1
|
Zhou F, Sheng C, Ma X, Li T, Ming X, Wang S, Tan J, Yang Y, Sun H, Lu J, Liu J, Deng R, Wang X, Zhou L. BCKDH kinase promotes hepatic gluconeogenesis independent of BCKDHA. Cell Death Dis 2024; 15:736. [PMID: 39389936 PMCID: PMC11467410 DOI: 10.1038/s41419-024-07071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAAs) are tightly linked to an increased risk in the development of type 2 diabetes mellitus. The rate limiting enzyme of BCAA catabolism branched-chain α-ketoacid dehydrogenase (BCKDH) is phosphorylated at E1α subunit (BCKDHA) by its kinase (BCKDK) and inactivated. Here, the liver-specific BCKDK or BCKDHA knockout mice displayed normal glucose tolerance and insulin sensitivity. However, knockout of BCKDK in the liver inhibited hepatic glucose production as well as the expression of key gluconeogenic enzymes. No abnormal gluconeogenesis was found in mice lacking hepatic BCKDHA. Consistent with the vivo results, BT2-mediated inhibition or genetic knockdown of BCKDK decreased hepatic glucose production and gluconeogenic gene expressions in primary mouse hepatocytes while BCKDK overexpression exhibited an opposite effect. Whereas, gluconeogenic gene expressions were not altered in BCKDHA-silenced hepatocytes. Mechanistically, BT2 treatment attenuated the interaction of cAMP response element binding protein (CREB) with CREB-binding protein and promoted FOXO1 protein degradation by increasing its ubiquitination. Our findings suggest that BCKDK regulates hepatic gluconeogenesis through CREB and FOXO1 signalings, independent of BCKDHA-mediated BCAA catabolism.
Collapse
Affiliation(s)
- Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Endocrine and Metabolic Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoqin Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianjiao Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xing Ming
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shushu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jialin Tan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulin Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruyuan Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 200032, China; Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, Sestini G, Rivron N, Leeb M. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. Nat Commun 2024; 15:7879. [PMID: 39251582 PMCID: PMC11384738 DOI: 10.1038/s41467-024-51794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Saskia Kowald
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Luis Miguel Cerron-Alvan
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Anna Philina Fabing
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Giovanni Sestini
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
3
|
Hasani M, Abbasi-Oshaghi E, Khomari F, Kiani B, Mirzaei F, Alipourfard I, Khodadadi I, Tayebinia H, Babaei M, Alizadeh-Fanalou S, Bahreini E. Enhanced Insulin Secretion Through Upregulation of Transcription Factors by Hydroalcoholic Extract of Securigera securidaca Seeds in Diabetic Animal Model. Endocrinol Diabetes Metab 2024; 7:e515. [PMID: 39238175 PMCID: PMC11377490 DOI: 10.1002/edm2.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
AIM In previous studies, the researchers observed an increase in insulin secretion in STZ-treated diabetic rats following treatment with the hydroalcoholic extract of Securigera securidaca (HESS) seeds. This study focuses on the relationship between the antioxidant properties of HESS with changes in diabetic pancreatic tissue and the gene expression of factors that impact insulin secretion. METHODS In this controlled experimental study, three varying doses of HESS were administered to three groups of diabetic rats induced by STZ. Oxidative stress indicators like total antioxidant capacity (TAC), total oxidant status (TOS) and malondialdehyde were assessed in both pancreatic and liver tissues. Pancreatic histology was studied post-haematoxylin staining. Insulin and FGF21 levels in the blood were measured using the ELISA method. The expression of Nrf2 and FGF21 genes in the pancreas and liver, along with MafA and PDX-1 genes in the pancreas, was quantified using real-time PCR. RESULTS The administration of HESS in varying doses led to a dose-dependent rise in blood insulin levels and a decrease in blood glucose levels and oxidative stress. By reducing oxidative stress, HESS treatment lowered the heightened levels of NRF2 and FGF21 in the liver and pancreas of diabetic rats, improving pancreatic tissue health. As oxidative stress decreased, the expression of MafA and PDX1 genes in the pancreas approached levels seen in healthy rats. CONCLUSION HESS elicits an increase in insulin secretion through the mitigation of oxidative stress and tissue damage, as well as the modulation of gene expression related to the insulin transcription factors PDX-1 and MafA.
Collapse
Affiliation(s)
- Maryam Hasani
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi-Oshaghi
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Khomari
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Kiani
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | | | - Iraj Khodadadi
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heydar Tayebinia
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Bahreini
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Hu Y, Yi L, Yang Y, Wu Z, Kong M, Kang Z, Yang Z. Acetylation of FOXO1 activates Bim expression involved in CVB3 induced cardiomyocyte apoptosis. Apoptosis 2024; 29:1271-1287. [PMID: 38127284 PMCID: PMC11263423 DOI: 10.1007/s10495-023-01924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Lu Yi
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yeyi Yang
- Department of Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhixiang Wu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Min Kong
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhijuan Kang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
6
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
7
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
8
|
Hinostroza F, Araya-Duran I, Piñeiro A, Lobos I, Pastenes L. Transcription factor roles in the local adaptation to temperature in the Andean Spiny Toad Rhinella spinulosa. Sci Rep 2024; 14:15158. [PMID: 38956427 PMCID: PMC11220030 DOI: 10.1038/s41598-024-66127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Environmental temperature strongly influences the adaptation dynamics of amphibians, whose limited regulation capabilities render them susceptible to thermal oscillations. A central element of the adaptive strategies is the transcription factors (TFs), which act as master regulators that orchestrate stress responses, enabling species to navigate the fluctuations of their environment skillfully. Our study delves into the intricate relationship between TF expression and thermal adaptation mechanisms in the Rhinella spinulosa populations. We sought to elucidate the dynamic modulations of TF expression in prometamorphic and metamorphic tadpoles that inhabit two thermally contrasting environments (Catarpe and El Tatio Geyser, Chile) and which were exposed to two thermal treatments (25 °C vs. 20 °C). Our findings unravel an intriguing dichotomy in response strategies between these populations. First, results evidence the expression of 1374 transcription factors. Regarding the temperature shift, the Catarpe tadpoles show a multifaceted approach by up-regulating crucial TFs, including fosB, atf7, and the androgen receptor. These dynamic regulatory responses likely underpin the population's ability to navigate thermal fluctuations effectively. In stark contrast, the El Tatio tadpoles exhibit a more targeted response, primarily up-regulating foxc1. This differential expression suggests a distinct focus on specific TFs to mitigate the effects of temperature variations. Our study contributes to understanding the molecular mechanisms governing thermal adaptation responses and highlights the resilience and adaptability of amphibians in the face of ever-changing environmental conditions.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Centro Para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro Piñeiro
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Isabel Lobos
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Luis Pastenes
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
9
|
Banerjee R, Zhu Y, Brownrigg GP, Moravcova R, Rogalski JC, Foster LJ, Johnson JD, Kolic J. Beta-Hydroxybutyrate Promotes Basal Insulin Secretion While Decreasing Glucagon Secretion in Mouse and Human Islets. Endocrinology 2024; 165:bqae079. [PMID: 38970533 PMCID: PMC11264143 DOI: 10.1210/endocr/bqae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Dietary carbohydrates raise blood glucose levels, and limiting carbohydrate intake improves glycemia in patients with type 2 diabetes. Low carbohydrate intake (< 25 g) allows the body to utilize fat as its primary fuel. As a consequence of increased fatty acid oxidation, the liver produces ketones to serve as an alternative energy source. β-Hydroxybutyrate (βHB) is the most abundant ketone. While βHB has a wide range of functions outside of the pancreas, its direct effects on islet cell function remain understudied. We examined human islet secretory response to acute racemic βHB treatment and observed increased insulin secretion at a low glucose concentration of 3 mM. Because βHB is a chiral molecule, existing as both R and S forms, we further studied insulin and glucagon secretion following acute treatment with individual βHB enantiomers in human and C57BL/6J mouse islets. We found that acute treatment with R-βHB increased insulin secretion and decreased glucagon secretion at physiological glucose concentrations in both human and mouse islets. Proteomic analysis of human islets treated with R-βHB over 72 hours showed altered abundance of proteins that may promote islet cell health and survival. Collectively, our data show that physiological concentrations of βHB influence hormone secretion and signaling within pancreatic islets.
Collapse
Affiliation(s)
- Risha Banerjee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Ying Zhu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Renata Moravcova
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| |
Collapse
|
10
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
11
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
Sajiir H, Wong KY, Müller A, Keshvari S, Burr L, Aiello E, Mezza T, Giaccari A, Sebastiani G, Dotta F, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis. Nat Commun 2024; 15:4527. [PMID: 38811550 PMCID: PMC11137127 DOI: 10.1038/s41467-024-48320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexandra Müller
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lucy Burr
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, Australia
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Michael A McGuckin
- School of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Johannes B Prins
- Health Translation Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Kamal MM, Ammar RA, Kassem DH. Silencing of forkhead box protein O-1 (FOXO-1) enhances insulin-producing cell generation from adipose mesenchymal stem cells for diabetes therapy. Life Sci 2024; 344:122579. [PMID: 38518842 DOI: 10.1016/j.lfs.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
AIMS Generation of mature β-cells from MSCs has been a challenge in the field of stem cell therapy of diabetes. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark in regenerative medicine, and provide several advantages compared to other MSCs sources. Forkhead box protein O-1 (FOXO-1) is an important transcription factor for normal development of β-cells, yet its over expression in β-cells may cause glucose intolerance. In this study, we isolated, characterized Ad-MSCs from rat epididymal fat pads, differentiated these MSCs into insulin producing cells (IPCs) and studied the role of FOXO-1 in such differentiation. MATERIALS AND METHODS We examined the expression of FOXO-1 and its nuclear cytoplasmic localization in the generated IPCs. Afterwards we knocked down FOXO-1 using siRNA targeting FOXO-1 (siFOXO-1). The differentiated siFOXO-1 IPCs were compared to non-targeting siRNA (siNT) IPCs regarding expression of β-cell markers by qRT-PCR and western blotting, dithizone (DTZ) staining and glucose stimulated insulin secretion (GSIS). KEY FINDINGS Isolated Ad-MSCs exhibited all characteristics of MSCs and can generate IPCs. FOXO-1 was initially elevated during differentiation followed by a decline towards end of differentiation. FOXO-1 was dephosphorylated and localized to the nucleus upon differentiation into IPCs. Knock down of FOXO-1 improved the expression of β-cell markers in final differentiated IPCs, improved DTZ uptake and showed increased insulin secretion upon challenging with increased glucose concentration. SIGNIFICANCE These results portray FOXO-1 as a hindering factor of generation of IPCs whose down-regulation can generate more mature IPCs for MSCs therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Reham A Ammar
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Nie Y, Zhang Y, Liu S, Xu Z, Xia C, Du L, Yin X, Wang J. Downregulation of Sirt3 contributes to β-cell dedifferentiation via FoxO1 in type 2 diabetic mellitus. Acta Diabetol 2024; 61:485-494. [PMID: 38150004 DOI: 10.1007/s00592-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
AIMS FoxO1 is an important factor in the β-cell differentiation in type 2 diabetes mellitus (T2DM). Sirt3 is found to be involved in FoxO1 function. This study investigated the role of Sirt3 in the β-cell dedifferentiation and its mechanism. METHODS Twelve-week-old db/db mice and INS1 cells transfected with Sirt3-specific short hairpin RNA (shSirt3) were used to evaluate the dedifferentiation of β-cell. Insulin levels were measured by enzyme linked immunosorbent assay. The proteins of Sirt3, T-FoxO1, Ac-FoxO1 and differentiation indexes such as NGN3, OCT4, MAFA were determined by western blot or immunofluorescence staining. The combination of Sirt3 and FoxO1 was determined by the co-immunoprecipitation assay. The transcriptional activity of FoxO1 was detected by dual luciferase reporter assay. RESULTS Both the in vivo and in vitro results showed that Sirt3 was decreased along with β-cell dedifferentiation and decreased function of insulin secretion under high glucose conditions. When Sirt3 was knocked down in INS1 cells, increased β-cell dedifferentiation and lowered insulin secretion were observed. This effect was closely related to the amount loss and the decreased deacetylation of FoxO1, which resulted in a reduction in transcriptional activity. CONCLUSION Downregulation of Sirt3 contributes to β-cell dedifferentiation in high glucose via FoxO1. Intervention of Sirt3 may be an effective approach to prevent β-cell failure in T2DM.
Collapse
Affiliation(s)
- Yaxing Nie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yunye Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuqing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhi Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Chunya Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
15
|
Cheng K, Yang G, Huang M, Wang Y, Huang Y, Wang C. Physiological and transcriptomic analysis revealed the alleviating effect of 1,25(OH) 2D 3 on environmental iron overloading induced ferroptosis in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123626. [PMID: 38395136 DOI: 10.1016/j.envpol.2024.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Iron overload in the aquatic environment can cause damage in fish bodies. Vitamin D3 (VD3) has been proven to have antioxidant and regulatory effects on iron transport. The current research investigated the effects of environmental iron overload on larval zebrafish and explored the effects of 1,25(OH)2D3 on ferroptosis in zebrafish larvae and zebrafish liver cells (ZFL) caused by iron overload in the environment and its possible regulatory mechanisms. The results showed that 1,25(OH)2D3 alleviated liver damage in zebrafish larvae and mitochondrial damage in ZFL after excessive ammonium ferric citrate (FAC) treatment, and improved the survival rate of ZFL. 1,25(OH)2D3 cleared and inhibited excessive FAC induced abnormal accumulation of ROS, lipid ROS, MDA, and Fe2+ in zebrafish larvae and ZFL, as well as enhanced the activity of antioxidant enzyme GPx4. Transcriptomic analysis showed that 1,25(OH)2D3 can regulate ferroptosis in ZFL by regulating signaling pathways related to oxidative stress, iron homeostasis, mitochondrial function, and ERS, mainly including ferroptosis, neoptosis, p53 signaling pathway, apoptosis, FoxO signaling pathway. Validation of transcriptome data showed that 1,25(OH)2D3 inhibits ferroptosis in zebrafish larvae and ZFL caused by excessive FAC via promoting the expression of slc40a1 and hmox1a genes and increasing SLC40A1 protein levels. In summary, 1,25(OH)2D3 can resist ferroptosis in zebrafish caused by iron overload in the environment mainly via regulating antioxidant capacity and iron ion transport.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yijia Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
16
|
Chen H, Guo J, Cai Y, Zhang C, Wei F, Sun H, Cheng C, Liu W, He Z. Elucidation of the anti-β-cell dedifferentiation mechanism of a modified Da Chaihu Decoction by an integrative approach of network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117481. [PMID: 38007164 DOI: 10.1016/j.jep.2023.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Da Chaihu decoction (MDCH) is a traditional Chinese herbal prescription that has been used in the clinic to treat type 2 diabetes (T2D). Previous studies have confirmed that MDCH improves glycemic and lipid metabolism, enhances pancreatic function, and alleviates insulin resistance in patients with T2D and diabetic rats. Evidence has demonstrated that MDCH protects pancreatic β cells via regulating the gene expression of sirtuin 1 (SIRT1) and forkhead box protein O1 (FOXO1). However, the detailed mechanism remains unclear. AIM OF THE STUDY Dedifferentiation of pancreatic β cells mediated by FOXO1 has been recognized as the main pathogenesis of T2D. This study aims to investigate the therapeutic effects of MDCH on T2D in vitro and in vivo to elucidate the potential molecular mechanisms. MATERIALS AND METHODS To predict the key targets of MDCH in treating T2D, network pharmacology methods were used. A T2D model was induced in diet-induced obese (DIO) C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Glucose metabolism indicators (oral glucose tolerance test, insulin tolerance test), lipid metabolism indicators (total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol), inflammatory factors (C-reactive protein, interleukin 6, tumor necrosis factor alpha), oxidative stress indicators (total antioxidant capacity, superoxide dismutase, malondialdehyde), and hematoxylin and eosin staining were analyzed to evaluate the therapeutic effect of MDCH on T2D. Immunofluorescence staining and quantification of FOXO1, pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), octamer-binding protein 4 (OCT4), neurogenin 3 (Ngn3), insulin, and SIRT1, and Western blot analysis of insulin, SIRT1, and FOXO1 were performed to investigate the mechanism by which MDCH inhibited pancreatic β-cell dedifferentiation. RESULTS The chemical ingredients identified in MDCH were predicted to be important for signaling pathways related to lipid metabolism and insulin resistance, including lipids in atherosclerosis, the advanced glycation end product receptor of the advanced glycation end product signaling pathway, and the FOXO signaling pathway. Experimental studies showed that MDCH improved glucose and lipid metabolism in T2D mice, alleviated inflammation and oxidative stress damage, and reduced pancreatic pathological damage. Furthermore, MDCH upregulated the expression levels of SIRT1, FOXO1, PDX1, and NKX6.1, while downregulating the expression levels of OCT4 and Ngn3, which indicated that MDCH inhibited pancreatic dedifferentiation of β cells. CONCLUSIONS MDCH has therapeutic effects on T2D, through regulating the SIRT1/FOXO1 signaling pathway to inhibit pancreatic β-cell dedifferentiation, which has not been reported previously.
Collapse
Affiliation(s)
- Hongdong Chen
- Department of Endocrinology, Beijng Hepingli Hospital, NO.18th Hepingli North Street, Beijing, 100013, China; Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuzi Cai
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chao Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Fudong Wei
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hao Sun
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Cheng Cheng
- Department of Endocrinology, Beijng Hepingli Hospital, NO.18th Hepingli North Street, Beijing, 100013, China
| | - Weijing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Zhongchen He
- Department of Endocrinology, Beijng Hepingli Hospital, NO.18th Hepingli North Street, Beijing, 100013, China.
| |
Collapse
|
17
|
Suda N, Bartolomé A, Liang J, Son J, Yagishita Y, Siebel C, Accili D, Ding H, Pajvani UB. β-cell Jagged1 is sufficient but not necessary for islet Notch activity and insulin secretory defects in obese mice. Mol Metab 2024; 81:101894. [PMID: 38311286 PMCID: PMC10877406 DOI: 10.1016/j.molmet.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Notch signaling, re-activated in β cells from obese mice and causal to β cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic (β-Jag1TG) and loss-of-function (iβ-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of β cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Collapse
Affiliation(s)
- Nina Suda
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Jiani Liang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoko Yagishita
- Department of Medicine, Columbia University, New York, NY, USA
| | - Christian Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Watanabe H, Asahara SI, Son J, McKimpson WM, de Cabo R, Accili D. Cyb5r3 activation rescues secondary failure to sulfonylurea but not β-cell dedifferentiation. PLoS One 2024; 19:e0297555. [PMID: 38335173 PMCID: PMC10857566 DOI: 10.1371/journal.pone.0297555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is characterized by insulin resistance and β-cell failure. The latter involves impaired insulin secretion and β-cell dedifferentiation. Sulfonylurea (SU) is used to improve insulin secretion in diabetes, but it suffers from secondary failure. The relationship between SU secondary failure and β-cell dedifferentiation has not been examined. Using a model of SU secondary failure, we have previously shown that functional loss of oxidoreductase Cyb5r3 mediates effects of SU failure through interactions with glucokinase. Here we demonstrate that SU failure is associated with partial β-cell dedifferentiation. Cyb5r3 knockout mice show more pronounced β-cell dedifferentiation and glucose intolerance after chronic SU administration, high-fat diet feeding, and during aging. A Cyb5r3 activator improves impaired insulin secretion caused by chronic SU treatment, but not β-cell dedifferentiation. We conclude that chronic SU administration affects progression of β-cell dedifferentiation and that Cyb5r3 activation reverses secondary failure to SU without restoring β-cell dedifferentiation.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shun-ichiro Asahara
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jinsook Son
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Wendy M. McKimpson
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
19
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent neonatal diabetes-causing insulin mutations have dominant negative effects on beta cell identity. Mol Metab 2024; 80:101879. [PMID: 38237895 PMCID: PMC10839447 DOI: 10.1016/j.molmet.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood. METHODS We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs. RESULTS we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on beta-cell mass and function after transplantation into mice. In addition to anticipated ER stress, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. CONCLUSIONS These results highlight a novel mechanism, the loss of beta cell identity, contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States.
| |
Collapse
|
21
|
Engin A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:431-462. [PMID: 39287861 DOI: 10.1007/978-3-031-63657-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and β-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
22
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Yöntem FD, Ayaz S, Bulut Ş, Aldoğan EH, Ahbab MA. Endoplasmic reticulum stress and pro-inflammatory responses induced by phthalate metabolites monoethylhexyl phthalate and monobutyl phthalate in 1.1B4 pancreatic beta cells. Toxicology 2024; 501:153695. [PMID: 38048874 DOI: 10.1016/j.tox.2023.153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
In recent years, phthalates and their metabolites have been associated with metabolic diseases such as diabetes mellitus. To investigate the effects of phthalate metabolites exposure on insulin production and release, 1.1B4 pancreatic beta cells were treated with different concentrations (0.001-1000 µM) of monoethylhexyl phthalate (MEHP) and monobutyl phthalate (MBP). For such purpose, the 1.1B4 cells were evaluated for their viability, apoptosis rate, lysosomal membrane permeabilization (LMP), mitochondrial membrane potential (ΔΨm), oxidative stress, ER stress status, in addition to their secretory functions. MEHP, not MBP, exhibited a notable reduction in metabolic viability, particularly at higher concentrations (500 and 1000 µM) following 24-hour exposure. Similarly, both MEHP and MBP induced decreased metabolic viability at high concentrations after 48- and 72-hour exposure. Notably, neither MEHP nor MBP demonstrated a significant impact on apoptosis rates after 24-hour exposure, and MBP induced mild necrosis at 1000 µM concentration. Cell proliferation rates, indicated by PCNA expression, decreased with 10 and 1000 µM MEHP and 0.1 and 10 µM MBP exposures. LMP analysis revealed an increase in 1000 µM MBP group. Exposure to 0.001 µM of both MEHP and MBP significantly reduced cellular glutathione (GSH) levels. No significant change in intracellular reactive oxygen species (ROS) levels and ΔΨm was observed, but MBP-exposed cells exhibited elevated levels of lipid peroxidation. Functional assessments of pancreatic beta cells unveiled reduced insulin secretion at low glucose concentrations following exposure to both MEHP and MBP, with concurrent alterations in the expression levels of key proteins associated with beta cell function, including GLUT1, GCK, PDX1, and MafA. Moreover, MEHP and MBP exposures were associated with alterations in ER stress-related pathways, including JNK, GADD153, and NF-κB expression, as well as PPARα and PPARγ levels. In conclusion, this study provides comprehensive insights into the diverse impacts of MEHP and MBP on 1.1B4 pancreatic beta cells, emphasizing their potential role in modulating cell survival, metabolic function, and stress response pathways.
Collapse
Affiliation(s)
- Fulya Dal Yöntem
- Koç University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sinem Ayaz
- Istanbul University, Cerrahpasa, Institute of Graduate Studies, Department of Clinical Microbiology, Istanbul, Turkey; Haliç University, Faculty of Medicine, Department of Clinical Microbiology, Istanbul, Turkey
| | - Şeyma Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey; Bezmialem Vakıf University, Institute of Health Sciences, Department of Biotechnology, Istanbul, Turkey
| | | | - Müfide Aydoğan Ahbab
- University of Health Sciences Türkiye, Hamidiye Vocational School of Health Services, Istanbul, Turkey.
| |
Collapse
|
24
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
25
|
Tang Z, Zhang Y, Yu Z, Luo Z. Metformin Suppresses Stemness of Non-Small-Cell Lung Cancer Induced by Paclitaxel through FOXO3a. Int J Mol Sci 2023; 24:16611. [PMID: 38068934 PMCID: PMC10705988 DOI: 10.3390/ijms242316611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on cancer stemness derived from paclitaxel (PTX)-resistant non-small-cell lung cancer (NSCLC) cells. We showed that CSC-like features were acquired by the chronic induction of resistance to PTX, concurrently with inactivation of FOXO3a. In line with this, knockdown of FOXO3a in PTX-sensitive cells led to changes toward stemness, while overexpression of FOXO3a in PTX-resistant cells mitigated stemness in vitro and remarkably curbed the tumorigenesis of NSCLC/PTX cells in vivo. Furthermore, metformin suppressed the self-renewal ability of PTX-resistant cells, reduced the expression of stemness-related markers (c-MYC, Oct4, Nanog and Notch), and upregulated FOXO3a, events concomitant with the activation of AMP-activated protein kinase (AMPK). All these changes were recapitulated by silencing FOXO3a in PTX-sensitive cells. Intriguingly, the introduction of the AMPK dominant negative mutant offset the inhibitory effect of metformin on the stemness of PTX-resistant cells. In addition, FOXO3a levels were elevated by the treatment of PTX-resistant cells with MK2206 (an Akt inhibitor) and U0126 (a MEK inhibitor). Collectively, our findings indicate that metformin exerts its effect on FOXO3a through the activation of AMPK and the inhibition of protein kinase B (Akt) and MAPK/extracellular signal-regulated kinase (MEK), culminating in the suppression of stemness in paclitaxel-resistant NSCLC cells.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
| | - Yilan Zhang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhengyi Yu
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| |
Collapse
|
26
|
Teaney NA, Cyr NE. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1286838. [PMID: 37941908 PMCID: PMC10629996 DOI: 10.3389/fendo.2023.1286838] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Forkhead box O (FoxO) proteins are transcription factors that mediate many aspects of physiology and thus have been targeted as therapeutics for several diseases including metabolic disorders such as type 2 diabetes mellitus (T2D). The role of FoxO1 in metabolism has been well studied, but recently FoxO1's potential for diabetes prevention and therapy has been debated. For example, studies have shown that increased FoxO1 activity in certain tissue types contributes to T2D pathology, symptoms, and comorbidities, yet in other tissue types elevated FoxO1 has been reported to alleviate symptoms associated with diabetes. Furthermore, studies have reported opposite effects of active FoxO1 in the same tissue type. For example, in the liver, FoxO1 contributes to T2D by increasing hepatic glucose production. However, FoxO1 has been shown to either increase or decrease hepatic lipogenesis as well as adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle atrophy. While many studies show that FoxO1 lowers pancreatic insulin production and secretion, others show the opposite, especially in response to oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer's disease, a neurodegenerative disease strongly associated with T2D. Conversely, accumulating evidence implicates increased FoxO1 with Parkinson's disease pathogenesis. Here we review FoxO1's actions in T2D conditions in metabolic tissues that abundantly express FoxO1 and highlight some of the current studies targeting FoxO1 for T2D treatment.
Collapse
Affiliation(s)
- Nicole A. Teaney
- Stonehill College, Neuroscience Program, Easton, MA, United States
| | - Nicole E. Cyr
- Stonehill College, Neuroscience Program, Easton, MA, United States
- Stonehill College, Department of Biology, Easton, MA, United States
| |
Collapse
|
27
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
28
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent Neonatal diabetes-causing Insulin mutations have dominant negative effects on beta cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555839. [PMID: 37745320 PMCID: PMC10515756 DOI: 10.1101/2023.09.01.555839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice. These insulin mutations derange endoplasmic reticulum (ER) homeostasis, and result in the loss of beta-cell mass and function. In addition to anticipated apoptosis, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. These results highlight both known and novel mechanisms contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children’s Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- Lead Contact
| |
Collapse
|
29
|
Stamateris RE, Landa-Galvan HV, Sharma RB, Darko C, Redmond D, Rane SG, Alonso LC. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest 2023; 133:e166490. [PMID: 37712417 PMCID: PMC10503800 DOI: 10.1172/jci166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Expanding β cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain β cell number. β cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of β cell mass in IRS2-deficient mice. Surprisingly, not only β cell mass but also β cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical β cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that β cell mass can be expanded without compromising function.
Collapse
Affiliation(s)
- Rachel E. Stamateris
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Huguet V. Landa-Galvan
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - David Redmond
- Hartman Institute for Therapeutic Regenerative Medicine, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sushil G. Rane
- Integrative Cellular Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institute for Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| |
Collapse
|
30
|
Liang Y, Chen B, Liang D, Quan X, Gu R, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G. Pharmacological Effects of Astragaloside IV: A Review. Molecules 2023; 28:6118. [PMID: 37630371 PMCID: PMC10458270 DOI: 10.3390/molecules28166118] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.
Collapse
Affiliation(s)
- Yutong Liang
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Biqiong Chen
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Di Liang
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Xiaoxiao Quan
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| |
Collapse
|
31
|
Liu N, Li R, Cao J, Song X, Ma W, Liu T, Wang L, Zou J, Zhang B, Liu Z, Liang R, Zheng R, Wang S. The inhibition of FKBP5 protects β-cell survival under inflammation stress via AKT/FOXO1 signaling. Cell Death Discov 2023; 9:247. [PMID: 37452039 PMCID: PMC10349081 DOI: 10.1038/s41420-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The FK506-binding protein 51 (FKBP51, encoded by FKBP5 gene) has emerged as a critical regulator of mammalian endocrine stress responses and as a potential pharmacological target for metabolic disorders, including type 2 diabetes (T2D). However, in β cells, which secrete the only glucose-lowering hormone-insulin, the expression and function of FKBP5 has not been documented. Here, using human pancreatic tissue and primary human islets, we demonstrated the abundant expression of FKBP5 in β cells, which displayed an responsive induction upon acute inflammatory stress mimicked by in vitro treatment with a cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α). To explore its function, siRNAs targeting FKBP5 and pharmacological inhibitor SAFit2 were applied both in clonal NIT-1 cells and primary human/mice islets. We found that FKBP5 inhibition promoted β-cell survival, improved insulin secretion, and upregulated β-cell functional gene expressions (MAFA and NKX6.1) in acute-inflammation stressed β cells. In primary human and mice islets, which constitutively suffer from inflammation stress during isolation and culture, FKBP5 inhibition also presented decent performance in improving islet function, in accordance with its protective effect against inflammation. Molecular studies found that FKBP5 is an important regulator for FOXO1 phosphorylation at Serine 256, and silencing of FOXO1 abrogated the protective effect of FKBP5 inhibition, suggesting that it is the key downstream effector of FKBP5 in β cells. At last, in situ detection of FKBP5 protein expression on human and mice pancreases revealed a reduction of FKBP5 expression in β cells in human T2D patients, as well as T2D mice model (db/db), which may indicate a FKBP5-inhibition-mediated pro-survival mechanism against the complex stresses in T2D milieus.
Collapse
Affiliation(s)
- Na Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Li
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Xinyao Song
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Wenmiao Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
32
|
Yu Y, Fu D, Zhou H, Su J, Chen S, Lv G. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116718. [PMID: 37268258 DOI: 10.1016/j.jep.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/β-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
33
|
Li Y, An M, Fu X, Meng X, Ma Y, Liu H, Li Q, Xu H, Chen J. Bushen Wenyang Huayu Decoction inhibits autophagy by regulating the SIRT1-FoXO-1 pathway in endometriosis rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116277. [PMID: 36806342 DOI: 10.1016/j.jep.2023.116277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Wenyang Huayu Decoction (BWHD) is a traditional Chinese medicine for tonifying kidney and warming Yang, thereby resolving blood stasis and relieving pain. BWHD can significantly improve the clinical symptoms of patients with endometriosis (EMs), but its mechanism is still unclear. AIM OF THE STUDY We evaluated the expression and role of the SIRT1-FoxO-1 pathway and autophagy levels in EMs rats. The therapeutic effects and potential therapeutic mechanisms of BWHD were also investigated. METHODS Twenty rats were randomized into the sham group and eighty rats were used for model establishment by autologous transplantation. After successful modeling, they were randomized into the model, BWHD, EX527+BWHD and EX527 groups, with 20 rats in each group. All rats were intragastrically administered with for 3 weeks. Localization of Sirtuin 1 (SIRT1), Forkhead boxO-1 (FoXO-1), Beclin-1, autophagy-related 5 (Atg5) and autophagy-related 7 (Atg7) was determined by immunohistochemical staining. The expression of the above proteins was determined by Western blot and their messenger RNA (mRNA) levels were detected by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS The protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in the model group were markedly increased, while that of SIRT1 was markedly decreased relative to the sham group (p < 0.05 and p<0.01, respectively). Results showed that the protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of BWHD group were lower, while SIRT1 expression was higher than in the model group (p < 0.05 and p<0.01, respectively). Furthermore, protein and mRNA expression levels of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of EX527 group were higher, while SIRT1 level was significantly lower than in the model group (p < 0.05 and p < 0.01, respectively). The EX527-induced changes in protein and mRNA expressions were reversed in the EX527+BWHD group (p < 0.05 and p < 0.01, respectively). CONCLUSIONS BWHD inhibits autophagy by up-regulating SIRT1 and down-regulating FoXO-1 expression in EMs via the SIRT1-FoXO-1 signaling pathway. Therefore, it is a potential treatment for EMs.
Collapse
Affiliation(s)
- Ying Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Mingli An
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Xinping Fu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Xin Meng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Yiming Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Huimin Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang City, Shijiazhuang, Hebei, 050011, PR China.
| | - Huazhou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, PR China.
| |
Collapse
|
34
|
Francis M, Bhaskar S, Komanduri S, Sheshadri P, Prasanna J, Kumar A. Deubiquitinase USP1 influences the dedifferentiation of mouse pancreatic β-cells. iScience 2023; 26:106771. [PMID: 37250303 PMCID: PMC10214732 DOI: 10.1016/j.isci.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Loss of insulin-secreting β-cells in diabetes may be either due to apoptosis or dedifferentiation of β-cell mass. The ubiquitin-proteasome system comprising E3 ligase and deubiquitinases (DUBs) controls several aspects of β-cell functions. In this study, screening for key DUBs identified USP1 to be specifically involved in dedifferentiation process. Inhibition of USP1 either by genetic intervention or small-molecule inhibitor ML323 restored epithelial phenotype of β-cells, but not with inhibition of other DUBs. In absence of dedifferentiation cues, overexpression of USP1 was sufficient to induce dedifferentiation in β-cells; mechanistic insight showed USP1 to mediate its effect via modulating the expression of inhibitor of differentiation (ID) 2. In an in vivo streptozotocin (STZ)-induced dedifferentiation mouse model system, administering ML323 alleviated hyperglycemic state. Overall, this study identifies USP1 to be involved in dedifferentiation of β-cells and its inhibition may have a therapeutic application of reducing β-cell loss during diabetes.
Collapse
Affiliation(s)
- Meenal Francis
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Saarwani Komanduri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
35
|
Park JW, Roh E, Kang GM, Gil SY, Kim HK, Lee CH, Jang WH, Park SE, Moon SY, Kim SJ, Jeong SY, Park CB, Lim HS, Oh YR, Jung HN, Kwon O, Youn BS, Son GH, Min SH, Kim MS. Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure. Nat Commun 2023; 14:1994. [PMID: 37031230 PMCID: PMC10082796 DOI: 10.1038/s41467-023-37517-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 14068, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Hyun Kyong Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, 24252, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang Yun Moon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - So Yeon Jeong
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Han Na Jung
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | | | - Gi Hoon Son
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Korea
| | - Se Hee Min
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
36
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
37
|
Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. Int J Biol Macromol 2023; 236:123846. [PMID: 36863675 DOI: 10.1016/j.ijbiomac.2023.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked β-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked β-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated β-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.
Collapse
|
38
|
Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, Meroni M, Mayfield B, Bartolomé A, Dapito DH, Ferrante AW, Dongiovanni P, Valenti L, Creusot RJ, Pajvani UB. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023; 8:e165369. [PMID: 36752206 PMCID: PMC9977430 DOI: 10.1172/jci.insight.165369] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.
Collapse
Affiliation(s)
- Jinku Kang
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Jorge Postigo-Fernandez
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - KyeongJin Kim
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science & Engineering, and Research Center for Controlling Intercellular Communication (RCIC), Inha University, Incheon, South Korea
| | - Changyu Zhu
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Junjie Yu
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brent Mayfield
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Remi J. Creusot
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
39
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
40
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
41
|
Tranilast protects pancreatic β-cells from palmitic acid-induced lipotoxicity via FoxO-1 inhibition. Sci Rep 2023; 13:101. [PMID: 36596838 PMCID: PMC9810694 DOI: 10.1038/s41598-022-25428-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Tranilast, an anti-allergic drug used in the treatment of bronchial asthma, was identified as an inhibitor of the transcription factor Forkhead box O-1 (FoxO-1) by high throughput chemical library screening in the present study. Based on FoxO-1's role in apoptotic cell death and differentiation, we examined the effect of tranilast on palmitic acid (PA)-induced cell damage in INS-1 cells. Tranilast substantially inhibited lipoapoptosis and restored glucose-stimulated insulin secretion under high PA exposure. Moreover, PA-mediated downregulation of PDX-1, MafA, and insulin expression was attenuated by tranilast. PA-induced oxidative and ER stress were also reduced in the presence of tranilast. These protective effects were accompanied by increased phosphorylation and decreased nuclear translocation of FoxO-1. Conversely, the effects of tranilast were diminished when treated in transfected cells with FoxO-1 phosphorylation mutant (S256A), suggesting that the tranilast-mediated effects are associated with inactivation of FoxO-1. Examination of the in vivo effects of tranilast using wild type and diabetic db/db mice showed improved glucose tolerance along with FoxO-1 inactivation in the pancreas of the tranilast-treated groups. Thus, we report here that tranilast has protective effects against PA-induced lipotoxic stress in INS-1 cells, at least partly, via FoxO-1 inactivation, which results in improved glucose tolerance in vivo.
Collapse
|
42
|
Accili D, Du W, Kitamoto T, Kuo T, McKimpson W, Miyachi Y, Mukhanova M, Son J, Wang L, Watanabe H. Reflections on the state of diabetes research and prospects for treatment. Diabetol Int 2023; 14:21-31. [PMID: 36636157 PMCID: PMC9829952 DOI: 10.1007/s13340-022-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 01/16/2023]
Abstract
Research on the etiology and treatment of diabetes has made substantial progress. As a result, several new classes of anti-diabetic drugs have been introduced in clinical practice. Nonetheless, the number of patients achieving glycemic control targets has not increased for the past 20 years. Two areas of unmet medical need are the restoration of insulin sensitivity and the reversal of pancreatic beta cell failure. In this review, we integrate research advances in transcriptional regulation of insulin action and pathophysiology of beta cell dedifferentiation with their potential impact on prospects of a durable "cure" for patients suffering from type 2 diabetes.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Wen Du
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Takumi Kitamoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670 Japan
| | - Taiyi Kuo
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, CA 95616 USA
| | - Wendy McKimpson
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka Japan
| | - Maria Mukhanova
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Jinsook Son
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Liheng Wang
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| | - Hitoshi Watanabe
- Department of Medicine and Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
43
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
44
|
Kitamoto T, Lee YK, Sultana N, Watanabe H, McKimpson WM, Du W, Fan J, Diaz B, Lin HV, Leibel RL, Belvedere S, Accili D, Accili D. Chemical induction of gut β-like-cells by combined FoxO1/Notch inhibition as a glucose-lowering treatment for diabetes. Mol Metab 2022; 66:101624. [PMID: 36341906 PMCID: PMC9664469 DOI: 10.1016/j.molmet.2022.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. METHODS We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive β-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Chiba University Graduate School of Medicine, Chiba, Japan, 2608670.
| | | | - Nishat Sultana
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hitoshi Watanabe
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wendy M McKimpson
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Jason Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33146, USA
| | - Bryan Diaz
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hua V Lin
- BioFront Therapeutics, Beijing, China
| | - Rudolph L Leibel
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Domenico Accili
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
46
|
Song J, Ni Q, Sun J, Xie J, Liu J, Ning G, Wang W, Wang Q. Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans. J Clin Endocrinol Metab 2022; 107:3231-3241. [PMID: 36125175 PMCID: PMC9693768 DOI: 10.1210/clinem/dgac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS We calculated the percentage of hormone-negative/chromogranin A-positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H2O2-induced senescent Min6 cells rescued beta cell identity. CONCLUSION Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.
Collapse
Affiliation(s)
| | | | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qidi Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Habibe JJ, Clemente-Olivo MP, Scheithauer TPM, Rampanelli E, Herrema H, Vos M, Mieremet A, Nieuwdorp M, van Raalte DH, Eringa EC, de Vries CJM. Glucose-mediated insulin secretion is improved in FHL2-deficient mice and elevated FHL2 expression in humans is associated with type 2 diabetes. Diabetologia 2022; 65:1721-1733. [PMID: 35802167 PMCID: PMC9477948 DOI: 10.1007/s00125-022-05750-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS The general population is ageing, involving an enhanced incidence of chronic diseases such as type 2 diabetes. With ageing, DNA methylation of FHL2 increases, as well as expression of the four and a half LIM domains 2 (FHL2) protein in human pancreatic islets. We hypothesised that FHL2 is actively involved in glucose metabolism. METHODS Publicly available microarray datasets from human pancreatic islets were analysed for FHL2 expression. In FHL2-deficient mice, we studied glucose clearance and insulin secretion. Gene expression analysis and glucose-stimulated insulin secretion (GSIS) were determined in isolated murine FHL2-deficient islets to evaluate insulin-secretory capacity. Moreover, knockdown and overexpression of FHL2 were accomplished in MIN6 cells to delineate the underlying mechanism of FHL2 function. RESULTS Transcriptomics of human pancreatic islets revealed that individuals with elevated levels of HbA1c displayed increased FHL2 expression, which correlated negatively with insulin secretion pathways. In line with this observation, FHL2-deficient mice cleared glucose more efficiently than wild-type littermates through increased plasma insulin levels. Insulin sensitivity was comparable between these genotypes. Interestingly, pancreatic islets isolated from FHL2-deficient mice secreted more insulin in GSIS assays than wild-type mouse islets even though insulin content and islet size was similar. To support this observation, we demonstrated increased expression of the transcription factor crucial in insulin secretion, MAF BZIP transcription factor A (MafA), higher expression of GLUT2 and reduced expression of the adverse factor c-Jun in FHL2-deficient islets. The underlying mechanism of FHL2 was further delineated in MIN6 cells. FHL2-knockdown led to enhanced activation of forkhead box protein O1 (FOXO1) and its downstream genes such as Mafa and Pdx1 (encoding pancreatic and duodenal homeobox 1), as well as increased glucose uptake. On the other hand, FHL2 overexpression in MIN6 cells blocked GSIS, increased the formation of reactive oxygen species and increased c-Jun activity. CONCLUSIONS/INTERPRETATION Our data demonstrate that FHL2 deficiency improves insulin secretion from beta cells and improves glucose tolerance in mice. Given that FHL2 expression in humans increases with age and that high expression levels of FHL2 are associated with beta cell dysfunction, we propose that enhanced FHL2 expression in elderly individuals contributes to glucose intolerance and the development of type 2 diabetes. DATA AVAILABILITY The human islet microarray datasets used are publicly available and can be found on https://www.ncbi.nlm.nih.gov/geo/ .
Collapse
Affiliation(s)
- Jayron J Habibe
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Department of Physiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maria P Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Torsten P M Scheithauer
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Daniel H van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Physiology, Cardiovascular Institute Maastricht, Maastricht, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Marchelek-Mysliwiec M, Nalewajska M, Turoń-Skrzypińska A, Kotrych K, Dziedziejko V, Sulikowski T, Pawlik A. The Role of Forkhead Box O in Pathogenesis and Therapy of Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231911611. [PMID: 36232910 PMCID: PMC9569915 DOI: 10.3390/ijms231911611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes is a disease that causes numerous complications disrupting the functioning of the entire body. Therefore, new treatments for the disease are being sought. Studies in recent years have shown that forkhead box O (FOXO) proteins may be a promising target for diabetes therapy. FOXO proteins are transcription factors involved in numerous physiological processes and in various pathological conditions, including cardiovascular diseases and diabetes. Their roles include regulating the cell cycle, DNA repair, influencing apoptosis, glucose metabolism, autophagy processes and ageing. FOXO1 is an important regulator of pancreatic beta-cell function affecting pancreatic beta cells under conditions of insulin resistance. FOXO1 also protects beta cells from damage resulting from oxidative stress associated with glucose and lipid overload. FOXO has been shown to affect a number of processes involved in the development of diabetes and its complications. FOXO regulates pancreatic β-cell function during metabolic stress and also plays an important role in regulating wound healing. Therefore, the pharmacological regulation of FOXO proteins is a promising approach to developing treatments for many diseases, including diabetes mellitus. In this review, we describe the role of FOXO proteins in the pathogenesis of diabetes and the role of the modulation of FOXO function in the therapy of this disease.
Collapse
Affiliation(s)
| | - Magdalena Nalewajska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Katarzyna Kotrych
- Department of Radiology, West Pomeranian Center of Oncology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive, and Gastroenterological Surgery, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
- Correspondence:
| |
Collapse
|
49
|
Nicotinamide riboside kinase 1 protects against diet and age-induced pancreatic β-cell failure. Mol Metab 2022; 66:101605. [PMID: 36165811 PMCID: PMC9557729 DOI: 10.1016/j.molmet.2022.101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic β-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic β-cell function in pathophysiological conditions. METHODS Whole body and pancreatic β-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic β-cell function, β-cell mass and gene expression. RESULTS We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic β-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised β-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, β cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in β-cells did not show altered glucose homeostasis. CONCLUSIONS This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic β-cell function in high-fat feeding or aging conditions.
Collapse
|
50
|
Soleimani-Dodran M, Alipanah-Moghadam R, Jeddi F, Babaei M, Salimnejad R, Bahreini E. Effect of hydroalcoholic seed extract of Nigella sativa on hepatic and pancreatic factors of Nrf2 and FGF21 in the regulation of insulin transcription factors of MafA and PDX-1 in streptozotocin-treated diabetic rats. Nutr Metab (Lond) 2022; 19:64. [PMID: 36109786 PMCID: PMC9479419 DOI: 10.1186/s12986-022-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Nigella sativa (N. sativa), one of the most commonly used medicinal herbs with antioxidant properties, increases blood insulin levels and lowers fasting blood sugar. Nuclear Erythroid Factor-Related Factor 2 (Nrf2) and Fibroblast Growth Factor 21 (FGF21) are two antioxidant factors that are increased by oxidative stress and hyperglycemia. The present study investigated how hydroalcoholic extract of N. sativa seed (HENS) increases blood insulin levels, taking into account changes in antioxidant factors and expression of insulin transcription factors. Materials and methods Two groups of male diabetic wistar rats were treated orally with HESN at doses of 200 and 400 mg/kg-body weight for one month. Fasting blood sugar (FBS) and insulin were measured using standard kits by photometric and ELISA methods, respectively. The expression levels of the Nrf2, FGF21 and β-Klotho genes as well as the insulin gene-stimulating transcription factors of MafA and PDX-1 were evaluated using real-time PCR. Oxidative stress was assessed by assessing serum total oxidation status (TOS), malondialdehyde (MDA), and total antioxidant capacity (TAC). Results HSEN showed a significant reducing effect on FBS and oxidative biomarkers and an increasing effect on serum insulin levels in treated diabetic rats compared to untreated diabetics (P < 0.05). The elevated levels of NRF2 and FGF21 in the liver and pancreas of the diabetic control group were significantly reduced after treatment with both HESN doses (P < 0.05). Following the ameliorative effects of HENS on pancreatic tissue and the reduction of oxidative stress, the expression level of MafA and PDX1 genes approached the level of these factors in healthy rats (P < 0.05). Conclusion This study showed the therapeutic effects of HENS on diabetic pancreas by reducing oxidative stress and tissue damage, modifying the expression levels of PDX-1 and MafA genes, and regulating insulin secretion and blood glucose levels.
Collapse
|