1
|
Wang H, Zhang J, Ning J, Cui Y, Hou H, Liu M, Liu J, Tang R, Wang J. Oxidative stress and inflammation mediate the association between Life's Crucial 9 and biological ageing: A secondary analysis of two observational studies. J Nutr Health Aging 2025; 29:100575. [PMID: 40334364 DOI: 10.1016/j.jnha.2025.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Life's Essential 8 (LE8) is known to have a negative correlation with biological aging, while the relationship between the Life's Crucial 9 (LC9) score, which includes mental health, and biological aging remains to be further investigated. METHODS We obtained data from two national cohorts, the UK Biobank and National Health and Nutrition Examination Survey (NHANES), to analyze the association between LC9 and biological aging. Biological aging was assessed using PhenoAge and KDMAge, with gender, race, and other indicators included as covariates. We applied linear regression models and restricted cubic splines (RCS) to analyze and describe the relationship. Furthermore, we explored the mediating role of oxidative stress and inflammation in the association between LC9 and biological aging. Subgroup analyses were conducted using multiple linear regression models, and differences between subgroups were assessed through interaction p-value tests. Sensitivity analyses were subsequently performed, followed by an exploration of the underlying mechanisms. RESULTS In this study, the UK Biobank cohort included 46,599 participants, with 44,973 participants having complete data for all covariates, LC9, and the necessary calculations for PhenoAge and KDMage. In the NHANES cohort, these numbers were 11,726 and 5,936, respectively. In the UK Biobank cohort, a significant association was found between the LC9 score and PhenoAge (β = -2.484, p < 0.001), with similar results observed for KDMage (β = -7.987, p < 0.001). Similar findings were observed in the NHANES cohort, with significant associations between the LC9 score and both PhenoAge (β = -5.327, p < 0.001) and KDMAge (β = 11.826, p < 0.001). These findings align with previous research suggesting that higher LC9 scores are associated with slower biological aging. After multivariable adjustment, an "inverse L-shaped" relationship was observed (non-linear P < 0.001). In the mediation analysis, oxidative stress and inflammation showed significant mediating effects between LC9 and both PhenoAge and KDMage (p < 0.001 for both). In the subgroup analysis, the LC9 score showed broad applicability, particularly among male participants aged over 60 years. CONCLUSION This cohort study suggests that higher LC9 scores are associated with slower biological aging. In addition to emphasizing diet and lifestyle habits, the role of mental health in biological aging should not be overlooked.
Collapse
Affiliation(s)
- Haoran Wang
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingwen Zhang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiaxin Ning
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853 China
| | - Huimin Hou
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Ming Liu
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jianyong Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Runhua Tang
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianye Wang
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Sarmah S, Truong HTH, McColl G, Burke R, Mirth CK, Piper MDW. Dietary Zinc Limitation Dictates Lifespan and Reproduction Trade-Offs of Drosophila Mothers. Aging Cell 2025; 24:e14498. [PMID: 39891318 PMCID: PMC12073914 DOI: 10.1111/acel.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Dietary metal ions significantly influence the lifespan and reproduction of Drosophila females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the white gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.
Collapse
Affiliation(s)
- Sweta Sarmah
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - Gawain McColl
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Richard Burke
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Christen K. Mirth
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
3
|
Sheu ML, Pan LY, Pan SY, Chen YJ, Sheehan J, You WC, Wang CC, Pan HC. Caloric Restriction Attenuated Nerve Damages Mediated Through SIRT-1-a Study Using Nerve Crush Injury Model in Rats. Mol Neurobiol 2025:10.1007/s12035-025-04786-9. [PMID: 39994158 DOI: 10.1007/s12035-025-04786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Activation of Sirtuin 1 (SIRT-1) is vital for axonogenesis and nerve regeneration. Caloric restriction (CR) has health benefits and protects against neurodegenerative disorders, largely through SIRT-1 regulation. This study investigates how diet control impacts peripheral nerve injury, focusing on SIRT-1 expression. We prepared nerve tissue cultures for a pharmacological analysis of SIRT-1's effects on nerve degeneration. After two weeks of 70% caloric restriction, we crushed the left sciatic nerve of Sprague-Dawley rats with a vessel clamp. We then administered SIRT-1 agonists or antagonists intraperitoneally. Nerve explant cultures showed increased SIRT-1 expression with SRT-1720, which was reduced by EX527, indicating enhanced regeneration. In the animal study, diet control led to notable SIRT-1 expression in plasma. This expression increased with SIRT-1 agonists and decreased with antagonists. SIRT-1 levels in paw skin were strongly correlated with PGP 9.5 and collagen deposition, while nerve fiber size and regeneration markers (S-100 and NF) also correlated with SIRT-1 expression. Inflammatory markers showed an inverse relationship with SIRT-1. TNF-α and NGF in the dorsal root ganglion responded reciprocally to SIRT-1 expression. Increased acetylcholine receptors and desmin in denervated muscle were parallel to SIRT-1 levels, with similar trends observed in muscle weight and diameter. Neurobehavioral and electrophysiological results aligned with these measurements. Caloric restriction has a preventative effect on nerve damage, mainly through SIRT-1 modulation. From a health perspective, promoting caloric restriction is important for mitigating nerve injury severity.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Management and Innovation, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec.4, 40705, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Yi Pan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying Ju Chen
- PhD program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hung-Chuan Pan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec.4, 40705, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Kundu S, Kumar V, Arora S, Prasad S, Singh C, Singh A. Nutrition in aging. ESSENTIAL GUIDE TO NEURODEGENERATIVE DISORDERS 2025:415-435. [DOI: 10.1016/b978-0-443-15702-8.00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Lokhov PG, Balashova EE, Maslov DL, Trifonova OP, Archakov AI. Aging and Pathological Conditions Similarity Revealed by Meta-Analysis of Metabolomics Studies Suggests the Existence of the Health and Age-Related Metapathway. Metabolites 2024; 14:593. [PMID: 39590829 PMCID: PMC11597009 DOI: 10.3390/metabo14110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The incidence of many diseases increases with age and leads to multimorbidity, characterized by the presence of multiple diseases in old age. This phenomenon is closely related to systemic metabolic changes; the most suitable way to study it is through metabolomics. The use of accumulated metabolomic data to characterize this phenomenon at the system level may provide additional insight into the nature and strength of aging-disease relationships. Methods: For this purpose, metabolic changes associated with human aging and metabolic alterations under different pathological conditions were compared. To do this, the published results of metabolomic studies on human aging were compared with data on metabolite alterations collected in the human metabolome database through metabolite set enrichment analysis (MSEA) and combinatorial analysis. Results: It was found that human aging and pathological conditions involve the set of the same metabolic pathways with a probability of 99.96%. These data show the high identity of the aging process and the development of diseases at the metabolic level and allow to identify the set of metabolic pathways reflecting age-related changes closely associated with health. Based on these pathways, a metapathway was compiled, changes in which are simultaneously associated with health and age. Conclusions: The knowledge about the strength of the convergence of aging and pathological conditions has been supplemented by the rigor evidence at the metabolome level, which also made it possible to outline the age and health-relevant place in the human metabolism.
Collapse
|
6
|
Reynolds LM, Houston DK, Skiba MB, Whitsel EA, Stewart JD, Li Y, Zannas AS, Assimes TL, Horvath S, Bhatti P, Baccarelli AA, Tooze JA, Vitolins MZ. Diet Quality and Epigenetic Aging in the Women's Health Initiative. J Acad Nutr Diet 2024; 124:1419-1430.e3. [PMID: 38215906 PMCID: PMC11236955 DOI: 10.1016/j.jand.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Higher diet quality scores are associated with a lower risk for many chronic diseases and all-cause mortality; however, it is unclear if diet quality is associated with aging biology. OBJECTIVE This study aimed to examine the association between diet quality and a measure of biological aging known as epigenetic aging. DESIGN A cross-sectional data analysis was used to examine the association between three diet quality scores based on self-reported food frequency questionnaire data and five measures of epigenetic aging based on DNA methylation (DNAm) data from peripheral blood. PARTICIPANTS/SETTING This study included 4,500 postmenopausal women recruited from multiple sites across the United States (1993-98), aged 50 to 79 years, with food frequency questionnaire and DNAm data available from the Women's Health Initiative baseline visit. MAIN OUTCOME MEASURES Five established epigenetic aging measures were generated from HumanMethylation450 Beadchip DNAm data, including AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim, and DunedinPACE. STATISTICAL ANALYSES PERFORMED Linear mixed models were used to test for associations between three diet quality scores (Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores) and epigenetic aging measures, adjusted for age, race and ethnicity, education, tobacco smoking, physical activity, Women's Health Initiative substudy from which DNAm data were obtained, and DNAm-based estimates of leukocyte proportions. RESULTS Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores were all inversely associated with AgeAccelPheno, AgeAccelGrim, and DunedinPACE (P < 0.05), with the largest effects with DunedinPACE. A one standard deviation increment in diet quality scores was associated with a decrement (β ± SE) in DunedinPACE z score of -0.097 ± 0.014 (P = 9.70 x 10-13) for Healthy Eating Index, -0.107 ± 0.014 (P = 1.53 x 10-14) for Dietary Approaches to Stop Hypertension, and -0.068 ± 0.013 (P = 2.31 x 10-07) for the alternate Mediterranean diet. CONCLUSIONS In postmenopausal women, diet quality scores were inversely associated with DNAm-based measures of biological aging, particularly DunedinPACE.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Denise K Houston
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Meghan B Skiba
- Division of Biobehavioral Health Science, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California; Altos Labs, San Diego, California
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Janet A Tooze
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mara Z Vitolins
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
7
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
8
|
Shen X, Chen X, Chen X, Li Z, Lin J, Huang H, Xie R, Li Y, Zhu Y, Zhuo Y. Association of vision and hearing impairment and dietary diversity among the oldest old in China: findings from the Chinese longitudinal healthy longevity survey. BMC Public Health 2024; 24:1997. [PMID: 39060927 PMCID: PMC11282864 DOI: 10.1186/s12889-024-19482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The presence of sensory impairment among older age cohorts exerts a significant impact on both individuals and society generally. Although the impact of dietary patterns on health is vital across all stages of life, there still a paucity of comprehensive research on the association between dietary variety and sensory impairments. OBJECTIVE To investigate the potential relationship between dietary diversity and the prevalence of visual and hearing impairment or dual sensory impairments (visual and hearing impairment) among the oldest old population. METHODS This is a cross-sectional study relied on data obtained from the 2018 survey conducted by the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Subjects aged 80 and older with complete vision and hearing data were included in the study. Multivariate logistic regression models were developed to examine the association between dietary components and visual and hearing impairment while controlling for age, gender, socioeconomic demographic factors, living habits, other food habits, and general health status. RESULTS The study included 10,093 participants, with an average age of 92.29 ± 7.75 years. Vision and hearing function were assessed based on the ability to distinguish the direction of the break in the circle and the requirement for hearing aids, respectively. Upon controlling for confounding variables, individuals with a greater Dietary Diversity Score (DDS, the number of food groups, range: 1-11) had a reduced likelihood of experiencing visual impairment (odds ratio [OR] = 0.944, 95% confidence interval [CI], 0.915-0.974) and dual sensory impairment (OR = 0.930, 95% CI, 0.905-0.955). In comparison to the low dietary variety group (insufficient dietary diversity, DDS < 4), the high dietary diversity group (sufficient dietary diversity, DDS ≥ 4) exhibited a decreased risk of visual impairment (OR = 0.820, 95% CI, 0.713-0.944) and dual sensory impairment (OR = 0.751, 95% CI, 0.667-0.846). However, no statistically significant correlation was observed between dietary diversity and the presence of only hearing impairment (OR = 0.924, 95% CI, 0.815-1.047) (P < 0.05). CONCLUSIONS AND IMPLICATIONS: The synthesis of research findings suggests that following diverse dietary patterns and healthy nutritional practices may be an effective and affordable way to prevent age-related decline in visual impairment and dual sensory impairment.
Collapse
Affiliation(s)
- Xinyue Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Junxiong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Haishun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Rui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Sirakawin C, Lin D, Zhou Z, Wang X, Kelleher R, Huang S, Long W, Pires‐daSilva A, Liu Y, Wang J, Vinnikov IA. SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans. Aging Cell 2024; 23:e14064. [PMID: 38100161 PMCID: PMC10928581 DOI: 10.1111/acel.14064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.
Collapse
Affiliation(s)
- Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory for Molecular Enzymology and Engineering, School of Life SciencesJilin UniversityChangchunChina
| | - Ziyue Zhou
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Weimiao Long
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Lee HY, Min KJ. Betulinic Acid Increases the Lifespan of Drosophila melanogaster via Sir2 and FoxO Activation. Nutrients 2024; 16:441. [PMID: 38337725 PMCID: PMC10856809 DOI: 10.3390/nu16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Betulinic acid (BetA), a triterpenoid derivative found abundantly in the plant kingdom, has emerged as a promising candidate for promoting longevity. Many research studies have shown its antioxidant, anti-inflammatory, antiviral, and anticancer activities, making it an interesting subject for investigating its potential influence on lifespan. This study aimed to investigate the effects of BetA on longevity and the mechanisms associated with it using the fruit fly Drosophila melanogaster as the organism model. The results showed that 50 μM BetA supplementation extended the mean lifespan of fruit flies by 13% in males and 6% in females without any adverse effects on their physiology, such as fecundity, feeding rate, or locomotion ability reduction. However, 50 μM BetA supplementation failed to increase the lifespan in mutants lacking functional silent information regulator 2 (Sir2) and Forkhead box O (FoxO)-null, implying that the longevity effect of BetA is related to Sir2 and FoxO activation. Our study contributes to the knowledge in the field of anti-aging research and inspires further investigations into natural compounds such as BetA to enhance organismal healthspan.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
11
|
Iannello M, Forni G, Piccinini G, Xu R, Martelossi J, Ghiselli F, Milani L. Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution. Genome Biol Evol 2023; 15:evad159. [PMID: 37647860 PMCID: PMC10646442 DOI: 10.1093/gbe/evad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach-which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution-with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are-at least partially-shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giobbe Forni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ran Xu
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Jacopo Martelossi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 2023; 380:625-632. [PMID: 37167393 PMCID: PMC11837410 DOI: 10.1126/science.ade1662] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Collapse
Affiliation(s)
- KJ Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - RA Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - E Henry
- Program in Cellular and Molecular Biology, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - Y Lyu
- Department of Molecular Biology & Biochemistry, Rutgers University; Piscataway, NJ 08855, U.S.A
| | - SD Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
13
|
Effects of Parental Dietary Restriction on Offspring Fitness in Drosophila melanogaster. Nutrients 2023; 15:nu15051273. [PMID: 36904272 PMCID: PMC10005678 DOI: 10.3390/nu15051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Dietary restriction (DR) is a well-established strategy to increase lifespan and stress resistance in many eukaryotic species. In addition, individuals fed a restricted diet typically reduce or completely shut down reproduction compared to individuals fed a full diet. Although the parental environment can lead to changes epigenetically in offspring gene expression, little is known about the role of the parental (F0) diet on the fitness of their offspring (F1). This study investigated the lifespan, stress resistance, development, body weight, fecundity, and feeding rate in offspring from parental flies exposed to a full or restricted diet. The offspring flies of the parental DR showed increases in body weight, resistance to various stressors, and lifespan, but the development and fecundity were unaffected. Interestingly, parental DR reduced the feeding rate of their offspring. This study suggests that the effect of DR can extend beyond the exposed individual to their offspring, and it should be considered in both theoretical and empirical studies of senescence.
Collapse
|
14
|
Lee HY, Lee JH, Kim SH, Jo SY, Min KJ. Probiotic Limosilactobacillus Reuteri (Lactobacillus Reuteri) Extends the Lifespan of Drosophila Melanogaster through Insulin/IGF-1 Signaling. Aging Dis 2023:AD.2023.0122. [PMID: 37163439 PMCID: PMC10389828 DOI: 10.14336/ad.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 05/12/2023] Open
Abstract
The term probiotic refers to bacteria that provide a beneficial effect to the host. Limosilactobacillus reuteri (Lactobacillus reuteri) is a probiotic isolated from human breast milk. Although L. reuteri has antimicrobial and anti-inflammatory activities occasionally linked to anti-aging effects, there are no reports of the effects of L. reuteri on longevity. This study evaluated the anti-aging effects of L. reuteri on the lifespan and physiology of Drosophila melanogaster. L. reuteri increased the mean lifespan of fruit flies significantly without reducing the reproductive output, food intake, or locomotor activity. Furthermore, the data suggested that the longevity effect of L. reuteri is mediated by the reduction of the insulin/IGF-1 signaling pathway and the action of reuterin, an antimicrobial compound produced by L. reuteri. These results show that L. reuteri can be used as a probiotic that acts as a dietary restriction mimetic with anti-aging effects.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Korea
| | - Su-Yeon Jo
- WEDEA Co., Science Park 305, HNU, Daejeon 34054, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
15
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
16
|
Balashova E, Trifonova O, Maslov D, Lichtenberg S, Lokhov P, Archakov A. Metabolome profiling in the study of aging processes. BIOMEDITSINSKAYA KHIMIYA 2022; 68:321-338. [DOI: 10.18097/pbmc20226805321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aging of a living organism is closely related to systemic metabolic changes. But due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, this problem is solved using one of the main approaches of metabolomics — untargeted metabolome profiling. The purpose of this publication is to systematize the results of metabolomic studies based on such profiling, both in animal models and in humans.
Collapse
Affiliation(s)
| | | | - D.L. Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - P.G. Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
17
|
Balashova EE, Maslov DL, Trifonova OP, Lokhov PG, Archakov AI. Metabolome Profiling in Aging Studies. BIOLOGY 2022; 11:1570. [PMID: 36358271 PMCID: PMC9687709 DOI: 10.3390/biology11111570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/07/2024]
Abstract
Organism aging is closely related to systemic metabolic changes. However, due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, scientists are trying to solve this problem using one of the main approaches of metabolomics-untargeted metabolome profiling. The purpose of this publication is to review metabolomic studies based on such profiling, both in animal models and in humans. This review describes metabolites that vary significantly across age groups and include carbohydrates, amino acids, carnitines, biogenic amines, and lipids. Metabolic pathways associated with the aging process are also shown, including those associated with amino acid, lipid, and energy metabolism. The presented data reveal the mechanisms of aging and can be used as a basis for monitoring biological age and predicting age-related diseases in the early stages of their development.
Collapse
Affiliation(s)
- Elena E. Balashova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: Advances, challenges, and opportunities. SCIENCE ADVANCES 2022; 8:eadd6155. [PMID: 36260671 PMCID: PMC9581477 DOI: 10.1126/sciadv.add6155] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 05/02/2023]
Abstract
As the global population becomes older, understanding the impact of aging on health and disease becomes paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the body can provide biological information across a diversity of aging processes. Here, we review the growing body of population-scale metabolomics research on aging in humans, identifying the major trends in the field, implicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the main challenges in the research to date, opportunities for advancing the field, and the outlook for precision health applications.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Ellagic Acid and Its Anti-Aging Effects on Central Nervous System. Int J Mol Sci 2022; 23:ijms231810937. [PMID: 36142849 PMCID: PMC9502104 DOI: 10.3390/ijms231810937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is an unavoidable biological process that leads to the decline of human function and the reduction in people’s quality of life. Demand for anti-aging medicines has become very urgent. Many studies have shown that ellagic acid (EA), a phenolic compound widely distributed in dicotyledonous plants, has powerful anti-inflammation and antioxidant properties. Moreover, it has been demonstrated that EA can enhance neuronal viability, reduce neuronal defects, and alleviate damage in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia. This paper reviews the biochemical functions and neuroprotective effects of EA, showing the clinical value of its application.
Collapse
|
20
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
21
|
Doğan C, Güney G, Güzel KK, Can A, Hegedus DD, Toprak U. What You Eat Matters: Nutrient Inputs Alter the Metabolism and Neuropeptide Expression in Egyptian Cotton Leaf Worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Physiol 2021; 12:773688. [PMID: 34803746 PMCID: PMC8600137 DOI: 10.3389/fphys.2021.773688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Lipids and carbohydrates are the two primary energy sources for both animals and insects. Energy homeostasis is under strict control by the neuroendocrine system, and disruption of energy homeostasis leads to the development of various disorders, such as obesity, diabetes, fatty liver syndrome, and cardiac dysfunction. One critical factor in this respect is feeding habits and diet composition. Insects are good models to study the physiological and biochemical background of the effect of diet on energy homeostasis and related disorders; however, most studies are based on a single model species, Drosophila melanogaster. In the current study, we examined the effects of four different diets, high fat (HFD), high sugar (HSD), calcium-rich (CRD), and a plant-based (PBD) on energy homeostasis in younger (third instar) and older (fifth instar) larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) in comparison to a regular artificial bean diet. Both HSD and HFD led to weight gain, while CRD had the opposite effect and PBD had no effect in fifth instar larvae and pupae. The pattern was the same for HSD and CRD in third instar larvae while a reduction in weight was detected with HFD and PBD. Larval development was shortest with the HSD, while HFD, CRD, and PBD led to retardation compared to the control. Triglyceride (TG) levels were higher with HFD, HSD, and PBD, with larger lipid droplet sizes, while CRD led to a reduction of TG levels and lipid droplet size. Trehalose levels were highest with HSD, while CRD led to a reduction at third instar larvae, and HFD and PBD had no effect. Fifth instar larvae had similar levels of trehalose with all diets. There was no difference in the expression of the genes encoding neuropeptides SpoliAKH and SpoliILP1-2 with different diets in third instar larvae, while all three genes were expressed primarily with HSD, and SpolisNPF was primarily expressed with HFD in fifth instar larvae. In summary, different diet treatments alter the development of insects, and energy and metabolic pathways through the regulation of peptide hormones.
Collapse
Affiliation(s)
- Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Kardelen K Güzel
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG. Sirtuin 1 in Endothelial Dysfunction and Cardiovascular Aging. Front Physiol 2021; 12:733696. [PMID: 34690807 PMCID: PMC8527036 DOI: 10.3389/fphys.2021.733696] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase belonging to the family of Sirtuins, a class of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes with multiple metabolic functions. SIRT1 localizes in the nucleus and cytoplasm, and is implicated in the regulation of cell survival in response to several stimuli, including metabolic ones. The expression of SIRT1 is associated with lifespan and is reduced with aging both in animal models and in humans, where the lack of SIRT1 is regarded as a potential mediator of age-related cardiovascular diseases. In this review, we will summarize the extensive evidence linking SIRT1 functional and quantitative defects to cellular senescence and aging, with particular regard to their role in determining endothelial dysfunction and consequent cardiovascular diseases. Ultimately, we outline the translational perspectives for this topic, in order to highlight the missing evidence and the future research steps.
Collapse
Affiliation(s)
- Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Georgia Beer
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico Ospedale Policlinico San Martino Genoa–Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
24
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Wang XH, Ao QG, Cheng QL. Caloric restriction inhibits renal artery ageing by reducing endothelin-1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:979. [PMID: 34277779 PMCID: PMC8267285 DOI: 10.21037/atm-21-2218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Background The renal artery plays a central role in renal perfusion and is critical for proper renal function. Ageing is an independent risk factor for both impaired renal function and vascular disorders, and associated with an increase in the expression of the vasoconstrictor endothelin-1 (ET-1), and caloric restriction (CR) without malnutrition has been shown to be an effective inhibitor of renal dysfunction induced by ageing. The objective of this study was to determine whether CR-mediated alleviation of renal dysfunction is mediated by ET-1 expression. Methods The young (2 months, 2 M) and old (12 months, 12 M) Sprague-Dawley male rats were used and fed ad libitum. The 12-month-old rats were further divided into 12 M and 12 M-caloric restriction (CR) (30% calorie restriction). After 8 weeks, the renal tissues were showed by PAS staining, and age-related metabolic parameters and renal functions were detected in each group of rats. The inflammatory cytokines of interleukin (IL)-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) were analyzed using ELISA. The mRNA and protein expression in the renal artery were analysis by qRT-PCR and Immunoblot analysis. Results Ageing was associated with significant increases in 24 h urine protein content and serum triglyceride and cholesterol in 12 M rats, both of which were significantly inhibited in 12 M-CR. The mRNA expression and the secretion of IL-6, IL-1β, TNF-α, and TGF-β1 in the renal artery was significantly increased with ageing and inhibited by CR. CR also inhibited ageing-induced Edn1 (encoding ET-1) mRNA and protein expression in the renal artery. In addition, CR could regulate ET-1 expression by inhibiting the activation of NF-κB signaling and activation and induction in the expression of NF-E2-related factor 2 (Nrf2) and histone deacetylase and gene repressor sirtuin 1 (SIRT1), both of which play a central role in mitigating oxidative stress in young rats. Conclusions Moderate CR can reverse the ageing related kidney dysfunction by reducing the ET-1 expression. CR might be used as an alternative to prevent the ageing induced renal artery dysfunction.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang-Guo Ao
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing-Li Cheng
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
Affiliation(s)
- Chao Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| |
Collapse
|
27
|
Shi D, Han T, Chu X, Lu H, Yang X, Zi T, Zhao Y, Wang X, Liu Z, Ruan J, Liu X, Ning H, Wang M, Tian Z, Wei W, Sun Y, Li Y, Guo R, Wang Y, Ling F, Guan Y, Shen D, Niu Y, Li Y, Sun C. An isocaloric moderately high-fat diet extends lifespan in male rats and Drosophila. Cell Metab 2021; 33:581-597.e9. [PMID: 33440166 DOI: 10.1016/j.cmet.2020.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/13/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
The health effect of dietary fat has been one of the most vexing issues in the field of nutrition. Few animal studies have examined the impact of high-fat diets on lifespan by controlling energy intake. In this study, we found that compared to a normal diet, an isocaloric moderately high-fat diet (IHF) significantly prolonged lifespan by decreasing the profiles of free fatty acids (FFAs) in serum and multiple tissues via downregulating FFA anabolism and upregulating catabolism pathways in rats and flies. Proteomics analysis in rats identified PPRC1 as a key protein that was significantly upregulated by nearly 2-fold by IHF, and among the FFAs, only palmitic acid (PA) was robustly and negatively associated with the expression of PPRC1. Using PPRC1 transgenic RNAi/overexpression flies and in vitro experiments, we demonstrated that IHF significantly reduced PA, which could upregulate PPRC1 through PPARG, resulting in improvements in oxidative stress and inflammation and prolonging the lifespan.
Collapse
Affiliation(s)
- Dan Shi
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - TianShu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Xia Chu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Huimin Lu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Xue Yang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - TianQi Zi
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - YanHe Zhao
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - XinYue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - ZhiPeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - JingQi Ruan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Xin Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Hua Ning
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - MaoQing Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Wei Wei
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Yue Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - YinLing Li
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Rui Guo
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Yu Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Fan Ling
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Yue Guan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China
| | - Da Shen
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing 100084, China
| | - YuCun Niu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China.
| | - Ying Li
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China.
| | - ChangHao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
28
|
Velingkaar N, Mezhnina V, Poe A, Kondratov RV. Two-meal caloric restriction induces 12-hour rhythms and improves glucose homeostasis. FASEB J 2021; 35:e21342. [PMID: 33543540 PMCID: PMC7898832 DOI: 10.1096/fj.202002470r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
Glucose metabolism is tightly regulated and disrupting glucose homeostasis is a hallmark of many diseases. Caloric restriction (CR), periodic fasting, and circadian rhythms are interlinked with glucose metabolism. Here, we directly investigated if CR depends on periodic fasting and circadian rhythms to improve glucose metabolism. CR was implemented as two-meals per day (2M-CR), provided at 12-hour intervals, and compared with one meal per day CR, mealtime (MT), and ad libitum (AL) feeding. The 2M-CR impacted the circadian rhythms in blood glucose, metabolic signaling, circadian clock, and glucose metabolism gene expression. 2M-CR significantly reduced around the clock blood glucose and improved glucose tolerance. Twenty-four-hour rhythms in mTOR signaling and gene expression observed under AL, MT, and CR, became 12-hour rhythms in 2M-CR. The 12-hour rhythms in behavior, gene expression, and signaling persisted in fasted mice, implicating some internal regulation. The study highlights that the reduction in caloric intake rather than meal frequency and duration of fasting is essential for metabolic reprograming and improvement in glucose metabolism and provides evidence on food-entrained molecular pacemaker, which can be uncoupled from the light-entrained circadian clock and rhythms.
Collapse
Affiliation(s)
- Nikkhil Velingkaar
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Volha Mezhnina
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Roman V Kondratov
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
29
|
The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134:111119. [DOI: 10.1016/j.biopha.2020.111119] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
|
30
|
Willmes DM, Daniels M, Kurzbach A, Lieske S, Bechmann N, Schumann T, Henke C, El-Agroudy NN, Da Costa Goncalves AC, Peitzsch M, Hofmann A, Kanczkowski W, Kräker K, Müller DN, Morawietz H, Deussen A, Wagner M, El-Armouche A, Helfand SL, Bornstein SR, de Cabo R, Bernier M, Eisenhofer G, Tank J, Jordan J, Birkenfeld AL. The longevity gene mIndy (I'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight 2021; 6:136083. [PMID: 33491666 PMCID: PMC7934862 DOI: 10.1172/jci.insight.136083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target. Deletion of mIndy reduces blood pressure and heart rate by attenuating catecholamine biosynthesis and recapitulates beneficial cardiovascular and metabolic responses to caloric restriction.
Collapse
Affiliation(s)
- Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Daniels
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stefanie Lieske
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Kristin Kräker
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, and
| | - Michael Wagner
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Stephan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Graeme Eisenhofer
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jens Tank
- Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Jordan
- Aerospace Medicine, University of Cologne, Cologne, Germany.,Institute for Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Wang L, Liu S, Pan B, Cai H, Zhou H, Yang P, Wang W. The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional. Cell Cycle 2020; 19:2749-2759. [PMID: 32960711 PMCID: PMC7714418 DOI: 10.1080/15384101.2020.1823731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved mechanism that promotes cell survival by recycling nutrients and degrading long-lived proteins and dysfunctional organelles, is an important defense mechanism, and its attenuation has been well documented in senescence and aging-related diseases. Abdominal aortic aneurysm (AAA), a well-known aging-related disease, has been defined as a chronic degenerative process in the abdominal aortic wall; however, the complete mechanism is unknown, and a clinical treatment is lacking. Accumulating evidence has recently revealed that numerous drugs that can induce autophagy are effective in the treatment of AAA. The purpose of this systematic review was to focus on the cross-talk between autophagy and high-risk factors and the potential pathogenesis of AAA to understand not only the host defense and pathogenesis but also potential treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihong Pan
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huoying Cai
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Ye Y, Gu Q, Sun X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review. Compr Rev Food Sci Food Saf 2020; 19:3084-3105. [PMID: 33337057 DOI: 10.1111/1541-4337.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Aging is an inevitable process characterized by the accumulation of degenerative damage, leading to serious diseases that affect human health. Studies on aging aim to develop pre-protection or therapies to delay aging and age-related diseases. A preventive approach is preferable to clinical treatment not only to reduce investment but also to alleviate pain in patients. Adjusting daily diet habits to improve the aging condition is a potentially attractive strategy. Fruits and vegetables containing active compounds that can effectively delay the aging process and reduce or inhibit age-related degenerative diseases have been identified. The signaling pathways related to aging in Caenorhabditis elegans are evolutionarily conserved; thus, studying antiaging components by intervening senescence process may contribute to the prevention and treatment of age-related diseases in humans. This review focuses on the effects of food-derived extracts or purified substance on antiaging in nematodes, as well as the underlying mechanisms, on the basis of several major signaling pathways and key regulatory factors in aging. The aim is to provide references for a healthy diet guidance and the development of antiaging nutritional supplements. Finally, challenges in the use of C. elegans as the antiaging evaluation model are discussed, together with the development that potentially inspire novel strategies and research tools.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qingyin Gu
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
33
|
Wang F, Chen HZ. Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases. Front Pharmacol 2020; 11:537519. [PMID: 33117155 PMCID: PMC7573826 DOI: 10.3389/fphar.2020.537519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), located in the media of artery, play key roles in maintaining the normal vascular physiological functions. Abnormality in VSMCs is implicated in vascular diseases (VDs), including atherosclerosis, abdominal aortic aneurysm (AAA), aortic dissection, and hypertension by regulating the process of inflammation, phenotypic switching, and extracellular matrix degradation. Sirtuins (SIRTs), a family of proteins containing seven members (from SIRT1 to SIRT7) in mammals, function as NAD+-dependent histone deacetylases and ADP-ribosyltransferases. In recent decades, great attention has been paid to the cardiovascular protective effects of SIRTs, especially SIRT1, suggesting a new therapeutic target for the treatment of VDs. In this review, we introduce the basic functions of SIRT1 against VSMC senescence, and summarize the contribution of SIRT1 derived from VSMCs in VDs. Finally, the potential new strategies based on SIRT1 activation have also been discussed with an emphasis on SIRT1 activators and calorie restriction to improve the prognosis of VDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Protective effect of Vigna unguiculata extract against aging and neurodegeneration. Aging (Albany NY) 2020; 12:19785-19808. [PMID: 33024055 PMCID: PMC7732273 DOI: 10.18632/aging.104069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Aging and age-related neurodegeneration are among the major challenges in modern medicine because of the progressive increase in the number of elderly in the world population. Nutrition, which has important long-term consequences for health, is an important way to prevent diseases and achieve healthy aging. The beneficial effects of Vigna unguiculata on metabolic disorders have been widely documented. Here, we show that an aqueous extract of V. unguiculata beans delays senescence both in Saccharomyces cerevisiae and Drosophila melanogaster, in a Snf1/AMPK-dependent manner. Consistently, an increased expression of FOXO, SIRT1, NOTCH and heme oxygenase (HO) genes, already known to be required for the longevity extension in D. melanogaster, is also shown. Preventing α-synuclein self-assembly is one of the most promising approaches for the treatment of Parkinson's disease (PD), for which aging is a risk factor. In vitro aggregation of α-synuclein, its toxicity and membrane localization in yeast and neuroblastoma cells are strongly decreased in the presence of bean extract. In a Caenorhabditis elegans model of PD, V. unguiculata extract substantially reduces the number of the age-dependent degeneration of the cephalic dopaminergic neurons. Our findings support the role of V. unguiculata beans as a functional food in age-related disorders.
Collapse
|
35
|
Juricic P, Grönke S, Partridge L. Branched-Chain Amino Acids Have Equivalent Effects to Other Essential Amino Acids on Lifespan and Aging-Related Traits in Drosophila. J Gerontol A Biol Sci Med Sci 2020; 75:24-31. [PMID: 30891588 PMCID: PMC6909895 DOI: 10.1093/gerona/glz080] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acids (BCAAs) have been suggested to be particularly potent activators of Target of Rapamycin (TOR) signaling. Moreover, increased circulating BCAAs are associated with higher risk of insulin resistance and diabetes in both mice and humans, and with increased mortality in mice. However, it remains unknown if BCAAs play a more prominent role in longevity than do other essential amino acids (EAAs). To test for a more prominent role of BCAAs in lifespan and related traits in Drosophila, we restricted either BCAAs or a control group of three other EAAs, threonine, histidine and lysine (THK). BCAA restriction induced compensatory feeding, lipid accumulation, stress resistance and amelioration of age-related gut pathology. It also extended lifespan in a dietary-nitrogen-dependent manner. Importantly, the control restriction of THK had similar effects on these phenotypes. Our control diet was designed to have every EAA equally limiting for growth and reproduction, and our findings therefore suggest that the level of the most limiting EAAs in the diet, rather than the specific EAAs that are limiting, determines the response of these phenotypes to EAA restriction.
Collapse
Affiliation(s)
- Paula Juricic
- Max Planck Institute for Biology of Ageing, and Department of Biological Mechanisms of Ageing, Cologne, Germany
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, and Department of Biological Mechanisms of Ageing, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, and Department of Biological Mechanisms of Ageing, Cologne, Germany.,Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, UCL, London, UK
| |
Collapse
|
36
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
37
|
Kim J, Lee SH, Cho M, Lee JY, Choi DH, Lee HY, Cho S, Min KJ, Suh Y. Small Molecule from Natural Phytochemical Mimics Dietary Restriction by Modulating FoxO3a and Metabolic Reprogramming. ACTA ACUST UNITED AC 2020; 4:e1900248. [PMID: 32558394 DOI: 10.1002/adbi.201900248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/08/2020] [Indexed: 01/10/2023]
Abstract
Many studies utilizing animal models have revealed the genetic and pharmacogenetic modulators of the rate of organismal aging. However, finding routes for healthy aging during extended life remains one of the largest questions. With regards to an antiaging reagent, it has been shown that natural phytochemical syringaresinol (SYR) delays cellular senescence by activating sirtuin1 (SIRT1). Here, it is found that SYR treatment results in metabolic changes similar to those observed during dietary restriction (DR). The DR mimetic effects are mediated by FoxO3a-dependent SIRT1 activation and insulin/insuline growth factor-1 signaling modulation. The direct binding of SYR-FoxO3a is identified and this could partially explain the DR-like phenotype. The report gives a clue as to how the longevity gene involves the DR pathway and suggests that natural phytochemicals applied as a geroprotector mimics DR effects.
Collapse
Affiliation(s)
- Juewon Kim
- Bioscience Research Lab, R&D Unit, Amorepacific Corporation, Yongin, 17074, South Korea
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Miook Cho
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jee-Young Lee
- Molecular Design Team, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Dong-Hwa Choi
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, South Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Siyoung Cho
- Bioscience Research Lab, R&D Unit, Amorepacific Corporation, Yongin, 17074, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
38
|
Capó X, Martorell M, Ferrer MD, Sureda A, Pons V, Domingo JC, Drobnic F, Martínez-Rodríguez A, Leyva-Vela B, Sarabia JM, Herranz-López M, Roche E, Tur JA, Pons A. Calorie Restriction Improves Physical Performance and Modulates the Antioxidant and Inflammatory Responses to Acute Exercise. Nutrients 2020; 12:nu12040930. [PMID: 32230858 PMCID: PMC7230395 DOI: 10.3390/nu12040930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022] Open
Abstract
Our aim was to characterize the effects of calorie restriction on the anthropometric characteristics and physical performance of sportsmen and to evaluate the effects of calorie restriction and acute exercise on mitochondria energetics, oxidative stress, and inflammation. Twenty volunteer taekwondo practitioners undertook a calorie restriction of 30-40% on three alternate days a week for one month. Eleven volunteer sportsmen participated as controls. Both groups performed an energy efficiency test to evaluate physical performance, and samples were taken before and after exercise. The total weight of participants significantly decreased (5.9%) after calorie restriction, while the efficiency of work and the contributions of fat to obtain energy were enhanced by calorie restriction. No significant differences induced by acute exercise were observed in individual non-esterified fatty acid percentage or oxidative stress markers. Calorie restriction downregulated the basal gene expression of nitric oxide synthase, antioxidant enzymes, mitochondrial uncoupling proteins, and repairing stress proteins, but it enhanced the expression of sirtuins in peripheral blood mononuclear cells. In conclusion, one month of calorie restriction decreases body weight and increases physical performance, enhancing energy efficiency, moderating the antioxidant and inflammatory basal gene expression, and influencing its response to acute exercise.
Collapse
Affiliation(s)
- Xavier Capó
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- IDISBA. Fundació Institut d’Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Balearic Islands, Spain
| | - Miquel Martorell
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- Nutrition and Dietetics Department, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII – Bio Bio Region, Chile
| | - Miguel D. Ferrer
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- IDISBA. Fundació Institut d’Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Sureda
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- IDISBA. Fundació Institut d’Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain;
| | - Victoria Pons
- Performance and Health Research Group for High Level Sports, High Performance Center of Barcelona, 08174 Sant Cugat, Spain; (V.P.); (F.D.)
| | - Juan C. Domingo
- Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Franchek Drobnic
- Performance and Health Research Group for High Level Sports, High Performance Center of Barcelona, 08174 Sant Cugat, Spain; (V.P.); (F.D.)
| | | | | | - José M. Sarabia
- Sport Research Center, University Miguel Hernández, 03202 Elche, Spain;
| | - María Herranz-López
- Institute of Research, Development, and Innovation in Biotechnolgy of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), University Miguel Hernández, 03202 Elche, Spain;
| | - Enrique Roche
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain;
- Institute of Bioengineering and Department of Applied Biology-Nutrition, University Miguel Hernández. Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), 03010 Alicante, Spain
| | - Josep A. Tur
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- IDISBA. Fundació Institut d’Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain;
| | - Antoni Pons
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; (X.C.); (M.M.); (M.D.F.); (A.S.); (J.A.T.)
- IDISBA. Fundació Institut d’Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain;
- Correspondence: ; Tel.: +34-971-173-171
| |
Collapse
|
39
|
Song J, Jiang G, Zhang J, Guo J, Li Z, Hao K, Liu L, Cheng Z, Tong X, Dai F. Metformin prolongs lifespan through remodeling the energy distribution strategy in silkworm, Bombyx mori. Aging (Albany NY) 2020; 11:240-248. [PMID: 30636724 PMCID: PMC6339796 DOI: 10.18632/aging.101746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
Metformin is a hypoglycemic agent used clinically in the treatment of type 2 diabetics. In addition, metformin is being investigated as a potential geroprotector. Here, we investigated the effects of metformin silkworm lifespan and the underlying molecular pathways involved. We found that metformin prolonged the lifespan of the male silkworm without reducing body weight, which suggests metformin can increase lifespan through remodeling of the animal's energy distribution strategy. Consistent with that idea, metformin reduced silk production and thus the energy devoted to that process. Metformin also increased fasting tolerance and levels of the antioxidant glutathione, and also activated an adenosine monophosphate-activated protein kinase-p53-forkhead box class O signaling pathway in silkworm. These results suggest that activity in this pathway may contribute to metformin-induced lifespan extension in silkworm by increasing stress resistance and antioxidative capacity while reducing energy output for silk product. The results also show that the silkworm is a potential useful animal model for evaluating the effects of small molecules with potential clinical utility.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Guihua Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jieshu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kaige Hao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Zilin Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.,Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
40
|
Geisler F, Coch RA, Richardson C, Goldberg M, Bevilacqua C, Prevedel R, Leube RE. Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Sci Rep 2020; 10:3142. [PMID: 32081918 PMCID: PMC7035338 DOI: 10.1038/s41598-020-59791-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
41
|
Morrison KE, Jašarević E, Howard CD, Bale TL. It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. MICROBIOME 2020; 8:15. [PMID: 32046785 PMCID: PMC7014620 DOI: 10.1186/s40168-020-0791-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/19/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Dietary effects on the gut microbiome play key roles in the pathophysiology of inflammatory disorders, metabolic syndrome, obesity, and behavioral dysregulation. Often overlooked in such studies is the consideration that experimental diets vary significantly in the proportion and source of their dietary fiber. Commonly, treatment comparisons are made between animals fed a purchased refined diet that lacks soluble fiber and animals fed a standard vivarium-provided chow diet that contains a rich source of soluble fiber. Despite the well-established critical role of soluble fiber as the source of short chain fatty acid production via the gut microbiome, the extent to which measured outcomes are driven by differences in dietary fiber is unclear. Further, the interaction between sex and age in response to dietary transition is likely important and should also be considered. RESULTS We compared the impact of transitioning young adult and 1-year aged male and female mice from their standard chow diet to a refined low soluble fiber diet on gut microbiota community composition. Then, to determine the contribution of dietary fat, we also examined the impact of transitioning a subset of animals from refined low-fat to refined high-fat diet. We used a serial sampling strategy coupled with 16S rRNA marker gene sequencing to examine consequences of recurrent dietary switching on gut microbiota community dynamics. Analysis revealed that the transition from a chow diet to a refined diet that lacks soluble fiber accounted for most of the variance in community structure, diversity, and composition across all groups. This dietary transition was characterized by a loss of taxa within the phylum Bacteroidetes and expansion of Clostridia and Proteobacteria in a sex- and age-specific manner. Most notably, no changes to gut microbiota community structure and composition were observed between mice consuming either refined low- or high-fat diet, suggesting that transition to the refined diet that lacks soluble fiber is the primary driver of gut microbiota alterations, with limited additional impact of dietary fat on gut microbiota. CONCLUSION Collectively, our results show that the choice of control diet has a significant impact on outcomes and interpretation related to diet effects on gut microbiota. As the reduction of soluble fiber may influence synthesis of microbial metabolites that are important for regulating metabolic, immune, behavioral, and neurobiological outcomes, additional studies are now needed to fully delineate the contribution of fat and fiber on the gut microbiome. Video Abtract.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, HSF3, room 9-171, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Eldin Jašarević
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, HSF3, room 9-171, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Christopher D Howard
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, HSF3, room 9-171, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, HSF3, room 9-171, 670 W. Baltimore St., Baltimore, MD, 21201, USA.
- Center for Epigenetic Research in Child Health and Brain Development, Department of Psychiatry, University of Maryland School of Medicine, HSF3, room 9-171, 670 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Wang Y, Wang G, Jing R, Hu T, Likhodii S, Sun G, Randell E, Jia G, Yu T, Zhang W. Metabolomics analysis of human plasma metabolites reveals the age- and sex-specific associations. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1701016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yixiao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Guangshu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Ru’nan Jing
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Ting Hu
- Department of Computer Science, Memorial University, St John’s, Canada
| | - Sergei Likhodii
- Provincial Toxicology Centre, Provincial Health Services Authority, Vancouver, Canada
| | - Guang Sun
- Faculty of Medicine, Discipline of Medicine, Memorial University, St. John’s, Canada
| | - Edward Randell
- Faculty of Medicine, Department of Laboratory Medicine, Memorial University, St. John’s, Canada
| | - Guihua Jia
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Tianmiao Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
43
|
Song J, Chen M, Li Z, Zhang J, Hu H, Tong X, Dai F. Astragalus Polysaccharide Extends Lifespan via Mitigating Endoplasmic Reticulum Stress in the Silkworm, Bombyx mori. Aging Dis 2019; 10:1187-1198. [PMID: 31788331 PMCID: PMC6844597 DOI: 10.14336/ad.2019.0515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The traditional Chinese medicine Astragalus polysaccharide (APS) has been widely used to improve glucose homeostasis and immunoregulator properties. In recent years, it has also been shown to extend the lifespan of Caenorhabditis elegans; however, the underlying molecular mechanisms are not fully understood. Here, our study shows that APS could significantly extend adult stage, mean, and maximum lifespan of the silkworm, Bombyx mori and increase body weight without affecting food intake and fecundity. Meanwhile, the activities of glutathione S-transferase and superoxide dismutase are significantly enhanced, and the reaction oxygen species content is reduced concomitantly. Moreover, the activity of lysozyme is increased dramatically. In addition, APS rescues the shortened lifespan by Bacillus thuringiensis infection in silkworm. Furthermore, the transcription of the crucial genes involved in endoplasmic reticulum stress is upregulated upon the endoplasmic reticulum stress stimulation. APS also significantly ameliorates endoplasmic reticulum stress in silkworm cell line and in vivo. Together, the results of this study indicate that APS can prolong the silkworm lifespan by mitigating endoplasmic reticulum stress. This study improves our understanding of the molecular mechanism of APS-induced lifespan extension and highlights the importance of the silkworm as an experimental animal for evaluating the effects and revealing the mechanisms in lifespan extension of traditional Chinese medicine.
Collapse
Affiliation(s)
| | | | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
44
|
Mazzoli A, Crescenzo R, Cigliano L, Spagnuolo MS, Cancelliere R, Gatto C, Iossa S. Early Hepatic Oxidative Stress and Mitochondrial Changes Following Western Diet in Middle Aged Rats. Nutrients 2019; 11:nu11112670. [PMID: 31694213 PMCID: PMC6893784 DOI: 10.3390/nu11112670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023] Open
Abstract
To assess the effect of 4 weeks of high fat-high fructose feeding on whole body composition, energy balance, specific markers of oxidative stress and inflammation, and insulin sensitivity in the liver of middle-aged rats, rats (1 year) were fed a diet rich in saturated fatty acids and fructose (HFF rats), mimicking the “Western diet”, and compared with rats of the same age that were fed a low fat diet (LF rats). HFF rats exhibited a significant increase in the gain of body weight, energy, and lipids compared to LF rats. HFF rats also showed hepatic insulin resistance, together with an increase in plasma triglycerides, cholesterol, and tumor necrosis factor alpha. Hepatic lipids, triglycerides and cholesterol were higher in HFF rats, while a significant decrease in Stearoyl-CoA desaturase activity was found in this tissue. A marked increase in the protein amount of complex I, concomitant to a decrease in its contribution to mitochondrial respiration, was found in HFF rats. Lipid peroxidation and Nitro-Tyrosine content, taken as markers of oxidative stress, as well as NADPH oxidase activity, were significantly higher in HFF rats, while the antioxidant enzyme catalase decreased in these rats. Myeloperoxidase activity and lipocalin content increased, while peroxisome proliferator activated receptor gamma decreased in HFF rats. The present results provide evidence that middle-aged rats show susceptibility to a short-term “Western diet”, exhibiting altered redox homeostasis, insulin resistance, and early mitochondrial alterations in the liver. Therefore, this type of dietary habits should be drastically limited to pursue a “healthy aging”.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
| | - Raffaella Crescenzo
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
| | - Luisa Cigliano
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), 80147 Naples, Italy;
| | - Rosa Cancelliere
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
| | - Cristina Gatto
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
| | - Susanna Iossa
- Department of Biology, Federico II University, Via Cintia,80126 Naples, Italy; (A.M.); (R.C.); (L.C.); (R.C.); (C.G.)
- Correspondence: ; Tel.: +39-081-2538111
| |
Collapse
|
45
|
Ihle KE, Mutti NS, Kaftanoglu O, Amdam GV. Insulin Receptor Substrate Gene Knockdown Accelerates Behavioural Maturation and Shortens Lifespan in Honeybee Workers. INSECTS 2019; 10:insects10110390. [PMID: 31694336 PMCID: PMC6920892 DOI: 10.3390/insects10110390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
In animals, dietary restriction or suppression of genes involved in nutrient sensing tends to increase lifespan. In contrast, food restriction in honeybees (Apis mellifera) shortens lifespan by accelerating a behavioural maturation program that culminates in leaving the nest as a forager. Foraging is metabolically demanding and risky, and foragers experience increased rates of aging and mortality. Food-deprived worker bees forage at younger ages and are expected to live shorter lives. We tested whether suppression of a molecular nutrient sensing pathway is sufficient to accelerate the behavioural transition to foraging and shorten worker life. To achieve this, we reduced expression of the insulin receptor substrate (irs) gene via RNA interference in two selected lines of honeybees used to control for behavioural and genetic variation. irs encodes a membrane-associated protein in the insulin/insulin-like signalling (IIS) pathway that is central to nutrient sensing in animals. We measured foraging onset and lifespan and found that suppression of irs reduced worker bee lifespan in both genotypes, and that this effect was largely driven by an earlier onset of foraging behaviour in a genotype-conditional manner. Our results provide the first direct evidence that an IIS pathway gene influences behavioural maturation and lifespan in honeybees and highlight the importance of considering social environments and behaviours when investigating the regulation of aging and lifespan in social animals.
Collapse
Affiliation(s)
- Kate E. Ihle
- Honey Bee Breeding, Genetics, and Physiology Laboratory, USDA-ARS Baton Rouge, LA 70820, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA (O.K.); (G.V.A.)
- Correspondence: ; Tel.: +1-225-276-7326
| | - Navdeep S. Mutti
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA (O.K.); (G.V.A.)
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA (O.K.); (G.V.A.)
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA (O.K.); (G.V.A.)
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1430 Aas, Norway
| |
Collapse
|
46
|
Lee SH, Lee HY, Yu M, Yeom E, Lee JH, Yoon A, Lee KS, Min KJ. Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling. Aging (Albany NY) 2019; 11:9369-9387. [PMID: 31672931 PMCID: PMC6874434 DOI: 10.18632/aging.102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Many studies have indicated that Korean red ginseng (KRG) has anti-inflammatory and anti-oxidative effects, thereby inducing many health benefits in humans. Studies into the longevity effects of KRG are limited and have provided contradictory results, and the molecular mechanism of lifespan extension by KRG is not elucidated yet. Herein, the longevity effect of KRG was investigated in Drosophila melanogaster by feeding KRG extracts, and the molecular mechanism of lifespan extension was elucidated by using longevity-related mutant flies. KRG extended the lifespan of Drosophila when administrated at 10 and 25 μg/mL, and the longevity benefit of KRG was not due to reduced feeding, reproduction, and/or climbing ability in fruit flies, indicating that the longevity benefit of KRG is a direct effect of KRG, not of a secondary artifact. Diet supplementation with KRG increased the lifespan of flies on a full-fed diet but not of those on a restricted diet, and the longevity effect of KRG was diminished by the mutation of dSir2, a deacetylase known to mediate the benefits of dietary restriction. Similarly, the longevity effect of KRG was mediated by the reduction of insulin/IGF-1 signaling. In conclusion, KRG extends the lifespan of Drosophila through Sir2 and insulin/IGF-1 signaling and has potential as an anti-aging dietary-restriction mimetic and prolongevity supplement.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Mira Yu
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon 34141, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ah Yoon
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon 34141, Korea.,Department of Functional Genomics, UST, Daejeon 34141, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
47
|
Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging (Albany NY) 2019; 10:701-746. [PMID: 29708498 PMCID: PMC5940131 DOI: 10.18632/aging.101424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) has been extensively studied in rodents as an intervention to improve lifespan and healthspan. However, effects of CR can be strain- and species-specific. This study used publically available microarray data to analyze expression responses to CR in males from 7 mouse strains (C57BL/6J, BALB/c, C3H, 129, CBA, DBA, B6C3F1) and 4 tissues (epididymal white adipose tissue (eWAT), muscle, heart, cortex). In each tissue, the largest number of strain-specific CR responses was identified with respect to the C57BL/6 strain. In heart and cortex, CR responses in C57BL/6 mice were negatively correlated with responses in other strains. Strain-specific CR responses involved genes associated with olfactory receptors (Olfr1184, Olfr910) and insulin/IGF-1 signaling (Igf1, Irs2). In each strain, CR responses in eWAT were negatively correlated with those in human subcutaneous WAT (scWAT). In human scWAT, CR increased expression of genes associated with stem cell maintenance and vascularization. However, orthologous genes linked to these processes were down-regulated in mouse. These results identify strain-specific CR responses limiting generalization across mouse strains. Differential CR responses in mouse versus human WAT may be due to differences in the depots examined and/or the presence of “thrifty genes” in humans that resist adipose breakdown despite caloric deficit.
Collapse
|
48
|
Morrison EJ, Champagne DP, Dzieciatkowska M, Nemkov T, Zimring JC, Hansen KC, Guan F, Huffman DM, Santambrogio L, D'Alessandro A. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11:nu11061337. [PMID: 31207887 PMCID: PMC6627295 DOI: 10.3390/nu11061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.
Collapse
Affiliation(s)
- Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Devin P Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Fangxia Guan
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Derek M Huffman
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Laura Santambrogio
- Department of Pathology, Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
- Department of Medicine-Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, 12469 East 17th Ave RC2, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Differential Metabolic Responses to Adipose Atrophy Associated with Cancer Cachexia and Caloric Restriction in Rats and the Effect of Rikkunshito in Cancer Cachexia. Int J Mol Sci 2018; 19:ijms19123852. [PMID: 30513935 PMCID: PMC6321026 DOI: 10.3390/ijms19123852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/24/2018] [Indexed: 12/24/2022] Open
Abstract
Despite the similar phenotypes, including weight loss, reduction of food intake, and lower adiposity, associated with caloric restriction (CR) and cancer cachexia (CC), CC is a progressive wasting syndrome, while mild CR improves whole body metabolism. In the present study, we compared adipose metabolic changes in a novel rat model of CC, mild CR (70% of the food intake of control rats, which is similar to the food consumption of CC rats), and severe CR (30% of the food intake of controls). We show that CC and severe CR are associated with much smaller adipocytes with significantly lower mitochondrial DNA content; but, that mild CR is not. CC and both mild and severe CR similarly upregulated proteins involved in lipolysis. CC also downregulated proteins involved in fatty acid biosynthesis, but mild CR upregulated these. These findings suggest that CC might impair de novo fatty acid biosynthesis and reduce mitochondrial biogenesis, similar to severe CR. We also found that rikkunshito, a traditional Japanese herbal medicine, does not ameliorate the enhanced lipolysis and mitochondrial impairment, but rather, rescues de novo fatty acid biosynthesis, suggesting that rikkunshito administration might have partially similar effects to mild CR.
Collapse
|
50
|
Machine learning based classification of cells into chronological stages using single-cell transcriptomics. Sci Rep 2018; 8:17156. [PMID: 30464314 PMCID: PMC6249247 DOI: 10.1038/s41598-018-35218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated deterioration of cellular physiology leads to pathological conditions. The ability to detect premature aging could provide a window for preventive therapies against age-related diseases. However, the techniques for determining cellular age are limited, as they rely on a limited set of histological markers and lack predictive power. Here, we implement GERAS (GEnetic Reference for Age of Single-cell), a machine learning based framework capable of assigning individual cells to chronological stages based on their transcriptomes. GERAS displays greater than 90% accuracy in classifying the chronological stage of zebrafish and human pancreatic cells. The framework demonstrates robustness against biological and technical noise, as evaluated by its performance on independent samplings of single-cells. Additionally, GERAS determines the impact of differences in calorie intake and BMI on the aging of zebrafish and human pancreatic cells, respectively. We further harness the classification ability of GERAS to identify molecular factors that are potentially associated with the aging of beta-cells. We show that one of these factors, junba, is necessary to maintain the proliferative state of juvenile beta-cells. Our results showcase the applicability of a machine learning framework to classify the chronological stage of heterogeneous cell populations, while enabling detection of candidate genes associated with aging.
Collapse
|