2020-015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The global pandemic COVID-19 is a contagious disease and its mortality rates ranging from 1% to 5% are likely due to acute respiratory distress syndrome (ARDS), and cytokine storm. A significant proportion of patients who require intubation succumb to the disease, despite the availability of ventilators and the best treatment practices. Researchers worldwide are in search of anti-inflammatory medicines in the hope of finding a cure for COVID-19. Low-level laser therapy (LLLT) has strong, anti-inflammatory effects confirmed by meta-analyses, and it may be therapeutic to ARDS. LLLT has been used for pain management, wound healing, and other health conditions by physicians, physiotherapists, and nurses worldwide for decades. In addition, it has been used in veterinary medicine for respiratory tract disease such as pneumonia. Laser light with low-power intensity is applied to the surface of the skin to produce local and systemic effects. Based on the clinical experience, peer-reviewed studies, and solid laboratory data in experimental animal models, LLLT attenuates cytokine storm at multiple levels and reduces the major inflammatory metabolites. LLLT is a safe, effective, low-cost modality without any side-effects that may be combined with conventional treatment of ARDS. We summarize the effects of LLLT on pulmonary inflammation and we provide a protocol for augmenting medical treatment in COVID-19 patients. LLLT combined with conventional medical therapy has the potential to prevent the progression of COVID-19, minimize the length of time needed on a ventilator, enhance the healing process, and shorten recovery time.
Collapse
Affiliation(s)
- Soheila Mokmeli
- Canadian Optic and Laser Center (Training Institute), Victoria, BC, Canada
| | - Mariana Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
26
|
Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathog 2020; 16:e1008506. [PMID: 32645119 PMCID: PMC7373319 DOI: 10.1371/journal.ppat.1008506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/21/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.
Collapse
|
27
|
González-González A, Wayne ML. Immunopathology and immune homeostasis during viral infection in insects. Adv Virus Res 2020; 107:285-314. [PMID: 32711732 DOI: 10.1016/bs.aivir.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organisms clear infections by mounting an immune response that is normally turned off once the pathogens have been cleared. However, sometimes this immune response is not properly or timely arrested, resulting in the host damaging itself. This immune dysregulation may be referred to as immunopathology. While our knowledge of immune and metabolic pathways in insects, particularly in response to viral infections, is growing, little is known about the mechanisms that regulate this immune response and hence little is known about immunopathology in this important and diverse group of organisms. In this chapter we focus both on documenting the molecular mechanisms described involved in restoring immune homeostasis in insects after viral infections and on identifying potential mechanisms for future investigation. We argue that learning about the immunopathological consequences of an improperly regulated immune response in insects will benefit both insect and human health.
Collapse
Affiliation(s)
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Shinde T, Hansbro PM, Sohal SS, Dingle P, Eri R, Stanley R. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives. Microorganisms 2020; 8:E921. [PMID: 32570850 PMCID: PMC7355654 DOI: 10.3390/microorganisms8060921] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Viral respiratory infections (VRIs) can spread quickly and cause enormous morbidity and mortality worldwide. These events pose serious threats to public health due to time lags in developing vaccines to activate the acquired immune system. The high variability of people's symptomatic responses to viral infections, as illustrated in the current COVID-19 pandemic, indicates the potential to moderate the severity of morbidity from VRIs. Growing evidence supports roles for probiotic bacteria (PB) and prebiotic dietary fiber (DF) and other plant nutritional bioactives in modulating immune functions. While human studies help to understand the epidemiology and immunopathology of VRIs, the chaotic nature of viral transmissions makes it difficult to undertake mechanistic study where the pre-conditioning of the metabolic and immune system could be beneficial. However, recent experimental studies have significantly enhanced our understanding of how PB and DF, along with plant bioactives, can significantly modulate innate and acquired immunity responses to VRIs. Synbiotic combinations of PB and DF potentiate increased benefits primarily through augmenting the production of short-chain fatty acids (SCFAs) such as butyrate. These and specific plant polyphenolics help to regulate immune responses to both restrain VRIs and temper the neutrophil response that can lead to acute respiratory distress syndrome (ARDS). This review highlights the current understanding of the potential impact of targeted nutritional strategies in setting a balanced immune tone for viral clearance and reinforcing homeostasis. This knowledge may guide the development of public health tactics and the application of functional foods with PB and DF components as a nutritional approach to support countering VRI morbidity.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia;
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Peter Dingle
- Dingle Wellness, South Fremantle, WA 6162, Australia;
| | - Rajaraman Eri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Roger Stanley
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
29
|
Tuerxun W, Wang Y, Cui C, Yang L, Wang S, Yu Y, Wang L. Expression pattern of the interferon regulatory factor family members in influenza virus induced local and systemic inflammatory responses. Clin Immunol 2020; 217:108469. [PMID: 32479990 DOI: 10.1016/j.clim.2020.108469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Type I interferon is considered to be a key cytokine in influenza virus-induced acute lung injury (ALI), in which IRF3 and IRF7 play particularly important roles. However, whether all nine members of IRF family are involved in influenza virus-induced immune response is currently unknown. In this study, we found that all members of IRF family responded to influenza virus. The IRF family expression profile seems to be related to the pathogenicity of the particular influenza virus strain. The influenza virus mainly relies on endosomal TLR signals and the positive feedback loop of IFN-I to cause either direct or indirect different expression of all IRF family members locally or systemically. Interestingly, IRF6 was somewhat different from other IRF family members during influenza virus infection. Overall, the expression profile of the IRF family may be a valuable reference for the prevention and treatment of influenza complications, which encourage further, more in-depth research.
Collapse
Affiliation(s)
- Wuqiekun Tuerxun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Department of Cell Biology, College of Basic Medical Sciences, Xinjiang Medical University, Wulumuqi 830054, PR China
| | - Ying Wang
- Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
30
|
Yang L, Wang S, Wang Y, Zhao P, Cui C, Tu L, Li X, Yu Y, Li H, Wang L. Diversity of locally produced IFN-α subtypes in human nasopharyngeal epithelial cells and mouse lung tissues during influenza virus infection. Appl Microbiol Biotechnol 2020; 104:6351-6361. [PMID: 32472176 DOI: 10.1007/s00253-020-10676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
Abstract
The excessively expressed interferon-α (IFN-α) might contribute to the uncontrolled inflammatory responses, causing pathological damage during influenza virus infection. However, the correlation of the pathological damage with the expression profile of IFN-α subtypes in the focus of infection with influenza viruses is poorly understood. To investigate this, we detected the IFN-α subtype dominance in human respiratory epithelial cells and mouse lungs, both of which were infected with influenza viruses. It was found that IFN-α1, IFN-α6, IFN-α14, and IFN-α16 were dominantly expressed in respiratory epithelial cells from the patients infected with IAV, whereas IFN-α5, IFN-α8, and IFN-α21 were dominantly expressed in respiratory epithelial cells from the patients infected with less pathogenic IBV and that IFN-α1, IFN-α9, and IFN-α15 were dominantly expressed in lungs of the mice infected with H1N1 IAV, and IFN-α2, IFN-α12, and IFN-α13 were dominantly expressed in lungs of the mice infected with less pathogenic H9N2 IAV. Compared with H9N2 IAV, H1N1 IAV induced higher mortality rates and more obvious body weight loss in the mice. In addition, IAV or H1N1 IAV induced a significantly higher level of CXCL10 mRNA in the human respiratory epithelial cells or the mouse lungs, respectively. In mice, the high level of Cxcl10 mRNA was accompanied by the abundant infiltrated neutrophils and more severe pathological changes in the lungs. Together, the data presented here indicate that the pathogenicity of influenza viruses is correlated with the IFN-α subtypes induced by influenza viruses. KEY POINTS: • Different influenza viruses induce differential inflammation responses. • Various influenza viruses induce diverse expression profiles of IFN-α subtypes. • The locally produced IFN-α subtypes correlated to the differential inflammation. Graphical abstract.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shengnan Wang
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Ying Wang
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Peiyan Zhao
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xin Li
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Haibo Li
- Department of Pediatric Clinic, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Liying Wang
- Institute of Pediatrics in The First Hospital of Jilin University and Department of Molecular Biology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
31
|
Liu H, You L, Wu J, Zhao M, Guo R, Zhang H, Su R, Mao Q, Deng D, Hao Y. Berberine suppresses influenza virus-triggered NLRP3 inflammasome activation in macrophages by inducing mitophagy and decreasing mitochondrial ROS. J Leukoc Biol 2020; 108:253-266. [PMID: 32272506 DOI: 10.1002/jlb.3ma0320-358rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from several commonly used Chinese herbs. Our previous studies demonstrated BBR-mediated alleviation of lung injury due to inflammation and decrease in the mortality of mice with influenza viral pneumonia. The recent argument of autophagy against inflammatory responses has aroused wide concerns. This study focuses on the reactive oxygen species-Nod-like receptor protein 3 (ROS-NLRP3) pathway to investigate whether BBR inhibits NLRP3 inflammasome activation by inducing mitophagy. Our results demonstrate that BBR and mitochondrion-targeted superoxide dismutase mimetic (Mito-TEMPO; a specific mitochondrial ROS scavenger) significantly restricted NLRP3 inflammasome activation, increased mitochondrial membrane potential (MMP), and decreased mitochondrial ROS (mtROS) generation in J774A.1 macrophages infected with PR8 influenza virus. These observations suggest that the inhibitory effects of BBR on NLRP3 inflammasome activation were associated with the amelioration of mtROS generation. BBR treatment induced regular mitophagy, as evident from the increase in microtubule-associated protein 1 light chain 3 II, decrease in p62, colocalization of LC3 and mitochondria, and formation of autophagosomes. However, 3-methyladenine, an autophagy inhibitor, reversed the inhibitory effects of BBR on mitochondrial damage and NLRP3 inflammasome activation in influenza virus-infected macrophages, indicating the involvement of mitophagy in mediating the inhibitory effects of BBR on NLRP3 inflammasome activation. Furthermore, the knockdown of Bcl-2/adenovirus E18-19-kDa interacting protein 3 (BNIP3) expression attenuated the effects of BBR on mitophagy induction to some extent, suggesting that the BBR-induced mitophagy may be, at least in part, mediated in a BNIP3-dependent manner. Similar results were obtained in vivo using a mouse model of influenza viral pneumonia that was administered with BBR. Taken together, these findings suggest that restricting NLRP3 inflammasome activation by decreasing ROS generation through mitophagy induction may be crucial for the BBR-mediated alleviation of influenza virus-induced inflammatory lesions.
Collapse
Affiliation(s)
- Hui Liu
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wu
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Mengfan Zhao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Guo
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Haili Zhang
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Su
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Mao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Di Deng
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Xing Z, Afkhami S, Bavananthasivam J, Fritz DK, D'Agostino MR, Vaseghi-Shanjani M, Yao Y, Jeyanathan M. Innate immune memory of tissue-resident macrophages and trained innate immunity: Re-vamping vaccine concept and strategies. J Leukoc Biol 2020; 108:825-834. [PMID: 32125045 DOI: 10.1002/jlb.4mr0220-446r] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
In the past few years, our understanding of immunological memory has evolved remarkably due to a growing body of new knowledge in innate immune memory and immunity. Immunological memory now encompasses both innate and adaptive immune memory. The hypo-reactive and hyper-reactive types of innate immune memory lead to a suppressed and enhanced innate immune protective outcome, respectively. The latter is also named trained innate immunity (TII). The emerging information on innate immune memory has not only shed new light on the mechanisms of host defense but is also revolutionizing our long-held view of vaccination and vaccine strategies. Our current review will examine recent progress and knowledge gaps in innate immune memory with a focus on tissue-resident Mϕs, particularly lung Mϕs, and their relationship to local antimicrobial innate immunity. We will also discuss the impact of innate immune memory and TII on our understanding of vaccine concept and strategies and the significance of respiratory mucosal route of vaccination against respiratory pathogens.
Collapse
Affiliation(s)
- Zhou Xing
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dominik K Fritz
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Current affiliation: Department of Immunology, Zhejiang University, Zhejiang, China
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Zerbib Y, Jenkins EK, Shojaei M, Meyers AFA, Ho J, Ball TB, Keynan Y, Pisipati A, Kumar A, Kumar A, Nalos M, Tang BM, Schughart K, McLean A. Pathway mapping of leukocyte transcriptome in influenza patients reveals distinct pathogenic mechanisms associated with progression to severe infection. BMC Med Genomics 2020; 13:28. [PMID: 32066441 PMCID: PMC7027223 DOI: 10.1186/s12920-020-0672-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Influenza infections produce a spectrum of disease severity, ranging from a mild respiratory illness to respiratory failure and death. The host-response pathways associated with the progression to severe influenza disease are not well understood. Methods To gain insight into the disease mechanisms associated with progression to severe infection, we analyzed the leukocyte transcriptome in severe and moderate influenza patients and healthy control subjects. Pathway analysis on differentially expressed genes was performed using a topology-based pathway analysis tool that takes into account the interaction between multiple cellular pathways. The pathway profiles between moderate and severe influenza were then compared to delineate the biological mechanisms underpinning the progression from moderate to severe influenza. Results 107 patients (44 severe and 63 moderate influenza patients) and 52 healthy control subjects were included in the study. Severe influenza was associated with upregulation in several neutrophil-related pathways, including pathways involved in neutrophil differentiation, migration, degranulation and neutrophil extracellular trap (NET) formation. The degree of upregulation in neutrophil-related pathways were significantly higher in severely infected patients compared to moderately infected patients. Severe influenza was also associated with downregulation in immune response pathways, including pathways involved in antigen presentation such as CD4+ T-cell co-stimulation, CD8+ T cell and Natural Killer (NK) cells effector functions. Apoptosis pathways were also downregulated in severe influenza patients compare to moderate and healthy controls. Conclusions These findings showed that there are changes in gene expression profile that may highlight distinct pathogenic mechanisms associated with progression from moderate to severe influenza infection.
Collapse
Affiliation(s)
- Yoann Zerbib
- Department of medical Intensive Care, Amiens University Hospital, Amiens, France. .,Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia. .,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia.
| | - Emily K Jenkins
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia
| | - Adrienne F A Meyers
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - John Ho
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - T Blake Ball
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - Yoav Keynan
- Department of internal medicine, medical microbiology and community health sciences, University of Manitoba, Winnipeg, Canada
| | - Amarnath Pisipati
- Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada.,Department of chemistry and chemical biology, Harvard University, Cambridge, USA
| | - Aseem Kumar
- Department of chemistry and biochemistry, Laurentian University, Sudbury, Canada
| | - Anand Kumar
- Section of critical care medicine and section of infectious diseases, department of medicine, medical microbiology and pharmacology, University of Manitoba, Winnipeg, Canada
| | - Marek Nalos
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Benjamin M Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, Germany
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | | |
Collapse
|
34
|
Zimmerman DH, Carambula RE, Ciemielewski J, Rosenthal KS. Lessons from next generation influenza vaccines for inflammatory disease therapies. Int Immunopharmacol 2019; 74:105729. [PMID: 31280056 DOI: 10.1016/j.intimp.2019.105729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Lessons can be learned for treating inflammatory diseases such as rheumatoid arthritis (RA) from next generation approaches for development of universal influenza vaccines. Immunomodulation of inflammatory diseases, rather than ablation of cytokine or cellular responses, can address the root cause of the disease and provide potential cure. Like influenza, there are different antigenic 'strains' and inflammatory T cell responses, Th1 or Th17, that drive each person's disease. As such, next generation vaccine-like antigen specific therapies for inflammatory diseases can be developed but will need to be customized to the patient depending upon the antigen and T cell response that is driving the disease.
Collapse
Affiliation(s)
| | | | | | - Ken S Rosenthal
- Roseman University of Health Sciences College of Medicine, 10530 Discovery Dr., Las Vegas, NV 89135, USA.
| |
Collapse
|
35
|
Peroxisome Proliferator-Activated Receptor Gamma (PPAR) Suppresses Inflammation and Bacterial Clearance during Influenza-Bacterial Super-Infection. Viruses 2019; 11:v11060505. [PMID: 31159430 PMCID: PMC6630660 DOI: 10.3390/v11060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.
Collapse
|
36
|
Washburn ML, Crosby R, Remlinger K, Wang F, Creech D. Therapeutically Attenuating Neutrophil Recruitment With a CXCR2 Antagonist in Combination With Oseltamivir Ameliorates Influenza-Induced Lung Injury and Disease. Open Forum Infect Dis 2019; 6:ofz106. [PMID: 31041337 PMCID: PMC6483135 DOI: 10.1093/ofid/ofz106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Mice were infected with influenza and treated with a CXCR2 antagonist in combination with antiviral or antiviral alone starting 4 days postinfection. Neutrophil recruitment to the lung was reduced, and improvements in health outcomes and lung consolidation were observed in combination-treated mice with no evidence of worsening outcome.
Collapse
Affiliation(s)
| | - Renae Crosby
- GlaxoSmithKline, Research Triangle Park, North Carolina
| | | | - Feng Wang
- GlaxoSmithKline, Upper Providence, Pennsylvania
| | | |
Collapse
|
37
|
Paget C, Trottein F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Front Immunol 2019; 10:336. [PMID: 30881357 PMCID: PMC6405625 DOI: 10.3389/fimmu.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the widespread application of vaccination programs and antiviral drug treatments, influenza viruses are still among the most harmful human pathogens. Indeed, influenza results in significant seasonal and pandemic morbidity and mortality. Furthermore, severe bacterial infections can occur in the aftermath of influenza virus infection, and contribute substantially to the excess morbidity and mortality associated with influenza. Here, we review the main features of influenza viruses and current knowledge about the mechanical and immune mechanisms that underlie post-influenza secondary bacterial infections. We present the emerging literature describing the role of "innate-like" unconventional T cells in post-influenza bacterial superinfection. Unconventional T cell populations span the border between the innate and adaptive arms of the immune system, and are prevalent in mucosal tissues (including the airways). They mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells. We provide an overview of the principal functions that these cells play in pulmonary barrier functions and immunity, highlighting their unique ability to sense environmental factors and promote protection against respiratory bacterial infections. We focus on two major opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae and Staphylococcus aureus. We discuss mechanisms through which influenza viruses alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent fundamental advances and possible therapeutic approaches in which unconventional T cells would be targeted to prevent post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, Institut National de la Santé et de la Recherche Médicale U1100, Tours, France.,Faculty of Medicine, Université de Tours, Tours, France
| | - François Trottein
- U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Centre Hospitalier, Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
38
|
Yang L, Tu L, Zhao P, Wang Y, Wang S, Lu W, Wang Y, Li X, Yu Y, Hua S, Wang L. Attenuation of interferon regulatory factor 7 activity in local infectious sites of trachea and lung for preventing the development of acute lung injury caused by influenza A virus. Immunology 2019; 157:37-51. [PMID: 30667045 DOI: 10.1111/imm.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
The excessive activation of interferon regulatory factor 7 (IRF7) promotes the development of acute lung injury (ALI) caused by influenza A virus (IAV). However, the deficiency of IRF7 increases the susceptibility to deadly IAV infection in both humans and mice. To test whether the attenuation rather than the abolishment of IRF7 activity in local infectious sites could alleviate IAV-induced ALI, we established IAV-infected mouse model and trachea/lung-tissue culture systems, and designed two IRF7-interfering oligodeoxynucleotides, IRF7-rODN M1 and IRF7-rODN A1, based on the mouse and human consensus sequences of IRF7-binding sites of Ifna/IFNA genes, respectively. In the model mice, we found a close relationship between the IAV-induced ALI and the level/activity of IRF7 in local infectious sites, and also found that the reduced IRF7 level or activity in the lungs of mice treated with IRF7-rODN M1 led to decreased mRNA levels of Ifna genes, reduced neutrophil infiltration in the lungs and prolonged survival of mice. Furthermore, we found that the effects of IRF7-rODN M1 on alleviating IAV-induced ALI could be correlated to the reduced translocation of IRF7, caused by the IRF7-rODN M1, from cytosol to nucleus in IAV-infected cells. These data suggest that the proper attenuation of IRF7 activity in local infectious sites could be a novel approach for treating IAV-induced ALI.
Collapse
Affiliation(s)
- Lei Yang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peiyan Zhao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Shengnan Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yangyang Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Xin Li
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, Ubags N, Fajas L, Nicod LP, Marsland BJ. Dietary Fiber Confers Protection against Flu by Shaping Ly6c - Patrolling Monocyte Hematopoiesis and CD8 + T Cell Metabolism. Immunity 2019; 48:992-1005.e8. [PMID: 29768180 DOI: 10.1016/j.immuni.2018.04.022] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Dietary fiber protects against chronic inflammatory diseases by dampening immune responses through short-chain fatty acids (SCFAs). Here we examined the effect of dietary fiber in viral infection, where the anti-inflammatory properties of SCFAs in principle could prevent protective immunity. Instead, we found that fermentable dietary fiber increased survival of influenza-infected mice through two complementary mechanisms. High-fiber diet (HFD)-fed mice exhibited altered bone marrow hematopoiesis, characterized by enhanced generation of Ly6c- patrolling monocytes, which led to increased numbers of alternatively activated macrophages with a limited capacity to produce the chemokine CXCL1 in the airways. Blunted CXCL1 production reduced neutrophil recruitment to the airways, thus limiting tissue immunopathology during infection. In parallel, diet-derived SCFAs boosted CD8+ T cell effector function by enhancing cellular metabolism. Hence, dietary fermentable fiber and SCFAs set an immune equilibrium, balancing innate and adaptive immunity so as to promote the resolution of influenza infection while preventing immune-associated pathology.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland; Global Health Institute, EPFL-SV-GHI Station 19, EPFL, 1015 Lausanne, Switzerland
| | - Céline Pattaroni
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland; Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Isabel C Lopez-Mejia
- Department of Physiology, University of Lausanne, 1011 Lausanne, Switzerland; Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland
| | - Erika Riva
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Julie Pernot
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Lluis Fajas
- Department of Physiology, University of Lausanne, 1011 Lausanne, Switzerland; Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent P Nicod
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, CLED_02.206, Chemin des Boveresses 155, 1066 Epalinges, Switzerland; Department of Immunology and Pathology, Monash University, Melbourne, Australia.
| |
Collapse
|
40
|
Jeannoel M, Casalegno JS, Ottmann M, Badiou C, Dumitrescu O, Lina B, Lina G. Synergistic Effects of Influenza and Staphylococcus aureus Toxins on Inflammation Activation and Cytotoxicity in Human Monocytic Cell Lines. Toxins (Basel) 2018; 10:toxins10070286. [PMID: 29997328 PMCID: PMC6070873 DOI: 10.3390/toxins10070286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
In patients with influenza, morbidity and mortality are strongly influenced by infections with Staphylococcus aureus producing high amounts of certain toxins. Here we tested the impact of influenza virus on the pro-inflammatory and cytotoxic actions of a panel of S. aureus virulence factors, including Panton-Valentine Leucocidin (PVL), phenol-soluble modulin α1 (PSMα1) and 3 (PSMα3), α-hemolysin (Hla), and cell wall components, i.e., heat-killed S. aureus (HKSA) and protein A. We initially screened for potential synergic interactions using a standardized in vitro model in influenza-infected continuous human monocytic cell lines. Then we tested the identified associations using an ex vivo model in influenza-infected human monocytes freshly isolated from blood. Co-exposure to influenza virus and HKSA, PVL, PSMα1, and PSMα3 increased NF-κB/AP-1 pathway activation in THP1-XBlue cells, and co-exposure to influenza virus and PVL increased cytotoxicity in U937 cells. In monocytes isolated from blood, the synergy between influenza virus and HKSA was confirmed based on cytokine production (TNF-α, IL-1β, IL-6), and co-exposure to influenza virus and Hla-increased cytotoxicity. Our findings suggest that influenza virus potentiates the pro-inflammatory action of HKSA and contributes to the cytotoxicity of Hla on monocytes. Synergic interactions identified in the cell-line model must be cautiously interpreted since few were relevant in the ex vivo model.
Collapse
Affiliation(s)
- Marion Jeannoel
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Jean-Sebastien Casalegno
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Michèle Ottmann
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Cédric Badiou
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Oana Dumitrescu
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Gérard Lina
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| |
Collapse
|
41
|
Jørgensen SE, Christiansen M, Ryø LB, Gad HH, Gjedsted J, Staeheli P, Mikkelsen JG, Storgaard M, Hartmann R, Mogensen TH. Defective RNA sensing by RIG-I in severe influenza virus infection. Clin Exp Immunol 2018; 192:366-376. [PMID: 29453856 PMCID: PMC5980616 DOI: 10.1111/cei.13120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza virus infection causes worldwide seasonal epidemics. Although influenza is usually a mild disease, a minority of patients experience very severe fulminating disease courses. Previous studies have demonstrated a role for type I interferon (IFN) in anti-viral responses during influenza. So far, however, IFN regulatory factor (IRF)7 deficiency is the only genetic cause of severe influenza described in humans. In this study we present a patient with severe influenza A virus (IAV) H1N1 infection during the 2009 swine flu pandemic. By whole exome sequencing we identified two variants, p.R71H and p.P885S, located in the caspase activation and recruitment domain (CARD) and RNA binding domains, respectively, of DExD/H-box helicase 58 (DDX58) encoding the RNA sensor retinoic acid inducible gene 1 (RIG-I). These variants significantly impair the signalling activity of RIG-I. Similarly, patient cells demonstrate decreased antiviral responses to RIG-I ligands as well as increased proinflammatory responses to IAV, suggesting dysregulation of the innate immune response with increased immunopathology. We suggest that these RIG-I variants may have contributed to severe influenza in this patient and advocate that RIG-I variants should be sought in future studies of genetic factors influencing single-stranded RNA virus infections.
Collapse
Affiliation(s)
- S. E. Jørgensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - M. Christiansen
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | - L. B. Ryø
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - H. H. Gad
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - J. Gjedsted
- Department of Intensive CareAarhus University HospitalAarhusDenmark
| | - P. Staeheli
- Institute of VirologyMedical Center University of FreiburgBreisgauGermany
| | | | - M. Storgaard
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - R. Hartmann
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - T. H. Mogensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
42
|
Wang X, Guo J, Wang Y, Xiao Y, Wang L, Hua S. Expression Levels of Interferon Regulatory Factor 5 (IRF5) and Related Inflammatory Cytokines Associated with Severity, Prognosis, and Causative Pathogen in Patients with Community-Acquired Pneumonia. Med Sci Monit 2018; 24:3620-3630. [PMID: 29847542 PMCID: PMC6004935 DOI: 10.12659/msm.910756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Community-acquired pneumonia (CAP) is a common disease with significant morbidity and mortality. Interferon regulatory factor 5 (IRF5), which induces type I interferons (IFNs) and cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and interferon gamma-induced protein (IP)10, is a key transcription factor involved in controlling the expression of proinflammatory cytokines and responses to infection. Here, we carefully investigated the role of IRF5 in regulating immune responses to CAP. Material/Methods QRT-PCR was used to detect the mRNA levels of IRF5, IL-6, IL-10, IP10, TNF-α, and IFN-α in the peripheral blood of 71 CAP patients and 31 healthy controls, as well as in the bronchoalveolar lavage cells of 20 patients with CAP and 23 patients with lung cancer (using samples from the unaffected lung). Flow cytometry was performed to detect the protein level of IRF5, and a CBA flex set was used to detect the levels of these cytokines in the volunteers. Results The expression levels of IRF5 and its related cytokines were significantly increased in CAP patients compared with the controls. Additionally, IRF5, IL-6, IL-10, and IP10 levels were found to be related with the severity of CAP. Furthermore, the levels of IRF5 and IFN-α increased significantly in the early phase of pneumonia caused by influenza virus infection. Conclusions IRF5 and its related inflammatory cytokines are associated with the severity, prognosis, and causative pathogen of CAP patients. This finding may provide new drug targets for the prevention and treatment of severe pneumonia caused by influenza virus.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jia Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital, Jilin University, Changchun, Jilin, China (mainland)
| | - Yue Xiao
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital, Jilin University, Changchun, Jilin, China (mainland)
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital, Jilin University, Changchun, Jilin, China (mainland)
| | - Shucheng Hua
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, First Hospital, Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
43
|
Shanks GD, Wilson N, Kippen R, Brundage JF. The unusually diverse mortality patterns in the Pacific region during the 1918-21 influenza pandemic: reflections at the pandemic's centenary. THE LANCET. INFECTIOUS DISEASES 2018; 18:e323-e332. [PMID: 29754745 DOI: 10.1016/s1473-3099(18)30178-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
The 1918-21 influenza pandemic was the most lethal natural event in recent history. In the Pacific region, the pandemic's effects varied greatly across different populations and settings. In this region, the pandemic's lethal effects extended over 3 years, from November, 1918, in New Zealand to as late as July, 1921, in New Caledonia. Although a single virus strain probably affected all the islands, mortality varied from less than 0·1% in Tasmania, to 22% in Western Samoa. The varied expressions of the pandemic across the islands reflected the nature and timing of past influenza epidemics, degrees of social isolation, ethnicity and sex-related effects, and the likelihood of exposures to pathogenic respiratory bacteria during influenza illnesses. The high case-fatality rate associated with this pandemic seems unlikely to recur in future influenza pandemics; however, understanding the critical determinants of the mass mortality associated with the 1918-21 pandemic is essential to prepare for future pandemics.
Collapse
Affiliation(s)
- G Dennis Shanks
- Australian Army Malaria Institute, Brisbane, QLD, Australia; School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - Nick Wilson
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Rebecca Kippen
- School of Rural Health, Monash University, Melbourne, VIC, Australia
| | - John F Brundage
- Armed Forces Health Surveillance Center, Silver Spring, MD, USA
| |
Collapse
|
44
|
Florence JM, Krupa A, Booshehri LM, Davis SA, Matthay MA, Kurdowska AK. Inhibiting Bruton's tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29516781 DOI: 10.1152/ajplung.00047.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza-infected patients. Previous experiments in our laboratory indicate that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury in mice; therefore, we sought to determine if blocking Btk activity has a protective effect in the lung during influenza-induced inflammation. The Btk inhibitor ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72 h after lethal infection with IAV. Our data indicate that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but also had a dramatic effect on morphological changes to the lungs, in IAV-infected mice. Attenuation of lung inflammation indicative of acute lung injury, such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of the inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1, strongly suggests amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps released into the lung in vivo and neutrophil extracellular trap formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza-induced lung injury, and, in general, that immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.
Collapse
Affiliation(s)
- Jon M Florence
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Agnieszka Krupa
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas.,Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland
| | - Laela M Booshehri
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sandra A Davis
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Michael A Matthay
- Department of Medicine and Anesthesia, Cardiovascular Research Institute, School of Medicine, University of California , San Francisco, California
| | - Anna K Kurdowska
- Center for Biomedical Research, University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
45
|
Guo L, Wang YC, Mei JJ, Ning RT, Wang JJ, Li JQ, Wang X, Zheng HW, Fan HT, Liu LD. Pulmonary immune cells and inflammatory cytokine dysregulation are associated with mortality of IL-1R1 -/-mice infected with influenza virus (H1N1). Zool Res 2018; 38:146-154. [PMID: 28585438 PMCID: PMC5460083 DOI: 10.24272/j.issn.2095-8137.2017.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI). The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo. IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation. We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice. Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6, TNF-α, G-CSF, KC, and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/- mice in comparison with that of wild type infected mice. The adaptive immune response against the H1N1 virus in IL-1R1-/- mice was impaired with downregulated anti-viral Th1 cell, CD8+ cell, and antibody functions, which contributes to attenuated viral clearance. Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/- mice compared with that in WT infected mice. Moreover, the infected IL-1R1-/- mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung. Together, these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury, particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.
Collapse
Affiliation(s)
- Lei Guo
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Yan-Cui Wang
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Jun-Jie Mei
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Ruo-Tong Ning
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Jing-Jing Wang
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Jia-Qi Li
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Xi Wang
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Hui-Wen Zheng
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Hai-Tao Fan
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China
| | - Long-Ding Liu
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming Yunnan 650118, China.
| |
Collapse
|
46
|
Shanks GD. The 'Influenza' Vaccine Used during the Samoan Pandemic of 1918. Trop Med Infect Dis 2018; 3:tropicalmed3010017. [PMID: 30274415 PMCID: PMC6136635 DOI: 10.3390/tropicalmed3010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
In 1918, a crude influenza vaccine made from chemically inactivated, mixed cultures of respiratory bacteria was widely used prior to the understanding that influenza was caused by a virus. Such vaccines contained no viral material and probably consisted largely of bacterial endotoxin. The Australian military used such a vaccine on Samoa in December 1918 and thought it was valuable. Post hoc analyses suggest that the mixed respiratory bacteria vaccine may have actually been of some benefit, but the mechanism of such protection is unknown. Although such a crude vaccine would not be considered in a modern setting, the rapid use of problematic vaccines still remains a risk when new influenza types suddenly appear, as in 1976 and 2009.
Collapse
Affiliation(s)
- G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, QLD 4051, Australia.
- University of Queensland, School of Public Health, Herston, QLD 4006, Australia.
| |
Collapse
|
47
|
Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT. Galectin-3 Enhances Avian H5N1 Influenza A Virus-Induced Pulmonary Inflammation by Promoting NLRP3 Inflammasome Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1031-1042. [PMID: 29366678 DOI: 10.1016/j.ajpath.2017.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Highly pathogenic avian influenza A H5N1 virus causes pneumonia and acute respiratory distress syndrome in humans. Virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. Galectin-3, a β-galactoside-binding protein widely distributed in immune and epithelial cells, regulates various immune functions and modulates microbial infections. Here, we describe galectin-3 up-regulation in mouse lung tissue after challenges with the H5N1 influenza virus. We investigated the effects of endogenous galectin-3 on H5N1 infection and found that survival of galectin-3 knockout (Gal-3KO) mice was comparable with wild-type (WT) mice after infections. Compared with infected WT mice, infected Gal-3KO mice exhibited less inflammation in the lungs and reduced IL-1β levels in bronchoalveolar lavage fluid. In addition, the bone marrow-derived macrophages (BMMs) from Gal-3KO mice exhibited reduced oligomerization of apoptosis-associated speck-like proteins containing caspase-associated recruitment domains and secreted less IL-1β compared with BMMs from WT mice. However, similar levels of the inflammasome component of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were observed in two genotypes of BMMs. Co-immunoprecipitation data indicated galectin-3 and NLRP3 interaction in BMMs infected with H5N1. An association was also observed between galectin-3 and NLRP3/apoptosis-associated speck-like proteins containing caspase-associated recruitment domain complex. Combined, our results suggest that endogenous galectin-3 enhances the effects of H5N1 infection by promoting host inflammatory responses and regulating IL-1β production by macrophages via interaction with NLRP3.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiang Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Sarvestani ST, McAuley JL. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res 2017; 148:32-42. [PMID: 29097227 DOI: 10.1016/j.antiviral.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system provides the host with both a dynamic barrier to prevent infection and a means to which rapid anti-microbial responses can be mounted. The inflammasome pathway is a critical host early response mechanism that enables detection of pathogens and initiates production of inflammatory cytokines, inducing recruitment of effector cells to the site of infection. The complete mechanism of inflammasome activation requires two signals: an initial priming step upon detection of pathogen, followed by activation of intracellular pattern recognition receptors critical to the formation of the inflammasome complex. The inflammasome complex is made of intracellular multiprotein oligomers which includes a sensor protein such as the nucleotide-binding oligomerization domain (NOD) like receptor proteins (NLRP), and an adapter protein, ASC, which critically activates pro-caspase-1. The mature caspase-1 then proteolytically cleaves cytosolic pro-IL-1β and pro-IL-18, which are then secreted as inflammatory cytokines that activate the inflammatory arm of the immune response to infection. Active caspase-1 also results in pyroptosis, which is a form of cell death triggered by inflammation. The induction and activation of IL-1β and IL-18 are considered critical signatures for inflammasome activation. With focus upon influenza A virus infection, this review will address present knowledge on the mechanisms of inflammasome complex activation, particularly how the viral components modulate activation of the cytosolic NOD-like receptor protein-3 (NLRP3)-dependent inflammasome complex. We also discuss potential therapeutic strategies that target the inflammasome to ameliorate illness, as well as novel methods of vaccination that target inflammasome stimulation with the aim to increase efficacy.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
49
|
Kang MC, Park HW, Choi DH, Choi YW, Park Y, Sung YC, Lee SW. Plasmacytoid Dendritic Cells Contribute to the Protective Immunity Induced by Intranasal Treatment with Fc-fused Interleukin-7 against Lethal Influenza Virus Infection. Immune Netw 2017; 17:343-351. [PMID: 29093655 PMCID: PMC5662783 DOI: 10.4110/in.2017.17.5.343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/01/2022] Open
Abstract
Developing a novel vaccine that can be applied against multiple strains of influenza virus is of utmost importance to human health. Previously, we demonstrated that the intranasal introduction of Fc-fused IL-7 (IL-7-mFc), a long-acting cytokine fusion protein, confers long-lasting prophylaxis against multiple strains of influenza A virus (IAV) by inducing the development of lung-resident memory-like T cells, called TRM-like cells. Here, we further investigated the mechanisms of IL-7-mFc-mediated protective immunity to IAVs. First, we found that IL-7-mFc treatment augments the accumulation of pulmonary T cells in 2 ways: recruiting blood circulating T cells into the lung and expanding T cells at the lung parenchyma. Second, the blockade of T cell migration from the lymph nodes (LNs) with FTY720 treatment was not required for mounting the protective immunity to IAV with IL-7-mFc, suggesting a more important role of IL-7 in T cells in the lungs. Third, IL-7-mFc treatment also recruited various innate immune cells into the lungs. Among these cells, plasmacytoid dendritic cells (pDCs) play an important role in IL-7-mFc-mediated protective immunity through reducing the immunopathology and increasing IAV-specific cytotoxic T lymphocyte (CTL) responses. In summary, our results show that intranasal treatment with IL-7-mFc modulates pulmonary immune responses to IAV, affecting both innate and adaptive immune cells.
Collapse
Affiliation(s)
- Moon Cheol Kang
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Han Wook Park
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Dong-Hoon Choi
- Research Institute, Genexine Inc., Korea Bio Park, Seongnam 13488, Korea
| | - Young Woo Choi
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Young Chul Sung
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Research Institute, Genexine Inc., Korea Bio Park, Seongnam 13488, Korea.,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
50
|
Sorci G, Lippens C, Léchenault C, Faivre B. Benefits of immune protection versus immunopathology costs: A synthesis from cytokine KO models. INFECTION GENETICS AND EVOLUTION 2017; 54:491-495. [PMID: 28818622 DOI: 10.1016/j.meegid.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
The inflammatory response can produce damage to host tissues and in several infectious diseases the most severe symptoms are due to immunopathology rather than a direct effect of pathogen multiplication. One hypothesis for the persistence of inflammatory damage posits that the benefits of protection towards infection outweigh the costs. We used data on knocked-out (KO) cytokine models [and the corresponding wild-type (WT) controls] to test this hypothesis. We computed differences in pathogen load and host survival between WT and KO and divided them by the WT values. Using this ratio provides an internal control for variation in pathogen species, host strain, pathogen dose, and inoculation route. We predicted that i) if mortality is essentially due to immunopathology, there should be a loose association between pathogen load and host survival; ii) if mortality is essentially due to pathogen proliferation, we expect a tight association between pathogen load and host survival. The results provide strong support to this latter hypothesis. In 85% of WT - KO comparisons (n=126), an increase in pathogen load was associated with an increase in host mortality, and a decrease in pathogen load was associated with a decrease in host mortality. Overall, these findings are in agreement with the idea that immunopathology persists because immune protection confers immediate benefits in terms of infection clearance.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Clothilde Léchenault
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|