1
|
Grujic M, Alim MA, Hellman L, Peterson M, Pejler G. Mast Cells are Dependent on Glucose Transporter 1 (GLUT1) and GLUT3 for IgE-mediated Activation. Inflammation 2024; 47:1820-1836. [PMID: 38565760 PMCID: PMC11549158 DOI: 10.1007/s10753-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are known to have a pathological impact in a variety of settings, in particular in allergic conditions. There is also limited evidence implicating MCs in diabetes, raising the possibility that MC function may be influenced by alterations in glucose levels. However, it is not known whether MCs are directly affected by elevated glucose concentrations. Moreover, it is not known which glucose transporters that are expressed by MCs, and whether MCs are dependent on glucose transporters for activation. Here we addressed these issues. We show that MCs express high levels of both glucose transporter 1 (GLUT1/Slc2A1) and GLUT3 (Slc2A3). Further, we show that the inhibition of either GLUT1 or GLUT3 dampens both MC degranulation and cytokine induction in response to IgE receptor crosslinking, and that combined GLUT1 and GLUT3 inhibition causes an even more pronounced inhibition of these parameters. In contrast, the inhibition of GLUT1 or GLUT3, or combined GLUT1 and GLUT3 inhibition, had less impact on the ability of the MCs to respond to activation via compound 48/80. Elevated glucose concentrations did not affect MC viability, and had no stimulatory effect on MC responses to either IgE receptor crosslinking or compound 48/80. Altogether, these findings reveal that MCs are strongly dependent on glucose transport via GLUT1 and/or GLUT3 for optimal responses towards IgE-mediated activation, whereas MC functionality is minimally affected by elevated glucose levels. Based on these findings, antagonists of GLUT1 and GLUT3 may be considered for therapeutic intervention in allergic conditions.
Collapse
Affiliation(s)
- Mirjana Grujic
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Md Abdul Alim
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.
- Uppsala University, Department of Public Health and Caring Sciences, General Medicine, Uppsala, Sweden.
- University of Cambridge, Division of Immunology, Department of Pathology, Cambridge, UK.
| | - Lars Hellman
- Uppsala University, Department of Cell and Molecular Biology, Uppsala, Sweden
| | - Magnus Peterson
- Uppsala University, Department of Public Health and Caring Sciences, General Medicine, Uppsala, Sweden
- Academic Primary Health Care, Region Uppsala, Sweden
| | - Gunnar Pejler
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.
| |
Collapse
|
2
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med 2023; 15:eadf9382. [PMID: 37992150 PMCID: PMC10847980 DOI: 10.1126/scitranslmed.adf9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gitanjali Srivastava
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
| | - Anna B. Bradley
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Caslin HL, Cottam MA, Betjemann AM, Mashayekhi M, Silver HJ, Hasty AH. Single cell RNA-sequencing suggests a novel lipid associated mast cell population following weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566786. [PMID: 38014269 PMCID: PMC10680619 DOI: 10.1101/2023.11.12.566786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.
Collapse
|
5
|
Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 2022; 22:294-308. [PMID: 34611316 DOI: 10.1038/s41577-021-00622-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations - for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.
Collapse
|
6
|
Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022; 77:83-99. [PMID: 33955017 DOI: 10.1111/all.14881] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Collapse
Affiliation(s)
- Joakim S. Dahlin
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Dermatological Allergology Allergie‐Centrum‐Charité Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
| | - Dean D. Metcalfe
- Mast Cell Biology Section Laboratory of Allergic Diseases NIAID, NIH Bethesda MD USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ronit Sagi‐Eisenberg
- Department of Cell and Developmental Biology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
7
|
Lopez-Perez D, Redruello-Romero A, Garcia-Rubio J, Arana C, Garcia-Escudero LA, Tamayo F, Salmeron J, Galvez J, Leon J, Carazo Á. In Obese Patients With Type 2 Diabetes, Mast Cells in Omental Adipose Tissue Decrease the Surface Expression of CD45, CD117, CD203c, and FcϵRI. Front Endocrinol (Lausanne) 2022; 13:818388. [PMID: 35370964 PMCID: PMC8965342 DOI: 10.3389/fendo.2022.818388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The paradigm of mast cells in type 2 diabetes is changing. Although they were first considered deleterious inflammatory cells, now they seem to be important players driving adipose tissue homeostasis. Here we have employed a flow cytometry-based approach for measuring the surface expression of 4 proteins (CD45, CD117, CD203c, and FcϵRI) on mast cells of omental (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 96 patients with morbid obesity. The cohort was split into three groups: non-T2D, pre-T2D, and T2D. Noteworthy, patients with T2D have a mild condition (HbA1c <7%). In o-WAT, mast cells of patients with T2D have a decrease in the surface expression of CD45 (p=0.0013), CD117 (p=0.0066), CD203c (p=0.0025), and FcϵRI (p=0.043). Besides, in s-WAT, the decrease was seen only in CD117 (p=0.046). These results indicate that T2D affects more to mast cells in o-WAT than in s-WAT. The decrease in these four proteins has serious effects on mast cell function. CD117 is critical for mast cell survival, while CD45 and FcϵRI are important for mast cell activation. Additionally, CD203c is only present on the cell surface after granule release. Taking together these observations, we suggest that mast cells in o-WAT of patients with T2D have a decreased survival, activation capacity, and secretory function.
Collapse
Affiliation(s)
- David Lopez-Perez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Anaïs Redruello-Romero
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | | | - Carlos Arana
- Endocrinology and nutrition department, Virgen de la Luz University Hospital, Cuenca, Spain
| | - Luis A. Garcia-Escudero
- Department of Statistics and Operative Research, Faculty of Sciences, University of Valladolid, Valladolid, Spain
| | | | - Javier Salmeron
- Gastroenterology Unit, San Cecilio University Hospital, Granada, Spain
| | - Julio Galvez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), Center for Biomedical Research, University of Granada, Granada, Spain
- *Correspondence: Julio Galvez, ; Ángel Carazo,
| | - Josefa Leon
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Granada, Spain
- *Correspondence: Julio Galvez, ; Ángel Carazo,
| |
Collapse
|
8
|
Diener C, Qin S, Zhou Y, Patwardhan S, Tang L, Lovejoy JC, Magis AT, Price ND, Hood L, Gibbons SM. Baseline Gut Metagenomic Functional Gene Signature Associated with Variable Weight Loss Responses following a Healthy Lifestyle Intervention in Humans. mSystems 2021; 6:e0096421. [PMID: 34519531 PMCID: PMC8547453 DOI: 10.1128/msystems.00964-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. IMPORTANCE Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to dietary interventions, but the exact functional determinants underlying this phenomenon remain unclear. In this study, we set out to better understand interactions between baseline BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent weight changes in a human cohort that underwent a healthy lifestyle intervention. Overall, our results suggest that the microbiota may influence host weight loss responses through variable bacterial growth rates, dietary energy harvest efficiency, and immunomodulation.
Collapse
Affiliation(s)
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Jennifer C. Lovejoy
- Institute for Systems Biology, Seattle, Washington, USA
- Lifestyle Medicine Institute, Redlands, California, USA
| | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Onegevity (a division of Thorne HealthTech), New York, New York, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- eScience Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
10
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
11
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
12
|
Lopez-Perez D, Redruello-Romero A, Garcia-Rubio J, Arana C, Garcia-Escudero LA, Tamayo F, Puentes-Pardo JD, Moreno-SanJuan S, Salmeron J, Blanco A, Galvez J, Leon J, Carazo Á. In Patients With Obesity, the Number of Adipose Tissue Mast Cells Is Significantly Lower in Subjects With Type 2 Diabetes. Front Immunol 2021; 12:664576. [PMID: 34093556 PMCID: PMC8177010 DOI: 10.3389/fimmu.2021.664576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a rising global health problem mainly caused by obesity and a sedentary lifestyle. In healthy individuals, white adipose tissue (WAT) has a relevant homeostatic role in glucose metabolism, energy storage, and endocrine signaling. Mast cells contribute to these functions promoting WAT angiogenesis and adipogenesis. In patients with T2D, inflammation dramatically impacts WAT functioning, which results in the recruitment of several leukocytes, including monocytes, that enhance this inflammation. Accordingly, the macrophages population rises as the WAT inflammation increases during the T2D status worsening. Since mast cell progenitors cannot arrive at WAT, the amount of WAT mast cells depends on how the new microenvironment affects progenitor and differentiated mast cells. Here, we employed a flow cytometry-based approach to analyze the number of mast cells from omental white adipose tissue (o-WAT) and subcutaneous white adipose tissue (s-WAT) in a cohort of 100 patients with obesity. Additionally, we measured the number of mast cell progenitors in a subcohort of 15 patients. The cohort was divided in three groups: non-T2D, pre-T2D, and T2D. Importantly, patients with T2D have a mild condition (HbA1c <7%). The number of mast cells and mast cell progenitors was lower in patients with T2D in both o-WAT and s-WAT in comparison to subjects from the pre-T2D and non-T2D groups. In the case of mast cells in o-WAT, there were statistically significant differences between non-T2D and T2D groups (p = 0.0031), together with pre-T2D and T2D groups (p=0.0097). However, in s-WAT, the differences are only between non-T2D and T2D groups (p=0.047). These differences have been obtained with patients with a mild T2D condition. Therefore, little changes in T2D status have a huge impact on the number of mast cells in WAT, especially in o-WAT. Due to the importance of mast cells in WAT physiology, their decrease can reduce the capacity of WAT, especially o-WAT, to store lipids and cause hypoxic cell deaths that will trigger inflammation.
Collapse
Affiliation(s)
- David Lopez-Perez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Anaïs Redruello-Romero
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | | | - Carlos Arana
- Endocrinology and Nutrition Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Luis A Garcia-Escudero
- Department of Statistics and Operative Research, Faculty of Sciences, University of Valladolid, Valladolid, Spain
| | | | - Jose D Puentes-Pardo
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Javier Salmeron
- Gastroenterology Unit, San Cecilio University Hospital, Granada, Spain
| | - Armando Blanco
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Julio Galvez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.,Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), Center for Biomedical Research, University of Granada, Granada, Spain
| | - Josefa Leon
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ángel Carazo
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.,Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
13
|
IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4 + T cell responses. Sci Rep 2021; 11:9686. [PMID: 33958642 PMCID: PMC8102524 DOI: 10.1038/s41598-021-88956-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mast cells are potent mediators of allergy and asthma, yet their role in regulating adaptive immunity remains ambiguous. On the surface of mast cells, the crosslinking of IgE bound to FcεRI by a specific antigen recognized by that IgE triggers the release of immune mediators such as histamine and cytokines capable of activating other immune cells; however, little is known about the mast cell contribution to the induction of endogenous, antigen-specific CD4+ T cells. Here we examined the effects of specific mast cell activation in vivo on the initiation of an antigen-specific CD4+ T cell response. While CD4+ T cells were not enhanced by FcεRI stimulation alone, their activation was synergistically enhanced when FcεRI activation was combined with TLR4 stimulation. This enhanced activation was dependent on global TLR4 stimulation but appeared to be less dependent on mast cell expressed TLR4. This study provides important new evidence to support the role of mast cells as mediators of the antigen-specific adaptive immune response.
Collapse
|
14
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Strattan E, Hildebrandt GC. Mast Cell Involvement in Fibrosis in Chronic Graft-Versus-Host Disease. Int J Mol Sci 2021; 22:2385. [PMID: 33673565 PMCID: PMC7956846 DOI: 10.3390/ijms22052385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is most commonly a treatment for inborn defects of hematopoiesis or acute leukemias. Widespread use of HSCT, a potentially curative therapy, is hampered by onset of graft-versus-host disease (GVHD), classified as either acute or chronic GVHD. While the pathology of acute GVHD is better understood, factors driving GVHD at the cellular and molecular level are less clear. Mast cells are an arm of the immune system that are known for atopic disease. However, studies have demonstrated that they can play important roles in tissue homeostasis and wound healing, and mast cell dysregulation can lead to fibrotic disease. Interestingly, in chronic GVHD, aberrant wound healing mechanisms lead to pathological fibrosis, but the cellular etiology driving this is not well-understood, although some studies have implicated mast cells. Given this novel role, we here review the literature for studies of mast cell involvement in the context of chronic GVHD. While there are few publications on this topic, the papers excellently characterized a niche for mast cells in chronic GVHD. These findings may be extended to other fibrosing diseases in order to better target mast cells or their mediators for treatment of fibrotic disease.
Collapse
Affiliation(s)
| | - Gerhard Carl Hildebrandt
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
16
|
Cellular and Molecular Players in the Interplay between Adipose Tissue and Breast Cancer. Int J Mol Sci 2021; 22:ijms22031359. [PMID: 33572982 PMCID: PMC7866411 DOI: 10.3390/ijms22031359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and severity of obesity are rising in most of the world. In addition to metabolic disorders, obesity is associated with an increase in the incidence and severity of a variety of types of cancer, including breast cancer (BC). The bidirectional interaction between BC and adipose cells has been deeply investigated, although the molecular and cellular players involved in these mechanisms are far from being fully elucidated. Here, we review the current knowledge on these interactions and describe how preclinical research might be used to clarify the effects of obesity over BC progression and morbidity, with particular attention paid to promising therapeutic interventions.
Collapse
|
17
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast Cells in Diabetes and Diabetic Wound Healing. Adv Ther 2020; 37:4519-4537. [PMID: 32935286 PMCID: PMC7547971 DOI: 10.1007/s12325-020-01499-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) are granulated, immune cells of the myeloid lineage that are present in connective tissues. Apart from their classical role in allergies, MCs also mediate various inflammatory responses due to the nature of their secretory products. They are involved in important physiological and pathophysiological responses related to inflammation, chronic wounds, and autoimmune diseases. There are also indications that MCs are associated with diabetes and its complications. MCs and MC-derived mediators participate in all wound healing stages and are involved in the pathogenesis of non-healing, chronic diabetic foot ulcers (DFUs). More specifically, recent work has shown increased degranulation of skin MCs in human diabetes and diabetic mice, which is associated with impaired wound healing. Furthermore, MC stabilization, either systemic or local at the skin level, improves wound healing in diabetic mice. Understanding the precise role of MCs in wound progression and healing processes can be of critical importance as it can lead to the development of new targeted therapies for diabetic foot ulceration, one of the most devastating complications of diabetes.
Collapse
Affiliation(s)
- Jie Dong
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lihong Chen
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Navin Jayaswal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Weijie Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- LanZhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Zhang X, Wang X, Yin H, Zhang L, Feng A, Zhang QX, Lin Y, Bao B, Hernandez LL, Shi GP, Liu J. Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Rep 2020; 28:792-803.e4. [PMID: 31315055 DOI: 10.1016/j.celrep.2019.06.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue browning and systemic energy expenditure provide a defense mechanism against obesity and associated metabolic diseases. In high-cholesterol Western diet-fed mice, mast cell (MC) inactivation ameliorates obesity and insulin resistance and improves the metabolic rate, but a direct role of adipose tissue MCs in thermogenesis and browning remains unproven. Here, we report that adrenoceptor agonist norepinephrine-stimulated metabolic rate and subcutaneous adipose tissue (SAT) browning are enhanced in MC-deficient Kitw-sh/w-sh mice and MC-stabilized wild-type mice on a chow diet. MC reconstitution to SAT in Kitw-sh/w-sh mice blocks these changes. Mechanistic studies demonstrate that MC inactivation elevates SAT platelet-derived growth factor receptor A (PDGFRα+) adipocyte precursor proliferation and accelerates beige adipocyte differentiation. Using the tryptophan hydroxylase 1 (TPH1) inhibitor and TPH1-deficient MCs, we show that MC-derived serotonin inhibits SAT browning and systemic energy expenditure. Functional inactivation of MCs or inhibition of MC serotonin synthesis in SAT promotes adipocyte browning and systemic energy metabolism in mice.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Airong Feng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qiu-Xia Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Bao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | - Guo-Ping Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
20
|
Goldstein N, Kezerle Y, Gepner Y, Haim Y, Pecht T, Gazit R, Polischuk V, Liberty IF, Kirshtein B, Shaco-Levy R, Blüher M, Rudich A. Higher Mast Cell Accumulation in Human Adipose Tissues Defines Clinically Favorable Obesity Sub-Phenotypes. Cells 2020; 9:cells9061508. [PMID: 32575785 PMCID: PMC7349306 DOI: 10.3390/cells9061508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The identification of human obesity sub-types may improve the clinical management of patients with obesity and uncover previously unrecognized obesity mechanisms. Here, we hypothesized that adipose tissue (AT) mast cells (MC) estimation could be a mark for human obesity sub-phenotyping beyond current clinical-based stratifications, both cross-sectionally and prospectively. We estimated MC accumulation using immunohistochemistry and gene expression in abdominal visceral AT (VAT) and subcutaneous (SAT) in a human cohort of 65 persons with obesity who underwent elective abdominal (mainly bariatric) surgery, and we validated key results in two clinically similar, independent cohorts (n = 33, n = 56). AT-MC were readily detectable by immunostaining for either c-kit or tryptase and by assessing the gene expression of KIT (KIT Proto-Oncogene, Receptor Tyrosine Kinase), TPSB2 (tryptase beta 2), and CMA1 (chymase 1). Participants were characterized as VAT-MClow if the expression of both CMA1 and TPSB2 was below the median. Higher expressers of MC genes (MChigh) were metabolically healthier (lower fasting glucose and glycated hemoglobin, with higher pancreatic beta cell reserve (HOMA-β), and lower triglycerides and alkaline-phosphatase) than people with low expression (MClow). Prospectively, higher MC accumulation in VAT or SAT obtained during surgery predicted greater postoperative weight-loss response to bariatric surgery. Jointly, high AT-MC accumulation may be used to clinically define obesity sub-phenotypes, which are associated with a “healthier” cardiometabolic risk profile and a better weight-loss response to bariatric surgery.
Collapse
Affiliation(s)
- Nir Goldstein
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Yarden Kezerle
- Institute of Pathology, Soroka University Medical Center Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (Y.K.); (R.S.-L.)
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
| | - Tal Pecht
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Vera Polischuk
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Idit F. Liberty
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Boris Kirshtein
- Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.P.); (I.F.L.); (B.K.)
| | - Ruthy Shaco-Levy
- Institute of Pathology, Soroka University Medical Center Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (Y.K.); (R.S.-L.)
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.G.); (Y.H.); (T.P.)
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
21
|
Elieh Ali Komi D, Shafaghat F, Christian M. Crosstalk Between Mast Cells and Adipocytes in Physiologic and Pathologic Conditions. Clin Rev Allergy Immunol 2020; 58:388-400. [PMID: 32215785 PMCID: PMC7244609 DOI: 10.1007/s12016-020-08785-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acids and glucose uptake support the infiltration of adipose tissue (AT) by a variety of immune cells including neutrophils, pro-inflammatory M1 macrophages, and mast cells (MCs). These cells promote inflammation by releasing pro-inflammatory mediators. The involvement of MCs in AT biology is supported by their accumulation in the AT of obese individuals along with significantly higher serum levels of MC-derived tryptase. AT-resident MCs under the influence of locally derived adipokines such as leptin become activated and release pro-inflammatory cytokines including TNFα that worsens the inflammatory state. MCs support angiogenesis in AT by releasing chymase and inducing preadipocyte differentiation and also the proliferation of adipocytes through 15-deoxy-delta PGJ2/PPARγ interaction. Additionally, they contribute to the remodeling of the AT extracellular matrix (ECM) and play a role in the recruitment and activation of leukocytes. MC degranulation has been linked to brown adipocyte activation, and evidence indicates an important link between MCs and the appearance of BRITE/beige adipocytes in white AT. Cell crosstalk between MCs and AT-resident cells, mainly adipocytes and immune cells, shows that these cells play a critical role in the regulation of AT homeostasis and inflammation.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark Christian
- School of Science and Technology, Nottingham, NG11 8NS, UK.
| |
Collapse
|
22
|
Arivazhagan L, Ruiz HH, Wilson R, Manigrasso M, Gugger PF, Fisher EA, Moore KJ, Ramasamy R, Schmidt AM. An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circ Res 2020; 126:1565-1589. [PMID: 32437306 PMCID: PMC7250004 DOI: 10.1161/circresaha.120.315900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Robin Wilson
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Michaele Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Edward A. Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Kathryn J. Moore
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
23
|
Abstract
Obesity is becoming an epidemic in the United States and worldwide and increases risk for many diseases, particularly insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. The mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2 to 3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, skeletal muscle, liver, gut, pancreatic islet, and brain and may contribute to obesity-linked metabolic dysfunctions, leading to insulin resistance and type 2 diabetes mellitus. Therapies targeting inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes mellitus and atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical trials. This review focuses on inflammation in adipose tissue and its potential role in insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Huaizhu Wu
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (H.W.), Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics (C.M.B.), Baylor College of Medicine, Houston, TX.,Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Oliveira BM, Pinto A, Correia A, Ferreira PG, Vilanova M, Teixeira L. Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Sci Rep 2020; 10:1771. [PMID: 32019985 PMCID: PMC7000716 DOI: 10.1038/s41598-020-58678-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells resident in adipose tissue have important functions in local and systemic metabolic homeostasis. Nevertheless, these immune cell populations remain poorly characterized in bovines. Recently, we described diverse lymphocyte subpopulations in adipose tissue of Holstein-Friesian cows. Here, we aimed at characterising myeloid cell populations present in bovine adipose tissue using multicolour flow cytometry, cell sorting and histochemistry/immunohistochemistry. Macrophages, CD14+CD11b+MHC-II+CD45+ cells, were identified in mesenteric and subcutaneous adipose tissue, though at higher proportions in the latter. Mast cells, identified as SSC-AhighCD11b−/+CD14−MHC-II−CH138A−CD45+ cells, were also observed in adipose tissue and found at higher proportions than macrophages in mesenteric adipose tissue. Neutrophils, presenting a CH138A+CD11b+ phenotype, were also detected in mesenteric and subcutaneous adipose tissue, however, at much lower frequencies than in the blood. Our gating strategy allowed identification of eosinophils in blood but not in adipose tissue although being detected by morphological analysis at low frequencies in some animals. A population not expressing CD45 and with the CH138A+ CD11b−MHC-II− phenotype, was found abundant and present at higher proportions in mesenteric than subcutaneous adipose tissue. The work reported here may be useful for further studies addressing the function of the described cells.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Pinto
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Correia
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Manuel Vilanova
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
25
|
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020; 52:404-416.e5. [DOI: 10.1016/j.immuni.2020.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
26
|
Genetic deletion of mast cell serotonin synthesis prevents the development of obesity and insulin resistance. Nat Commun 2020; 11:463. [PMID: 31974364 PMCID: PMC6978527 DOI: 10.1038/s41467-019-14080-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is linked with insulin resistance and is characterized by excessive accumulation of adipose tissue due to chronic energy imbalance. Increasing thermogenic brown and beige adipose tissue futile cycling may be an important strategy to increase energy expenditure in obesity, however, brown adipose tissue metabolic activity is lower with obesity. Herein, we report that the exposure of mice to thermoneutrality promotes the infiltration of white adipose tissue with mast cells that are highly enriched with tryptophan hydroxylase 1 (Tph1), the rate limiting enzyme regulating peripheral serotonin synthesis. Engraftment of mast cell-deficient mice with Tph1−/− mast cells or selective mast cell deletion of Tph1 enhances uncoupling protein 1 (Ucp1) expression in white adipose tissue and protects mice from developing obesity and insulin resistance. These data suggest that therapies aimed at inhibiting mast cell Tph1 may represent a therapeutic approach for the treatment of obesity and type 2 diabetes. Serotonin inhibits adipose tissue thermogenesis. Here the authors show that obese mice housed in thermoneutrality have increased mast cell serotonin synthesis, and that inhibiting this pathway through deletion of mast cell Tph1 increases white adipose tissue browning and protects against diet-induced obesity, insulin resistance and liver steatosis.
Collapse
|
27
|
Abstract
Obesity is characterized by a state of chronic inflammation in adipose tissue mediated by the secretion of a range of inflammatory cytokines. In comparison to WAT, relatively little is known about the inflammatory status of brown adipose tissue (BAT) in physiology and pathophysiology. Because BAT and brown/beige adipocytes are specialized in energy expenditure they have protective roles against obesity and associated metabolic diseases. BAT appears to be is less susceptible to developing inflammation than WAT. However, there is increasing evidence that inflammation directly alters the thermogenic activity of brown fat by impairing its capacity for energy expenditure and glucose uptake. The inflammatory microenvironment can be affected by cytokines secreted by immune cells as well as by the brown adipocytes themselves. Therefore, pro-inflammatory signals represent an important component of the thermogenic potential of brown and beige adipocytes and may contribute their dysfunction in obesity.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Mark Christian
| |
Collapse
|
28
|
Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front Endocrinol (Lausanne) 2020; 11:267. [PMID: 32499756 PMCID: PMC7243349 DOI: 10.3389/fendo.2020.00267] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity and aging represent major health burdens to the global adult population. Both conditions promote the development of associated metabolic diseases such as insulin resistance. The visceral adipose tissue (VAT) is a site that becomes dysfunctional during obesity and aging, and plays a significant role during their pathophysiology. The changes in obese and aging VAT are now recognized to be partly driven by a chronic local inflammatory state, characterized by immune cells that typically adopt an inflammatory phenotype during metabolic disease. Here, we summarize the current knowledge on the immune cell landscape of the VAT during lean, obese, and aged conditions, highlighting their similarities and differences. We also briefly discuss possible linked mechanisms that fuel obesity- and age-associated VAT dysfunction.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Xavier S. Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Xavier S. Revelo
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Daniel A. Winer
| |
Collapse
|
29
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
30
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Legere SA, Haidl ID, Légaré JF, Marshall JS. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front Immunol 2019; 10:580. [PMID: 31001246 PMCID: PMC6455071 DOI: 10.3389/fimmu.2019.00580] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MC) are innate immune cells present in virtually all body tissues with key roles in allergic disease and host defense. MCs recognize damage-associated molecular patterns (DAMPs) through expression of multiple receptors including Toll-like receptors and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed mediators, to synthesize and secrete cytokines and chemokines without degranulation, and/or to produce lipid mediators. MC numbers are generally increased at sites of fibrosis. They are potent, resident, effector cells producing mediators that regulate the fibrotic process. The nature of the secretory products produced by MCs depend on micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses in hypoxic tissues, but these findings are controversial. Several rodent studies have indicated a protective role for MCs. MC-deficient mice have been reported to have poorer outcomes after coronary artery ligation and increased cardiac function upon MC reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis. MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model rescued associated fibrosis. Discrepancies in the literature could be related to problems with mouse models of MC deficiency. To further complicate the issue, mice generally have a much lower density of MCs in their cardiac tissue than humans, and as such comparing MC deficient and MC containing mouse models is not necessarily reflective of the role of MCs in human disease. In this review, we will evaluate the literature regarding the role of MCs in cardiac fibrosis with an emphasis on what is known about MC biology, in this context. MCs have been well-studied in allergic disease and multiple pharmacological tools are available to regulate their function. We will identify potential opportunities to manipulate human MC function and the impact of their mediators with a view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could arise from increased understanding of the impact of such potent, resident immune cells, with the ability to profoundly alter long term fibrotic processes.
Collapse
Affiliation(s)
- Stephanie A. Legere
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian D. Haidl
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean-François Légaré
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Surgery, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jean S. Marshall
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
32
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast Cell-Derived Histamine Regulates Liver Ketogenesis via Oleoylethanolamide Signaling. Cell Metab 2019; 29:91-102.e5. [PMID: 30318340 DOI: 10.1016/j.cmet.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
The conversion of lipolysis-derived fatty acids into ketone bodies (ketogenesis) is a crucial metabolic adaptation to prolonged periods of food scarcity. The process occurs primarily in liver mitochondria and is initiated by fatty-acid-mediated stimulation of the ligand-operated transcription factor, peroxisome proliferator-activated receptor-α (PPAR-α). Here, we present evidence that mast cells contribute to the control of fasting-induced ketogenesis via a paracrine mechanism that involves secretion of histamine into the hepatic portal circulation, stimulation of liver H1 receptors, and local biosynthesis of the high-affinity PPAR-α agonist, oleoylethanolamide (OEA). Genetic or pharmacological interventions that disable any one of these events, including mast cell elimination, deletion of histamine- or OEA-synthesizing enzymes, and H1 blockade, blunt ketogenesis without affecting lipolysis. The results reveal an unexpected role for mast cells in the regulation of systemic fatty-acid homeostasis, and suggest that OEA may act in concert with lipolysis-derived fatty acids to activate liver PPAR-α and promote ketogenesis.
Collapse
Affiliation(s)
- Alessandra Misto
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; School of Advanced Studies Sant'Anna, Pisa 56127, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biological Chemistry and Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Schubert N, Lisenko K, Auerbach C, Weitzmann A, Ghouse SM, Muhandes L, Haase C, Häring T, Schulze L, Voehringer D, Gunzer F, Müller W, Feyerabend TB, Rodewald HR, Dudeck A, Roers A. Unimpaired Responses to Vaccination With Protein Antigen Plus Adjuvant in Mice With Kit-Independent Mast Cell Deficiency. Front Immunol 2018; 9:1870. [PMID: 30210490 PMCID: PMC6123530 DOI: 10.3389/fimmu.2018.01870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund’s adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.
Collapse
Affiliation(s)
- Nadja Schubert
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Katharina Lisenko
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christian Auerbach
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Anke Weitzmann
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Shanawaz Mohammed Ghouse
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Lina Muhandes
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christa Haase
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Tobias Häring
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Livia Schulze
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Florian Gunzer
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Anne Dudeck
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany.,Medical Faculty, Institute for Molecular and Clinical Immunology, Otto von Guericke University, Magdeburg, Germany
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| |
Collapse
|
35
|
Yuan Y, Peng D, Gu X, Gong Y, Sheng Z, Hu X. Polygenic Basis and Variable Genetic Architectures Contribute to the Complex Nature of Body Weight -A Genome-Wide Study in Four Chinese Indigenous Chicken Breeds. Front Genet 2018; 9:229. [PMID: 30013594 PMCID: PMC6036123 DOI: 10.3389/fgene.2018.00229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Body weight (BW) is one of the most important economic traits for animal production and breeding, and it has been studied extensively for its phenotype–genotype associations. While mapping studies have mostly aimed at finding as many loci as possible that contributed to the variation in BW, the role of other factors in its genetic architecture, including their frequencies in the population and their interactions, have been largely overlooked. To comprehensively characterized the genetic architecture of BW, we performed a genome-wide association study (GWAS) both at the single-marker and haplotype level on birds from four indigenous Chinese chicken breeds (Chahua, Silkie, Langshan, and Beard), rather than studying crosses between two founder lines. Additionally, samples from two more breeds (Red Junglefowl and Recessive White) were included to better reflect variable genetic characteristics across populations. Six loci were mapped in this study, revealing the polygenic basis underlying BW. Moreover, by further examining the frequencies of the significantly associated haplotypes in each subpopulation and their effect sizes, most of the loci were found to affect BW in the Beard chicken breed alone. Two loci in GGA9 and GGA27, however, had a common effect on BW across subpopulations, showing that different underlying genetic mechanisms contribute to the phenotypic variability. These findings, particularly the variable genetic architectures found in different loci, improve our understanding of the overall genetic contributions to the large variability in BW among Chinese indigenous chicken breeds. These findings thus will have important implications for future chicken breeding.
Collapse
Affiliation(s)
- Yangyang Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xiaorong Gu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know? Inflammation 2018; 41:1142-1156. [PMID: 29846855 DOI: 10.1007/s10753-018-0798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The chronic low-grade inflammation of the visceral adipose tissue is now fully established as one of the main contributors to metabolic disorders such as insulin resistance, subsequently leading to metabolic syndrome and other associated cardiometabolic pathologies. The orchestration of immune response and the "ratio of responsibility" of different immune cell populations have been studied extensively over the last few years within the visceral adipose tissue in general sense (sensu lato). However, it is essential to clearly distinguish different types of visceral fat distribution. Visceral adipose tissue is not only the classical omental or epididymal depot, but includes also specific type of fat in the close vicinity to the myocardium-the epicardial adipose tissue. Disruption of this type of fat during obesity was found to have a unique and direct influence over the cardiovascular disease development. Therefore, epicardial adipose tissue and other types of visceral adipose tissue depots should be studied separately. The purpose of this review is to explore the present knowledge about the morphology and dynamics of individual populations of immune cells within the visceral adipose tissue sensu lato in comparison to the knowledge regarding the epicardial adipose tissue specifically.
Collapse
|
37
|
Cildir G, Pant H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med 2017; 214:2491-2506. [PMID: 28811324 PMCID: PMC5584128 DOI: 10.1084/jem.20170910] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cildir et al. discuss the recent findings in transcriptional regulation of mast cell development and activation and provide insights into the plasticity and clinical targeting of mast cell functions. Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Harshita Pant
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia .,Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
38
|
Ngkelo A, Richart A, Kirk JA, Bonnin P, Vilar J, Lemitre M, Marck P, Branchereau M, Le Gall S, Renault N, Guerin C, Ranek MJ, Kervadec A, Danelli L, Gautier G, Blank U, Launay P, Camerer E, Bruneval P, Menasche P, Heymes C, Luche E, Casteilla L, Cousin B, Rodewald HR, Kass DA, Silvestre JS. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J Exp Med 2017; 213:1353-74. [PMID: 27353089 PMCID: PMC4925026 DOI: 10.1084/jem.20160081] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022] Open
Abstract
Ngkelo et al. use a mast cell–deficient mouse model to reveal a protective role of mast cells in myocardial infarction, through regulation of the cardiac contractile machinery. Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.
Collapse
Affiliation(s)
- Anta Ngkelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Adèle Richart
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Jonathan A Kirk
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Philippe Bonnin
- INSERM, U965, Hôpital Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, F-75010 Paris, France
| | - Jose Vilar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathilde Lemitre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Pauline Marck
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Maxime Branchereau
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Sylvain Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Nisa Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Coralie Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mark J Ranek
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Anaïs Kervadec
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Gregory Gautier
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Ulrich Blank
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Pierre Launay
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Philippe Menasche
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Christophe Heymes
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Elodie Luche
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Béatrice Cousin
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Jean-Sébastien Silvestre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
39
|
Zmora N, Bashiardes S, Levy M, Elinav E. The Role of the Immune System in Metabolic Health and Disease. Cell Metab 2017; 25:506-521. [PMID: 28273474 DOI: 10.1016/j.cmet.2017.02.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/04/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders.
Collapse
Affiliation(s)
- Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
40
|
Mucosal mast cells are indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunol 2017; 10:481-492. [PMID: 27381924 DOI: 10.1038/mi.2016.56] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Mast cells and basophils are innate immune cells with overlapping functions that contribute to anti-helminth immunity. Mast cell function during helminth infection was previously studied using mast cell-deficient Kit-mutant mice that display additional mast cell-unrelated immune deficiencies. Here, we use mice that lack basophils or mucosal and connective tissue mast cells in a Kit-independent manner to re-evaluate the impact of each cell type during helminth infection. Neither mast cells nor basophils participated in the immune response to tissue-migrating Strongyloides ratti third-stage larvae, but both cell types contributed to the early expulsion of parasitic adults from the intestine. The termination of S. ratti infection required the presence of mucosal mast cells: Cpa3Cre mice, which lack mucosal and connective tissue mast cells, remained infected for more than 150 days. Mcpt5Cre R-DTA mice, which lack connective tissue mast cells only, and basophil-deficient Mcpt8Cre mice terminated the infection after 1 month with wild-type kinetics despite their initial increase in intestinal parasite burden. Because Cpa3Cre mice showed intact Th2 polarization and efficiently developed protective immunity after vaccination, we hypothesize that mucosal mast cells are non-redundant terminal effector cells in the intestinal epithelium that execute anti-helminth immunity but do not orchestrate it.
Collapse
|
41
|
Balbino B, Sibilano R, Starkl P, Marichal T, Gaudenzio N, Karasuyama H, Bruhns P, Tsai M, Reber LL, Galli SJ. Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. J Allergy Clin Immunol 2017; 139:584-596.e10. [PMID: 27555460 PMCID: PMC5241268 DOI: 10.1016/j.jaci.2016.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Conflicting results have been obtained regarding the roles of Fc receptors and effector cells in models of active systemic anaphylaxis (ASA). In part, this might reflect the choice of adjuvant used during sensitization because various adjuvants might differentially influence the production of particular antibody isotypes. OBJECTIVE We developed an "adjuvant-free" mouse model of ASA and assessed the contributions of components of the "classical" and "alternative" pathways in this model. METHODS Mice were sensitized intraperitoneally with ovalbumin at weekly intervals for 6 weeks and challenged intraperitoneally with ovalbumin 2 weeks later. RESULTS Wild-type animals had immediate hypothermia and late-phase intraperitoneal inflammation in this model. These features were reduced in mice lacking the IgE receptor FcεRI, the IgG receptor FcγRIII or the common γ-chain FcRγ. FcγRIV blockade resulted in a partial reduction of inflammation without any effect on hypothermia. Depletion of monocytes/macrophages with clodronate liposomes significantly reduced the hypothermia response. By contrast, depletion of neutrophils or basophils had no significant effects in this ASA model. Both the hypothermia and inflammation were dependent on platelet-activating factor and histamine and were reduced in 2 types of mast cell (MC)-deficient mice. Finally, engraftment of MC-deficient mice with bone marrow-derived cultured MCs significantly exacerbated the hypothermia response and restored inflammation to levels similar to those observed in wild-type mice. CONCLUSION Components of the classical and alternative pathways contribute to anaphylaxis in this adjuvant-free model, with key roles for MCs and monocytes/macrophages.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Anaphylaxis/immunology
- Animals
- Cell Movement
- Cells, Cultured
- Complement Pathway, Alternative
- Complement Pathway, Classical
- Disease Models, Animal
- Humans
- Hypothermia/immunology
- Immunization
- Leukocytes/immunology
- Macrophages/immunology
- Mast Cells/immunology
- Mast Cells/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
42
|
Chmelař J, Chatzigeorgiou A, Chung KJ, Prucnal M, Voehringer D, Roers A, Chavakis T. No Role for Mast Cells in Obesity-Related Metabolic Dysregulation. Front Immunol 2016; 7:524. [PMID: 27933062 PMCID: PMC5121122 DOI: 10.3389/fimmu.2016.00524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity-related adipose tissue (AT) inflammation that promotes metabolic dysregulation is associated with increased AT mast cell numbers. Mast cells are potent inducers of inflammatory responses and could potentially contribute to obesity-induced AT inflammation and metabolic dysregulation. Conflicting findings were reported on obesity-related metabolic dysfunction in mast cell-deficient mice, thus creating a controversy that has not been resolved to date. Whereas traditional Kit hypomorphic mast cell-deficient strains featured reduced diet-induced obesity and diabetes, a Kit-independent model of mast cell deficiency, Cpa3Cre/+ mice, displayed no alterations in obesity and insulin sensitivity. Herein, we analyzed diet-induced obesity in Mcpt5-Cre R-DTA mice, in which the lack of mast cells is caused by a principle different from mast cell deficiency in Cpa3Cre/+ mice or Kit mutations. We observed no difference between mast cell-deficient and -proficient mice in diet-induced obesity with regards to weight gain, glucose tolerance, insulin resistance, metabolic parameters, hepatic steatosis, and AT or liver inflammation. We conclude that mast cells play no essential role in obesity and related pathologies.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany; Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany; Medical Faculty, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Marta Prucnal
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden , Dresden , Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen at the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Axel Roers
- Institute for Immunology, Technische Universität Dresden , Dresden , Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany; Medical Faculty, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
43
|
Einwallner E, Kiefer FW, Di Caro G, Orthofer M, Witzeneder N, Hörmann G, Itariu B, Zeyda M, Penninger JM, Stulnig TM, Esterbauer H, Todoric J. Mast cells are not associated with systemic insulin resistance. Eur J Clin Invest 2016; 46:911-919. [PMID: 27600500 DOI: 10.1111/eci.12675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Infiltration of white adipose tissue (WAT) by inflammatory cells in obesity is considered to be a key event in the development of insulin resistance. Recently, mast cells (MCs) have been identified as new players in the pathogenesis of obesity. We aimed to investigate the relationship between MCs and various inflammatory markers in serum and WAT and to determine the role of MCs in the aetiology of insulin resistance. MATERIALS AND METHODS Gene expression was measured in WAT from 20 morbidly obese patients and 20 nonobese control subjects. Homoeostasis Model of Assessment-Insulin Resistance (HOMA-IR) was used to estimate insulin sensitivity. In addition, wild-type and mast cell-deficient mice were fed a high-fat or low-fat diet to study mast cell influence on inflammatory cell polarization in WAT and overall metabolic changes. RESULTS WAT levels of MC-specific TPSb2 transcript were increased in obesity and significantly positively correlated with TNF, CCL2, CCL5 and CD68 gene expression levels in our study subjects after adjustment for sex, age and BMI. Accordingly, MC deficiency abrogated increase in expression of pro-inflammatory M1 macrophage marker genes in mouse WAT upon high-fat diet feeding. However, MCs accumulated in obese human WAT independent of insulin resistance and systemic changes in inflammatory mediators. CONCLUSIONS Our results suggest that MCs contribute to the local pro-inflammatory state within WAT in obesity but do not play a primary role in causing insulin resistance.
Collapse
Affiliation(s)
- Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Di Caro
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | - Michael Orthofer
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Hörmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bianca Itariu
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jelena Todoric
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria. .,Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
44
|
Feyerabend TB, Gutierrez DA, Rodewald HR. Of Mouse Models of Mast Cell Deficiency and Metabolic Syndrome. Cell Metab 2016; 24:1-2. [PMID: 27411001 DOI: 10.1016/j.cmet.2016.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dario A Gutierrez
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; Department of Immunology, Evelo Biosciences, Cambridge, MA 02139, USA
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Abstract
Low-grade tissue inflammation induced by obesity can result in insulin resistance, which in turn is a key cause of type 2 diabetes mellitus. Cells of the innate immune system produce cytokines and other factors that impair insulin signalling, which contributes to the connection between obesity and the onset of type 2 diabetes mellitus. Here, we review the innate immune cells involved in secreting inflammatory factors in the obese state. In the adipose tissue, these cells include proinflammatory adipose tissue macrophages and natural killer cells. We also discuss the role of innate immune cells, such as anti-inflammatory adipose tissue macrophages, eosinophils, group 2 innate lymphoid cells and invariant natural killer T cells, in maintaining an anti-inflammatory and insulin-sensitive environment in the lean state. In the liver, both Kupffer cells and recruited hepatic macrophages can contribute to decreased hepatic insulin sensitivity. Proinflammatory macrophages might also adversely affect insulin sensitivity in the skeletal muscle and pancreatic β-cell function. Finally, this Review provides an overview of the mechanisms for regulating proinflammatory immune responses that could lead to future therapeutic opportunities to improve insulin sensitivity.
Collapse
Affiliation(s)
- Denise E Lackey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| |
Collapse
|
46
|
Zhou Y, Yu X, Chen H, Sjöberg S, Roux J, Zhang L, Ivoulsou AH, Bensaid F, Liu CL, Liu J, Tordjman J, Clement K, Lee CH, Hotamisligil GS, Libby P, Shi GP. Leptin Deficiency Shifts Mast Cells toward Anti-Inflammatory Actions and Protects Mice from Obesity and Diabetes by Polarizing M2 Macrophages. Cell Metab 2015; 22:1045-58. [PMID: 26481668 PMCID: PMC4670585 DOI: 10.1016/j.cmet.2015.09.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/09/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) contribute to the pathogenesis of obesity and diabetes. This study demonstrates that leptin deficiency slants MCs toward anti-inflammatory functions. MCs in the white adipose tissue (WAT) of lean humans and mice express negligible leptin. Adoptive transfer of leptin-deficient MCs expanded ex vivo mitigates diet-induced and pre-established obesity and diabetes in mice. Mechanistic studies show that leptin-deficient MCs polarize macrophages from M1 to M2 functions because of impaired cell signaling and an altered balance between pro- and anti-inflammatory cytokines, but do not affect T cell differentiation. Rampant body weight gain in ob/ob mice, a strain that lacks leptin, associates with reduced MC content in WAT. In ob/ob mice, genetic depletion of MCs exacerbates obesity and diabetes, and repopulation of ex vivo expanded ob/ob MCs ameliorates these diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Sara Sjöberg
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joséphine Roux
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lijun Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Al-Habib Ivoulsou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Farid Bensaid
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Joan Tordjman
- INSERM, U 872, Paris, F-75006 France, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMRS 872, Paris, F-75006 France; Université Paris Descartes, UMRS 872, Paris, F-75006 France
| | - Karine Clement
- INSERM, U 872, Paris, F-75006 France, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMRS 872, Paris, F-75006 France; Université Paris Descartes, UMRS 872, Paris, F-75006 France
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Gokhan S Hotamisligil
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|