1
|
Moran TE, Hammers DE, Lee SW. The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Curr Drug Targets 2022; 23:1555-1566. [PMID: 35748550 DOI: 10.2174/1389450123666220624094940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
Collapse
Affiliation(s)
- Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
3
|
miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:ijms231810242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
|
4
|
Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses 2022; 14:v14081765. [PMID: 36016387 PMCID: PMC9414358 DOI: 10.3390/v14081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue is a viral infection caused by dengue virus (DENV), which has a significant impact on public health worldwide. Although most infections are asymptomatic, a series of severe clinical manifestations such as hemorrhage and plasma leakage can occur during the severe presentation of the disease. This suggests that the virus or host immune response may affect the protective function of endothelial barriers, ultimately being considered the most relevant event in severe and fatal dengue pathogenesis. The mechanisms that induce these alterations are diverse. It has been suggested that the high mobility group box 1 protein (HMGB1) may be involved in endothelial dysfunction. This non-histone nuclear protein has different immunomodulatory activities and belongs to the alarmin group. High concentrations of HMGB1 have been detected in patients with several infectious diseases, including dengue, and it could be considered as a biomarker for the early diagnosis of dengue and a predictor of complications of the disease. This review summarizes the main features of dengue infection and describes the known causes associated with endothelial dysfunction, highlighting the involvement and possible relationship between HMGB1 and DENV.
Collapse
|
5
|
Subsets of Cytokines and Chemokines from DENV-4-Infected Patients Could Regulate the Endothelial Integrity of Cultured Microvascular Endothelial Cells. Pathogens 2022; 11:pathogens11050509. [PMID: 35631030 PMCID: PMC9144803 DOI: 10.3390/pathogens11050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: It is a consensus that inflammatory mediators produced by immune cells contribute to changes in endothelial permeability in dengue. We propose to relate inflammatory mediators seen in dengue patients with the in vitro alteration of endothelial cells (ECs) cultured with serum from these patients. Methods: Patients with mild (DF) to moderate and severe dengue (DFWS/Sev) were selected. ELISA quantified inflammatory mediators. Expression of adhesion molecules and CD147 were evaluated in the ECs cultured with the patient’s serum by flow cytometry. We assessed endothelial permeability by measuring transendothelial electrical resistance in cocultures of ECs with patient serum. Results: Dengue infection led to an increase in inflammatory mediators—the IL-10 distinguished DF from DFWS/Sev. There were no changes in CD31, CD54, and CD106 but decreased CD147 expression in ECs. DFWS/Sev sera induced a greater difference in endothelial permeability than DF sera. Correlation statistical test indicated that low IL-10 and IFN-γ and high CCL5 maintain the integrity of ECs in DF patients. In contrast, increased TNF, IFN-γ, CXCL8, and CCL2 maintain EC integrity in DFWS/Sev patients. Conclusions: Our preliminary data suggest that a subset of inflammatory mediators may be related to the maintenance or loss of endothelial integrity, reflecting the clinical prognosis.
Collapse
|
6
|
Bioinformatics analysis of potential therapeutic targets for COVID-19 infection in patients with carotid atherosclerosis. J Infect Public Health 2022; 15:437-447. [PMID: 35344771 PMCID: PMC8937610 DOI: 10.1016/j.jiph.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND COVID-19 is a new coronavirus that constitutes a great challenge to human health. At this stage, there are still cases of COVID-19 infection in some countries and regions, in which ischemic stroke (IS) is a risk factor for new coronavirus pneumonia, and patients with COVID-19 infection have a dramatically elevated risk of stroke. At the same time, patients with long-term IS are vulnerable to COVID-19 infection and have more severe disease, and carotid atherosclerosis is an early lesion in IS. METHODS This study used human induced pluripotent stem cell (hiPSC)-derived monolayer brain cell dataset and human carotid atherosclerosis genome-wide dataset to analyze COVID-19 infection and carotid atherosclerosis patients to determine the synergistic effect of new coronavirus infection on carotid atherosclerosis patients, to clarify the common genes of both, and to identify common pathways and potential drugs for carotid atherosclerosis in patients with COVID-19 infection RESULTS: Using several advanced bioinformatics tools, we present the causes of COVID-19 infection leading to increased mortality in carotid atherosclerosis patients and the susceptibility of carotid atherosclerosis patients to COVID-19. Potential therapeutic agents for COVID-19 -infected patients with carotid atherosclerosis are also proposed. CONCLUSIONS With COVID-19 being a relatively new disease, associations have been proposed for its connections with several ailments and conditions, including IS and carotid atherosclerosis. More patient-based data-sets and studies are needed to fully explore and understand the relationship.
Collapse
|
7
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
8
|
Richardson E, García-Bernal D, Calabretta E, Jara R, Palomo M, Baron RM, Yanik G, Fareed J, Vlodavsky I, Iacobelli M, Díaz-Ricart M, Richardson PG, Carlo-Stella C, Moraleda JM. Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert Opin Ther Targets 2021; 25:423-433. [PMID: 34167431 DOI: 10.1080/14728222.2021.1944101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Defibrotide (DF) is a polyribonucleotide with antithrombotic, pro-fibrinolytic, and anti-inflammatory effects on endothelium. These effects and the established safety of DF present DF as a strong candidate to treat viral and post-infectious syndromes involving endothelial dysfunction. AREAS COVERED We discuss DF and other therapeutic agents that have the potential to target endothelial components of pathogenesis in viral and post-infectious syndromes. We introduce defibrotide (DF), describe its mechanisms of action, and explore its established pleiotropic effects on the endothelium. We describe the established pathophysiology of Coronavirus Disease 2019 (COVID-19) and highlight the processes specific to COVID-19 potentially modulated by DF. We also present influenza A and viral hemorrhagic fevers, especially those caused by hantavirus, Ebola virus, and dengue virus, as viral syndromes in which DF might serve therapeutic benefit. Finally, we offer our opinion on novel treatment strategies targeting endothelial dysfunction in viral infections and their severe manifestations. EXPERT OPINION Given the critical role of endothelial dysfunction in numerous infectious syndromes, in particular COVID-19, therapeutic pharmacology for these conditions should increasingly prioritize endothelial stabilization. Several agents with endothelial protective properties should be further studied as treatments for severe viral infections and vasculitides, especially where other therapeutic modalities have failed.
Collapse
Affiliation(s)
- Edward Richardson
- Frank H. Netter M.D. School of Medicine at Quinnipiac University, North Haven, Connecticut, USA.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David García-Bernal
- Department of Medicine, Stem Cell Transplant and Cell Therapy Unit, IMIB-Arrixaca, Virgen De La Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, Rozzano-Milano, Italy.,Department of Oncology and Hematology, IRCCS - Humanitas Research Hospital, Rozzano-Milano, Italy
| | - Rubén Jara
- Intensive Care Unit, Virgen De La Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Yanik
- Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Jawed Fareed
- Department of Molecular Pharmacology and Therapeutics, Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Center, Chicago, Illinois, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Maribel Díaz-Ricart
- Barcelona Endothelium Team, Barcelona, Spain.,Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain.,IDIBAPS, Barcelona, Spain
| | - Paul G Richardson
- Frank H. Netter M.D. School of Medicine at Quinnipiac University, North Haven, Connecticut, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Hematologic Malignancy, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Carmelo Carlo-Stella
- Frank H. Netter M.D. School of Medicine at Quinnipiac University, North Haven, Connecticut, USA.,Department of Biomedical Sciences, Humanitas University, Rozzano-Milano, Italy.,Department of Oncology and Hematology, IRCCS - Humanitas Research Hospital, Rozzano-Milano, Italy.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose M Moraleda
- Department of Medicine, Stem Cell Transplant and Cell Therapy Unit, IMIB-Arrixaca, Virgen De La Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Bae JY, Kim JI, Park MS, Lee GE, Park H, Song KJ, Park MS. The Immune Correlates of Orthohantavirus Vaccine. Vaccines (Basel) 2021; 9:vaccines9050518. [PMID: 34069997 PMCID: PMC8157935 DOI: 10.3390/vaccines9050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Zoonotic transmission of orthohantaviruses from rodent reservoirs to humans has been the cause of severe fatalities. Human infections are reported worldwide, but vaccines have been approved only in China and Korea. Orthohantavirus vaccine development has been pursued with no sense of urgency due to the relative paucity of cases in countries outside China and Korea. However, the orthohantaviruses continuously evolve in hosts and thus the current vaccine may not work as well against some variants. Therefore, a more effective vaccine should be prepared against the orthohantaviruses. In this review, we discuss the issues caused by the orthohantavirus vaccine. Given the pros and cons of the orthohantavirus vaccine, we suggest strategies for the development of better vaccines in terms of pandemic preparedness.
Collapse
|
10
|
Tembusu Virus entering the central nervous system caused nonsuppurative encephalitis without disrupting the blood-brain barrier. J Virol 2021; 95:JVI.02191-20. [PMID: 33472933 PMCID: PMC8092698 DOI: 10.1128/jvi.02191-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tembusu Virus (TMUV) is an emerging and re-emerging zoonotic pathogen that adversely affects poultry industry in recent years. TMUV disease is characterized by nonsuppurative encephalitis in ducklings. The duckling infection model was established to study the mechanism of TMUV crossing the blood-brain barrier (BBB) into the central nervous system (CNS). Here, we showed that no obvious clinical symptoms and enhancement of BBB permeability occurred at the early stage of infection (3∼5 dpi). While simultaneously virus particles were observed by transmission electron microscopy in the brain, inducing the accumulation of inflammatory cytokines. Neurological symptoms and disruption of BBB appeared at the intermediate stage of infection (7∼9 dpi). It was confirmed that TMUV could survive and propagate in brain microvascular endothelial cells (BMECs), but did not affect the permeability of BBB in vivo and in vitro at an early date. In conclusion, TMUV enters the CNS then causes encephalitis, and finally destruct the BBB, which may be due to the direct effect of TMUV on BMECs and the subsequent response of "inflammatory storm".IMPORTANCE The TMUV disease has caused huge losses to the poultry industry in Asia, which is potentially harmful to public health. Neurological symptoms and their sequelae are the main characters of this disease. However, the mechanism of how this virus enters the brain and causes encephalitis is unclear. In this study, we confirmed that the virus entered the CNS and then massively destroyed BBB and the BBB damage was closely associated with the subsequent outbreak of inflammation. TMUV may enter the CNS through the transcellular and "Trojan horse" pathways. These findings can fill the knowledge gap in the pathogenesis of TMUV-infected poultry and be benefit for the treatment of TMUV disease. What's more, TMUV is a representative to study the infection of avian flavivirus. Therefore, our studies have significances both for understanding of the full scope of mechanisms of TMUV and other flavivirus infection, and conceivably, for therapeutics.
Collapse
|
11
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Hammoud SH, Wehbe Z, Abdelhady S, Kobeissy F, Eid AH, El-Yazbi AF. Dysregulation of Angiotensin Converting Enzyme 2 Expression and Function in Comorbid Disease Conditions Possibly Contributes to Coronavirus Infectious Disease 2019 Complication Severity. Mol Pharmacol 2020; 99:17-28. [PMID: 33082267 DOI: 10.1124/molpharm.120.000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Zena Wehbe
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Samar Abdelhady
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Firas Kobeissy
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
14
|
Li P, Yang Z, Ma S, Hu G, Dong H, Zhang T. Susceptibility of porcine pulmonary microvascular endothelial cells to porcine reproductive and respiratory syndrome virus. J Vet Med Sci 2020; 82:1404-1409. [PMID: 32830156 PMCID: PMC7538327 DOI: 10.1292/jvms.20-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microvascular endothelial cells possess versatile functions and their roles in a variety of viral infections have been documented. Porcine reproductive and
respiratory syndrome virus (PRRSV) infection induces severe lung inflammatory lesions in piglets, which is manifested as pulmonary endothelial dysfunction.
However, the underlying mechanism of PRRSV affecting porcine pulmonary microvascular endothelial cells (PMECs) remains unknown. This study aimed to evaluate the
susceptibility of PMECs to PRRSV. Primary PMECs were isolated and purified from piglet lungs, and the expression of three PRRSV receptors was characterized
using immunofluorescence. Overt cytopathic effects of the PRRSV strain HN in PMECs were observed at day five post-infection, and PRRSV antigens in PMECs were
determined at both RNA and protein levels using immunofluorescence and quantitative RT-PCR assays. The viral antigen significantly increased at 96 hr
post-infection, and infectious virus was recovered from the supernatant of the infected PMECs. The results show that PMECs can be infected with the PRRSV strain
HN, and that their receptor expression pattern is different from that of alveolar macrophages. The results of this study shed light on the potential roles of
PMECs in PRRSV infection and provide a comprehensive understanding of the pathogenesis underlying its severe manifestation.
Collapse
Affiliation(s)
- Peishan Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Zhongjin Yang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China.,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing, 100000, P.R. China
| | - Shun Ma
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| |
Collapse
|
15
|
Ischemic Stroke among the Symptoms Caused by the COVID-19 Infection. J Clin Med 2020; 9:jcm9092688. [PMID: 32825182 PMCID: PMC7565891 DOI: 10.3390/jcm9092688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
The 2019 global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a public health emergency of international concern by the World Health Organization (WHO). The WHO recognized the spread of COVID-19 as a pandemic on 11 March 2020. Based on statistics from 10 August 2020, more than 20.2 million cases of COVID-19 have been reported resulting in more than 738,000 deaths. This completely new coronavirus has spread worldwide in a short period, causing economic crises and healthcare system failures worldwide. Initially, it was thought that the main health threat was associated with respiratory system failures, but since then, SARS-CoV-2 has been linked to a broad spectrum of symptoms indicating neurological manifestations, including ischemic stroke. Current knowledge about SARS-CoV-2 and its complications is very limited because of its rapidly evolving character. However, further research is undoubtedly necessary to understand the causes of neurological abnormalities, including acute cerebrovascular disease. The viral infection is inextricably associated with the activation of the immune system and the release of pro-inflammatory factors, that can stimulate the host organism to defend itself. However, the body’s immune response is a double-edged sword that on one hand, destroys the virus but also disrupts the homeostasis leading to serious complications, including thrombosis. Numerous studies have linked coagulopathies with COVID-19, however, there is great uncertainty regarding it functions on the molecular level. In this review, a detailed insight into the biological processes associated with ischemic stroke in COVID-19 patients and suggest a possible explanation for this phenomenon is provided.
Collapse
|
16
|
Noack D, Goeijenbier M, Reusken CBEM, Koopmans MPG, Rockx BHG. Orthohantavirus Pathogenesis and Cell Tropism. Front Cell Infect Microbiol 2020; 10:399. [PMID: 32903721 PMCID: PMC7438779 DOI: 10.3389/fcimb.2020.00399] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Orthohantaviruses are zoonotic viruses that are naturally maintained by persistent infection in specific reservoir species. Although these viruses mainly circulate among rodents worldwide, spill-over infection to humans occurs. Orthohantavirus infection in humans can result in two distinct clinical outcomes: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). While both syndromes develop following respiratory transmission and are associated with multi-organ failure and high mortality rates, little is known about the mechanisms that result in these distinct clinical outcomes. Therefore, it is important to identify which cell types and tissues play a role in the differential development of pathogenesis in humans. Here, we review current knowledge on cell tropism and its role in pathogenesis during orthohantavirus infection in humans and reservoir rodents. Orthohantaviruses predominantly infect microvascular endothelial cells (ECs) of a variety of organs (lungs, heart, kidney, liver, and spleen) in humans. However, in this review we demonstrate that other cell types (e.g., macrophages, dendritic cells, and tubular epithelium) are infected as well and may play a role in the early steps in pathogenesis. A key driver for pathogenesis is increased vascular permeability, which can be direct effect of viral infection in ECs or result of an imbalanced immune response in an attempt to clear the virus. Future studies should focus on the role of identifying how infection of organ-specific endothelial cells as well as other cell types contribute to pathogenesis.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Barry H G Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Pulmonary endothelium-derived PD-L1 induced by the H9N2 avian influenza virus inhibits the immune response of T cells. Virol J 2020; 17:92. [PMID: 32631356 PMCID: PMC7336647 DOI: 10.1186/s12985-020-01341-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The PD-1/PD-L1 pathway is an inhibitory signaling pathway that maintains the balance between the immune response and immunotolerance, and its overactivation in cancer and viral infections inhibits T cell function. The target cells of various viruses, microvascular endothelial cells (MECs) have been shown to be key regulatory points in immune regulation and virion diffusion in vivo during infection with multiple influenza virus subtypes. Furthermore, avian influenza virus (AIV) infection can induce immunosuppression by causing imbalances in immune responses and immune organ damage. Thus, the aim of this study was to investigate whether the H9N2 virus inhibited the immune function of T cells that migrated across MECs by upregulating PD-L1 expression on MECs. METHODS The susceptibility of rat pulmonary microvascular endothelial cells (RPMECs) to the H9N2 virus was evaluated by a plaque-forming assay and immunofluorescence staining. Then, we quantified the mRNA and protein levels of PD-L1 in RPMECs induced by H9N2 virus infection using quantitative real-time PCR and flow cytometry. The interaction between the activated T cells and RPMECs infected with the H9N2 virus was revealed using a coculture system. The effect of endothelial-derived PD-L1 on T cell function was investigated by using ELISA and flow cytometry with or without a PD-L1-specific antibody. RESULTS Surface staining and the plaque-forming assay showed that the H9N2 virus infected and replicated in RPMECs. Both the PD-L1 mRNA level and PD-L1 protein level were upregulated in RPMECs infected with the H9N2 virus. H9N2 virus-induced PD-L1 expression significantly reduced the secretions of IL-2, IFN-γ and granzyme B and perforin expression in T cells. The above data were significantly increased after treatment with an anti-PD-L1 antibody, confirming the above mentioned findings. In addition, the induction of PD-L1 expression decreased the proliferative capacity of the cocultured T cells but did not affect the apoptosis rate of T cells. CONCLUSIONS Taken together, the results suggest that the H9N2 virus is able to inhibit the T cell immune response by upregulating PD-L1 expression in pulmonary microvascular endothelial cells.
Collapse
|
18
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
19
|
Polyamine Depletion Abrogates Enterovirus Cellular Attachment. J Virol 2019; 93:JVI.01054-19. [PMID: 31341056 DOI: 10.1128/jvi.01054-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Polyamines are small polycationic molecules with flexible carbon chains that are found in all eukaryotic cells. Polyamines are involved in the regulation of many host processes and have been shown to be implicated in viral replication. Depletion of polyamine pools in cells treated with FDA-approved drugs restricts replication of diverse RNA viruses. Viruses can exploit host polyamines to facilitate nucleic acid packaging, transcription, and translation, but other mechanisms remain largely unknown. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to the depletion of polyamines and remain a significant public health threat. We employed CVB3 as a model system to investigate a potential proviral role for polyamines using a forward screen. Passaging CVB3 in polyamine-depleted cells generated a mutation in capsid protein VP3 at residue 234. We show that this mutation confers resistance to polyamine depletion. Through attachment assays, we demonstrate that polyamine depletion limits CVB3 attachment to susceptible cells, which is rescued by incubating virus with polyamines. Furthermore, the capsid mutant rescues this inhibition in polyamine-depleted cells. More divergent viruses also exhibited reduced attachment to polyamine-depleted cells, suggesting that polyamines may facilitate attachment of diverse RNA viruses. These studies inform additional mechanisms of action for polyamine-depleting pharmaceuticals, with implications for potential antiviral therapies.IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease. These viruses rely on polyamines, small positively charged molecules, for robust replication, and polyamine depletion limits infection in vitro and in vivo The mechanisms by which polyamines enhance enteroviral replication are unknown. Here, we describe how Coxsackievirus B3 (CVB3) utilizes polyamines to attach to susceptible cells and initiate infection. Using a forward genetic screen, we identified a mutation in a receptor-binding amino acid that promotes infection of polyamine-depleted cells. These data suggest that pharmacologically inhibiting polyamine biosynthesis may combat virus infection by preventing virus attachment to susceptible cells.
Collapse
|
20
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
21
|
Cipitelli MDC, Amâncio Paiva I, Badolato-Corrêa J, de-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212:88-97. [PMID: 31181280 DOI: 10.1016/j.imlet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
During a pathogenic infection, an inflammatory process is triggered in which several inflammatory mediators, such as cytokines, chemokines, growth factors, complement system components, nitric oxide, and others induce integrity alteration on the endothelial barrier. Chemokines are responsible for regulating leukocyte trafficking under homeostatic conditions as well as activating immune system cells under inflammatory conditions. They are crucial molecules in the early stages of infection, leading to the recruitment of immune cells, namely neutrophils, monocytes, natural killer (NK) cells, natural killer T cells (NKT), dendritic cells (DC), T lymphocytes and all cells expressing chemokine receptors for inflammatory sites. Other functions, such as collagen production, tissue repair, a proliferation of hematopoietic precursors and angiogenesis, are also performed by these molecules. Chemokines, amongst inflammatory mediators, play a key role in dengue immunopathogenesis. Dengue fever is a disease caused by the dengue virus (DENV). It is characterized by a broad spectrum of clinical manifestations ranging from asymptomatic cases to mild and severe symptomatic ones. As for the latter, the appearance of hemorrhagic manifestations and changes in vascular permeability may lead the patient to develop cavitary effusions, organ involvement, and even death. As chemokines exert an influence on various homeostatic and inflammatory processes, acting vigorously on vascular endothelial activation and cell migration, the main purpose of this chapter is to discuss the influence of chemokines on the alteration of endothelial permeability and migration of T lymphocytes in DENV infection.
Collapse
Affiliation(s)
- Márcio da Costa Cipitelli
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Iury Amâncio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Sutherland MR, Simon AY, Shanina I, Horwitz MS, Ruf W, Pryzdial ELG. Virus envelope tissue factor promotes infection in mice. J Thromb Haemost 2019; 17:482-491. [PMID: 30659719 PMCID: PMC6397068 DOI: 10.1111/jth.14389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Essentials The coagulation initiator, tissue factor (TF), is on the herpes simplex virus 1 (HSV1) surface. HSV1 surface TF was examined in mice as an antiviral target since it enhances infection in vitro. HSV1 surface TF facilitated infection of all organs evaluated and anticoagulants were antiviral. Protease activated receptor 2 inhibited infection in vivo and its pre-activation was antiviral. SUMMARY: Background Tissue factor (TF) is the essential cell surface initiator of coagulation, and mediates cell signaling through protease-activated receptor (PAR) 2. Having a diverse cellular distribution, TF is involved in many biological pathways and pathologies. Our earlier work identified host cell-derived TF on the envelope covering several viruses, and showed its involvement in enhanced cell infection in vitro. Objective In the current study, we evaluated the in vivo effects of virus surface TF on infection and on the related modulator of infection PAR2. Methods With the use of herpes simplex virus type 1 (HSV1) as a model enveloped virus, purified HSV1 was generated with or without envelope TF through propagation in a TF-inducible cell line. Infection was studied after intravenous inoculation of BALB/c, C57BL/6J or C57BL/6J PAR2 knockout mice with 5 × 105 plaque-forming units of HSV1, mimicking viremia. Three days after inoculation, organs were processed, and virus was quantified with plaque-forming assays and quantitative real-time PCR. Results Infection of brain, lung, heart, spinal cord and liver by HSV1 required viral TF. Demonstrating promise as a therapeutic target, virus-specific anti-TF mAbs or small-molecule inhibitors of coagulation inhibited infection. PAR2 modulates HSV1 in vivo as demonstrated with PAR2 knockout mice and PAR2 agonist peptide. Conclusion TF is a constituent of many permissive host cell types. Therefore, the results presented here may explain why many viruses are correlated with hemostatic abnormalities, and indicate that TF is a novel pan-specific envelope antiviral target.
Collapse
MESH Headings
- Animals
- Anticoagulants/pharmacology
- Antiviral Agents/pharmacology
- Disease Models, Animal
- Female
- Herpes Simplex/blood
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Host-Pathogen Interactions
- Injections, Intravenous
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Th1 Cells/immunology
- Th1 Cells/virology
- Thromboplastin/administration & dosage
- Thromboplastin/metabolism
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Michael R Sutherland
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ayo Y Simon
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- African Centre of Excellence on Neglected Tropical Diseases and Forensic Biotechnology and Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
- Preclinical Research and Development, Emergent BioSolutions, Winnipeg, Manitoba, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wolfram Ruf
- Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Edward L G Pryzdial
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Kim DS, Lee WH, Lee MW, Park HJ, Jang IK, Lee JW, Sung KW, Koo HH, Yoo KH. Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:286-293. [PMID: 29273868 DOI: 10.1007/s12015-017-9793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human mesenchymal stem cells (MSCs) are known for their prostaglandin E2 (PGE2)-mediated immunosuppressive function but the precise molecular mechanisms underlying PGE2 biosynthesis during inflammation have not been completely elucidated. In this study, we have investigated the involvement of PGE2 pathway members in PGE2 production by bone marrow (BM)-MSCs in response to inflammatory stimuli, and their role in immunosuppression mediated by BM-MSCs. We found that IFN-γ and TNF-α increased cyclooxygenase (COX)-2 expression but not that of prostaglandin E synthase (PGES), or PGE2 production. On the other hand, the toll like receptor 3 (TLR3) stimulant poly(I:C) increased expression of both COX-2 and PGES, resulting in a significant increase in PGE2 levels. This effect was reversed upon COX-2 inhibition with indomethacin or PGES downregulation by siRNA. Reduced PGE2 levels decreased MSC's capacity to inhibit hPBMC proliferation. In addition, administration of MSCs with inhibited PGES expression into mice with graft-versus-host disease (GVHD) did not reduce mortality. In summary, the present study reveals that upregulation of PGES via TLR3 is critical for BM-MSCs-mediated immunosuppression by PGE2 secretion via the COX-2/PGE2 pathway. These results provide a basis for understanding the molecular mechanisms underlying the PGE2-mediated immunosuppressive properties of MSCs.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Whi Hyeong Lee
- Regeneration Medicine Research Institute, Stemlab Inc. TechnoComplex, Korea University, Seoul, South Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - In Keun Jang
- Biomedical Research Institute, LIFELIVER Co., LTD., Yongin, Gyeonggi-do, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
24
|
Drews E, Adam A, Htoo P, Townsley E, Mathew A. Upregulation of HLA-E by dengue and not Zika viruses. Clin Transl Immunology 2018; 7:e1039. [PMID: 30263117 PMCID: PMC6156120 DOI: 10.1002/cti2.1039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 01/13/2023] Open
Abstract
Introduction The most severe form of dengue virus (DENV) illness, dengue haemorrhagic fever, is characterised by plasma leakage and increased vascular permeability. Objectives Given the critical role that endothelial cells play in the pathogenesis of DENV, we wanted to determine whether infection with DENV altered the expression of MHC class I related genes including HLA‐E. Results In this study, we provide evidence that HLA‐E but not MICA/B or HLA‐G is upregulated by all four serotypes of DENV in an endothelial cell line human microvascular endothelial cells (HMEC)‐1. In contrast, Zika virus (ZIKV), a related flavivirus, where plasma leakage is not a major manifestation of disease, did not upregulate HLA‐E. We found modest levels of soluble HLA‐E in supernatants from DENV but not ZIKV‐infected cells. Coculture experiments found minimal activation of natural killer (NK) cells in the presence of both uninfected and infected HMEC‐1 cells. HLA‐E induced by DENV infection could not dampen the degranulation of activated NK cells by interacting with its ligand NKG2a. Conclusions Our results suggest that while DENV infection induces HLA‐E, the high MHC class I expression on uninfected and infected HMEC‐1 cells may dominate the diverse signals generated between inhibitory and activating receptors on NK cells and ligands on target cells.
Collapse
Affiliation(s)
- Elena Drews
- Division of Infectious Diseases and Immunology University of Massachusetts Medical School Worcester MA USA
| | - Awadalkareem Adam
- Department of Cell and Molecular Biology Institute for Immunology and Informatics University of Rhode Island Providence RI USA
| | - Phone Htoo
- Department of Cell and Molecular Biology Institute for Immunology and Informatics University of Rhode Island Providence RI USA
| | - Elizabeth Townsley
- Division of Infectious Diseases and Immunology University of Massachusetts Medical School Worcester MA USA
| | - Anuja Mathew
- Division of Infectious Diseases and Immunology University of Massachusetts Medical School Worcester MA USA.,Department of Cell and Molecular Biology Institute for Immunology and Informatics University of Rhode Island Providence RI USA
| |
Collapse
|
25
|
Dengue Virus Induces Increased Activity of the Complement Alternative Pathway in Infected Cells. J Virol 2018; 92:JVI.00633-18. [PMID: 29743365 DOI: 10.1128/jvi.00633-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro were investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.
Collapse
|
26
|
Bondu V, Bitting C, Poland VL, Hanson JA, Harkins MS, Lathrop S, Nolte KB, Lawrence DA, Buranda T. Upregulation of P2Y 2R, Active uPA, and PAI-1 Are Essential Components of Hantavirus Cardiopulmonary Syndrome. Front Cell Infect Microbiol 2018; 8:169. [PMID: 29930915 PMCID: PMC6001748 DOI: 10.3389/fcimb.2018.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Sin Nombre virus (SNV) causes hantavirus cardiopulmonary pulmonary syndrome (HCPS) with the loss of pulmonary vascular endothelial integrity, and pulmonary edema without causing cytopathic effects on the vascular endothelium. HCPS is associated primarily with a dysregulated immune response. We previously found occult signs of hemostatic imbalance in the form of a sharp >30-100 fold increase in the expression of plasminogen activator inhibitor type 1 (PAI-1), in serial blood plasma draws of terminal stage-patients. However, the mechanism of the increase in PAI-1 remains unclear. PAI-1 is a primary inhibitor of fibrinolysis caused by tissue plasminogen activator (tPA) and urokinase plasminogen activator plasma (uPA). Here, we investigate factors that contribute to PAI-1 upregulation during HCPS. Using zymography, we found evidence of PAI-1-refractory uPA activity and no tPA activity in plasma samples drawn from HCPS patients. The sole prevalence of uPA activity suggested that severe inflammation drove PAI-1 activity. We have recently reported that the P2Y2 receptor (P2Y2R) mediates SNV infectivity by interacting in cis with β3 integrins, which activates the latter during infection. P2Y2R is a known effector for several biological processes relevant to HCPS pathogenesis, such as upregulation of tissue factor (TF), a primary initiator of the coagulation cascade, stimulating vascular permeability and leukocyte homing to sites of infection. As P2Y2R is prone to upregulation under conditions of inflammation, we compared the expression level of P2Y2R in formalin fixed tissues of HCPS decedents using a TaqMan assay and immunohistochemistry. Our TaqMan results show that the expression of P2Y2R is upregulated significantly in HCPS cases compared to non- HCPS controls (P < 0.001). Immunohistochemistry showed that lung macrophages were the primary reservoir of high and coincident localization of P2Y2R, uPA, PAI-1, and TF antigens. We also observed increased staining for SNV antigens in the same tissue segments where P2Y2R expression was upregulated. Conversely, sections of low P2Y2R expression showed weak manifestations of macrophages, SNV, PAI-1, and TF. Coincident localization of P2Y2R and PAI-1 on macrophage deposits suggests an inflammation-dependent mechanism of increasing pro-coagulant activity in HCPS in the absence of tissue injury.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Casey Bitting
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Valerie L Poland
- Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Michelle S Harkins
- Division of Infectious Disease, Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Sarah Lathrop
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kurt B Nolte
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
27
|
da Silva LRC. Zika Virus Trafficking and Interactions in the Human Male Reproductive Tract. Pathogens 2018; 7:E51. [PMID: 29751638 PMCID: PMC6027493 DOI: 10.3390/pathogens7020051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
Sexual transmission of Zika virus (ZIKV) is a matter of great concern. Infectious viral particles can be shed in semen for as long as six months after infection and can be transferred to male and female sexual partners during unprotected sexual intercourse. The virus can be found inside spermatozoa and could be directly transferred to the oocyte during fertilization. Sexual transmission of ZIKV can contribute to the rise in number of infected individuals in endemic areas as well as in countries where the mosquito vector does not thrive. There is also the possibility, as has been demonstrated in mouse models, that the vaginal deposition of ZIKV particles present in semen could lead to congenital syndrome. In this paper, we review the current literature to understand ZIKV trafficking from the bloodstream to the human male reproductive tract and viral interactions with host cells in interstitial spaces, tubule walls, annexed glands and semen. We hope to highlight gaps to be filled by future research and potential routes for vaccine and antiviral development.
Collapse
|
28
|
Peptides P4 and P7 derived from E protein inhibit entry of dengue virus serotype 2 via interacting with β3 integrin. Antiviral Res 2018; 155:20-27. [PMID: 29709564 DOI: 10.1016/j.antiviral.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/28/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
Abstract
Dengue virus (DENV) infection has become a severe public health problem worldwide. However, there is no specific antiviral drug available yet. In this study, we found that DENV serotype 2 (DENV2) infection enhanced the expression of β3 integrin on human umbilical vein endothelial cells (HUVECs) and that DENV2 antigens co-localized with β3 integrin. DENV2 envelope protein (E) directly interacted with β3 integrin, and their interacting sites were located at domain III of E protein (EDIII). Several synthetic peptides were designed based on the amino acid sequence of EDIII, and peptides P4 and P7 could inhibit DENV2 entry into HUVECs in a dose-dependent manner. The inhibitory concentration (IC50) of the two peptides was 19.08 ± 2.52 μM for P4 and 12.86 ± 5.96 μM for P7. Moreover, P7 containing an FG-loop, but not P4, could also inhibit DENV1 entry into HUVECs. Our results suggest a novel mechanism in which interaction between β3 integrin and EDIII is involved in DENV entry. The findings on the inhibitory effect of the peptides on viral entry have significance for anti-DENV drug design.
Collapse
|
29
|
Jiang DB, Zhang JP, Cheng LF, Zhang GW, Li Y, Li ZC, Lu ZH, Zhang ZX, Lu YC, Zheng LH, Zhang FL, Yang K. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antiviral Res 2018; 150:174-182. [PMID: 29273568 DOI: 10.1016/j.antiviral.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/22/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4+ T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2d. Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations.
Collapse
Affiliation(s)
- Dong-Bo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jin-Peng Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Guan-Wen Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Chao Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zhen-Hua Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Xin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lian-He Zheng
- Department of Orthopedics, Tangdu Hospital, Xi'an, China.
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China.
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
30
|
Affiliation(s)
- Stacy C Goldthorpe
- a Foundational Sciences , Central Michigan University College of Medicine , Mount Pleasant , MI , USA
| | - Michael J Conway
- a Foundational Sciences , Central Michigan University College of Medicine , Mount Pleasant , MI , USA
| |
Collapse
|
31
|
de Andrade GC, Ventura CV, Mello Filho PADA, Maia M, Vianello S, Rodrigues EB. Arboviruses and the eye. Int J Retina Vitreous 2017; 3:4. [PMID: 28163928 PMCID: PMC5286683 DOI: 10.1186/s40942-016-0057-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes and ticks. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, dengue, chikungunya, and zika viruses have emerged as increasingly important arboviruses that can cause human disease, however no specific treatment or vaccine is available for them. In addition, ocular manifestations of these diseases have become more prevalent over the past few years. This review highlights the current understanding on the pathogenesis, systemic changes and ocular findings, emphasizing the retinal manifestations related to dengue, chikungunya, and zika viruses.
Collapse
Affiliation(s)
- Gabriel Costa de Andrade
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| | - Camila V Ventura
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| | - Paulo Augusto de Arruda Mello Filho
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| | - Maurício Maia
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| | - Silvana Vianello
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| | - Eduardo Büchele Rodrigues
- Department of Ophthalmology, Federal University of São Paulo - Paulista Medical School, Rua Botucatu, 821, 1st Floor, São Paulo, SP 04023-062 Brazil
| |
Collapse
|
32
|
Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:421. [PMID: 27942512 DOI: 10.21037/atm.2016.11.03] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.
Collapse
Affiliation(s)
- David S Fedson
- Formerly, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Park MS, Kim JI, Park S, Lee I, Park MS. Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity. Immune Netw 2016; 16:261-270. [PMID: 27799871 PMCID: PMC5086450 DOI: 10.4110/in.2016.16.5.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022] Open
Abstract
The human immune system has evolved to fight against foreign pathogens. It plays a central role in the body's defense mechanism. However, the immune memory geared to fight off a previously recognized pathogen, tends to remember an original form of the pathogen when a variant form subsequently invades. This has been termed 'original antigenic sin'. This adverse immunological effect can alter vaccine effectiveness and sometimes cause enhanced pathogenicity or additional inflammatory responses, according to the type of pathogen and the circumstances of infection. Here we aim to give a simplified conceptual understanding of virus infection and original antigenic sin by comparing and contrasting the two examples of recurring infections such as influenza and dengue viruses in humans.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, The Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jin Il Kim
- Department of Microbiology, The Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sehee Park
- Department of Microbiology, The Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea
| | - Ilseob Lee
- Department of Microbiology, The Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea
| | - Man-Seong Park
- Department of Microbiology, The Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
34
|
White MK, Wollebo HS, David Beckham J, Tyler KL, Khalili K. Zika virus: An emergent neuropathological agent. Ann Neurol 2016; 80:479-89. [PMID: 27464346 PMCID: PMC5086418 DOI: 10.1002/ana.24748] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/07/2023]
Abstract
The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain-Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda's Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013-2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain-Barré syndrome make Zika an urgent public health concern. Ann Neurol 2016;80:479-489.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Hassen S Wollebo
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - J David Beckham
- Division of Infectious Diseases, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO
- Department of Neurology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kenneth L Tyler
- Division of Infectious Diseases, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO
- Department of Neurology, Anschutz Medical Campus, University of Colorado, Aurora, CO
- Department of Microbiology and Immunology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
| |
Collapse
|
35
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
36
|
Huang LY, Stuart C, Takeda K, D’Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS One 2016; 11:e0160875. [PMID: 27504984 PMCID: PMC4978501 DOI: 10.1371/journal.pone.0160875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelial monolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Together, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies.
Collapse
Affiliation(s)
- Li-Yun Huang
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Christine Stuart
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| | - Basil Golding
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| |
Collapse
|
37
|
Velandia-Romero ML, Calderón-Peláez MA, Castellanos JE. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS One 2016; 11:e0157786. [PMID: 27336851 PMCID: PMC4919088 DOI: 10.1371/journal.pone.0157786] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Background The neurological manifestations of dengue disease are occurring with greater frequency, and currently, no information is available regarding the reasons for this phenomenon. Some viruses infect and/or alter the function of endothelial organs, which results in changes in cellular function, including permeability of the blood-brain barrier (BBB), which allows the entry of infected cells or free viral particles into the nervous system. Methods In the present study, we standardized two in vitro models, a polarized monolayer of mouse brain endothelial cells (MBECs) and an organized co-culture containing MBECs and astrocytes. Using these cell models, we assessed whether DENV-4 or the neuro-adapted dengue virus (D4MB-6) variant infects cells or induces changes in the structure or function of the endothelial barrier. Results The results showed that MBECs, but not astrocytes, were susceptible to infection with both viruses, although the percentage of infected cells was higher when the neuro-adapted virus variant was used. In both culture systems, DENV infection changed the localization of the tight junction proteins Zonula occludens (ZO-1) and Claudin-1 (Cln1), and this process was associated with a decrease in transendothelial resistance, an increase in macromolecule permeability and an increase in the paracellular passing of free virus particles. MBEC infection led to transcriptional up-regulation of adhesion molecules (VCAM-1 and PECAM) and immune mediators (MCP-1 and TNF- α) that are associated with immune cell transmigration, mainly in D4MB-6-infected cells. Conclusion These results indicate that DENV infection in MBECs altered the structure and function of the BBB and activated the endothelium, affecting its transcellular and paracellular permeability and favoring the passage of viruses and the transmigration of immune cells. This phenomenon can be harnessed for neurotropic and neurovirulent strains to infect and induce alterations in the CNS.
Collapse
|
38
|
Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early Bunyavirus-Host Cell Interactions. Viruses 2016; 8:v8050143. [PMID: 27213430 PMCID: PMC4885098 DOI: 10.3390/v8050143] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022] Open
Abstract
The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.
Collapse
Affiliation(s)
- Amelina Albornoz
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| | - Anja B Hoffmann
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Nicole D Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| |
Collapse
|
39
|
Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res 2016; 108:46-56. [PMID: 27073018 DOI: 10.1016/j.phrs.2016.03.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022]
Abstract
Endothelial cells (EC) are able to actively control vascular permeability, coagulation, blood pressure and angiogenesis. Most recently, a role for endothelial cells in the immune response has been described. Therefore, the endothelium has a dual role controlling homeostasis but also being the first line for host defence and tissue damage repair thanks to its ability to mount an inflammatory response. Endothelial cells have been shown to express pattern-recognition receptors (PRR) including Toll-like receptors (TLR) that are activated in response to stimuli within the bloodstream including pathogens and damage signals. TLRs are strategic mediators of the immune response in endothelial cells but they also regulate the angiogenic process critical for tissue repair. Nevertheless, endothelial activation and angiogenesis can contribute to some pathologies. Thus, inappropriate endothelial activation, also known as endothelial dysfunction, through TLRs contributes to tissue damage during autoimmune and inflammatory diseases such as atherosclerosis, hypertension, ischemia and diabetes associated cardiovascular diseases. Also TLR induced angiogenesis is required for the growth of some tumors, atherosclerosis and rheumatoid arthritis, among others. In this review we discuss the importance of various TLRs in modulating the activation of endothelial cells and their importance in immunity to infection and vascular disease as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Alicia Arranz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Sara Francisco
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Laura Córdoba
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | - Carmen Punzón
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | | | - Manuel Fresno
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
40
|
Tazawa H, Sato K, Tsutiya A, Tokeshi M, Ohtani-Kaneko R. A microfluidic cell culture system for monitoring of sequential changes in endothelial cells after heat stress. Thromb Res 2015; 136:328-34. [DOI: 10.1016/j.thromres.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/23/2022]
|
41
|
Bellomo CM, Pires-Marczeski FC, Padula PJ. Viral load of patients with hantavirus pulmonary syndrome in Argentina. J Med Virol 2015; 87:1823-30. [PMID: 26087934 DOI: 10.1002/jmv.24260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
Abstract
Hantavirus causes severe illness including pneumonia, which leads to hospitalization and often death. At present, there is no specific treatment available. The hantavirus pathogenesis is not well understood, but most likely both virus-mediated and host-mediated mechanisms, are involved. The aim of this study was to correlate viral load in samples of hantavirus pulmonary syndrome cases and hantavirus infected individuals, with clinical epidemiological parameters and disease outcome. The variables that could potentially be related with viral load were analyzed. The retrospective study included 73 cases or household contacts, with different clinical evolution. Viral load was measured by reverse-transcription and real time polymerase chain reaction. There was no statistically significant association between blood viral RNA levels and severity of disease. However, viral load was inversely correlated with IgG response in a statistically significant manner. The level of viral RNA was significantly higher in patients infected with Andes virus South lineage, and was markedly low in persons infected with Laguna Negra virus. These results suggest that the infecting viral genotype is associated with disease severity, and that high viral load is associated with a low specific IgG response. Sex, age and disease severity were not related with viral load. Further investigations increasing strikingly the number of cases and also limiting the variables to be studied are necessary.
Collapse
Affiliation(s)
- Carla María Bellomo
- Departamento Virología, Servicio Biología Molecular, Instituto Nacional de Enfermedades Infecciosas INEI, Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas (INEI), Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - Fanny Clara Pires-Marczeski
- Departamento Virología, Servicio Biología Molecular, Instituto Nacional de Enfermedades Infecciosas INEI, Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas (INEI), Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - Paula Julieta Padula
- Departamento Virología, Servicio Biología Molecular, Instituto Nacional de Enfermedades Infecciosas INEI, Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas (INEI), Administración Nacional de Laboratorios e Institutos de Salud "Dr. C. G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
42
|
Calvert JK, Helbig KJ, Dimasi D, Cockshell M, Beard MR, Pitson SM, Bonder CS, Carr JM. Dengue Virus Infection of Primary Endothelial Cells Induces Innate Immune Responses, Changes in Endothelial Cells Function and Is Restricted by Interferon-Stimulated Responses. J Interferon Cytokine Res 2015; 35:654-65. [PMID: 25902155 DOI: 10.1089/jir.2014.0195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although endothelial cell (EC) infection is not widespread during dengue virus (DENV) infection in vivo, the endothelium is the site of the pathogenic effects seen in severe DENV disease. In this study, we investigated DENV infection of primary EC and defined factors that influence infection in this cell type. Consistent with in vivo findings where EC infection is infrequent, only 3%-15% of EC became productively DENV-2-infected in vitro. This low level infection could not be attributed to inhibition by heparin, EC donor variation, heterogeneity, or biological source. DENV-infection of EC was associated with induction of innate immune responses, including increased STAT1 protein, STAT1- phosphorylation, interferon (IFN)-β, OAS-1, IFIT-1/ISG56, and viperin mRNA. Antibody blocking of IFN-β inhibited the induction of OAS1, IFIT1/ISG56, and viperin while shRNA knockdown of viperin enhanced DENV-infection in EC. DENV-infection of EC resulted in increased activity of sphingosine kinase 1, a factor important in maintaining vascular integrity, and altered basal and stimulated changes in barrier integrity of DENV-infected EC monolayers. Thus, DENV productively infects only a small percentage of primary EC but this has a major influence on induction of IFN-β driven innate immune responses that can restrict infection while the EC themselves are functionally altered. These changes may have important consequences for the endothelium and are reflective of pathogenic changes associated with vascular leakage, as seen in DENV disease.
Collapse
Affiliation(s)
- Julie K Calvert
- 1 Microbiology and Infectious Diseases, School of Medicine, Flinders University , Adelaide, South Australia
| | - Karla J Helbig
- 2 School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia
| | - David Dimasi
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Michaelia Cockshell
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Michael R Beard
- 2 School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia.,3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Stuart M Pitson
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Claudine S Bonder
- 3 Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide, South Australia
| | - Jillian M Carr
- 1 Microbiology and Infectious Diseases, School of Medicine, Flinders University , Adelaide, South Australia
| |
Collapse
|
43
|
Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers 2015; 3:e978720. [PMID: 25838983 DOI: 10.4161/21688370.2014.978720] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.
Collapse
Key Words
- AJ, Adherens junctions
- ANG-1, Angiopoietin 1
- AQP, Aquaporins
- BBB, blood brain barrier
- CNS, Central nervous system
- COPD, Chronic obstructive pulmonary disease
- EAE, Experimental autoimmune encephalomyelitis
- EPAC1, Exchange protein activated by cyclic AMP
- ERK1/2, Extracellular signal-regulated kinases 1 and 2
- Endothelial barrier
- FA, Focal adhesions
- FAK, focal adhesion tyrosine kinase
- FoxO1, Forkhead box O1
- GAG, Glycosaminoglycans
- GDNF, Glial cell-derived neurotrophic factor
- GJ, Gap junctions
- GPCR, G-protein coupled receptors
- GTPase, Guanosine 5'-triphosphatase
- HMGB-1, High mobility group box 1
- HRAS, Harvey rat sarcoma viral oncogene homolog
- ICAM-1, Intercellular adhesion molecule 1
- IL-1β, Interleukin 1 beta
- IP3, Inositol 1,4,5-triphosphate
- JAM, Junctional adhesion molecules
- MEK, Mitogen-activated protein kinase kinase
- MLC, Myosin light chain
- MLCK, Myosin light-chain kinase
- MMP, Matrix metalloproteinases
- NO, Nitric oxide
- OSM, Oncostatin M
- PAF, Platelet activating factor
- PDE, Phosphodiesterase
- PKA, Protein kinase A
- PNA, Platelet-neutrophil aggregates
- ROS, Reactive oxygen species
- Rac1, Ras-related C3 botulinum toxin substrate 1
- Rap1, Ras-related protein 1
- RhoA, Ras homolog gene family, member A
- S1P, Sphingosine-1-phosphate
- SCID, Severe combined immunodeficient
- SOCS-3, Suppressors of cytokine signaling 3
- Shp-2, Src homology 2 domain-containing phosphatase 2
- Src, Sarcoma family of protein kinases
- TEER, Transendothelial electrical resistance
- TGF-beta1, Transforming growth factor-beta1
- TJ, Tight junctions
- TNF-, Tumor necrosis factor alpha
- VCAM-1, Vascular cell adhesion molecule 1
- VE, Vascular endothelial
- VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase
- VEGF, Vascular endothelial growth factor
- VVO, Vesiculo-vacuolar organelle
- ZO, Zonula occludens
- cAMP, 3'-5'-cyclic adenosine monophosphate
- erythrocytes
- leukocytes
- pSrc, Phosphorylated Src
- platelets
- vascular permeability
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo ; Sao Paulo, Brazil
| | - D Neil Granger
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center ; Shreveport, LA USA
| |
Collapse
|
44
|
Ma Y, Yuan B, Zhuang R, Zhang Y, Liu B, Zhang C, Zhang Y, Yu H, Yi J, Yang A, Jin B. Hantaan virus infection induces both Th1 and ThGranzyme B+ cell immune responses that associated with viral control and clinical outcome in humans. PLoS Pathog 2015; 11:e1004788. [PMID: 25836633 PMCID: PMC4383613 DOI: 10.1371/journal.ppat.1004788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/05/2015] [Indexed: 01/22/2023] Open
Abstract
Hantaviruses infection causing severe emerging diseases with high mortality rates in humans has become public health concern globally. The potential roles of CD4(+)T cells in viral control have been extensively studied. However, the contribution of CD4(+)T cells to the host response against Hantaan virus (HTNV) infection remains unclear. Here, based on the T-cell epitopes mapped on HTNV glycoprotein, we studied the effects and characteristics of CD4(+)T-cell responses in determining the outcome of hemorrhagic fever with renal syndrome. A total of 79 novel 15-mer T-cell epitopes on the HTNV glycoprotein were identified, among which 20 peptides were dominant target epitopes. Importantly, we showed the presence of both effective Th1 responses with polyfunctional cytokine secretion and ThGranzyme B(+) cell responses with cytotoxic mediators production against HTNV infection. The HTNV glycoprotein-specific CD4(+)T-cell responses inversely correlated with the plasma HTNV RNA load in patients. Individuals with milder disease outcomes showed broader epitopes targeted and stronger CD4(+)T-cell responses against HTNV glycoproteins compared with more severe patients. The CD4(+)T cells characterized by broader antigenic repertoire, stronger polyfunctional responses, better expansion capacity and highly differentiated effector memory phenotype(CD27-CD28-CCR7-CD45RA-CD127(hi)) would elicit greater defense against HTNV infection and lead to much milder outcome of the disease. The host defense mediated by CD4(+)T cells may through the inducing antiviral condition of the host cells and cytotoxic effect of ThGranzyme B+ cells. Thus, these findings highlight the efforts of CD4(+)T-cell immunity to HTNV control and provide crucial information to better understand the immune defense against HTNV infection.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
- * E-mail:
| | - Bin Yuan
- Institute of Orthopaedics of Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Ran Zhuang
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Yusi Zhang
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Bei Liu
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Yun Zhang
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Haitao Yu
- Department of Infectious Diseases of Tangdu Hospital, the Fourth Military Medical University, Xi’an, China
| | - Jing Yi
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Angang Yang
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
45
|
Mackow ER, Gorbunova EE, Gavrilovskaya IN. Endothelial cell dysfunction in viral hemorrhage and edema. Front Microbiol 2015; 5:733. [PMID: 25601858 PMCID: PMC4283606 DOI: 10.3389/fmicb.2014.00733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
The endothelium maintains a vascular barrier by controlling platelet and immune cell interactions, capillary tone and interendothelial cell (EC) adherence. Here we suggest common elements in play during viral infection of the endothelium that alter normal EC functions and contribute to lethal hemorrhagic or edematous diseases. In viral reservoir hosts, infection of capillaries and lymphatic vessels may direct immunotolerance without disease, but in the absence of these cognate interactions they direct the delayed onset of human disease characterized by thrombocytopenia and vascular leakage in a severe endothelial dysfunction syndrome. Here we present insight into EC controls of hemostasis, immune response and capillary permeability that are altered by viral infection of the endothelium.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Irina N Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| |
Collapse
|
46
|
Parreira R, Sousa CA. Dengue fever in Europe: could there be an epidemic in the future? Expert Rev Anti Infect Ther 2014; 13:29-40. [DOI: 10.1586/14787210.2015.982094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|