1
|
Lin P, Lane AN, Fan TWM. NMR-Based Stable Isotope Tracing of Cancer Metabolism. Methods Mol Biol 2025; 2855:457-504. [PMID: 39354323 DOI: 10.1007/978-1-0716-4116-3_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
NMR is widely used for metabolite profiling (metabolomics, metabonomics) particularly of various readily obtainable biofluids such as plasma and urine. It is especially valuable for stable isotope tracer studies to track metabolic pathways under control or perturbed conditions in a wide range of cell models as well as animal models and human subjects. NMR has unique properties for utilizing stable isotopes to edit or simplify otherwise complex spectra acquired in vitro and in vivo, while quantifying the level of enrichment at specific atomic positions in various metabolites (i.e., isotopomer distribution analysis).In this protocol, we give an overview with specific protocols for NMR-based stable isotope-resolved metabolomics, or SIRM, with a workflow from administration of isotope-enriched precursors, via sample preparation through to NMR data collection and reduction. We focus on indirect detection of common NMR-active stable isotopes including 13C, 15N, 31P, and 2H, using a variety of 1H-based two-dimensional experiments. We also include the application and analyses of multiplex tracer experiments.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Gunasekharan V, Lin HK, Marczyk M, Rios-Hoyo A, Campos GE, Shan NL, Ahmed M, Umlauf S, Gareiss P, Raaisa R, Williams R, Cardone R, Siebel S, Kibbey R, Surovtseva YV, Pusztai L. Phosphoenolpyruvate carboxykinase-2 (PCK2) is a therapeutic target in triple-negative breast cancer. Breast Cancer Res Treat 2024; 208:657-671. [PMID: 39177932 DOI: 10.1007/s10549-024-07462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Metabolic rewiring in malignant transformation is often accompanied by altered expression of metabolic isozymes. Phosphoenolpyruvate carboxykinase-2 (PCK2) catalyzes the rate-limiting step of gluconeogenesis and is the dominant isoform in many cancers including triple-negative breast cancer (TNBC). Our goal was to identify small molecule inhibitors of PCK2 enzyme activity. METHODS We assessed the impact of PCK2 down regulation with shRNA on TNBC cell growth in vitro and used AtomNet® deep convolutional neural network software to identify potential small molecule inhibitors of PCK2-based structure. We iteratively tested candidate compounds in an in vitro PCK-2 enzyme assay. The impact of the top hit on metabolic flux and cell viability was also assessed. RESULTS PCK2 downregulation decreased growth of BT-549 and MDA-MB-231 cells and reduced metabolic flux through pyruvate carboxylase. The first AtomNet® in silico structural screen of 7 million compounds yielded 86 structures that were tested in PCK2 enzyme assay in vitro. The top hit (IC50 = 2.4 µM) was used to refine a second round of in silico screen that yielded 82 candidates to be tested in vitro, which resulted in 45 molecules with inhibition > 20%. In the second in vitro screen we also included 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, previously suggested to be PCK2 inhibitor based on structure, which emerged as the top hit. The specificity of this compound was tested in PCK1 and PCK2 enzymatic assays and showed IC50 of 500 nM and 3.5-27 nM for PCK1 and PCK2, respectively. CONCLUSION 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate is a high affinity PCK2 enzyme inhibitor that also has significant growth inhibitory activity in breast cell lines in vitro and represents a potential therapeutic lead compound.
Collapse
Affiliation(s)
- Vignesh Gunasekharan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Hao-Kuen Lin
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Michal Marczyk
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Gerson Espinoza Campos
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Naing Lin Shan
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | | | - Sheila Umlauf
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Peter Gareiss
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Raaisa Raaisa
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Williams
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Rebecca Cardone
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Stephan Siebel
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Richard Kibbey
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 120, Rm 133, New Haven, CT, 06511, USA.
| |
Collapse
|
3
|
Wessendorf-Rodriguez K, Ruchhoeft ML, Ashley EL, Galvez HM, Murray CW, Huang Y, McGregor GH, Kambhampati S, Shaw RJ, Metallo CM. Modeling compound lipid homeostasis using stable isotope tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618599. [PMID: 39463985 PMCID: PMC11507872 DOI: 10.1101/2024.10.16.618599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipids represent the most diverse pool of metabolites found in cells, facilitating compartmentation, signaling, and other functions. Dysregulation of lipid metabolism is linked to disease states such as cancer and neurodegeneration. However, limited tools are available for quantifying metabolic fluxes across the lipidome. To directly measure reaction fluxes encompassing compound lipid homeostasis, we applied stable isotope tracing, liquid chromatography-high-resolution mass spectrometry, and network-based isotopologue modeling to non-small cell lung cancer (NSCLC) models. Compound lipid metabolic flux analysis (CL-MFA) enables the concurrent quantitation of fatty acid synthesis, elongation, headgroup assembly, and salvage reactions within virtually any biological system. Here, we resolve liver kinase B1 (LKB1)-mediated regulation of sphingolipid recycling in NSCLC cells and precision-cut lung slice cultures. We also demonstrate that widely used tissue culture conditions drive cells to upregulate fatty acid synthase flux to supraphysiological levels. Finally, we identify previously uncharacterized isozyme specificity of ceramide synthase inhibitors. These results highlight the ability of CL-MFA to quantify lipid cycling in biological systems to discover biological function and elucidate molecular mechanisms in membrane lipid metabolism.
Collapse
|
4
|
Jonas E, Mnatsakanyan N, Rivera-Molina F, Robson A, Garfinkel AM, Kumar A, Batter S, Padovano V, Webster K, Cardone R, Berg J, Toomre D, Kibbey R, Caplan M, Khokha M. CALHM2 is a mitochondrial protein import channel that regulates fatty acid metabolism. RESEARCH SQUARE 2024:rs.3.rs-4985689. [PMID: 39315269 PMCID: PMC11419264 DOI: 10.21203/rs.3.rs-4985689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For mitochondrial metabolism to occur in the matrix, multiple proteins must be imported across the two (inner and outer) mitochondrial membranes. Classically, two protein import channels, TIM/TOM, are known to perform this function, but whether other protein import channels exist is not known. Here, using super-resolution microscopy, proteomics, and electrophysiological techniques, we identify CALHM2 as the import channel for the ECHA subunit of the mitochondrial trifunctional protein (mTFP), which catalyzes β-oxidation of fatty acids in the mitochondrial matrix. We find that CALHM2 sits specifically at the inner mitochondrial and cristae membranes and is critical for membrane morphology. Depletion of CALHM2 leads to a mislocalization of ECHA outside of the mitochondria leading to severe cellular metabolic defects. These defects include cytosolic accumulation of fatty acids, depletion of tricarboxylic acid cycle enzymes and intermediates, and reduced cellular respiration. Our data identify CALHM2 as an essential protein import channel that is critical for fatty acid- and glucose-dependent aerobic metabolism.
Collapse
|
5
|
Hu J, Hu J, Han D. Causal relationships between gut microbiota, plasma metabolites, and HIV infection: insights from Mendelian randomization and mediation analysis. Virol J 2024; 21:204. [PMID: 39215321 PMCID: PMC11365174 DOI: 10.1186/s12985-024-02480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Gut dysbiosis and metabolic abnormalities have been implicated in HIV infection. However, the exact causal relationships among the gut microbiota, metabolites, and HIV infection remain poorly understood. Our study involving Mendelian randomization (MR) and mediation analysis aims to unveil these causalities. METHODS Genetic instrumental variables for the gut microbiota were retrieved from MiBioGen consortium (n = 18,340). Metabolism-related genetic variants were sourced from the CLSA cohort (n = 8299). GWAS summary statistics for symptomatic HIV infection were derived from the FinnGen study (n = 309,154), and the UK Biobank (n = 208,808). We performed the bidirectional two-sample MR to assess causalities with the inverse-variance weighted (IVW) method as the primary analysis. Moreover, we executed a mediation analysis using two-step MR methods. RESULTS Compared to the causal effects of HIV infection on gut microbiota (or metabolites), those of gut microbiota (or plasma metabolites) on the risk of HIV infection were more substantial. Phylum Proteobacteria (OR: 2.114, 95% CI 1.042-4.288, P = 0.038), and genus Ruminococcaceae UCG013 (OR: 2.127, 95% CI 1.080-4.191, P = 0.029) exhibited an adverse causal effect on HIV infection, whereas genus Clostridium sensu stricto 1(OR: 0.491, 95% CI 0.252-0.956, P = 0.036) and family Erysipelotrichaceae (OR: 0.399, 95% CI 0.193-0.827, P = 0.013) acted as significant protective factors for HIV. The salicyluric glucuronide level (OR = 2.233, 95% CI 1.120-4.453, P = 0.023) exhibited a considerably adverse causal effect on HIV infection. Conversely, the salicylate-to-citrate ratio (OR: 0.417, 95% CI 0.253-0.688, P = 0.001) was identified as a protective factor for HIV. We identified only one bidirectional causality between 1-palmitoyl-GPI and HIV infection. Mechanistically, genus Haemophilus mediated the causal effects of three phospholipids on HIV infection risk: 1-palmitoyl-GPI (mediation proportion = 33.7%, P = 0.018), 1-palmitoyl-2-arachidonoyl-GPI (mediation proportion = 18.3%, P = 0.019), and 1-linoleoyl-2-linolenoyl-GPC (mediation proportion = 20.3%, P = 0.0216). Additionally, 5-Dodecenoylcarnitine (C12:1) mediated the causal effect of genus Sellimonas on the risk of HIV infection (mediation proportion = 13.7%, P = 0.0348). CONCLUSION Our study revealed that gut microbiota and metabolites causally influence HIV infection risk more substantially than the reverse. We identified the bidirectional causality between 1-palmitoyl-GPI (16:0) and HIV infection, and elucidated four mediation relationships. These findings provide genetic insights into prediction, prevention, and personalized medicine of HIV infection.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Natarajan N, Florentin J, Johny E, Xiao H, O'Neil SP, Lei L, Shen J, Ohayon L, Johnson AR, Rao K, Li X, Zhao Y, Zhang Y, Tavakoli S, Shiva S, Das J, Dutta P. Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis. Nat Commun 2024; 15:7337. [PMID: 39187565 PMCID: PMC11347661 DOI: 10.1038/s41467-024-51780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
There is a large body of evidence that cellular metabolism governs inflammation, and that inflammation contributes to the progression of atherosclerosis. However, whether mitochondrial DNA synthesis affects macrophage function and atherosclerosis pathology is not fully understood. Here we show, by transcriptomic analyzes of plaque macrophages, spatial single cell transcriptomics of atherosclerotic plaques, and functional experiments, that mitochondrial DNA (mtDNA) synthesis in atherosclerotic plaque macrophages are triggered by vascular cell adhesion molecule 1 (VCAM-1) under inflammatory conditions in both humans and mice. Mechanistically, VCAM-1 activates C/EBPα, which binds to the promoters of key mitochondrial biogenesis genes - Cmpk2 and Pgc1a. Increased CMPK2 and PGC-1α expression triggers mtDNA synthesis, which activates STING-mediated inflammation. Consistently, atherosclerosis and inflammation are less severe in Apoe-/- mice lacking Vcam1 in macrophages. Downregulation of macrophage-specific VCAM-1 in vivo leads to decreased expression of LYZ1 and FCOR, involved in STING signalling. Finally, VCAM-1 expression in human carotid plaque macrophages correlates with necrotic core area, mitochondrial volume, and oxidative damage to DNA. Collectively, our study highlights the importance of macrophage VCAM-1 in inflammation and atherogenesis pathology and proposes a self-acerbating pathway involving increased mtDNA synthesis.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Hanxi Xiao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD program in Computational Biology, Pittsburgh, PA, USA
| | - Scott Patrick O'Neil
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Liqun Lei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jixing Shen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Aaron R Johnson
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Krithika Rao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Xiaoyun Li
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yanwu Zhao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sina Tavakoli
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Malik DM, Rhoades SD, Zhang SL, Sengupta A, Barber A, Haynes P, Arnadottir ES, Pack A, Kibbey RG, Kain P, Sehgal A, Weljie AM. Glucose Challenge Uncovers Temporal Fungibility of Metabolic Homeostasis over a day:night cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564837. [PMID: 37961230 PMCID: PMC10634956 DOI: 10.1101/2023.10.30.564837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Rhythmicity is a cornerstone of behavioral and biological processes, especially metabolism, yet the mechanisms behind metabolite cycling remain elusive. This study uncovers a robust oscillation in key metabolite pathways downstream of glucose in humans. A purpose-built 13C6-glucose isotope tracing platform was used to sample Drosophila every 4h and probe these pathways, revealing a striking peak in biosynthesis shortly after lights-on in wild-type flies. A hyperactive mutant (fumin) demonstrates increased Krebs cycle labelling and dawn-specific glycolysis labelling. Surprisingly, neither underlying feeding rhythms nor the presence of food availability explain the rhythmicity of glucose processing across genotypes, suggesting a robust internal mechanism for metabolic control of glucose processing. These results align with clinical data highlighting detrimental effects of mistimed energy intake. Our approach offers a unique insight into the dynamic range of daily metabolic processing and provides a mechanistic foundation for exploring circadian metabolic homeostasis in disease contexts.
Collapse
Affiliation(s)
- Dania M. Malik
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- These authors contributed equally
| | - Seth D. Rhoades
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Fulgens Consulting, LLC, Cambridge, Massachusetts 02142, USA
- These authors contributed equally
| | - Shirley L. Zhang
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
| | - Annika Barber
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, USA
| | - Paula Haynes
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erna Sif Arnadottir
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Allan Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Richard G. Kibbey
- Department of Internal Medicine, Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Pinky Kain
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Deepa Maheshvare M, Charaborty R, Haldar S, Raha S, Pal D. Kiphynet: an online network simulation tool connecting cellular kinetics and physiological transport. Metabolomics 2024; 20:94. [PMID: 39110256 DOI: 10.1007/s11306-024-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human metabolism is sustained by functional networks that operate at diverse scales. Capturing local and global dynamics in the human body by hierarchically bridging multi-scale functional networks is a major challenge in physiological modeling. OBJECTIVES To develop an interactive, user-friendly web application that facilitates the simulation and visualization of advection-dispersion transport in three-dimensional (3D) microvascular networks, biochemical exchange, and metabolic reactions in the tissue layer surrounding the vasculature. METHODS To help modelers combine and simulate biochemical processes occurring at multiple scales, KiPhyNet deploys our discrete graph-based modeling framework that bridges functional networks existing at diverse scales. KiPhyNet is implemented in Python based on Apache web server using MATLAB as the simulator engine. KiPhyNet provides the functionality to assimilate multi-omics data from clinical and experimental studies as well as vascular data from imaging studies to investigate the role of structural changes in vascular topology on the functional response of the tissue. RESULTS With the network topology, its biophysical attributes, values of initial and boundary conditions, parameterized kinetic constants, biochemical species-specific transport properties such as diffusivity as inputs, a user can use our application to simulate and view the simulation results. The results of steady-state velocity and pressure fields and dynamic concentration fields can be interactively examined. CONCLUSION KiPhyNet provides barrier-free access to perform time-course simulation experiments by building multi-scale models of microvascular networks in physiology, using a discrete modeling framework. KiPhyNet is freely accessible at http://pallab.cds.iisc.ac.in/kiphynet/ and the documentation is available at https://deepamahm.github.io/kiphynet_docs/ .
Collapse
Affiliation(s)
- M Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Rohit Charaborty
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Subhraneel Haldar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Grubelnik V, Zmazek J, Gosak M, Marhl M. The role of anaplerotic metabolism of glucose and glutamine in insulin secretion: A model approach. Biophys Chem 2024; 311:107270. [PMID: 38833963 DOI: 10.1016/j.bpc.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Alma Mater Europaea ECM, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| |
Collapse
|
10
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
11
|
Verheijen FWM, Tran TNM, Chang J, Broere F, Zaal EA, Berkers CR. Deciphering metabolic crosstalk in context: lessons from inflammatory diseases. Mol Oncol 2024; 18:1759-1776. [PMID: 38275212 PMCID: PMC11223610 DOI: 10.1002/1878-0261.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.
Collapse
Affiliation(s)
- Fenne W. M. Verheijen
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Thi N. M. Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular ResearchUtrecht UniversityThe Netherlands
| | - Jung‐Chin Chang
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
12
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
13
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Sabadell-Basallote J, Astiarraga B, Castaño C, Ejarque M, Repollés-de-Dalmau M, Quesada I, Blanco J, Nuñez-Roa C, Rodríguez-Peña MM, Martínez L, De Jesus DF, Marroqui L, Bosch R, Montanya E, Sureda FX, Tura A, Mari A, Kulkarni RN, Vendrell J, Fernández-Veledo S. SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes. J Clin Invest 2024; 134:e173214. [PMID: 38713514 PMCID: PMC11178533 DOI: 10.1172/jci173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Pancreatic β-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in β-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human β-cells. Mice with β-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.
Collapse
Affiliation(s)
- Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Brenno Astiarraga
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carlos Castaño
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Maria Repollés-de-Dalmau
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Jordi Blanco
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Catalina Nuñez-Roa
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - M-Mar Rodríguez-Peña
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Laia Martínez
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Ramon Bosch
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Eduard Montanya
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Francesc X Sureda
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| |
Collapse
|
15
|
Cuozzo F, Viloria K, Shilleh AH, Nasteska D, Frazer-Morris C, Tong J, Jiao Z, Boufersaoui A, Marzullo B, Rosoff DB, Smith HR, Bonner C, Kerr-Conte J, Pattou F, Nano R, Piemonti L, Johnson PRV, Spiers R, Roberts J, Lavery GG, Clark A, Ceresa CDL, Ray DW, Hodson L, Davies AP, Rutter GA, Oshima M, Scharfmann R, Merrins MJ, Akerman I, Tennant DA, Ludwig C, Hodson DJ. LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells. Cell Rep 2024; 43:114047. [PMID: 38607916 PMCID: PMC11164428 DOI: 10.1016/j.celrep.2024.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.
Collapse
Affiliation(s)
- Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charlotte Frazer-Morris
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jason Tong
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Zicong Jiao
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Geneplus-Beijing, Changping District, Beijing 102206, China
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel B Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah R Smith
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Caroline Bonner
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Spiers
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research (SHiMR), Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy P Davies
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; CHUM Research Centre and Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Kim YK, Kim YR, Wells KL, Sarbaugh D, Guney M, Tsai CF, Zee T, Karsenty G, Nakayasu ES, Sussel L. PTPN2 Regulates Metabolic Flux to Affect β-Cell Susceptibility to Inflammatory Stress. Diabetes 2024; 73:434-447. [PMID: 38015772 PMCID: PMC10882156 DOI: 10.2337/db23-0355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for β-cell survival in the context of T1D. To test whether PTPN2 contributed to β-cell dysfunction in an inflammatory environment, we generated a β-cell-specific deletion of Ptpn2 in mice (PTPN2-β knockout [βKO]). Whereas unstressed animals exhibited normal metabolic profiles, low- and high-dose streptozotocin-treated PTPN2-βKO mice displayed hyperglycemia and accelerated death, respectively. Furthermore, cytokine-treated Ptpn2-KO islets resulted in impaired glucose-stimulated insulin secretion, mitochondrial defects, and reduced glucose-induced metabolic flux, suggesting β-cells lacking Ptpn2 are more susceptible to inflammatory stress associated with T1D due to maladaptive metabolic fitness. Consistent with the phenotype, proteomic analysis identified an important metabolic enzyme, ATP-citrate lyase, as a novel PTPN2 substrate. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Youngjung Rachel Kim
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Michelle Guney
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Tiffany Zee
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| |
Collapse
|
17
|
Chaube B, Citrin KM, Sahraei M, Singh AK, de Urturi DS, Ding W, Pierce RW, Raaisa R, Cardone R, Kibbey R, Fernández-Hernando C, Suárez Y. Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis. Nat Commun 2023; 14:8251. [PMID: 38086791 PMCID: PMC10716292 DOI: 10.1038/s41467-023-43900-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.
Collapse
Affiliation(s)
- Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Mahnaz Sahraei
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Abhishek K Singh
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Diego Saenz de Urturi
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Wen Ding
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard W Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Raaisa Raaisa
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Richard Kibbey
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 PMCID: PMC11161207 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Cai F, Bezwada D, Cai L, Mahar R, Wu Z, Chang MC, Pachnis P, Yang C, Kelekar S, Gu W, Brooks B, Ko B, Vu HS, Mathews TP, Zacharias LG, Martin-Sandoval M, Do D, Oaxaca KC, Jin ES, Margulis V, Malloy CR, Merritt ME, DeBerardinis RJ. Comprehensive isotopomer analysis of glutamate and aspartate in small tissue samples. Cell Metab 2023; 35:1830-1843.e5. [PMID: 37611583 PMCID: PMC10732579 DOI: 10.1016/j.cmet.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Stable isotopes are powerful tools to assess metabolism. 13C labeling is detected using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). MS has excellent sensitivity but generally cannot discriminate among different 13C positions (isotopomers), whereas NMR is less sensitive but reports some isotopomers. Here, we develop an MS method that reports all 16 aspartate and 32 glutamate isotopomers while requiring less than 1% of the sample used for NMR. This method discriminates between pathways that result in the same number of 13C labels in aspartate and glutamate, providing enhanced specificity over conventional MS. We demonstrate regional metabolic heterogeneity within human tumors, document the impact of fumarate hydratase (FH) deficiency in human renal cancers, and investigate the contributions of tricarboxylic acid (TCA) cycle turnover and CO2 recycling to isotope labeling in vivo. This method can accompany NMR or standard MS to provide outstanding sensitivity in isotope-labeling experiments, particularly in vivo.
Collapse
Affiliation(s)
- Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mario C Chang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Panayotis Pachnis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Veterans Affairs North Texas Healthcare System, Dallas, TX 75216, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Boutagy NE, Fowler JW, Grabinska KA, Cardone R, Sun Q, Vazquez KR, Whalen MB, Zhu X, Chakraborty R, Martin KA, Simons M, Romanoski CE, Kibbey RG, Sessa WC. TNFα increases the degradation of pyruvate dehydrogenase kinase 4 by the Lon protease to support proinflammatory genes. Proc Natl Acad Sci U S A 2023; 120:e2218150120. [PMID: 37695914 PMCID: PMC10515159 DOI: 10.1073/pnas.2218150120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabinska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Qiushi Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kyla R Vazquez
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Michael B Whalen
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Xiaolong Zhu
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Raja Chakraborty
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kathleen A Martin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Simons
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Casey E Romanoski
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
21
|
Barsby T, Vähäkangas E, Ustinov J, Montaser H, Ibrahim H, Lithovius V, Kuuluvainen E, Chandra V, Saarimäki-Vire J, Katajisto P, Hietakangas V, Otonkoski T. Aberrant metabolite trafficking and fuel sensitivity in human pluripotent stem cell-derived islets. Cell Rep 2023; 42:112970. [PMID: 37556323 DOI: 10.1016/j.celrep.2023.112970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic islets regulate blood glucose homeostasis through the controlled release of insulin; however, current metabolic models of glucose-sensitive insulin secretion are incomplete. A comprehensive understanding of islet metabolism is integral to studies of endocrine cell development as well as diabetic islet dysfunction. Human pluripotent stem cell-derived islets (SC-islets) are a developmentally relevant model of human islet function that have great potential in providing a cure for type 1 diabetes. Using multiple 13C-labeled metabolic fuels, we demonstrate that SC-islets show numerous divergent patterns of metabolite trafficking in proposed insulin release pathways compared with primary human islets but are still reliant on mitochondrial aerobic metabolism to derive function. Furthermore, reductive tricarboxylic acid cycle activity and glycolytic metabolite cycling occur in SC-islets, suggesting that non-canonical coupling factors are also present. In aggregate, we show that many facets of SC-islet metabolism overlap with those of primary islets, albeit with a retained immature signature.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eliisa Vähäkangas
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Kuuluvainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Fry B, Carter JF, O'Mara K. Fingerprinting eukaryotic metabolism across the animal kingdom using position-specific isotope analysis (PSIA) 13C/ 12C measurements. SCIENCE ADVANCES 2023; 9:eadg1549. [PMID: 37406114 DOI: 10.1126/sciadv.adg1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Despite differences in their overall metabolism, eukaryotes share a common mitochondrial biochemistry. We investigated how this fundamental biochemistry supports overall metabolism using a high-resolution carbon isotope approach, position-specific isotope analysis. We measured carbon isotope 13C/12C cycling in animals, focusing on amino acids that are formed in mitochondrial reactions and are most metabolically active. Carboxyl isotope determinations for amino acids showed strong signals related to common biochemical pathways. Contrasting isotope patterns were measured for metabolism associated with major life history patterns, including growth and reproduction. Turnover of proteins and lipids as well as gluoconeogensis dynamics could be estimated for these metabolic life histories. The high-resolution isotomics measurements fingerprinted metabolism and metabolic strategies across the eukaryotic animal kingdom, yielding results for humans, ungulates, whales, and diverse fish and invertebrates in a nearshore marine food web.
Collapse
Affiliation(s)
- Brian Fry
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - James F Carter
- Queensland Health, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Kaitlyn O'Mara
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
23
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
24
|
Alam S, Gu Y, Reichert P, Bähler J, Oliferenko S. Optimization of energy production and central carbon metabolism in a non-respiring eukaryote. Curr Biol 2023; 33:2175-2186.e5. [PMID: 37164017 PMCID: PMC7615655 DOI: 10.1016/j.cub.2023.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
Collapse
Affiliation(s)
- Sara Alam
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Polina Reichert
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
25
|
Moiz B, Sriram G, Clyne AM. Interpreting metabolic complexity via isotope-assisted metabolic flux analysis. Trends Biochem Sci 2023; 48:553-567. [PMID: 36863894 PMCID: PMC10182253 DOI: 10.1016/j.tibs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Isotope-assisted metabolic flux analysis (iMFA) is a powerful method to mathematically determine the metabolic fluxome from experimental isotope labeling data and a metabolic network model. While iMFA was originally developed for industrial biotechnological applications, it is increasingly used to analyze eukaryotic cell metabolism in physiological and pathological states. In this review, we explain how iMFA estimates the intracellular fluxome, including data and network model (inputs), the optimization-based data fitting (process), and the flux map (output). We then describe how iMFA enables analysis of metabolic complexities and discovery of metabolic pathways. Our goal is to expand the use of iMFA in metabolism research, which is essential to maximizing the impact of metabolic experiments and continuing to advance iMFA and biocomputational techniques.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Huang L, Drouin N, Causon J, Wegrzyn A, Castro-Perez J, Fleming R, Harms A, Hankemeier T. Reconstruction of Glutathione Metabolism in the Neuronal Model of Rotenone-Induced Neurodegeneration Using Mass Isotopologue Analysis with Hydrophilic Interaction Liquid Chromatography-Zeno High-Resolution Multiple Reaction Monitoring. Anal Chem 2023; 95:3255-3266. [PMID: 36735349 PMCID: PMC9933045 DOI: 10.1021/acs.analchem.2c04231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Accurate reconstruction of metabolic pathways is an important prerequisite for interpreting metabolomics changes and understanding the diverse biological processes in disease models. A tracer-based metabolomics strategy utilizes stable isotope-labeled precursors to resolve complex pathways by tracing the labeled atom(s) to downstream metabolites through enzymatic reactions. Isotope enrichment analysis is informative and achieved by counting total labeled atoms and acquiring the mass isotopologue distribution (MID) of the intact metabolite. However, quantitative analysis of labeled metabolite substructures/moieties (MS2 fragments) can offer more valuable insights into the reaction connections through measuring metabolite transformation. In order to acquire the isotopic labeling information at the intact metabolite and moiety level simultaneously, we developed a method that couples hydrophilic interaction liquid chromatography (HILIC) with Zeno trap-enabled high-resolution multiple reaction monitoring (MRMHR). The method enabled accurate and reproducible MID quantification for intact metabolites as well as their fragmented moieties, with notably high sensitivity in the MS2 fragmentation mode based on the measurement of 13C- or 15N-labeled cellular samples. The method was applied to human-induced pluripotent stem cell-derived neurons to trace the fate of 13C/15N atoms from D-13C6-glucose/L-15N2-glutamine added to the media. With the MID analysis of both intact metabolites and fragmented moieties, we validated the pathway reconstruction of de novo glutathione synthesis in mid-brain neurons. We discovered increased glutathione oxidization from both basal and newly synthesized glutathione pools under neuronal oxidative stress. Furthermore, the significantly decreased de novo glutathione synthesis was investigated and associated with altered activities of several key enzymes, as evidenced by suppressed glutamate supply via glucose metabolism and a diminished flux of glutathione synthetic reaction in the neuronal model of rotenone-induced neurodegeneration.
Collapse
Affiliation(s)
- Luojiao Huang
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Nicolas Drouin
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | | | - Agnieszka Wegrzyn
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | | | - Ronan Fleming
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands,School
of Medicine, National University of Ireland, University Rd, Galway H91 TK33, Ireland
| | - Amy Harms
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Thomas Hankemeier
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands,
| |
Collapse
|
27
|
Watanabe H, Du W, Son J, Sui L, Asahara SI, Kurland IJ, Kuo T, Kitamoto T, Miyachi Y, de Cabo R, Accili D. Cyb5r3-based mechanism and reversal of secondary failure to sulfonylurea in diabetes. Sci Transl Med 2023; 15:eabq4126. [PMID: 36724243 DOI: 10.1126/scitranslmed.abq4126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonylureas (SUs) are effective and affordable antidiabetic drugs. However, chronic use leads to secondary failure, limiting their utilization. Here, we identify cytochrome b5 reductase 3 (Cyb5r3) down-regulation as a mechanism of secondary SU failure and successfully reverse it. Chronic exposure to SU lowered Cyb5r3 abundance and reduced islet glucose utilization in mice in vivo and in ex vivo murine islets. Cyb5r3 β cell-specific knockout mice phenocopied SU failure. Cyb5r3 engaged in a glucose-dependent interaction that stabilizes glucokinase (Gck) to maintain glucose utilization. Hence, Gck activators can circumvent Cyb5r3-dependent SU failure. A Cyb5r3 activator rescued secondary SU failure in mice in vivo and restored insulin secretion in ex vivo human islets. We conclude that Cyb5r3 is a key factor in the secondary failure to SU and a potential target for its prevention, which might rehabilitate SU use in diabetes.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jinsook Son
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lina Sui
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Shun-Ichiro Asahara
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Taiyi Kuo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yasutaka Miyachi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20814, USA
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Hubbard BT, LaMoia TE, Goedeke L, Gaspar RC, Galsgaard KD, Kahn M, Mason GF, Shulman GI. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metab 2023; 35:212-226.e4. [PMID: 36516861 PMCID: PMC9887731 DOI: 10.1016/j.cmet.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.
Collapse
Affiliation(s)
- Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katrine D Galsgaard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graeme F Mason
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry & Biomedical Engineering, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab 2022; 34:947-968. [PMID: 35728586 PMCID: PMC9262871 DOI: 10.1016/j.cmet.2022.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montréal, ON, Canada.
| |
Collapse
|
31
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
32
|
A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 2022; 603:477-481. [PMID: 35264789 PMCID: PMC8934290 DOI: 10.1038/s41586-022-04475-w] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a central hub of cellular metabolism, oxidizing nutrients to generate reducing equivalents for energy production and critical metabolites for biosynthetic reactions. Despite the importance of the products of the TCA cycle for cell viability and proliferation, mammalian cells display diversity in TCA-cycle activity1,2. How this diversity is achieved, and whether it is critical for establishing cell fate, remains poorly understood. Here we identify a non-canonical TCA cycle that is required for changes in cell state. Genetic co-essentiality mapping revealed a cluster of genes that is sufficient to compose a biochemical alternative to the canonical TCA cycle, wherein mitochondrially derived citrate exported to the cytoplasm is metabolized by ATP citrate lyase, ultimately regenerating mitochondrial oxaloacetate to complete this non-canonical TCA cycle. Manipulating the expression of ATP citrate lyase or the canonical TCA-cycle enzyme aconitase 2 in mouse myoblasts and embryonic stem cells revealed that changes in the configuration of the TCA cycle accompany cell fate transitions. During exit from pluripotency, embryonic stem cells switch from canonical to non-canonical TCA-cycle metabolism. Accordingly, blocking the non-canonical TCA cycle prevents cells from exiting pluripotency. These results establish a context-dependent alternative to the traditional TCA cycle and reveal that appropriate TCA-cycle engagement is required for changes in cell state.
Collapse
|
33
|
Dellero Y, Berardocco S, Berges C, Filangi O, Bouchereau A. Validation of carbon isotopologue distribution measurements by GC-MS and application to 13C-metabolic flux analysis of the tricarboxylic acid cycle in Brassica napus leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:885051. [PMID: 36704152 PMCID: PMC9871494 DOI: 10.3389/fpls.2022.885051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/28/2022] [Indexed: 05/14/2023]
Abstract
The estimation of metabolic fluxes in photosynthetic organisms represents an important challenge that has gained interest over the last decade with the development of 13C-Metabolic Flux Analysis at isotopically non-stationary steady-state. This approach requires a high level of accuracy for the measurement of Carbon Isotopologue Distribution in plant metabolites. But this accuracy has still not been evaluated at the isotopologue level for GC-MS, leading to uncertainties for the metabolic fluxes calculated based on these fragments. Here, we developed a workflow to validate the measurements of CIDs from plant metabolites with GC-MS by producing tailor-made E. coli standard extracts harboring a predictable binomial CID for some organic and amino acids. Overall, most of our TMS-derivatives mass fragments were validated with these standards and at natural isotope abundance in plant matrices. Then, we applied this validated MS method to investigate the light/dark regulation of plant TCA cycle by incorporating U-13C-pyruvate to Brassica napus leaf discs. We took advantage of pathway-specific isotopologues/isotopomers observed between two and six hours of labeling to show that the TCA cycle can operate in a cyclic manner under both light and dark conditions. Interestingly, this forward cyclic flux mode has a nearly four-fold higher contribution for pyruvate-to-citrate and pyruvate-to-malate fluxes than the phosphoenolpyruvate carboxylase (PEPc) flux reassimilating carbon derived from some mitochondrial enzymes. The contribution of stored citrate to the mitochondrial TCA cycle activity was also questioned based on dynamics of 13C-enrichment in citrate, glutamate and succinate and variations of citrate total amounts under light and dark conditions. Interestingly, there was a light-dependent 13C-incorporation into glycine and serine showing that decarboxylations from pyruvate dehydrogenase complex and TCA cycle enzymes were actively reassimilated and could represent up to 5% to net photosynthesis.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- *Correspondence: Younès Dellero,
| | - Solenne Berardocco
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
| | - Cécilia Berges
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute, Université de Toulouse, National center for Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), National Institute of Applied Sciences (INSA), Toulouse, France
| | - Olivier Filangi
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Université Rennes, Institut Agro, Le Rheu, France
- Metabolic Profiling and Metabolomics platform (P2M2), Institute for Genetics, Environment and Plant Protection (IGEPP), Biopolymers Interactions Assemblies (BIA), Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| |
Collapse
|
34
|
Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LE, Bruntz RC, Kim EJ, Wise-Mitchell A, Barbosa de Souza Rizzo M, Relich ER, Baby BV, Johnson LA, Affronti HC, McMasters KM, Clem BF, Gentry MS, Yan J, Wellen KE, Sun RC, Mitchell RA. Lactate supports a metabolic-epigenetic link in macrophage polarization. SCIENCE ADVANCES 2021; 7:eabi8602. [PMID: 34767443 PMCID: PMC8589316 DOI: 10.1126/sciadv.abi8602] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/23/2021] [Indexed: 05/05/2023]
Abstract
Lactate accumulation is a hallmark of solid cancers and is linked to the immune suppressive phenotypes of tumor-infiltrating immune cells. We report herein that interleukin-4 (IL-4)–induced M0 → M2 macrophage polarization is accompanied by interchangeable glucose- or lactate-dependent tricarboxylic acid (TCA) cycle metabolism that directly drives histone acetylation, M2 gene transcription, and functional immune suppression. Lactate-dependent M0 → M2 polarization requires both mitochondrial pyruvate uptake and adenosine triphosphate–citrate lyase (ACLY) enzymatic activity. Notably, exogenous acetate rescues defective M2 polarization and histone acetylation following mitochondrial pyruvate carrier 1 (MPC1) inhibition or ACLY deficiency. Lastly, M2 macrophage–dependent tumor progression is impaired by conditional macrophage ACLY deficiency, further supporting a dominant role for glucose/lactate mitochondrial metabolism and histone acetylation in driving immune evasion. This work adds to our understanding of how mitochondrial metabolism affects macrophage functional phenotypes and identifies a unique tumor microenvironment (TME)–driven metabolic-epigenetic link in M2 macrophages.
Collapse
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Beatriz E. Rendon
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Anne E. Geller
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Samantha M. Morrissey
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Eun J. Kim
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | - Eric R. Relich
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Becca V. Baby
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40356, USA
| | - Hayley C. Affronti
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly M. McMasters
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Jun Yan
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Kathryn E. Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40356, USA
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
35
|
Marrocco A, Frawley K, Pearce LL, Peterson J, O'Brien JP, Mullett SJ, Wendell SG, St Croix CM, Mischler SE, Ortiz LA. Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. THE JOURNAL OF IMMUNOLOGY 2021; 207:1627-1640. [PMID: 34433619 DOI: 10.4049/jimmunol.2000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Silicosis is a lethal pneumoconiosis for which no therapy is available. Silicosis is a global threat, and more than 2.2 million people per year are exposed to silica in the United States. The initial response to silica is mediated by innate immunity. Phagocytosis of silica particles by macrophages is followed by recruitment of mitochondria to phagosomes, generation of mitochondrial reactive oxygen species, and cytokine (IL-1β, TNF-α, IFN-β) release. In contrast with LPS, the metabolic remodeling of silica-exposed macrophages is unclear. This study contrasts mitochondrial and metabolic alterations induced by LPS and silica on macrophages and correlates them with macrophage viability and cytokine production, which are central to the pathogenesis of silicosis. Using high-resolution respirometer and liquid chromatography-high-resolution mass spectrometry, we determined the effects of silica and LPS on mitochondrial respiration and determined changes in central carbon metabolism of murine macrophage cell lines RAW 264.7 and IC-21. We show that silica induces metabolic reprogramming of macrophages. Silica, as well as LPS, enhances glucose uptake and increases aerobic glycolysis in macrophages. In contrast with LPS, silica affects mitochondria respiration, reducing complex I and enhancing complex II activity, to sustain cell viability. These mitochondrial alterations are associated in silica, but not in LPS-exposed macrophages, with reductions of tricarboxylic acid cycle intermediates, including succinate, itaconate, glutamate, and glutamine. Furthermore, in contrast with LPS, these silica-induced metabolic adaptations do not correlate with IL-1β or TNF-α production, but with the suppressed release of IFN-β. Our data highlight the importance of complex II activity and tricarboxylic acid cycle remodeling to macrophage survival and cytokine-mediated inflammation in silicosis.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Krystin Frawley
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - James Peterson
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA.,Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA; and
| | | | - Steven E Mischler
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Luis A Ortiz
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA;
| |
Collapse
|
36
|
Fernández-Veledo S, Ceperuelo-Mallafré V, Vendrell J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis. Trends Endocrinol Metab 2021; 32:680-692. [PMID: 34301438 DOI: 10.1016/j.tem.2021.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
There has been an explosion of interest in the signaling capacity of energy metabolites. A prime example is the Krebs cycle substrate succinate, an archetypal respiratory substrate with functions beyond energy production as an intracellular and extracellular signaling molecule. Long associated with inflammation, emerging evidence supports a key role for succinate in metabolic processes relating to energy management. As the natural ligand for SUCNR1, a G protein-coupled receptor, succinate is akin to hormones and likely functions as a reporter of metabolism and stress. In this review, we reconcile new and old observations to outline a regulatory role for succinate in metabolic homeostasis. We highlight the importance of the succinate-SUCNR1 axis in metabolic diseases as an integrator of macrophage immune response, and we discuss new metabolic functions recently ascribed to succinate in specific tissues. Because circulating succinate has emerged as a promising biomarker in chronic metabolic diseases, a better understanding of the physiopathological role of the succinate-SUCNR1 axis in metabolism might open new avenues for clinical use in patients with obesity or diabetes.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Surgery, University Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
37
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
38
|
Meng X, Pang H, Sun F, Jin X, Wang B, Yao K, Yao L, Wang L, Hu Z. Simultaneous 3-Nitrophenylhydrazine Derivatization Strategy of Carbonyl, Carboxyl and Phosphoryl Submetabolome for LC-MS/MS-Based Targeted Metabolomics with Improved Sensitivity and Coverage. Anal Chem 2021; 93:10075-10083. [PMID: 34270209 DOI: 10.1021/acs.analchem.1c00767] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolomics is a powerful and essential technology for profiling metabolic phenotypes and exploring metabolic reprogramming, which enables the identification of biomarkers and provides mechanistic insights into physiology and disease. However, its applications are still limited by the technical challenges particularly in its detection sensitivity for the analysis of biological samples with limited amount, necessitating the development of highly sensitive approaches. Here, we developed a highly sensitive liquid chromatography tandem mass spectrometry method based on a 3-nitrophenylhydrazine (3-NPH) derivatization strategy that simultaneously targets carbonyl, carboxyl, and phosphoryl groups for targeted metabolomic analysis (HSDccp-TM) in biological samples. By testing 130 endogenous metabolites including organic acids, amino acids, carbohydrates, nucleotides, carnitines, and vitamins, we showed that the derivatization strategy resulted in significantly improved detection sensitivity and chromatographic separation capability. Metabolic profiling of merely 60 oocytes and 5000 hematopoietic stem cells primarily isolated from mice demonstrated that this method enabled routine metabolomic analysis in trace amounts of biospecimens. Moreover, the derivatization strategy bypassed the tediousness of inferring the MS fragmentation patterns and simplified the complexity of monitoring ion pairs of metabolites, which greatly facilitated the metabolic flux analysis (MFA) for glycolysis, the tricarboxylic acid (TCA) cycle, and pentose phosphate pathway (PPP) in cell cultures. In summary, the novel 3-NPH derivatization-based method with high sensitivity, good chromatographic separation, and broad coverage showed great potential in promoting metabolomics and MFA, especially in trace amounts of biospecimens.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Fei Sun
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaohan Jin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - LiAng Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Millard P, Sokol S, Kohlstedt M, Wittmann C, Létisse F, Lippens G, Portais JC. IsoSolve: An Integrative Framework to Improve Isotopic Coverage and Consolidate Isotopic Measurements by Mass Spectrometry and/or Nuclear Magnetic Resonance. Anal Chem 2021; 93:9428-9436. [PMID: 34197087 DOI: 10.1021/acs.analchem.1c01064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational framework based on symbolic calculus that can integrate any isotopic data set by connecting measurements to the chemical structure of the molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework helps to (i) clarify and improve the coverage of isotopic space, (ii) evaluate the complementarity and redundancy of different techniques, (iii) consolidate isotopic data sets, (iv) design experiments, and (v) guide future analytical developments. This framework, which can be applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open-source software that can be readily integrated into data analysis pipelines.
Collapse
Affiliation(s)
- Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Serguei Sokol
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| | - Jean-Charles Portais
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France.,RESTORE, Université de Toulouse, INSERM U1031, CNRS 5070, Université Toulouse III - Paul Sabatier, EFS, Toulouse 31077, France
| |
Collapse
|
40
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71:333-358. [PMID: 33982817 PMCID: PMC8298088 DOI: 10.3322/caac.21670] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Collapse
Affiliation(s)
- Daniel R. Schmidt
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Matthew G. Vander Heiden
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
41
|
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, Skvortsov S, Negro G, Aschenbrenner B, Skvortsova II, Mirtschink P, Lohaus F, Hölscher T, Neubauer H, Rivandi M, Labitzky V, Lange T, Franken A, Behrens B, Stoecklein NH, Toma M, Sommer U, Zschaeck S, Rehm M, Eisenhofer G, Schwager C, Abdollahi A, Groeben C, Kunz-Schughart LA, Baretton GB, Baumann M, Krause M, Peitzsch C, Dubrovska A. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics 2021; 11:7844-7868. [PMID: 34335968 PMCID: PMC8315064 DOI: 10.7150/thno.58655] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Oleg Chen
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Cell Signaling, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tiago C Alves
- Department for Clinical Pathobiochemistry, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vladyslav Telychko
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Giulia Negro
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Bertram Aschenbrenner
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Bianca Behrens
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marieta Toma
- Institute of Pathology, University of Bonn, Bonn, Germany
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maximilian Rehm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Christer Groeben
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
42
|
Wang D, Hartman R, Han C, Zhou CM, Couch B, Malkamaki M, Roginskaya V, Van Houten B, Mullett SJ, Wendell SG, Jurczak MJ, Kang J, Lee J, Sowa G, Vo N. Lactate oxidative phosphorylation by annulus fibrosus cells: evidence for lactate-dependent metabolic symbiosis in intervertebral discs. Arthritis Res Ther 2021; 23:145. [PMID: 34020698 PMCID: PMC8139157 DOI: 10.1186/s13075-021-02501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02501-2.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Robert Hartman
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,University of Pittsburgh Medical Center Enterprises, Pittsburgh, PA, 15213, USA
| | - Chao Han
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,Tianjin Hospital, 406 Jiefang South Road Hexi District, Tianjin, PR China
| | - Chao-Ming Zhou
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Brandon Couch
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Matias Malkamaki
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Vera Roginskaya
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James Kang
- Department of Orthopedics, Brigham and Women's Hospital, School of Medicine, Harvard University, 75 Francis Street, Boston, MA, 02115, USA
| | - Joon Lee
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA. .,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
43
|
Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA. Glucose Response by Stem Cell-Derived β Cells In Vitro Is Inhibited by a Bottleneck in Glycolysis. Cell Rep 2021; 31:107623. [PMID: 32402282 PMCID: PMC7433758 DOI: 10.1016/j.celrep.2020.107623] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Stem cell-derived β (SC-β) cells could provide unlimited human β cells toward a curative diabetes treatment. Differentiation of SC-β cells yields transplantable islets that secrete insulin in response to glucose challenges. Following transplantation into mice, SC-β cell function is comparable to human islets, but the magnitude and consistency of response in vitro are less robust than observed in cadaveric islets. Here, we profile metabolism of SC-β cells and islets to quantify their capacity to sense glucose and identify reduced anaplerotic cycling in the mitochondria as the cause of reduced glucose-stimulated insulin secretion in SC-β cells. This activity can be rescued by challenging SC-β cells with intermediate metabolites from the TCA cycle and late but not early glycolysis, downstream of the enzymes glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. Bypassing this metabolic bottleneck results in a robust, bi-phasic insulin release in vitro that is identical in magnitude to functionally mature human islets. Glucose-stimulated insulin secretion is deficient in stem cell-derived β (SC-β) cells in vitro. Davis et al. use metabolomic analysis to define a glycolytic bottleneck inhibiting glucose metabolism and sensing in SC-β cells. Cell-permeable intermediates bypass this bottleneck, as does transplantation in vivo, producing insulin secretion indistinguishable from human islets.
Collapse
Affiliation(s)
- Jeffrey C Davis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tiago C Alves
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA; Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jonathan C Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
44
|
Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela Cells. Metabolites 2021; 11:metabo11050322. [PMID: 34069800 PMCID: PMC8157282 DOI: 10.3390/metabo11050322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.
Collapse
|
45
|
Luo K, Zhao H, Bian B, Wei X, Si N, Brantner A, Fan X, Gu X, Zhou Y, Wang H. Huanglian Jiedu Decoction in the Treatment of the Traditional Chinese Medicine Syndrome "Shanghuo"-An Intervention Study. Front Pharmacol 2021; 12:616318. [PMID: 33995016 PMCID: PMC8120301 DOI: 10.3389/fphar.2021.616318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
“Shanghuo” (“excessive internal heat”) is caused by exuberant endogenous fire, which does not have a comprehensive and systematic traditional Chinese medicine theory. In previous study, we had evaluated the therapeutic effect of Huanglian Jiedu Decoction (HLJDD) (granule) on patients with “Shanghuo”, however, the specific mechanism was not clear, which need further exploration. To explain its intervention mechanism, we select 57 patients with oral diseases caused by “Shanghuo” and 20 health volunteers to divide into oral disease group, HLJDD intervention group and healthy control group. Firstly, biochemical indicators before and after HLJDD intervention are detected, such as inflammatory factors, oxidative stress factors and energy metabolism factors. The results exhibit that HLJDD significantly decreases indicators succinic acid (p < 0.001); tumor necrosis factor-alpha, adenosine triphosphate, citric acid (p < 0.01); interleukin-8 (IL-8), 4-hydroxynonenal, pyruvic acid, lactate dehydrogenase (p < 0.05). The levels of glucocorticoid, adrenocorticotropic hormone (p < 0.01); lactic acid, IL-4, IL-10 (p < 0.05) significantly increase after HLJDD intervention. In addition, we adopt multi-omics analysis approach to investigate the potential biomarkers. Nontargeted metabolomics demonstrate that the levels of 7 differential metabolites approach that in the healthy control group after HLJDD intervention, which are correlated with histidine metabolism, beta-alanine metabolism and sphingolipid metabolism through metabolic pathway analysis. Targeted lipidomics results and receiver operating characteristic curve analysis show that 13 differential lipids are identified in the three groups mainly focuse on lysophosphatidylcholines, lysophosphatidylethanolamines. Finally, the network associations of those differential biomarkers reveal the regulation of adenosine triphosphate and tricarboxylic acid cycle play essential role in the therapeutic effect mechanism of HLJDD in “Shanghuo”. The study has laid the foundation for further revealing the mechanism and finding clinical biomarkers related to “Shanghuo”.
Collapse
Affiliation(s)
- Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Adelheid Brantner
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Wüst RCI, Coolen BF, Held NM, Daal MRR, Alizadeh Tazehkandi V, Baks-te Bulte L, Wiersma M, Kuster DWD, Brundel BJJM, van Weeghel M, Strijkers GJ, Houtkooper RH. The Antibiotic Doxycycline Impairs Cardiac Mitochondrial and Contractile Function. Int J Mol Sci 2021; 22:4100. [PMID: 33921053 PMCID: PMC8071362 DOI: 10.3390/ijms22084100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline-which belongs to the tetracycline class-reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.
Collapse
Affiliation(s)
- Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Bram F. Coolen
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Ntsiki M. Held
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Mariah R. R. Daal
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Vida Alizadeh Tazehkandi
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Luciënne Baks-te Bulte
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Diederik W. D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| |
Collapse
|
47
|
Zhang GF, Jensen MV, Gray SM, El K, Wang Y, Lu D, Becker TC, Campbell JE, Newgard CB. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell Metab 2021; 33:804-817.e5. [PMID: 33321098 PMCID: PMC8115731 DOI: 10.1016/j.cmet.2020.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Metabolic fuels regulate insulin secretion by generating second messengers that drive insulin granule exocytosis, but the biochemical pathways involved are incompletely understood. Here we demonstrate that stimulation of rat insulinoma cells or primary rat islets with glucose or glutamine + 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (Gln + BCH) induces reductive, "counter-clockwise" tricarboxylic acid (TCA) cycle flux of glutamine to citrate. Molecular or pharmacologic suppression of isocitrate dehydrogenase-2 (IDH2), which catalyzes reductive carboxylation of 2-ketoglutarate to isocitrate, results in impairment of glucose- and Gln + BCH-stimulated reductive TCA cycle flux, lowering of NADPH levels, and inhibition of insulin secretion. Pharmacologic suppression of IDH2 also inhibits insulin secretion in living mice. Reductive TCA cycle flux has been proposed as a mechanism for generation of biomass in cancer cells. Here we demonstrate that reductive TCA cycle flux also produces stimulus-secretion coupling factors that regulate insulin secretion, including in non-dividing cells.
Collapse
Affiliation(s)
- Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Mette V Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Sarah M Gray
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Kimberley El
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - You Wang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Thomas C Becker
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
48
|
Wang Y, Hui S, Wondisford FE, Su X. Utilizing tandem mass spectrometry for metabolic flux analysis. J Transl Med 2021; 101:423-429. [PMID: 32994481 PMCID: PMC7987671 DOI: 10.1038/s41374-020-00488-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolic flux analysis (MFA) aims at revealing the metabolic reaction rates in a complex biochemical network. To do so, MFA uses the input of stable isotope labeling patterns of the intracellular metabolites. Elementary metabolic unit (EMU) is the computational framework to simulate the metabolite labeling patterns in a network, which was originally designed for simulating mass isotopomer distributions (MIDs) at the MS1 level. Recently, the EMU framework is expanded to simulate tandem mass spectrometry data. Tandem mass spectrometry has emerged as a new experimental approach to provide information on the positional isotope labeling of metabolites and therefore greatly improves the precision of MFA. In this review, we will discuss the new EMU framework that can accommodate the tandem mass isotopomer distributions (TMIDs) data. We will also analyze the improvement on the MFA precision by using TMID. Our analysis shows that combining the MIDs of the parent and daughter ions and the TMID for the MFA is more powerful than using TMID alone.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
49
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
50
|
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22:142-158. [PMID: 33398164 DOI: 10.1038/s41580-020-00317-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|