1
|
Helvaci N, Yildiz BO. Polycystic ovary syndrome as a metabolic disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01057-w. [PMID: 39609634 DOI: 10.1038/s41574-024-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder affecting up to one in five women. The aetiology remains unclear, but available evidence suggests it is a polygenic disorder with epigenetic, developmental, and environmental components. The diagnostic criteria for PCOS are based on reproductive features, and the syndrome is categorized into several phenotypes that can vary by race and ethnicity. Insulin resistance and metabolic dysfunction have a crucial role in the pathogenesis of the syndrome and contribute to many adverse metabolic outcomes that place a substantial burden on the health of women with PCOS across their lifespan. Metabolic abnormalities like those identified in women with PCOS are also present in their female and male first-degree relatives. Overall, more emphasis is required on defining PCOS as a metabolic disorder in addition to a reproductive one. This approach could affect the management and future treatment options for the syndrome. The rationale of the current review is to identify and analyse existing evidence for PCOS as a metabolic, as well as a reproductive, disease.
Collapse
Affiliation(s)
- Nafiye Helvaci
- Division of Endocrinology and Metabolism, Ankara Ataturk Sanatoryum Training and Research Hospital, Ankara, Turkey
| | - Bulent Okan Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
2
|
Eng PC, Phylactou M, Qayum A, Woods C, Lee H, Aziz S, Moore B, Miras AD, Comninos AN, Tan T, Franks S, Dhillo WS, Abbara A. Obesity-Related Hypogonadism in Women. Endocr Rev 2024; 45:171-189. [PMID: 37559411 PMCID: PMC10911953 DOI: 10.1210/endrev/bnad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity-related hypogonadotropic hypogonadism is a well-characterized condition in men (termed male obesity-related secondary hypogonadism; MOSH); however, an equivalent condition has not been as clearly described in women. The prevalence of polycystic ovary syndrome (PCOS) is known to increase with obesity, but PCOS is more typically characterized by increased gonadotropin-releasing hormone (GnRH) (and by proxy luteinizing hormone; LH) pulsatility, rather than by the reduced gonadotropin levels observed in MOSH. Notably, LH levels and LH pulse amplitude are reduced with obesity, both in women with and without PCOS, suggesting that an obesity-related secondary hypogonadism may also exist in women akin to MOSH in men. Herein, we examine the evidence for the existence of a putative non-PCOS "female obesity-related secondary hypogonadism" (FOSH). We précis possible underlying mechanisms for the occurrence of hypogonadism in this context and consider how such mechanisms differ from MOSH in men, and from PCOS in women without obesity. In this review, we consider relevant etiological factors that are altered in obesity and that could impact on GnRH pulsatility to ascertain whether they could contribute to obesity-related secondary hypogonadism including: anti-Müllerian hormone, androgen, insulin, fatty acid, adiponectin, and leptin. More precise phenotyping of hypogonadism in women with obesity could provide further validation for non-PCOS FOSH and preface the ability to define/investigate such a condition.
Collapse
Affiliation(s)
- Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, National University of Singapore, Singapore 117549
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ambreen Qayum
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Casper Woods
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Hayoung Lee
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Sara Aziz
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Benedict Moore
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander D Miras
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Steve Franks
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| |
Collapse
|
3
|
Jiang NX, Zhao WJ, Shen HR, Du DF, Li XL. Hyperinsulinemia impairs decidualization via AKT-NR4A1 signaling: new insight into polycystic ovary syndrome (PCOS)-related infertility. J Ovarian Res 2024; 17:31. [PMID: 38310251 PMCID: PMC10837998 DOI: 10.1186/s13048-023-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Investigating the underlying molecular mechanisms responsible for endometrial dysfunction in women with PCOS is essential, particularly focusing on the role of hyperinsulinemia. METHODS We explored the role of insulin in the decidualization process using a synthetic decidualization assay. To dissect the effects of PI3K/AKT-NR4A signaling, we employed small interfering RNAs (siRNAs) targeting the NR4A genes and inhibitors of the PI3K/AKT pathway. We also investigated the disruption of AKT-NR4A1 signaling in the endometrium of PCOS female rats induced with dehydroepiandrosterone (DHEA). Quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses were utilized to evaluate gene expression regulation. RESULTS Insulin was found to suppress the expression of decidualization markers in human endometrial stromal cells (hESC) in a dose-dependent manner, concurrently triggering an inappropriate activation of the PI3K/AKT pathway. Members of the NR4A family, as downstream effectors in the PI3K/AKT pathway, were implicated in the insulin-induced disruptions during the decidualization process. Moreover, the endometrium of PCOS models showed significantly elevated levels of phosphorylated (Ser473) AKT, with a corresponding reduction in Nr4a1 protein. CONCLUSIONS Our research demonstrates that insulin negatively regulates decidualization in hESC via the PI3K/AKT-NR4A pathway. In vivo analysis revealed a significant dysregulation of the AKT-NR4A1 pathway in the endometrium of PCOS rats. These findings offer novel insights into the pathogenesis of infertility and endometrial disorders associated with hyperinsulinemia in PCOS.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
| | - Wei-Jie Zhao
- Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
| | - Hao-Ran Shen
- Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
| | - Dan-Feng Du
- Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
5
|
Majeed S, Moin H, Shafi R, Fatima S, Zahra T, Zafar S. Exploring the role of irisin as a potential biomarker in adolescents and young adults with polycystic ovarian syndrome. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057241302559. [PMID: 39579119 PMCID: PMC11585921 DOI: 10.1177/17455057241302559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Irisin is a myokine potentially linked to insulin sensitivity. Polycystic ovarian syndrome (PCOS) is a prevalent hormonal condition defined by insulin resistance. Previous studies have reported elevated circulating irisin levels in adult females with PCOS. OBJECTIVE To examine the differences in serum irisin levels between lean and obese adolescents and young adults with PCOS and their respective lean and obese controls and to explore the relationship between irisin levels and the metabolic and reproductive characteristics of the participants. DESIGN Cross-sectional study design. METHODS The study included 60 cases of PCOS and 60 controls. These participants were categorized based on their body mass index (BMI) into lean and obese. Fasting serum irisin levels, physical, metabolic, hormonal, and reproductive characteristics of the participants were measured. RESULTS Lean cases of PCOS had significantly elevated levels of fasting serum irisin (PCOS = 17.07 ± 5.61 ng/ml vs lean controls = 11.04 ± 7.51 ng/ml; p = 0.002), glucose, insulin, homeostasis model of assessment-insulin resistance index (HOMA-IR), luteinizing hormone (LH), estradiol, and testosterone and significantly lower levels of quantitative insulin sensitivity check index (QUICKI) compared to the lean controls. Obese cases of PCOS had significantly higher levels of fasting serum irisin (PCOS = 22.06 ± 3.83 ng/ml vs obese controls = 16.86 ± 6.74 ng/ml; p = 0.011), glucose, insulin, HOMA-IR, LH, estradiol, and testosterone and significantly lower levels of follicle-stimulating hormone (FSH) and QUICKI compared to obese controls. The findings revealed a significant positive correlation of serum irisin levels with BMI, glucose, insulin, HOMA-IR, LH, estradiol, and testosterone(all p-values < 0.001). There was also a significant positive correlation with triglycerides (TAGs) (p = 0.001), total cholesterol (p = 0.005), and low-density lipoprotein cholesterol (p = 0.024). Additionally, there was a significant negative correlation with high-density lipoprotein cholesterol (p = 0.001) and QUICKI (p < 0.001) in the entire study cohort. Fasting serum glucose (β = 0.337, p = 0.029), TAGs (β = 0.249, p = 0.006), and LH (β = 0.382, p = 0.004) were positive predictors of serum irisin concentrations in the overall sample. CONCLUSION Lean and obese adolescent and young adult cases of PCOS had significantly higher fasting serum irisin levels than their respective controls. Metabolic and reproductive traits of the participants also correlated with irisin.
Collapse
Affiliation(s)
- Sadaf Majeed
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai, United Arab Emirates
| | - Hira Moin
- Department of Physiology, NUST School of Health Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Riffat Shafi
- Department of Physiology, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sampana Fatima
- Department of Physiology, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Tatheer Zahra
- Department of Anatomy, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sarim Zafar
- Department of Physiology, NUST School of Health Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
6
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
7
|
Teeple K, Rajput P, Scinto S, Schoonmaker J, Davis C, Dinn M, McIntosh M, Krishnamurthy S, Plaut K, Casey T. Impact of high-fat diet and exposure to constant light on reproductive competence of female ICR mice. Biol Open 2023; 12:bio060088. [PMID: 37843404 PMCID: PMC10602010 DOI: 10.1242/bio.060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 10/17/2023] Open
Abstract
Obesity and exposure to light at night are prevalent in modern society and associated with changes in physiology and behavior that can affect a female's ability to support offspring growth during pregnancy and lactation. A 2X3 factor study of ICR mice was conducted to determine the effect of diet [control (CON; 10% fat) or high fat (HF; 60% fat)] and exposure to regular 12 h light:dark cycles (LD) or continuous low (L5) or high (L100) lux of light on gestation length, birth litter size, milk composition and litter growth to lactation day 12. HF diet reduced birth litter size, but increased postnatal d 12 litter weight (P<0.05), whereas constant light tended to increase litter weight (P=0.07). Continuous light increased gestation length, altered dam feed intake, increased serum prolactin and increased final dam and mammary gland weight (P<0.05), while decreasing mammary ATP content and milk lactose (P<0.05). Correlation analysis indicated a positive relationship between final litter weight and mammary size, metabolic stores (e.g. maternal fat pad weight), kcal of feed intake, and gestation length (P<0.05). Although CON mice spent more time eating than HF dams, the calorically dense HF diet was related to greater rates of litter growth to peak lactation. Constant light circadian disrupting effects appear to be confounded by a potential long day photoperiod response exemplified by higher circulating levels of prolactin and increased body and mammary weight of females exposed to these conditions. Other model systems may be better to study the interacting effects of obesity and circadian disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Prabha Rajput
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Michayla Dinn
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mackenzie McIntosh
- Histology Core, College of Veterinary Medicine, Purdue University West Lafayette, IN 47907, USA
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Moreira ARS, Lim J, Urbaniak A, Banik J, Bronson K, Lagasse A, Hardy L, Haney A, Allensworth M, Miles TK, Gies A, Byrum SD, Wilczynska A, Boehm U, Kharas M, Lengner C, MacNicol MC, Childs GV, MacNicol AM, Odle AK. Musashi Exerts Control of Gonadotrope Target mRNA Translation During the Mouse Estrous Cycle. Endocrinology 2023; 164:bqad113. [PMID: 37477898 PMCID: PMC10402870 DOI: 10.1210/endocr/bqad113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The anterior pituitary controls key biological processes, including growth, metabolism, reproduction, and stress responses through distinct cell types that each secrete specific hormones. The anterior pituitary cells show a remarkable level of cell type plasticity that mediates the shifts in hormone-producing cell populations that are required to meet organismal needs. The molecular mechanisms underlying pituitary cell plasticity are not well understood. Recent work has implicated the pituitary stem cell populations and specifically, the mRNA binding proteins of the Musashi family in control of pituitary cell type identity. In this study we have identified the target mRNAs that mediate Musashi function in the adult mouse pituitary and demonstrate the requirement for Musashi function in vivo. Using Musashi RNA immunoprecipitation, we identify a cohort of 1184 mRNAs that show specific Musashi binding. Identified Musashi targets include the Gnrhr mRNA, which encodes the gonadotropin-releasing hormone receptor (GnRHR), and the Fshb mRNA, encoding follicle-stimulating hormone (FSH). Reporter assays reveal that Musashi functions to exert repression of translation of the Fshb mRNA, in addition to the previously observed repression of the Gnrhr mRNA. Importantly, mice engineered to lack Musashi in gonadotropes demonstrate a failure to repress translation of the endogenous Gnrhr and Fshb mRNAs during the estrous cycle and display a significant heterogeneity in litter sizes. The range of identified target mRNAs suggests that, in addition to these key gonadotrope proteins, Musashi may exert broad regulatory control over the pituitary proteome in a cell type-specific manner.
Collapse
Affiliation(s)
- Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine Bronson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melody Allensworth
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Ania Wilczynska
- Bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Michael Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
9
|
Fathy MA, Alsemeh AE, Habib MA, Abdel-nour HM, Hendawy DM, Eltaweel AM, Abdelkhalek A, Ahmed MM, Desouky MK, Hua J, Fericean LM, Banatean-Dunea I, Arisha AH, Khamis T. Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways. Front Pharmacol 2023; 14:1224985. [PMID: 37497106 PMCID: PMC10367011 DOI: 10.3389/fphar.2023.1224985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Glucagon-like peptide -1 (GLP-1) is released by intestinal cells to stimulate glucose-dependent insulin release from the pancreas. GLP-1 has been linked to ameliorating obesity and/or diabetic complications as well as controlling reproductive function. Liraglutide is a GLP-1 receptor agonist (GLP-1RA) with 97% homology with GLP-1. The main objective of this study was to investigate the ameliorative role of liraglutide in diabetic-induced reproductive dysfunction in male rats. Methods: Rats were randomly allocated into 3 groups; a control group, a diabetic group, and a liraglutide-treated diabetic group. Results: In the diabetic group, a significant increase in BMI, FBG, HbA1c, HOMA-IR, TC, TAG, LDL, IL6, TNFα, and MDA, as well as decreased serum insulin, HDL, GSH, total testosterone, LH, and FSH, were shown compared to the control group. Furthermore, A significant downregulation in relative hypothalamic gene expression of GLP-1R, PPAR-α, PGC-1α, kiss, kiss1R, leptin, leptin R, GnRH GLP-1R, testicular PGC-1α, PPARα, kiss1, kiss1R, STAR, CYP17A1, HSD17B3, CYP19A, CYP11A1, and Smad7, as well as upregulation in hypothalamic GnIH and testicular TGF- β and Smad2 expression, were noticed compared to the control group. Liraglutide treatment significantly improved such functional and structural reproductive disturbance in diabetic rats. Conclusion: GLP-1RAs ameliorated the deleterious effects of diabetes on reproductive function by targeting GLP-1/leptin/kiss1/GnRH, steroidogenesis, and TGF- β/Smad pathways.
Collapse
Affiliation(s)
- Maha Abdelhamid Fathy
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa A. Habib
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanim M. Abdel-nour
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M. Hendawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Monir Eltaweel
- Basic Medical Science Department of Anatomy and Embryology, College of Medicine-King Saud Abdulaziz, University for Health Sciences—Kingdom of Saudi Arabia, Jeddah, Saudi Arabia
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha K. Desouky
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Stranahan AM, Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Zhi W, Lei Y, Lu X, Ding K, Isales CM. Sex Differences in Adipose Tissue Distribution Determine Susceptibility to Neuroinflammation in Mice With Dietary Obesity. Diabetes 2023; 72:245-260. [PMID: 36367881 PMCID: PMC9871229 DOI: 10.2337/db22-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Preferential energy storage in subcutaneous adipose tissue (SAT) confers protection against obesity-induced pathophysiology in females. Females also exhibit distinct immunological responses, relative to males. These differences are often attributed to sex hormones, but reciprocal interactions between metabolism, immunity, and gonadal steroids remain poorly understood. We systematically characterized adipose tissue hypertrophy, sex steroids, and inflammation in male and female mice after increasing durations of high-fat diet (HFD)-induced obesity. After observing that sex differences in adipose tissue distribution before HFD were correlated with lasting protection against inflammation in females, we hypothesized that a priori differences in the ratio of subcutaneous to visceral fat might mediate this relationship. To test this, male and female mice underwent SAT lipectomy (LPX) or sham surgery before HFD challenge, followed by analysis of glial reactivity, adipose tissue inflammation, and reproductive steroids. Because LPX eliminated female resistance to the proinflammatory effects of HFD without changing circulating sex hormones, we conclude that sexually dimorphic organization of subcutaneous and visceral fat determines susceptibility to inflammation in obesity.
Collapse
Affiliation(s)
- Alexis M. Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - De-Huang Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Masaki Yamamoto
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Caterina M. Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Hesam Khodadadi
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Babak Baban
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA
- Plastic Surgery Section, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Yun Lei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Xinyun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Kehong Ding
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Carlos M. Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
11
|
Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 2023; 16:9. [PMID: 36631836 PMCID: PMC9832677 DOI: 10.1186/s13048-022-01091-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overabundance of androgens; it affects 6-20% of women of reproductive age. PCOS involves various pathophysiological factors, and affected women usually have significant insulin resistance (IR), which is a major cause of PCOS. IR and compensatory hyperinsulinaemia have differing pathogeneses in various tissues, and IR varies among different PCOS phenotypes. Genetic and epigenetic changes, hyperandrogenaemia, and obesity aggravate IR. Insulin sensitization drugs are a new treatment modality for PCOS. We searched PubMed, Google Scholar, Elsevier, and UpToDate databases in this review, and focused on the pathogenesis of IR in women with PCOS and the pathophysiology of IR in various tissues. In addition, the review provides a comprehensive overview of the current progress in the efficacy of insulin sensitization therapy in the management of PCOS, providing the latest evidence for the clinical treatment of women with PCOS and IR.
Collapse
Affiliation(s)
- Han Zhao
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Jiaqi Zhang
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiangyi Cheng
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiaozhao Nie
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110000, People's Republic of China.
| |
Collapse
|
12
|
Park JH, Kang I, Kim HC, Lee Y, Lee SK, Lee HK. Obesity enhances antiviral immunity in the genital mucosa through a microbiota-mediated effect on γδ T cells. Cell Rep 2022; 41:111594. [PMID: 36351403 DOI: 10.1016/j.celrep.2022.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity is detrimental to the immune system. It impairs lymphatics, T cell development, and lymphopoiesis; induces dysfunction of antitumor immunity; and also promotes tumor progression. However, direct evidence of the impact of obesity on viral infection is lacking. We report a protective role of obesity against herpes simplex virus 2 infection of the genital mucosa in mice. Although conventional antiviral immunity is comparable between obese mice and lean mice, obesity enhances the cytotoxic subset of γδ T cells. This effect is mediated by L-arginine produced by commensal microbiota in the genital mucosa, which induces "pseudonormoxia" of γδ T cells, resulting in increased natural killer (NK) group 2 D (NKG2D) expression of γδ T cells through the downregulation of hypoxia-inducible factor 1-alpha (HIF1A) by inducing nitric oxide (NO) production, thereby protecting mice from lethal genital herpes. Thus, our work illuminates one mechanism by which obesity-induced compositional changes in the vaginal microbiota can affect mucosal immune responses against viral infection.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; J.R. Labs Inc, Daejeon 34122, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Center, Konyang University, Daejeon 35365, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Moeckli B, Pham TV, Slits F, Latrille S, Peloso A, Delaune V, Oldani G, Lacotte S, Toso C. FGF21 negatively affects long-term female fertility in mice. Heliyon 2022; 8:e11490. [DOI: 10.1016/j.heliyon.2022.e11490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
|
14
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
15
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
16
|
Saleh FL, Joshi AA, Tal A, Xu P, Hens JR, Wong SL, Flannery CA. Hyperinsulinemia induces early and dyssynchronous puberty in lean female mice. J Endocrinol 2022; 254:121-135. [PMID: 35904489 PMCID: PMC9837806 DOI: 10.1530/joe-21-0447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023]
Abstract
Girls with obesity are at increased risk of early puberty. Obesity is associated with insulin resistance and hyperinsulinemia. We hypothesized that insulin plays a physiological role in pubertal transition, and super-imposed hyperinsulinemia due to childhood obesity promotes early initiation of puberty in girls. To isolate the effect of hyperinsulinemia from adiposity, we compared pre-pubertal and pubertal states in hyperinsulinemic, lean muscle (M)-insulin-like growth factor 1 receptor (IGF-1R)-lysine (K)-arginine (R) (MKR) mice to normoinsulinemic WT, with puberty onset defined by vaginal opening (VO). Our results show MKR had greater insulin resistance and higher insulin levels (P < 0.05) than WT despite lower body weight (P < 0.0001) and similar IGF-1 levels (P = NS). Serum luteinizing hormone (LH) levels were higher in hyperinsulinemic MKR (P = 0.005), and insulin stimulation induced an increase in LH levels in WT. VO was earlier in hyperinsulinemic MKR vs WT (P < 0.0001). When compared on the day of VO, kisspeptin expression was higher in hyperinsulinemic MKR vs WT (P < 0.05), and gonadotropin-releasing hormone and insulin receptor isoform expression was similar (P = NS). Despite accelerated VO, MKR had delayed, disordered ovarian follicle and mammary gland development. In conclusion, we found that hyperinsulinemia alone without adiposity triggers earlier puberty. In our study, hyperinsulinemia also promoted dyssynchrony between pubertal initiation and progression, urging future studies in girls with obesity to assess alterations in transition to adulthood.
Collapse
Affiliation(s)
- Farrah L Saleh
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Frank H. Netter School of Medicine, Quinnipiac University, North Haven, Connecticut, USA
| | - Aditi A Joshi
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aya Tal
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patricia Xu
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julie R Hens
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena L Wong
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clare A Flannery
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Bai X, Fu L, Jin N, Liu X, Chen L, Shan Y, Zhang N, Wang P. Rescue of obesity-induced infertility in female mice by silencing AgRP neurons. Biochem Biophys Res Commun 2022; 623:32-38. [PMID: 35870259 DOI: 10.1016/j.bbrc.2022.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Obesity impacts multiple sites of the hypothalamus-pituitary gland-ovary axis (HPO axis) and has become a leading cause of female infertility. However, the critical hypothalamic neurons that participate in the development of obesity-induced infertility have not been well defined yet. Previous studies suggested that metabolic-sensing agouti-related peptide-expressing (AgRP) neurons in the arcuate nucleus (ARC) are hyperactive in diet-induced obesity (DIO) mice. We hypothesize that these neurons may convey metabolic dysfunction onto the HPO axis and contribute to obesity-induced infertility's pathophysiological process. To determine if AgRP neurons in obesity play a necessary role in the development of reproductive impairment in obesity, we used the chemogenetic method to normalize the neuronal activity of AgRP neurons in DIO female mice and test if their fertility can be restored. Our results indicated that chemogenetic inhibition of AgRP neurons could fully rescue the reproductive performance of DIO female mice, as manifested by recovered sex hormonal levels, ovulation, and fecundity. Moreover, we assayed serum AgRP levels in normal-weight and obese women and found elevated AgRP levels in obese subjects, suggesting the correlation between obesity and AgRP neuronal hyperactivity. Our results indicated that AgRP neurons constitute a central node connecting metabolism and reproduction, and dysfunctions of these neurons play a crucial role in reproductive impairment induced by metabolic abnormalities.
Collapse
Affiliation(s)
- Xueyan Bai
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | - Lei Fu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | - Naiqian Jin
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoyan Liu
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Lili Chen
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Yinghua Shan
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Ning Zhang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Shandong, PR China.
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
18
|
Ma Y, Awe O, Radovick S, Yang X, Divall S, Wolfe A, Wu S. Lower FSH With Normal Fertility in Male Mice Lacking Gonadotroph Kisspeptin Receptor. Front Physiol 2022; 13:868593. [PMID: 35557961 PMCID: PMC9089166 DOI: 10.3389/fphys.2022.868593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
The kisspeptin receptor, crucial for hypothalamic control of puberty and reproduction, is also present in the pituitary gland. Its role in the pituitary gland is not defined. Kisspeptin signaling via the Kiss1r could potentially regulate reproductive function at the level of pituitary gonadotrope. Using Cre/Lox technology, we deleted the Kiss1r gene in pituitary gonadotropes (PKiRKO). PKiRKO males have normal genital development (anogenital distance WT: 19.1 ± 0.4 vs. PKiRKO: 18.5 ± 0.4 mm), puberty onset, testes cell structure on gross histology, normal testes size, and fertility. PKiRKO males showed significantly decreased serum FSH levels compared to WT males (5.6 ± 1.9 vs. 10.2 ± 1.8 ng/ml) with comparable LH (1.1 ± 0.2 vs. 1.8 ± 0.4 ng/ml) and testosterone levels (351.8 ± 213.0 vs. 342.2 ± 183.0 ng/dl). PKiRKO females have normal puberty onset, cyclicity, LH and FSH levels and fertility. Overall, these findings indicate that absence of pituitary Kiss1r reduces FSH levels in male mice without affecting testis function. PKiRKO mice have normal reproductive function in both males and females.
Collapse
Affiliation(s)
- Yaping Ma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Radovick
- Department of Pediatrics, Rutgers University Medical School, New Brunswick, NJ, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, United States
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
19
|
Napso T, Lean SC, Lu M, Mort EJ, Desforges M, Moghimi A, Bartels B, El‐Bacha T, Fowden AL, Camm EJ, Sferruzzi‐Perri AN. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf) 2022; 234:e13795. [PMID: 35114078 PMCID: PMC9286839 DOI: 10.1111/apha.13795] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
AIM The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex. METHODS Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high-resolution respirometry, stereology, and molecular analyses. RESULTS Diet-induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein-2 was decreased by maternal obesity in both fetal sexes. CONCLUSION Maternal obesity exerts sex-dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Samantha C. Lean
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Minhui Lu
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Mort
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Michelle Desforges
- Division of Developmental Biology and Medicine Maternal & Fetal Health Research Centre University of Manchester Manchester UK
| | - Ali Moghimi
- The Children’s Hospital at Westmead Westmead New South Wales Australia
- Department of Paediatrics Monash University Monash Victoria Australia
| | - Beverly Bartels
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Tatiana El‐Bacha
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Abigail L. Fowden
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Camm
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Amanda N. Sferruzzi‐Perri
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| |
Collapse
|
20
|
Zhang QL, Wang Y, Liu JS, DU YZ. Effects of hypercaloric diet-induced hyperinsulinemia and hyperlipidemia on the ovarian follicular development in mice. J Reprod Dev 2022; 68:173-180. [PMID: 35236789 PMCID: PMC9184829 DOI: 10.1262/jrd.2021-132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term hypercaloric diets may adversely affect the development of ovarian follicles. We investigated the effects of high sugar (HS), high fat low sugar (HFLS), and high fat normal sugar
(HFNS) diets on the ovarian follicle development in mice fed with these diets as compared to those fed with normal diet (control) for 180 days. Body weight, gonadal fat, glucose, lipid,
insulin, estrous cycle, sex hormones and ovarian tissues were examined, and metabolism-related protein expression in the ovaries was evaluated by immunoblotting. The mice fed with
hypercaloric diets showed hyperinsulinemia and hyperlipidemia, and exhibited heavier body and gonadal fat weights, longer estrous cycles, and fewer preantral and antral follicles than mice
fed with normal diet. The sex hormone levels in the blood were similar to those in controls, except for significantly elevated estradiol levels in the HS diet group. The AMPKα
phosphorylation was reduced, while AKT phosphorylation and caspase-3 levels were increased in the ovarian tissues of mice in all three hypercaloric diet groups than those in control. Taken
together, the results suggest hyperinsulinemia and hyperlipidemia as possible mechanisms that impair the development of ovarian follicles in response to long-term exposure to unhealthy
hypercaloric diets.
Collapse
Affiliation(s)
- Qiao-Li Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yan Wang
- Department of Immunology and Pathogenic Biology, Molecular Bacteriology Laboratory, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian-Sheng Liu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yan-Zhi DU
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
21
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
22
|
Garrel G, Rouch C, L’Hôte D, Tazi S, Kassis N, Giton F, Dairou J, Dournaud P, Gressens P, Magnan C, Cruciani-Guglielmacci C, Cohen-Tannoudji J. Disruption of Pituitary Gonadotrope Activity in Male Rats After Short- or Long-Term High-Fat Diets Is Not Associated With Pituitary Inflammation. Front Endocrinol (Lausanne) 2022; 13:877999. [PMID: 35498414 PMCID: PMC9043610 DOI: 10.3389/fendo.2022.877999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Overnutrition is associated with the activation of inflammatory pathways in metabolically linked organs and an early hypothalamic inflammation is now known to disrupt the central control of metabolic function. Because we demonstrated that fatty acids (FA) target the pituitary and affect gonadotropin synthesis, we asked whether overnutrition induces pituitary inflammation that may contribute to obesity-associated disorders in the control of reproduction. We analyzed pituitary inflammation and hypothalamic-pituitary-testicular axis in male rats fed a short- (4 weeks) or long-term (20 weeks) high-fat diet. The effect of diet enrichment with the ω3 polyunsaturated FA, DHA, was also analyzed. After only 4 weeks and before weight gain of rats, high-fat diet caused a significant decrease in pituitary gonadotropin and hypothalamic GnRH transcript levels despite unchanged testosterone and inhibin B levels. Contrasting with the hypothalamus, there was no concomitant increases in gene expression of pituitary inflammatory mediators and even a reduction of prototypical cytokines such as interleukin-1β and TNF-α. No inflammation was still detected in the pituitary after 20 weeks although gonadotropin transcripts and circulating levels were still altered. Gonadotropins were the only pituitary hormones remaining affected at this stage of the regimen, underlying a differential susceptibility of pituitary lineages to metabolic disorders. DHA enrichment of the diet did not prevent alterations of gonadotrope activity due to either a long- or a short-term high-fat diet although it blocked early hypothalamic inflammation and attenuated several metabolic effects. Taken together, our findings suggest that high-fat diet-induced defects in gonadotrope activity in male rats occurred despite a lack of pituitary inflammation.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claude Rouch
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L’Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Salma Tazi
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, Inserm IMRB U955, Créteil, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | | | | | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
- *Correspondence: Joëlle Cohen-Tannoudji,
| |
Collapse
|
23
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Female obesity: Association with endocrine disruption and reproductive dysfunction. OBESITY MEDICINE 2021; 28:100375. [DOI: 10.1016/j.obmed.2021.100375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Ullah A, Wang MJ, Yang JP, Adu-Gyamfi EA, Czika A, Sah SK, Feng Q, Wang YX. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod Biomed Online 2021; 44:791-802. [DOI: 10.1016/j.rbmo.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
25
|
Impact of body mass index (BMI) on the success rate of fresh embryo transfer in women undergoing first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. Int J Obes (Lond) 2021; 46:202-210. [PMID: 34628467 DOI: 10.1038/s41366-021-00978-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the impact of body mass index (BMI) on the success rate and prenatal outcomes of fresh embryo transfer in women undergoing their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. METHODS It is a post-hoc analysis of a prospective observational cohort study. 2569 Chinese women were grouped in quintiles of BMI and according to the official Chinese classification of body weight. IVF/ICSI and pregnancy outcomes were compared between groups. RESULTS BMI was not associated with IVF/ICSI pregnancy outcomes including hCG positive rate, clinical pregnancy rate, implantation rate, ectopic pregnancy rate, ongoing pregnancy rate, early miscarriage rate, and live birth rate. However, it was negatively related to some pregnancy complications such as gestational diabetes mellitus (GDM) and hypertension. Additionally, the proportion of Cesarean-section was increased with BMI. As for prenatal outcomes, the current results showed no statistical difference in the number of male and female newborn, the proportion of low live birth weight (<2500 g), macrosomia (≥4000 g) (both in all live birth and full-term live birth), and premature delivery (<37 weeks). CONCLUSIONS The current study showed that BMI was not associated with embryo transfer outcomes after fresh embryo transfer in women undergoing their first IVF/ICSI treatment, whereas BMI was associated with GDM and gestational hypertension.
Collapse
|
26
|
Gao X, Li Y, Ma Z, Jing J, Zhang Z, Liu Y, Ding Z. Obesity induces morphological and functional changes in female reproductive system through increases in NF-κB and MAPK signaling in mice. Reprod Biol Endocrinol 2021; 19:148. [PMID: 34560886 PMCID: PMC8462000 DOI: 10.1186/s12958-021-00833-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Recently, human infertility incidence is increasing in obese women causing it to become an emerging global health challenge requiring improved treatment. There is extensive evidence that obesity caused female reproductive dysfunction is accompanied by an endocrinological influence. Besides, systemic and tissue-specific chronic inflammatory status are common characteristics of obesity. However, the underlying molecular mechanism is unclear linking obesity to infertility or subfertility. METHODS To deal with this question, we created an obese mouse model through providing a high fat diet (HFD) and determined the fertility of the obese mice. The morphological alterations were evaluated in both the reproductive glands and tracts, such as uterus, ovary and oviduct. Furthermore, to explore the underlying mechanism of these functional changes, the expressions of pro-inflammatory cytokines as well as the activations of MAPK signaling and NF-κB signaling were detected in these reproductive tissues. RESULTS The obese females were successful construction and displayed subfertility. They accumulated lipid droplets and developed morphological alterations in each of their reproductive organs including uterus, ovary and oviduct. These pathological changes accompanied increases in pro-inflammatory cytokine expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in all of these sites. Such effects also accompanied increases in nuclear factor kappa B (NF-kB) expression and mitogen-activated protein kinase (MAPK) signaling pathway stimulation based on uniform time dependent increases in the NF-κB (p-NF-κB), JNK (p-JNK), ERK1/2 (p-ERK) and p38 (p-p38) phosphorylation status. CONCLUSIONS These HFD-induced increases in pro-inflammatory cytokine expression levels and NF-κB and MAPKs signaling pathway activation in reproductive organs support the notion that increases of adipocytes resident and inflammatory status are symptomatic of female fertility impairment in obese mice.
Collapse
Affiliation(s)
- Xiuxiu Gao
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangyang Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengqing Zhang
- Department of Medical Laboratory Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
27
|
Li X, Zhou L, Peng G, Liao M, Zhang L, Hu H, Long L, Tang X, Qu H, Shao J, Zheng H, Long M. Pituitary P62 deficiency leads to female infertility by impairing luteinizing hormone production. Exp Mol Med 2021; 53:1238-1249. [PMID: 34453106 PMCID: PMC8417229 DOI: 10.1038/s12276-021-00661-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
P62 is a protein adaptor for various metabolic processes. Mice that lack p62 develop adult-onset obesity. However, investigations on p62 in reproductive dysfunction are rare. In the present study, we explored the effect of p62 on the reproductive system. P62 deficiency-induced reproductive dysfunction occurred at a young age (8 week old). Young systemic p62 knockout (p62-/-) and pituitary-specific p62 knockout (p62flox/flox αGSUcre) mice both presented a normal metabolic state, whereas they displayed infertility phenotypes (attenuated breeding success rates, impaired folliculogenesis and ovulation, etc.) with decreased luteinizing hormone (LH) expression and production. Consistently, in an infertility model of polycystic ovary syndrome (PCOS), pituitary p62 mRNA was positively correlated with LH levels. Mechanistically, p62-/- pituitary RNA sequencing showed a significant downregulation of the mitochondrial oxidative phosphorylation (OXPHOS) pathway. In vitro experiments using the pituitary gonadotroph cell line LβT2 and siRNA/shRNA/plasmid confirmed that p62 modulated LH synthesis and secretion via mitochondrial OXPHOS function, especially Ndufa2, a component molecule of mitochondrial complex I, as verified by Seahorse and rescue tests. After screening OXPHOS markers, Ndufa2 was found to positively regulate LH production in LβT2 cells. Furthermore, the gonadotropin-releasing hormone (GnRH)-stimulating test in p62flox/flox αGSUcre mice and LβT2 cells illustrated that p62 is a modulator of the GnRH-LH axis, which is dependent on intracellular calcium and ATP. These findings demonstrated that p62 deficiency in the pituitary impaired LH production via mitochondrial OXPHOS signaling and led to female infertility, thus providing the GnRH-p62-OXPHOS(Ndufa2)-Ca2+/ATP-LH pathway in gonadotropic cells as a new theoretical basis for investigating female reproductive dysfunction.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Guiliang Peng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Hua Hu
- Department of Gynaecology and Obstetrics, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Ling Long
- Department of Gynaecology and Obstetrics, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Xuefeng Tang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China.
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China.
| |
Collapse
|
28
|
Moreno-Fernandez ME, Sharma V, Stankiewicz TE, Oates JR, Doll JR, Damen MSMA, Almanan MATA, Chougnet CA, Hildeman DA, Divanovic S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr Diabetes 2021; 11:15. [PMID: 34099626 PMCID: PMC8184786 DOI: 10.1038/s41387-021-00157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vishakha Sharma
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maha A T A Almanan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Center for Transplant Immunology, and Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
29
|
Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. Int J Mol Sci 2021; 22:ijms22073312. [PMID: 33805020 PMCID: PMC8038027 DOI: 10.3390/ijms22073312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.
Collapse
|
30
|
Yang PK, Chou CH, Huang CC, Wen WF, Chen HF, Shun CT, Ho HN, Chen MJ. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production. Mol Metab 2021; 49:101189. [PMID: 33592337 PMCID: PMC7933796 DOI: 10.1016/j.molmet.2021.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Obesity has been reported to have a modulatory effect on the ovulatory functions of patients with polycystic ovary syndrome. The role of adipokines in this obesity-associated ovulatory disturbance has not been extensively explored. In this study, the relationships between obesity, adipokine production from visceral fat, and ovarian folliculogenesis were explored in a mice model of induced obesity. Methods Obesity was induced in female C57BL/6 mice fed ad libitum with high-fat feed and fructose water for 4 weeks. Follicular developments in the ovaries were assessed by histopathology in these diet-induced obese mice. Changes in adipokine expression in the peri-ovarian adipose tissues were screened with an adipokine array. The adipokine with the most significant increase over time was identified. The functions of the adipokine in angiogenic processes were evaluated in a cell model of endothelial proliferation. The in vivo effects of neutralizing this adipokine using specific antibodies were assessed in the same obesity model. Results A high-fat and fructose diet induced an accumulation of early ovarian follicles and a reduction in mature follicles and corpus lutea. The number of microvessels in the early follicles also decreased. The adipokine protein array of the peri-ovarian adipose tissues identified a progressive increase in IL-10 expression with the duration of the obesogenic diet. In vitro experiments in the endothelial cell model confirmed IL-10 as a disrupter of VEGF-induced angiogenesis. Administration of anti-IL-10 antibodies prevented the histopathological changes induced by the obesogenic diet and further highlighted the role of IL-10 in disrupting folliculogenesis. Conclusions Obesity may disrupt normal folliculogenesis through increased production of IL-10 in visceral fats. This relationship may help clarify the reported association between obesity and ovulatory dysfunction, which has been found in patients with polycystic ovary syndrome. However, the duration of this study was short, which limited conclusions on the long-term reproductive outcomes. Obesity increases IL-10 expression in visceral adipose. IL-10 disrupts VEGF-induced angiogenesis in an endothelial cell model. Disrupted angiogenesis is associated with disturbed folliculogenesis. Anti-IL-10 antibody prevents the altered folliculogenesis induced by obesity. Abnormal production of IL-10 may be a cause of dysovulation in obese individuals.
Collapse
Affiliation(s)
- Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Livia Shang Yu Wan Chair Professor of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Evans MC, Hill JW, Anderson GM. Role of insulin in the neuroendocrine control of reproduction. J Neuroendocrinol 2021; 33:e12930. [PMID: 33523515 DOI: 10.1111/jne.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Infertility associated with insulin resistance is characterised by abnormal hormone secretion by the hypothalamus, pituitary gland and gonads. These endocrine tissues can maintain insulin sensitivity even when tissues such as the muscle and liver become insulin-resistant, resulting in excessive insulin stimulation as hyperinsulinaemia develops. Experiments conducted to determine the role of neuronal insulin signalling in fertility were unable to recapitulate early findings of hypogonadotrophic hypogonadism in mice lacking insulin receptors throughout the brain. Rather, it was eventually shown that astrocytes critically mediate the effects of insulin on puberty timing and adult reproductive function. However, specific roles for neurones and gonadotrophs have been revealed under conditions of hyperinsulinaemia and by ablation of insulin and leptin receptors. The collective picture is one of multiple insulin-responsive inputs to gonadotrophin releasing hormone neurones, with astrocytes being the most important player.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Chen X, He S, Wang D. Effects of metformin on body weight in polycystic ovary syndrome patients: model-based meta-analysis. Expert Rev Clin Pharmacol 2020; 14:121-130. [PMID: 33306918 DOI: 10.1080/17512433.2021.1863788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The present study aimed to investigate the effects of metformin on body weight in polycystic ovary syndrome (PCOS) patients by model-based meta-analysis (MBMA). METHODS Randomized controlled trial (RCT) studies of metformin in treatment of PCOS patients were collected and efficacy indicators were the body mass index (BMI) change rates from baseline. RESULTS 28 RCT studies, 1631 PCOS patients were included for analysis. Model of metformin monotherapy, and model of metformin combination therapy were established, respectively. After deducting control group effects, the Emax of metformin on BMI were -5.88% and -11.8% in metformin monotherapy and metformin combination therapy, respectively. In order to play better curative effects, for metformin monotherapy, 1000 mg/day metformin needs for at least 25.5 weeks; For metformin combination therapy, 1000 mg/day metformin needs for at least 58.6 weeks. CONCLUSION It was the first time to quantify the effects of metformin on body weight and recommend dose and duration for metformin monotherapy and metformin combination therapy in PCOS patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, The People's Hospital of Jiangyin , Jiangyin, China.,Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| | - Sumei He
- Department of Pharmacy, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University , Suzhou, Jiangsu, China
| | - Dongdong Wang
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| |
Collapse
|
33
|
Mu Y, Cheng D, Yin TL, Yang J. Vitamin D and Polycystic Ovary Syndrome: a Narrative Review. Reprod Sci 2020; 28:2110-2117. [PMID: 33113105 DOI: 10.1007/s43032-020-00369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders of reproductive age women and contributes to metabolic dysfunctions including insulin resistance (IR) and dyslipidemia. Vitamin D is a steroid hormone, which is involved in calcium metabolism and bone structure and has a potential role in the prevention of many illnesses, including cancers, autoimmune disorders, hypertension, diabetes, and obesity. Recently, it has been reported that vitamin D deficiency was a common complication of PCOS and vitamin D status was associated with reproductive ability, metabolic alterations, and mental health of PCOS patients. This review summarizes the advances between vitamin D status and the pathophysiological process of PCOS. Vitamin D level was negatively associated with serum androgen level. Vitamin D treatment could reduce serum androgen and anti-MüllerianHormone (AMH) levels, and decrease endometrial thickness, which resulted in improvement of menstrual cycle and folliculogenesis of PCOS patients. Moreover, vitamin D concentrations were negatively correlated with parameters of IR and body fat mass. Vitamin D supplementation has beneficial effects on IR and lipid metabolism. In addition, a positive of vitamin D on mental health of PCOS patients was proposed. Understanding the relationship between vitamin D status and the symptoms of PCOS patients is of great clinical significance to treat and prevent the progression of PCOS.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Dan Cheng
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
34
|
Pape J, Herbison AE, Leeners B. Recovery of menses after functional hypothalamic amenorrhoea: if, when and why. Hum Reprod Update 2020; 27:130-153. [PMID: 33067637 DOI: 10.1093/humupd/dmaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged amenorrhoea occurs as a consequence of functional hypothalamic amenorrhoea (FHA) which is most often induced by weight loss, vigorous exercise or emotional stress. Unfortunately, removal of these triggers does not always result in the return of menses. The prevalence and conditions underlying the timing of return of menses vary strongly and some women report amenorrhoea several years after having achieved and maintained normal weight and/or energy balance. A better understanding of these factors would also allow improved counselling in the context of infertility. Although BMI, percentage body fat and hormonal parameters are known to be involved in the initiation of the menstrual cycle, their role in the physiology of return of menses is currently poorly understood. We summarise here the current knowledge on the epidemiology and physiology of return of menses. OBJECTIVE AND RATIONALE The aim of this review was to provide an overview of (i) factors determining the recovery of menses and its timing, (ii) how such factors may exert their physiological effects and (iii) whether there are useful therapeutic options to induce recovery. SEARCH METHODS We searched articles published in English, French or German language containing keywords related to return of menses after FHA published in PubMed between 1966 and February 2020. Manuscripts reporting data on either the epidemiology or the physiology of recovery of menses were included and bibliographies were reviewed for further relevant literature. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria served to assess quality of observational studies. OUTCOMES Few studies investigate return of menses and most of them have serious qualitative and methodological limitations. These include (i) the lack of precise definitions for FHA or resumption of menses, (ii) the use of short observation periods with unsatisfactory descriptions and (iii) the inclusion of poorly characterised small study groups. The comparison of studies is further hampered by very inhomogeneous study designs. Consequently, the exact prevalence of resumption of menses after FHA is unknown. Also, the timepoint of return of menses varies strongly and reliable prediction models are lacking. While weight, body fat and energy availability are associated with the return of menses, psychological factors also have a strong impact on the menstrual cycle and on behaviour known to increase the risk of FHA. Drug therapies with metreleptin or naltrexone might represent further opportunities to increase the chances of return of menses, but these require further evaluation. WIDER IMPLICATIONS Although knowledge on the physiology of return of menses is presently rudimentary, the available data indicate the importance of BMI/weight (gain), energy balance and mental health. The physiological processes and genetics underlying the impact of these factors on the return of menses require further research. Larger prospective studies are necessary to identify clinical parameters for accurate prediction of return of menses as well as reliable therapeutic options.
Collapse
Affiliation(s)
- J Pape
- Department of Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - A E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge CB2 3EG, UK
| | - B Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland.,University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
35
|
Negrón AL, Radovick S. High-Fat Diet Alters LH Secretion and Pulse Frequency in Female Mice in an Estrous Cycle-Dependent Manner. Endocrinology 2020; 161:5897032. [PMID: 32841330 PMCID: PMC7486692 DOI: 10.1210/endocr/bqaa146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
Reproductive fitness in females is susceptible to obesogenic diets. Energy balance and reproduction are tightly regulated, in part, by hypothalamic neurons in the arcuate nucleus (ARC), and high-fat diet (HFD) can steadily increase estradiol levels in rodents. Estradiol regulates the reproductive axis via negative feedback mechanisms in ARC neurons by modulating pulsatile release of the gonadotropin luteinizing hormone (LH). However, it is unclear how the circulating estradiol milieu of adult females interacts with a state of high-caloric fat intake to alter LH pulse dynamics. Here, we used serial tail-tip blood sampling to measure pulsatile LH release at different estrous cycle stages in mice fed a HFD. Starting at 21 days of age, female C57BL/6J mice were freely fed with either regular chow diet (RD) or 60% kcal HFD for 12 weeks. Blood samples were collected once at diestrus, and then again at estrus. LH was measured in 10-minute intervals for 3 hours and analyzed for pulse frequency, amplitude, and mean and basal LH levels. Compared with RD-fed controls, mice fed HFD displayed significantly increased pulse frequency at diestrus, but not at estrus. HFD-fed mice also had lower mean and basal LH levels compared with RD-fed controls, but only during estrus. These data suggest that circulating estradiol can variably contribute to the impact that HFD has on LH pulsatile release and also provide insight into how obesity impacts women's reproductive health when ovarian estradiol levels drastically change, such as during menopause or with hormone replacement therapy.
Collapse
Affiliation(s)
- Ariel L Negrón
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Correspondence: Ariel L. Negrón, PhD, Department of Pediatrics, Rutgers–Robert Wood Johnson Medical School, Clinical Academic Building, Room 7110, Lab A, 125 Paterson St., New Brunswick, NJ 08901, USA. E-mail:
| | - Sally Radovick
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
36
|
Sun LF, Yang YL, Xiao TX, Li MX, Zhang JV. Removal of DHT can relieve polycystic ovarian but not metabolic abnormalities in DHT-induced hyperandrogenism in mice. Reprod Fertil Dev 2020; 31:1597-1606. [PMID: 31142430 DOI: 10.1071/rd18459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder with a high prevalence in women of childbearing age. To date, there is no method of efficiently diagnosing PCOS and curing it completely because its pathomechanism remains unclear. Here, we investigated whether metabolic abnormalities maintain the hyperandrogenism and PCOS-like ovaries and whether the symptoms induced by excess androgen are treatable. We ceased the abnormal dihydrotestosterone (DHT) stimulation to determine changes in PCOS-like mice. After ceasing DHT stimulation, the ovarian morphology and gene expression recovered from the DHT-stimulated status. However, after cessation of DHT stimulation, the hypertrophy of adipose tissues and hepatic steatosis were not significantly restored, and fat accumulation-related gene expression and serum metabolic markers in the mice were altered. These findings showed that the reproductive dysfunction was obviously relieved, but because the metabolic abnormalities were not relieved after the cessation of excess androgen for 30 days, it appears that the latter may not maintain the former.
Collapse
Affiliation(s)
- Li-Feng Sun
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Li Yang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian-Xia Xiao
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meng-Xia Li
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian V Zhang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; and Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; and Corresponding author.
| |
Collapse
|
37
|
Systems Pharmacology-Based Research on the Mechanism of Tusizi-Sangjisheng Herb Pair in the Treatment of Threatened Abortion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4748264. [PMID: 32775426 PMCID: PMC7391104 DOI: 10.1155/2020/4748264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
Threatened abortion (TA) is a common complication with high incidence in the first trimester of pregnancy, which will end in miscarriage if not treated properly. The Chinese herbs Cuscutae Semen (Tusizi in Chinese) and Herba Taxilli (Sangjisheng in Chinese) first recorded in the ancient classic medical book Shennong Bencao Jing are effective and widely used as an herb pair for the treatment of TA, while the active ingredients and the functional mechanism of Tusizi-Sangjisheng herb pair treating TA are still unknown. In order to exploit the relationship between those two herbs and TA, systems pharmacology analysis was carried out in this study. A total of 75 ingredients of Tusizi-Sangjisheng were collected from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). 12 bioactive compounds were screened, and 153 directly related targets were predicted by systematic models. Besides, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to systematically explore the potential mechanisms of Tusizi-Sangjisheng treating TA. Meanwhile, Compound-Target (C-T), Target-Disease (T-D), and Target-Pathway (T-P) networks were constructed to further quest the underlying functional mechanisms of Tusizi-Sangjisheng. As a result, 31 targets and 3 key pathways were found to be directly related to TA that includes mitogen-activated protein kinases (MAPKs), phosphatidylinositol-3-kinase/protein kinase B (PI3K-Akt), and transforming growth factor-β (TGF-β) signaling pathways. The results in this study may provide some valuable clues about the molecular mechanisms of the efficient Chinese herb pair Tusizi-Sangjisheng in the treatment of TA.
Collapse
|
38
|
Deura C, Moriyama R. Short-term but not long-term high-fat diet induces an increase in gene expression of gonadotropic hormones and GPR120 in the male mouse pituitary gland. J Reprod Dev 2020; 66:143-148. [PMID: 31902809 PMCID: PMC7175384 DOI: 10.1262/jrd.2019-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-fat diet (HFD) is associated with the regulation of reproductive functions. This study aimed to investigate the effects of short-term HFD on the mRNA expression levels of
follicle-stimulating hormone β subunit (FSHβ), luteinizing hormone β subunit (LHβ), gonadotropin-releasing hormone receptor, and long-chain fatty acid receptor, GPR120, in the matured male
mouse pituitary gland. Adult male mice were fed either control chow or HFD for 1, 2, 5, 10, 30 and 150 days. Fshb and Gpr120 mRNA expression levels in the
pituitary glands were significantly increased during 2 to 30 days of HFD feeding. Gnrh-r mRNA in the 30 days HFD fed group and body weight in the 30 and 150 days HFD fed
groups were higher than control. However, there were no significant differences in plasma non-esterified fatty acids or glucose levels during the 150 days of HFD feeding. These results
suggest that male mice feeding a short-term HFD induces FSHβ synthesis and GPR120 expression in their pituitary gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
39
|
The Effect of Berberine on Reproduction and Metabolism in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Control Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7918631. [PMID: 31915452 PMCID: PMC6930782 DOI: 10.1155/2019/7918631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 11/18/2022]
Abstract
Purpose To assess the efficacy and safety of berberine on reproductive endocrine and metabolic outcomes in women with polycystic ovary syndrome (PCOS). Methods PubMed (from 1950), the Cochrane Library, the CNKI (from 1979), the VIP (from 1989), and the Wanfang Data (from 1990) and the reference lists of the retrieved articles were searched for randomized controlled trials in human beings with the search terms including "polycystic ovary syndrome/PCOS" and "berberine/BBR/Huangliansu (in Chinese)/Xiao bojian (in Chinese)" till 30 May 2019. Relevant indicators were collected and the data were analyzed by using RevMan 5.3 software. Results Eventually, a total of 12 randomized controlled trials were included in this systematic review. Our study suggested that berberine had similar live birth rates compared with placebo or metformin and lower live birth rates (RR: 0.61, 95% CI: 0.44 to 0.82) compared with letrozole. There was a significant difference between berberine and placebo and between berberine and no treatment in terms of decreasing total testosterone and luteinizing hormone to follicle-stimulating hormone (LH/FSH) ratio (8 RCTs, 577 participants, MD: -0.34, 95% CI: -0.47 to -0.20; 3 RCTs, 179 participants, MD: -0.44, 95% CI: -0.68 to -0.21, respectively). Berberine was associated with decreasing total cholesterol (3 RCTs, 201 participants; MD: -0.44, 95% CI: -0.60 to -0.29), waist circumference (3 RCTs, 197 participants, MD: -2.74, 95% CI: -4.55 to -0.93), and waist-to-hip ratio (4 RCTs, 258 participants, MD: -0.04, 95% CI: -0.05 to -0.03) compared with metformin, but not with improved BMI (4 RCTs, 262 participants, MD: -0.03, 95% CI: -0.46 to 0.39). Berberine did not increase the incidence of gastrointestinal adverse events (3 RCTs, 567 participants, RR: 1.01, 95% CI: 0.76 to 1.35) or serious events during pregnancy (RR: 0.98, 95% CI: 0.70 to 1.37) compared with placebo. Conclusion This review found no solid evidence that berberine could improve live birth or other clinical outcomes in women with PCOS. However, berberine appeared to be more efficacious for improving insulin resistance and dyslipidemia and decreasing androgen levels and LH/FSH ratio in women with PCOS when compared with metformin.
Collapse
|
40
|
Lainez NM, Coss D. Obesity, Neuroinflammation, and Reproductive Function. Endocrinology 2019; 160:2719-2736. [PMID: 31513269 PMCID: PMC6806266 DOI: 10.1210/en.2019-00487] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
The increasing occurrence of obesity has become a significant public health concern. Individuals with obesity have higher prevalence of heart disease, stroke, osteoarthritis, diabetes, and reproductive disorders. Reproductive problems include menstrual irregularities, pregnancy complications, and infertility due to anovulation, in women, and lower testosterone and diminished sperm count, in men. In particular, women with obesity have reduced levels of both gonadotropin hormones, and, in obese men, lower testosterone is accompanied by diminished LH. Taken together, these findings indicate central dysregulation of the hypothalamic-pituitary-gonadal axis, specifically at the level of the GnRH neuron function, which is the final brain output for the regulation of reproduction. Obesity is a state of hyperinsulinemia, hyperlipidemia, hyperleptinemia, and chronic inflammation. Herein, we review recent advances in our understanding of how these metabolic and immune changes affect hypothalamic function and regulation of GnRH neurons. In the latter part, we focus on neuroinflammation as a major consequence of obesity and discuss findings that reveal that GnRH neurons are uniquely positioned to respond to inflammatory changes.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 303 SOM Research Building, 900 University Avenue, Riverside, California 92521. E-mail:
| |
Collapse
|
41
|
Wang Z, Feng M, Awe O, Ma Y, Shen M, Xue P, Ahima R, Wolfe A, Segars J, Wu S. Gonadotrope androgen receptor mediates pituitary responsiveness to hormones and androgen-induced subfertility. JCI Insight 2019; 5:127817. [PMID: 31393859 DOI: 10.1172/jci.insight.127817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many women with hyperandrogenemia suffer from irregular menses and infertility. However, it is unknown whether androgens directly affect reproduction. Since animal models of hyperandrogenemia-induced infertility are associated with obesity, which may impact reproductive function, we have created a lean mouse model of elevated androgen using implantation of low dose dihydrotestosterone (DHT) pellets to separate the effects of elevated androgen from obesity. The hypothalamic-pituitary-gonadal axis controls reproduction. While we have demonstrated that androgen impairs ovarian function, androgen could also disrupt neuroendocrine function at the level of brain and/or pituitary to cause infertility. To understand how elevated androgens might act on pituitary gonadotropes to influence reproductive function, female mice with disruption of the androgen receptor (Ar) gene specifically in pituitary gonadotropes (PitARKO) were produced. DHT treated control mice with intact pituitary Ar (Con-DHT) exhibit disrupted estrous cyclicity and fertility with reduced pituitary responsiveness to GnRH at the level of both calcium signaling and LH secretion. These effects were ameliorated in DHT treated PitARKO mice. Calcium signaling controls GnRH regulation of LH vesicle exotocysis. Our data implicated upregulation of GEM (a voltage-dependent calcium channel inhibitor) in the pituitary as a potential mechanism for androgen's pathological effects. These results demonstrate that gonadotrope AR, as an extra-ovarian regulator, plays an important role in reproductive pathophysiology.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olubusayo Awe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yaping Ma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingjie Shen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Gynecology and Obstetrics, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Xue
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular and Cellular Physiology, and
| | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular and Cellular Physiology, and.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Kannan S, Srinivasan D, Raghupathy PB, Bhaskaran RS. Association between duration of obesity and severity of ovarian dysfunction in rat-cafeteria diet approach. J Nutr Biochem 2019; 71:132-143. [PMID: 31349120 DOI: 10.1016/j.jnutbio.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/03/2023]
Abstract
Consumption of unhealthy, energy-dense palatable food during early age leads to obesity in children and the onset of obesity during childhood has a profound effect on the reproductive health of women. In this study, the mechanism underlying diet-induced obesity on ovarian dysfunction was studied by exposing rats to cafeteria diet (CAFD) for two different durations. For that purpose, 21-day-old female Sprague Dawley rats were fed ad libitum with a standard diet (control group) and a cafeteria diet (CAFD group) for a period of 20 weeks (20 W) and 32 weeks (32 W). We observed obesity, hyperglycemia, hyperlipidemia, hyperleptinemia and hypoadiponectinemia in CAFD fed groups. Hyperinsulinemia, hypergonadotrophism, hypertestosteronemia and hyperprogesteronemia were observed in the 20 W-CAFD group. Conversely, in the 32 W-CAFD group hypersecretion declined to hyposecretion. The levels of estradiol remained low during both time periods. The duration of estrous cycle was extended in the CAFD fed rats. The ovary weight was higher in the 20 W-CAFD fed rats but it was drastically reduced over a longer duration cafeteria diet feeding. In the 20 W-CAFD fed rats, the protein levels of LHR, StAR, CYP11A1, 3β-HSD and 17β-HSD were increased but FSHR and CYP19A1 levels were decreased in the ovary. On the other hand, gonadotropin receptor and the protein levels of steroidogenic enzymes were decreased in the ovary of 32 W-CAFD fed rats. We conclude that the duration of energy-dense diet consumption has differential regulatory mechanism in altering the ovarian steroid production. In 20 W-CAFD fed rats, hypergonadotropic condition was observed whereas, 32 W-CAFD consumption induced hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Saranya Kannan
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India.
| | - Divya Srinivasan
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India.
| | - Prasanth Balan Raghupathy
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India.
| | - Ravi Sankar Bhaskaran
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India.
| |
Collapse
|
43
|
Garcia-Galiano D, Borges BC, Allen SJ, Elias CF. PI3K signalling in leptin receptor cells: Role in growth and reproduction. J Neuroendocrinol 2019; 31:e12685. [PMID: 30618188 PMCID: PMC6533139 DOI: 10.1111/jne.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110β catalytic subunits in leptin receptor cells (LRΔα+β ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+β mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Beatriz C. Borges
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan J. Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol F. Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Wu S, Xue P, Grayson N, Bland JS, Wolfe A. Bitter Taste Receptor Ligand Improves Metabolic and Reproductive Functions in a Murine Model of PCOS. Endocrinology 2019; 160:143-155. [PMID: 30418546 DOI: 10.1210/en.2018-00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) results from functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Cultured theca cells from polycystic ovaries of women with the most common form of PCOS overexpress most androgen producing enzymes, particularly CYP450c17. In this study, a murine model was used of PCOS induced by chronic feeding with a high-fat diet that exhibits the reproductive, hyperandrogenic, and metabolic constellation of PCOS symptoms seen in women. Oral administration of KDT501, a hops-derived bitter taste receptor (Tas2R 108) isohumulone ligand resulted in resolution of PCOS-associated endocrine and metabolic disturbances and restored reproductive function. Pioglitazone, a PPARγ agonist, also improved metabolic and reproductive function, though not to the same degree as KDT501. Specifically, treatment of the murine PCOS model with KDT501 resulted in reduced testosterone and androstenedione levels in the absence of significant changes in LH or FSH, improved glucose tolerance and lipid metabolism, and reduced hepatic lipid infiltration and adiposity. There was significant improvement in estrous cyclicity and an increase in the number of ovarian corpora lutea, indicative of improved reproductive function after exposure to KDT501. Finally, ex vivo exposure of murine ovaries to KDT501 attenuated androgen production and ovarian expression of CYP450c17. Interestingly, the ovaries expressed Tas2R 108, suggesting a potential regulation of ovarian steroidogenesis through this chemosensory receptor family. In summary, a therapeutic strategy for PCOS possibly could include direct influences on ovarian steroidogenesis that are independent of gonadotrophic hormone regulation.
Collapse
Affiliation(s)
- Sheng Wu
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ping Xue
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neile Grayson
- Kindex Pharmaceutical, Bainbridge Island, Washington
| | | | - Andrew Wolfe
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Xin M, He J, Zhang Y, Wu Y, Yang W, Liang X, Yin X. Chinese herbal decoction of Wenshen Yangxue formula improved fertility and pregnancy rate in mice through PI3K/Akt signaling. J Cell Biochem 2018; 120:3082-3090. [PMID: 30474873 DOI: 10.1002/jcb.27483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Traditional Chinese medicine (TCM) is an effective management to infertility. The association between TCM-mediated fertility and inhibition of phosphatidylinositol-3-kinase (PI3K) would be investigated. METHODS Institute of Cancer Research mice were treated with three herbal decoctions, named Wenshen Yangxue formula, Wenshen formula, and Yangxue formula, plus with human gonadotropins. PI3K inhibitor wortmannin was administrated to half of mice. Some index such as body weight, fertility ability would be investigated. The expression of P13K/Akt signaling was detected by using Western blot analysis. RESULTS No difference was observed in body weight among groups. Mice receiving the administration of human gonadotropins and herbal decoctions showed increased follicle numbers, percentage of fertilization, and promoted embryonic development. The treatment of Wenshen Yangxue formula decoction showed the highest efficiency, significant higher than Wenshen and Yangxue formulas. And increased the expression of p-PI3K and p-Akt proteins. CONCLUSION These results suggested the herbal decoctions promoted the fertilization of mice, which was related to the charge of PI3K/Akt activation.
Collapse
Affiliation(s)
- Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Wu
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xinyun Liang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Anderson C, Park YMM, Stanczyk FZ, Sandler DP, Nichols HB. Dietary factors and serum antimüllerian hormone concentrations in late premenopausal women. Fertil Steril 2018; 110:1145-1153. [PMID: 30396559 PMCID: PMC6533619 DOI: 10.1016/j.fertnstert.2018.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To study the associations between dietary factors and circulating antimüllerian hormone (AMH) concentrations among late premenopausal women. DESIGN AMH concentrations were measured in serum samples collected at enrollment from 296 women (aged 35-45 years) in the Sister Study cohort. Usual dietary intakes in the past 12 months were assessed using a validated food frequency questionnaire. Dietary exposures of interest included macronutrients, dietary fat subtypes, fiber, and glycemic index. Multivariable linear regression was used to evaluate associations between dietary variables and serum AMH concentrations. We also used nutrient density models to examine isocaloric replacement of macronutrients. SETTING Not applicable. PATIENTS Women aged 35-45 years. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Serum AMH concentrations in nanograms per milliliter (ng/mL). RESULTS AMH concentrations were positively associated with percentage of energy from carbohydrates (β per 5% calories = 0.141 [95% CI 0.023, 0.259]; P trend = .019), and inversely associated with percentage of energy from fat (β per 5% calories = -0.152 [95% CI -0.299, -0.004]; P trend = .044). In analyses of dietary fat subtypes, AMH decreased with increasing monounsaturated fatty acids (P trend = .082) and polyunsaturated fatty acids (P trend = .043), particularly ω-6 fatty acids (P trend = .044), whereas no strong trend was observed for saturated fatty acids. Protein and alcohol intake were not strongly associated with AMH. CONCLUSIONS Our cross-sectional analyses in a sample of late premenopausal women suggest that dietary fat intake may be inversely associated with circulating AMH concentrations. Further research in prospective studies is warranted to evaluate dietary factors as potential modifiers of ovarian reserve.
Collapse
Affiliation(s)
- Chelsea Anderson
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yong-Moon Mark Park
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology and Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
47
|
Novaira HJ, Negron AL, Graceli JB, Capellino S, Schoeffield A, Hoffman GE, Levine JE, Wolfe A, Wondisford FE, Radovick S. Impairments in the reproductive axis of female mice lacking estrogen receptor β in GnRH neurons. Am J Physiol Endocrinol Metab 2018; 315:E1019-E1033. [PMID: 30040478 PMCID: PMC6293171 DOI: 10.1152/ajpendo.00173.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/02/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022]
Abstract
The effect of estrogen on the differentiation and maintenance of reproductive tissues is mediated by two nuclear estrogen receptors (ERs), ERα, and ERβ. Lack of functional ERα and ERβ genes in vivo significantly affects reproductive function; however, the target tissues and signaling pathways in the hypothalamus are not clearly defined. Here, we describe the generation and reproductive characterization of a complete-ERβ KO (CERβKO) and a GnRH neuron-specific ERβKO (GERβKO) mouse models. Both ERβKO mouse models displayed a delay in vaginal opening and first estrus. Hypothalamic gonadotropin-releasing hormone (GnRH) mRNA expression levels in both ERβKO mice were similar to control mice; however female CERβKO and GERβKO mice had lower basal and surge serum gonadotropin levels. Although a GnRH stimulation test in both female ERβKO models showed preserved gonadotropic function in the same animals, a kisspeptin stimulation test revealed an attenuated response by GnRH neurons, suggesting a role for ERβ in normal GnRH neuron function. No alteration in estrogen-negative feedback was observed in either ERβKO mouse models after ovariectomy and estrogen replacement. Further, abnormal development of ovarian follicles with low serum estradiol levels and impairment of fertility were observed in both ERβKO mouse models. In male ERβKO mice, no differences in the timing of pubertal onset or serum luteinizing hormone and follicle-stimulating hormone levels were observed as compared with controls. Taken together, these data provide in vivo evidence for a role of ERβ in GnRH neurons in modulating puberty and reproduction, specifically through kisspeptin responsiveness in the female hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Horacio J Novaira
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Ariel L Negron
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil
| | - Silvia Capellino
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology , Dortmund , Germany
| | | | - Gloria E Hoffman
- Department of Biology, Morgan State University , Baltimore, Maryland
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin , Madison, Wisconsin
| | - Andrew Wolfe
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Sally Radovick
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| |
Collapse
|
48
|
Evans MC, Anderson GM. Integration of Circadian and Metabolic Control of Reproductive Function. Endocrinology 2018; 159:3661-3673. [PMID: 30304391 DOI: 10.1210/en.2018-00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Optimal fertility in humans and animals relies on the availability of sufficient metabolic fuels, information about which is communicated to the brain via levels of the hormones leptin and insulin. The circadian clock system is also critical; this input is especially evident in the precise timing of the female-specific surge of GnRH and LH secretion that triggers ovulation the next day. Chronodisruption and metabolic imbalance can both impair reproductive activity, and these two disruptions exacerbate each other, such that they often occur simultaneously. Kisspeptin neurons located in the anteroventral periventricular nucleus of the hypothalamus are able to integrate both circadian and metabolic afferent inputs and use this information to modulate the timing and magnitude of the preovulatory GnRH/LH surge. In an environment in which exposure to high caloric diets and chronodisruptors such as artificial night lighting, shift work, and transmeridian travel have become the norm, the implications of these factors for couples struggling to conceive deserve closer attention and more public education.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
49
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
50
|
Lainez NM, Jonak CR, Nair MG, Ethell IM, Wilson EH, Carson MJ, Coss D. Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Front Immunol 2018; 9:1992. [PMID: 30254630 PMCID: PMC6141693 DOI: 10.3389/fimmu.2018.01992] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing prevalence in obesity has become a significant public concern. C57BL/6J mice are prone to diet-induced obesity (DIO) when fed high-fat diet (HFD), and develop chronic inflammation and metabolic syndrome, making them a good model to analyze mechanisms whereby obesity elicits pathologies. DIO mice demonstrated profound sex differences in response to HFD with respect to inflammation and hypothalamic function. First, we determined that males are prone to DIO, while females are resistant. Ovariectomized females, on the other hand, are susceptible to DIO, implying protection by ovarian hormones. Males, but not females, exhibit changes in hypothalamic neuropeptide expression. Surprisingly, ovariectomized females remain resistant to neuroendocrine changes, showing that ovarian hormones are not necessary for protection. Second, obese mice exhibit sex differences in DIO-induced inflammation. Microglial activation and peripheral macrophage infiltration is seen in the hypothalami of males, while females are protected from the increase in inflammatory cytokines and do not exhibit microglia morphology changes nor monocyte-derived macrophage infiltration, regardless of the presence of ovarian hormones. Strikingly, the anti-inflammatory cytokine IL-10 is increased in the hypothalami of females but not males. Third, this study posits a potential mechanism of obesity-induced impairment of hypothalamic function whereby obese males exhibit reduced levels of synaptic proteins in the hypothalamus and fewer spines in GnRH neurons, located in the areas exhibiting macrophage infiltration. Our studies suggest that inflammation-induced synaptic remodeling is potentially responsible for hypothalamic impairment that may contribute to diminished levels of gonadotropin hormones, testosterone, and sperm numbers, which we observe and corresponds to the observations in obese humans. Taken together, our data implicate neuro-immune mechanisms underlying sex-specific differences in obesity-induced impairment of the hypothalamic function with potential consequences for reproduction and fertility.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|