1
|
Ramesh V, Suresh KP, Mambully S, Rani S, Ojha R, Kumar KV, Balamurugan V. Dynamic evolution of peste des petits ruminants virus in sheep and goat hosts across India reveals the swift surge of F gene. Virusdisease 2024; 35:505-519. [PMID: 39464739 PMCID: PMC11502608 DOI: 10.1007/s13337-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 10/29/2024] Open
Abstract
Peste des petits ruminants (PPR), an acute febrile viral disease impacting goats and sheep flocks, manifests with pyrexia, mucopurulent nasal and ocular discharges, necrotizing and erosive stomatitis, pneumonia, and enteritis. The disease-instigating agent, PPR virus, pertains to the Morbillivirus caprinae genus in the Paramyxoviridae family. The endemic presence of PPR in India results in notable economic losses due to heightened mortality and morbidity in infected animals. Understanding viral pathogen evolution is pivotal for delineating their emergence in diverse environments. This study explores the molecular evolutionary patterns of PPRV, concentrating on the N and F structural genes isolated from Indian sheep and goats. Analyzing evolutionary rate, phylogenetics, selection pressure, and codon usage bias, we determined the time to the most recent common ancestor (tMRCA) as 1984, 1973, 2000, and 2004 for goat and sheep's N and F genes, respectively, with evolutionary rates ranging from 2.859 x 103 to 4.995 x 104. The F-gene is found to exhibit a faster evolution than the N-gene, indicating apparent virus transmission across the regions of India, as supported by phylogenetic analysis. Codon usage bias examination, incorporating nucleotide composition and various plots (effective number of codon plot, parity plot, neutrality plot), suggests the evolution in India influenced by both natural selection and mutational pressure, resulting in alterations in the virus's codon bias. The integrated analysis underscores the significant role of selection pressures, implying PPRV's co-evolution and adaptations influenced by various genes. Insights from this study can guide effective disease control and vaccine development, aiding in managing PPR outbreaks in India and beyond.
Collapse
Affiliation(s)
- Varsha Ramesh
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Kuralayanapalya P. Suresh
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Shijili Mambully
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Swati Rani
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Rakshit Ojha
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Kirubakaran V. Kumar
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| | - Vinayagamurthy Balamurugan
- Indian Council of Agricultural Research, National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, Karnataka 560064 India
| |
Collapse
|
2
|
Rivera-Martínez A, Rodríguez-Alarcón CA, Adame-Gallegos JR, Laredo-Tiscareño SV, de Luna-Santillana EDJ, Hernández-Triana LM, Garza-Hernández JA. Canine Distemper Virus: Origins, Mutations, Diagnosis, and Epidemiology in Mexico. Life (Basel) 2024; 14:1002. [PMID: 39202744 PMCID: PMC11355085 DOI: 10.3390/life14081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides an overview of the canine distemper virus (CDV), a highly infectious pathogen causing severe disease in domestic dogs and wildlife. It shares genetic similarities with the human measles virus (HMV) in humans and the rinderpest virus (RPV) in cattle. The origin of CDV likely involves a mutation from human measles strains, possibly in the New World, with subsequent transmission to dogs. CDV has been globally observed, with an increasing incidence in various animal populations. Genomic mutations, especially in the H protein, contribute to its ability to infect different hosts. Diagnosis by molecular techniques like RT-qPCR offers rapid and sensitive detection when compared with serological tests. Genomic sequencing is vital for understanding CDV evolution and designing effective control strategies. Overall, CDV poses a significant threat, and genomic sequencing enhances our ability to manage and prevent its spread. Here, the epidemiology of CDV principally in Mexico is reviewed.
Collapse
Affiliation(s)
- Alejandra Rivera-Martínez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Carlos A. Rodríguez-Alarcón
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Jaime R. Adame-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Chihuahua, Mexico;
| | - S. Viridiana Laredo-Tiscareño
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| | - Erick de Jesús de Luna-Santillana
- Laboratorio Medicina de la Conservación, Centro de Biotecnología Genómica del Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico;
| | - Luis M. Hernández-Triana
- Animal and Plant Health Agency, Virology Department, Vector Borne Diseases Research Group, Addlestone KT15 3NB, UK;
| | - Javier A. Garza-Hernández
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Juárez 32310, Chihuahua, Mexico; (A.R.-M.); (C.A.R.-A.); (S.V.L.-T.)
| |
Collapse
|
3
|
Schmitz KS, Rennick LJ, Tilston-Lunel NL, Comvalius AD, Laksono BM, Geers D, van Run P, de Vries RD, de Swart RL, Duprex WP. Rational attenuation of canine distemper virus (CDV) to develop a morbillivirus animal model that mimics measles in humans. J Virol 2024; 98:e0185023. [PMID: 38415596 PMCID: PMC10949419 DOI: 10.1128/jvi.01850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.
Collapse
Affiliation(s)
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Natasha L. Tilston-Lunel
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Pennisi MG, Belák S, Tasker S, Addie DD, Boucraut-Baralon C, Egberink H, Frymus T, Hartmann K, Hofmann-Lehmann R, Lloret A, Marsilio F, Thiry E, Truyen U, Möstl K, Hosie MJ. Feline Morbillivirus: Clinical Relevance of a Widespread Endemic Viral Infection of Cats. Viruses 2023; 15:2087. [PMID: 37896864 PMCID: PMC10611265 DOI: 10.3390/v15102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Feline morbillivirus (FeMV) was first isolated in 2012 from stray cats in Hong Kong. It has been found in association with tubulointerstitial nephritis (TIN), the most common cause of feline chronic kidney disease (CKD). However, viral host spectrum and virus tropism go beyond the domestic cat and kidney tissues. The viral genetic diversity of FeMV is extensive, but it is not known if this is clinically relevant. Urine and kidney tissues have been widely tested in attempts to confirm associations between FeMV infection and renal disease, but samples from both healthy and sick cats can test positive and some cross-sectional studies have not found associations between FeMV infection and CKD. There is also evidence for acute kidney injury following infection with FeMV. The results of prevalence studies differ greatly depending on the population tested and methodologies used for detection, but worldwide distribution of FeMV has been shown. Experimental studies have confirmed previous field observations that higher viral loads are present in the urine compared to other tissues, and renal TIN lesions associated with FeMV antigen have been demonstrated, alongside virus lymphotropism and viraemia-associated lymphopenia. Longitudinal field studies have revealed persistent viral shedding in urine, although infection can be cleared spontaneously.
Collapse
Affiliation(s)
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGWW, 02-787 Warsaw, Poland;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| |
Collapse
|
5
|
Laksono BM, Roelofs D, Comvalius AD, Schmitz KS, Rijsbergen LC, Geers D, Nambulli S, van Run P, Duprex WP, van den Brand JMA, de Vries RD, de Swart RL. Infection of ferrets with wild type-based recombinant canine distemper virus overwhelms the immune system and causes fatal systemic disease. mSphere 2023; 8:e0008223. [PMID: 37377421 PMCID: PMC10449521 DOI: 10.1128/msphere.00082-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 06/29/2023] Open
Abstract
Canine distemper virus (CDV) causes systemic infection resulting in severe and often fatal disease in a large spectrum of animal host species. The virus is closely related to measles virus and targets myeloid, lymphoid, and epithelial cells, but CDV is more virulent and the infection spreads more rapidly within the infected host. Here, we aimed to study the pathogenesis of wild-type CDV infection by experimentally inoculating ferrets with recombinant CDV (rCDV) based on an isolate directly obtained from a naturally infected raccoon. The recombinant virus was engineered to express a fluorescent reporter protein, facilitating assessment of viral tropism and virulence. In ferrets, this wild type-based rCDV infected myeloid, lymphoid, and epithelial cells, and the infection resulted in systemic dissemination to multiple tissues and organs, especially those of the lymphatic system. High infection percentages in immune cells resulted in depletion of these cells both from circulation and from lymphoid tissues. The majority of CDV-infected ferrets reached their humane endpoints within 20 d and had to be euthanized. In that period, the virus also reached the central nervous system in several ferrets, but we did not observe the development of neurological complications during the study period of 23 d. Two out of 14 ferrets survived CDV infection and developed neutralizing antibodies. We show for the first time the pathogenesis of a non-adapted wild type-based rCDV in ferrets. IMPORTANCE Infection of ferrets with recombinant canine distemper virus (rCDV) expressing a fluorescent reporter protein has been used as proxy to understand measles pathogenesis and immune suppression in humans. CDV and measles virus use the same cellular receptors, but CDV is more virulent, and infection is often associated with neurological complications. rCDV strains in current use have complicated passage histories, which may have affected their pathogenesis. Here, we studied the pathogenesis of the first wild type-based rCDV in ferrets. We used macroscopic fluorescence to identify infected cells and tissues; multicolor flow cytometry to determine viral tropism in immune cells; and histopathology and immunohistochemistry to characterize infected cells and lesions in tissues. We conclude that CDV often overwhelmed the immune system, resulting in viral dissemination to multiple tissues in the absence of a detectable neutralizing antibody response. This virus is a promising tool to study the pathogenesis of morbillivirus infections.
Collapse
Affiliation(s)
| | - Dagmar Roelofs
- Department of Biomolecular Health Sciences, Division of Pathology, Universiteit Utrecht, Utrecht, the Netherlands
| | | | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Sham Nambulli
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - W. Paul Duprex
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Judith M. A. van den Brand
- Department of Biomolecular Health Sciences, Division of Pathology, Universiteit Utrecht, Utrecht, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
6
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
7
|
Prpić J, Lojkić I, Keros T, Krešić N, Jemeršić L. Canine Distemper Virus Infection in the Free-Living Wild Canines, the Red Fox ( Vulpes vulpes) and Jackal ( Canis aureus moreoticus), in Croatia. Pathogens 2023; 12:833. [PMID: 37375523 DOI: 10.3390/pathogens12060833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The canine distemper virus (CDV), a paramyxovirus that is closely related to the human measles virus and rinderpest virus of cattle, is a highly contagious viral disease in dogs and wild carnivores worldwide. CDV represents a serious threat to domestic and wild animals, especially to the conservation of endangered wild carnivores. Our study aims to investigate the occurrence of CDV in free-living wild canines in Croatia. For this purpose, 176 red foxes and 24 jackal brain samples collected in the frame of the active surveillance of rabies during winter 2021/2022 were tested. This study provided the first comprehensive overview of the prevalence and spatial distribution of CDV in the wildlife of Croatia, including the molecular phylogenetic analysis of the H gene sequence of field CDV strains circulating in red fox and jackal populations of Croatia. The molecular characterization of hemagglutinin gene genomic regions confirmed the phylogenetic clustering of obtained sequences into the Europa 1 genotype. The obtained CDV red fox sequences were mutually very similar (97.60%). This study indicates the high genetic similarity of Croatian CDV red fox sequences and CDV red fox sequences from Italy and Germany, badger sequences from Germany, polecat sequences from Hungary, and dog sequences from Hungary and Germany.
Collapse
Affiliation(s)
- Jelena Prpić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Persistent and Severe Viral Replication in PBMCs with Moderate Immunosuppression Served an Alternative Novel Pathogenic Mechanism for Canine Morbillivirus. Microbiol Spectr 2023; 11:e0406022. [PMID: 36533959 PMCID: PMC9927106 DOI: 10.1128/spectrum.04060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Measles virus and canine distemper virus (CDV) cause lethal infections in their respective hosts characterized by severe immunosuppression. To furtherly acknowledge the attenuated mechanisms of the regionally ongoing epidemic CDV isolates and provide novel perspectives for designing new vaccines and therapeutic drugs, a recombinant CDV rHBF-vacH was employed with a vaccine hemagglutinin (H) gene replacement by reverse genetics based on an infectious cDNA clone for the CDV wild-type HBF-1 strain. Interestingly, unlike previously published reports that a vaccine H protein completely changed a pathogenic wild-type CDV variant to be avirulent, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets with a prolonged period of disease. Further comparisons of pathogenic mechanisms proved that the weaker but necessary invasions into peripheral blood mononuclear cells (PBMCs) of rHBF-vacH, and subsequently persistent viral replications in PBMCs and multiple organs, together contributed to its 66.7% mortality. In addition, despite significantly higher titers than the parent viruses, rHBF-vacH would not be a suitable candidate for a live vaccine, with great invasion and infection potentials of PBMCs from 16 tested kinds of host species. Altogether, sustained and severe viral replication in PBMCs with moderate immunosuppression was first proven to be an alternative novel pathogenic mechanism for CDV, which might help us to understand possible reasons for CDV fatal infections among domestic dogs and the highly susceptible wild species during natural transmission. IMPORTANCE Despite widespread vaccine campaigns for domestic dogs, CDV remained an important infectious disease in vaccinated carnivores and wild species. In recent years, the regionally ongoing epidemic CDV isolates have emphasized conservation threats to, and potentially disastrous epidemics in, endangered species worldwide. However, little is known about how to deal with the CDV variants constantly regional epidemic. In this study, we employed a recombinant CDV rHBF-vacH with a vaccine H gene replacement in a CDV wild-type HBF-1 context to attenuate the epidemic CDV variant to design a new vaccine candidate. Interestingly, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets by weaker but necessary invasions into PBMCs, and subsequently persistent and severe viral replications in PBMCs. Significantly higher virus titers of rHBF-vacH in vitro might indicate the rapid cell-to-cell spreads in vivo that indirectly contribute to fatal infections of rHBF-vacH in ferrets.
Collapse
|
9
|
FeMV is a cathepsin-dependent unique morbillivirus infecting the kidneys of domestic cats. Proc Natl Acad Sci U S A 2022; 119:e2209405119. [PMID: 36251995 PMCID: PMC9618091 DOI: 10.1073/pnas.2209405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.
Collapse
|
10
|
Wang X, Sun J, Lu L, Pu FY, Zhang DR, Xie FQ. Evolutionary dynamics of codon usages for peste des petits ruminants virus. Front Vet Sci 2022; 9:968034. [PMID: 36032280 PMCID: PMC9412750 DOI: 10.3389/fvets.2022.968034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important agent of contagious, acute and febrile viral diseases in small ruminants, while its evolutionary dynamics related to codon usage are still lacking. Herein, we adopted information entropy, the relative synonymous codon usage values and similarity indexes and codon adaptation index to analyze the viral genetic features for 45 available whole genomes of PPRV. Some universal, lineage-specific, and gene-specific genetic features presented by synonymous codon usages of the six genes of PPRV that encode N, P, M, F, H and L proteins reflected evolutionary plasticity and independence. The high adaptation of PPRV to hosts at codon usages reflected high viral gene expression, but some synonymous codons that are rare in the hosts were selected in high frequencies in the viral genes. Another obvious genetic feature was that the synonymous codons containing CpG dinucleotides had weak tendencies to be selected in viral genes. The synonymous codon usage patterns of PPRV isolated during 2007–2008 and 2013–2014 in China displayed independent evolutionary pathway, although the overall codon usage patterns of these PPRV strains matched the universal codon usage patterns of lineage IV. According to the interplay between nucleotide and synonymous codon usages of the six genes of PPRV, the evolutionary dynamics including mutation pressure and natural selection determined the viral survival and fitness to its host.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei Lu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei-yang Pu
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - De-rong Zhang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Fu-qiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Fu-qiang Xie
| |
Collapse
|
11
|
Rabaan AA, Mutair AA, Alhumaid S, Garout M, Alsubki RA, Alshahrani FS, Alfouzan WA, Alestad JH, Alsaleh AE, Al-Mozaini MA, Koritala T, Alotaibi S, Temsah MH, Akbar A, Ahmad R, Khalid Z, Muhammad J, Ahmed N. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina (B Aires) 2022; 58:medicina58050680. [PMID: 35630096 PMCID: PMC9147347 DOI: 10.3390/medicina58050680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (A.A.R.); (N.A.)
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia;
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, King Saud University Medical City, Riyadh 11451, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK;
- Microbiology Department, College of Medicine, Jabriya 46300, Kuwait
| | - Abdullah E. Alsaleh
- Core Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia;
| | - Thoyaja Koritala
- Division of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Zainab Khalid
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Naveed Ahmed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (A.A.R.); (N.A.)
| |
Collapse
|
12
|
Krupka M, Matusu T, Sutova H, Wezdenkova K, Vecerova R, Smesna Y, Kolar M, Frankova HB, Krivankova J, Jorenek M, Novak Z, Raska M, Holy O. Seroprevalence of Measles Antibodies in the Population of the Olomouc Region, Czech Republic—Comparison of the Results of Four Laboratories. Vaccines (Basel) 2022; 10:vaccines10020185. [PMID: 35214643 PMCID: PMC8880731 DOI: 10.3390/vaccines10020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
Objectives: Although the incidence of measles has decreased globally since the introduction of regular vaccination, its frequency has increased again in recent years. The study is focused on data from the Olomouc Region in the Czech Republic analyzed in four laboratories. The obtained results were compared with already published data. Methods: The data were provided by individual laboratories in an anonymized form—age at the time of the examination, sex, and result of test. Samples were collected between June 2018 and September 2019 and evaluated on the scale positive–borderline–negative. Results: A total of 7962 sera samples were evaluated using three different methods—two types of ELISA tests and CLIA. Positive result was issued in a total of 62.6 percent of samples, but the results of individual laboratories varied widely from 55.5 to 70.8 percent. However, the same trend with the highest levels of antibodies in people born before beginning of vaccination was observed. Conclusions: Data show significantly different results depending on the individual laboratories and the detection kits used. The underestimation of the proportion of positive results can cause problems in selecting individuals for revaccination with a live vaccine, which may fail in weakly positive individuals.
Collapse
Affiliation(s)
- Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (M.K.); (M.R.)
| | - Tereza Matusu
- Mikrochem Laboratories a.s., 779 00 Olomouc, Czech Republic; (T.M.); (H.S.); (K.W.)
| | - Helena Sutova
- Mikrochem Laboratories a.s., 779 00 Olomouc, Czech Republic; (T.M.); (H.S.); (K.W.)
| | - Katerina Wezdenkova
- Mikrochem Laboratories a.s., 779 00 Olomouc, Czech Republic; (T.M.); (H.S.); (K.W.)
| | - Renata Vecerova
- Department of Microbiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (R.V.); (Y.S.); (M.K.)
| | - Yvona Smesna
- Department of Microbiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (R.V.); (Y.S.); (M.K.)
| | - Milan Kolar
- Department of Microbiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (R.V.); (Y.S.); (M.K.)
| | | | - Jana Krivankova
- Šumperk Hospital, 787 01 Šumperk, Czech Republic; (J.K.); (M.J.)
| | - Miroslav Jorenek
- Šumperk Hospital, 787 01 Šumperk, Czech Republic; (J.K.); (M.J.)
| | - Zdenek Novak
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (M.K.); (M.R.)
| | - Ondrej Holy
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585-632-818
| |
Collapse
|
13
|
Stokholm I, Puryear W, Sawatzki K, Knudsen SW, Terkelsen T, Becher P, Siebert U, Olsen MT. Emergence and radiation of distemper viruses in terrestrial and marine mammals. Proc Biol Sci 2021; 288:20211969. [PMID: 34702073 PMCID: PMC8548803 DOI: 10.1098/rspb.2021.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
Canine distemper virus (CDV) and phocine distemper virus (PDV) are major pathogens to terrestrial and marine mammals. Yet little is known about the timing and geographical origin of distemper viruses and to what extent it was influenced by environmental change and human activities. To address this, we (i) performed the first comprehensive time-calibrated phylogenetic analysis of the two distemper viruses, (ii) mapped distemper antibody and virus detection data from marine mammals collected between 1972 and 2018, and (iii) compiled historical reports on distemper dating back to the eighteenth century. We find that CDV and PDV diverged in the early seventeenth century. Modern CDV strains last shared a common ancestor in the nineteenth century with a marked radiation during the 1930s-1950s. Modern PDV strains are of more recent origin, diverging in the 1970s-1980s. Based on the compiled information on distemper distribution, the diverse host range of CDV and basal phylogenetic placement of terrestrial morbilliviruses, we hypothesize a terrestrial CDV-like ancestor giving rise to PDV in the North Atlantic. Moreover, given the estimated timing of distemper origin and radiation, we hypothesize a prominent role of environmental change such as the Little Ice Age, and human activities like globalization and war in distemper virus evolution.
Collapse
Affiliation(s)
- Iben Stokholm
- Evolutionary Genomics Section, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, Büsum 25761, Germany
| | - Wendy Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Kaitlin Sawatzki
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Thilde Terkelsen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, Büsum 25761, Germany
| | - Morten Tange Olsen
- Evolutionary Genomics Section, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
| |
Collapse
|
14
|
Oleaga Á, Vázquez CB, Royo LJ, Barral TD, Bonnaire D, Armenteros JÁ, Rabanal B, Gortázar C, Balseiro A. Canine distemper virus in wildlife in south-western Europe. Transbound Emerg Dis 2021; 69:e473-e485. [PMID: 34536064 DOI: 10.1111/tbed.14323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Multi-host pathogens emerging and re-emerging at the wildlife-domestic animal interface affect wildlife management and conservation. This is the case of canine distemper virus (CDV), a paramyxovirus closely related to human measles virus and rinderpest virus of cattle. With an area of 10,603 km2 , Asturias region in Atlantic Spain is a hotspot of carnivore diversity, which includes the largest Eurasian brown bear (Ursus arctos arctos) population and one of the largest wolf (Canis lupus) populations in south-western Europe. In 2020-2021, we recorded mortality due to distemper in four carnivore species including three mustelids (Eurasian badger Meles meles, European marten Martes martes and European polecat Mustela putorius) and one canid (red fox, Vulpes vulpes). Clinical signs and pathology were similar across species and consistent with the emergence of a highly pathogenic viral strain, with CDV antigen mainly located in the central nervous system, lungs, spleen and lymph nodes. A molecular study in eight wild carnivore species, also including the Iberian wolf, Eurasian brown bear, American mink (Neovison vison) and stone marten (Martes foina), revealed 19.51% (16/82) of positivity. Phylogenetic analysis demonstrated that CDV belonged to the previously described European lineage. A retrospective serosurvey (2008-2020) showed a high seroprevalence of CDV antibodies (43.4%) in 684 analyzed badgers, indicating a long-term though not stable viral circulation in this multi-host community. The possible triggers of the 2020-2021 outbreak and the implications for carnivore management and conservation are discussed.
Collapse
Affiliation(s)
- Álvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), Gijón, Spain
| | - Cristina Blanco Vázquez
- Servicio Regional de Investigación y Desarrollo Agroalimentario del Principado de Asturias (SERIDA), Villaviciosa, Spain
| | - Luis José Royo
- Servicio Regional de Investigación y Desarrollo Agroalimentario del Principado de Asturias (SERIDA), Villaviciosa, Spain
| | - Thiago Doria Barral
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Debby Bonnaire
- Ecole Supérieure d'Ingénieurs Agroalimentaires de Bretagne atlantique, Université de Bretagne Occidentale, Brest, France.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - José Ángel Armenteros
- Consejería de Fomento, Ordenación del Territorio y Medio Ambiente del Principado de Asturias, Oviedo, Spain
| | - Benjamín Rabanal
- Laboratorio de Técnicas Instrumentales, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos-IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| |
Collapse
|
15
|
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Pathogens 2021; 10:pathogens10091199. [PMID: 34578231 PMCID: PMC8471232 DOI: 10.3390/pathogens10091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein-protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.
Collapse
|
16
|
Laksono BM, Tran DN, Kondova I, van Engelen HGH, Michels S, Nambulli S, de Vries RD, Duprex WP, Verjans GMGM, de Swart RL. Comparable Infection Level and Tropism of Measles Virus and Canine Distemper Virus in Organotypic Brain Slice Cultures Obtained from Natural Host Species. Viruses 2021; 13:1582. [PMID: 34452447 PMCID: PMC8402773 DOI: 10.3390/v13081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Measles virus (MV) and canine distemper virus (CDV) are closely related members of the family Paramyxoviridae, genus Morbillivirus. MV infection of humans and non-human primates (NHPs) results in a self-limiting disease, which rarely involves central nervous system (CNS) complications. In contrast, infection of carnivores with CDV usually results in severe disease, in which CNS complications are common and the case-fatality rate is high. To compare the neurovirulence and neurotropism of MV and CDV, we established a short-term organotypic brain slice culture system of the olfactory bulb, hippocampus, or cortex obtained from NHPs, dogs, and ferrets. Slices were inoculated ex vivo with wild-type-based recombinant CDV or MV expressing a fluorescent reporter protein. The infection level of both morbilliviruses was determined at different times post-infection. We observed equivalent infection levels and identified microglia as main target cells in CDV-inoculated carnivore and MV-inoculated NHP brain tissue slices. Neurons were also susceptible to MV infection in NHP brain slice cultures. Our findings suggest that MV and CDV have comparable neurotropism and intrinsic capacity to infect CNS-resident cells of their natural host species.
Collapse
Affiliation(s)
- Brigitta M. Laksono
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Diana N. Tran
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Ivanela Kondova
- Division of Pathology, Animal Science Department, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands;
| | - Harry G. H. van Engelen
- Department of Clinical Sciences of Companion Animals, Veterinary Medicine, Universiteit Utrecht, 3584 CM Utrecht, The Netherlands;
| | - Samira Michels
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Sham Nambulli
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (S.N.); (W.P.D.)
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - W. Paul Duprex
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (S.N.); (W.P.D.)
| | - Georges M. G. M. Verjans
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| |
Collapse
|
17
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Lavorente FLP, de Matos AMRN, Lorenzetti E, Oliveira MV, Pinto-Ferreira F, Michelazzo MDMZ, Viana NE, Lunardi M, Headley SA, Alfieri AA, Alfieri AF. First detection of Feline morbillivirus infection in white-eared opossums (Didelphis albiventris, Lund, 1840), a non-feline host. Transbound Emerg Dis 2021; 69:1426-1437. [PMID: 33872470 DOI: 10.1111/tbed.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Feline Morbillivirus (FeMV) was first detected in 2012 in domestic cats from Hong Kong and was found to be associated with tubulointerstitial nephritis and chronic kidney disease. In subsequent studies in other countries, FeMV was detected in asymptomatic cats. However, it is not clear whether FeMV plays a role as a pathogen in the kidney diseases of cats, and other epidemiological data are still unknown. To date, studies have reported the presence of FeMV exclusively in domestic cats. This study is the first molecular detection of the FeMV RNA associated with pathological and immunohistochemical findings in a synanthropic marsupial, the white-eared opossum (Didelphis albiventris), inhabiting peri-urban areas of north-central Parana, Southern Brazil. Molecular techniques identified the viral RNA in the lungs and kidneys. Histopathologic evaluation of these tissues revealed interstitial pneumonia in the lungs with lymphocytic nephritis and tubular necrosis in the kidneys. Immunohistochemistry assays detected positive intralesional immunoreactivity to N protein of FeMV within the lungs and kidneys. A FeMV opossum strain was isolated in Crandell Rees feline kidney lineage cells, resulting in syncytia formation and cell death. Therefore, these results support the ability of FeMV to infect other mammal species and reinforce the possibility of the opossum to be a disseminator of this virus among domestic and wild animals.
Collapse
Affiliation(s)
- Fernanda Louise Pereira Lavorente
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Marcos Vinicius Oliveira
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fernanda Pinto-Ferreira
- Laboratory of Zoonoses and Public Health, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Mariana de Mello Zanin Michelazzo
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Nayara Emily Viana
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Michele Lunardi
- Laboratory of Veterinary Microbiology, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil
| | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
19
|
Kalvatchev N, Sirakov I. Respiratory viruses crossing the species barrier and emergence of new human coronavirus infectious disease. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1843539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Nikolay Kalvatchev
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Sirakov I, Bakalov D, Popova R, Mitov I. Analysis of Host Cell Receptor GRP78 for Potential Natural Reservoirs of SARS-CoV-2. J Epidemiol Glob Health 2020; 10:198-200. [PMID: 32954708 PMCID: PMC7509100 DOI: 10.2991/jegh.k.200806.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- I Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria
| | - D Bakalov
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave street, Sofia 1431, Bulgaria
| | - R Popova
- Gen Lab Ltd., 4 Rodopi Street, Sarafovo, Burgas, Bulgaria
| | - I Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria
| |
Collapse
|
21
|
Takeda M, Seki F, Yamamoto Y, Nao N, Tokiwa H. Animal morbilliviruses and their cross-species transmission potential. Curr Opin Virol 2020; 41:38-45. [PMID: 32344228 DOI: 10.1016/j.coviro.2020.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
Like measles virus (MV), whose primary hosts are humans, non-human animal morbilliviruses use SLAM (signaling lymphocytic activation molecule) and PVRL4 (nectin-4) expressed on immune and epithelial cells, respectively, as receptors. PVRL4's amino acid sequence is highly conserved across species, while that of SLAM varies significantly. However, non-host animal SLAMs often function as receptors for different morbilliviruses. Uniquely, human SLAM is somewhat specific for MV, but canine distemper virus, which shows the widest host range among morbilliviruses, readily gains the ability to use human SLAM. The host range for morbilliviruses is also modulated by their ability to counteract the host's innate immunity, but the risk of cross-species transmission of non-human animal morbilliviruses to humans could occur if MV is successfully eradicated.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Naganori Nao
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
22
|
Measles pathogenesis, immune suppression and animal models. Curr Opin Virol 2020; 41:31-37. [PMID: 32339942 DOI: 10.1016/j.coviro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/09/2023]
Abstract
Measles virus causes a disease with seemingly innocent symptoms, such as fever and rash. However, measles immune suppression causes increased susceptibility to opportunistic infections that are responsible for the majority of over 100000 yearly fatalities. The pathogenesis of measles is complex, because measles virus uses multiple receptors to infect different cell types in different phases of the disease. Experimental morbillivirus infections with wild-type viruses in natural host species have demonstrated that direct infection and depletion of memory immune cells causes immune amnesia. This was confirmed in studies of a measles outbreak in unvaccinated children and provides an explanation for epidemiological observations of long-term increases in morbidity and mortality after measles.
Collapse
|
23
|
Sonne C, Lakemeyer J, Desforges JP, Eulaers I, Persson S, Stokholm I, Galatius A, Gross S, Gonnsen K, Lehnert K, Andersen-Ranberg EU, Tange Olsen M, Dietz R, Siebert U. A review of pathogens in selected Baltic Sea indicator species. ENVIRONMENT INTERNATIONAL 2020; 137:105565. [PMID: 32070804 DOI: 10.1016/j.envint.2020.105565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Here we review the state-of-the-art of pathogens in select marine and terrestrial key species of the Baltic Sea, i.e. ringed seal (Pusa hispida), harbour seal (Phoca vitulina), grey seal (Halichoerus grypus), harbour porpoise (Phocoena phocoena), common eider (Somateria mollissima), pink-footed goose (Anser brachyrhynchus) and white-tailed eagle (Haliaeetus albicilla). This review is the first to merge and present available information and baseline data for the FP7 BONUS BaltHealth project: Baltic Sea multilevel health impacts on key species of anthropogenic hazardous substances. Understanding the spread, prevalence and effects of wildlife pathogens is important for the understanding of animal and ecosystem health, ecosystem function and services, as well as human exposure to zoonotic diseases. This review summarises the occurrence of parasites, viruses and bacteria over the past six decades, including severe outbreaks of Phocine Distemper Virus (PDV), the seroprevalence of Influenza A and the recent increase in seal parasites. We show that Baltic high trophic key species are exposed to multiple bacterial, viral and parasitic diseases. Parasites, such as C. semerme and P. truncatum present in the colon and liver Baltic grey seals, respectively, and anisakid nematodes require particular monitoring due to their effects on animal health. In addition, distribution of existing viral and bacterial pathogens, along with the emergence and spread of new pathogens, need to be monitored in order to assess the health status of key Baltic species. Relevant bacteria are Streptococcus spp., Brucella spp., Erysipelothrix rhusiopathiae, Mycoplasma spp. and Leptospira interrogans; relevant viruses are influenza virus, distemper virus, pox virus and herpes virus. This is of special importance as some of the occurring pathogens are zoonotic and thus also pose a potential risk for human health. Marine mammal handlers, as well as civilians that by chance encounter marine mammals, need to be aware of this risk. It is therefore important to continue the monitoring of diseases affecting key Baltic species in order to assess their relationship to population dynamics and their potential threat to humans. These infectious agents are valuable indicators of host ecology and can act as bioindicators of distribution, migration, diet and behaviour of marine mammals and birds, as well as of climate change and changes in food web dynamics. In addition, infectious diseases are linked to pollutant exposure, overexploitation, immune suppression and subsequent inflammatory disease. Ultimately, these diseases affect the health of the entire ecosystem and, consequently, ecosystem function and services. As global warming is continuously increasing, the impact of global change on infectious disease patterns is important to monitor in Baltic key species in the future.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
| | - Iben Stokholm
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany; Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Anders Galatius
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Katharina Gonnsen
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Emilie U Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health, Dyrlægevej 16, 1870 Frederiksberg C, Denmark.
| | - Morten Tange Olsen
- Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| |
Collapse
|
24
|
Dou Y, Liang Z, Prajapati M, Zhang R, Li Y, Zhang Z. Expanding Diversity of Susceptible Hosts in Peste Des Petits Ruminants Virus Infection and Its Potential Mechanism Beyond. Front Vet Sci 2020; 7:66. [PMID: 32181263 PMCID: PMC7059747 DOI: 10.3389/fvets.2020.00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
Peste des petits ruminants (PPR) is a severe respiratory and digestive tract disease of domestic small ruminants caused by PPR virus (PPRV) of the genus Morbillivirus. Although the primary hosts of PPRV are goats and sheep, the host range of PPRV has been continuously expanding and reported to infect various animal hosts over the last decades, which could bring a potential challenge to effectively control and eradicate PPR globally. In this review, we focused on current knowledge about host expansion and interspecies infection of PPRV and discussed the potential mechanisms involved.
Collapse
Affiliation(s)
- Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhongxiang Liang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Meera Prajapati
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,Animal Health Research Division, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Rui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yanmin Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
25
|
Hari L, Lautenschlager S. [CME Dermatology 22: Measles - Empidemiology and Clinical Manifestations]. PRAXIS 2020; 109:1109-1116. [PMID: 33108997 DOI: 10.1024/1661-8157/a003587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CME Dermatology 22: Measles - Empidemiology and Clinical Manifestations Abstract. Measles is a highly contagious, acute and febrile illness that results from infection with measles virus. The World Health Organization (WHO) estimates a worldwide prevalence of ten million patients per year, leading to approximately 142 000 deaths (case fatality rate 1.4 %). The illness begins with fever, malaise and typically with at least one of the following signs: cough, coryza and/or conjunctivitis. Three to four days later, the characteristical rash appears. The primary clinical diagnosis needs to be confirmed by detection of specific IgM antibodies in serum or viral RNA by a throat swap. The management mainly consists of supportive therapy, a specific antiviral treatment does not exist. Therefore, prevention by widespread measles vaccination has absolute priority.
Collapse
Affiliation(s)
- Luc Hari
- Institut für Dermatologie und Venerologie, Departement für Innere Medizin, Stadtspital Triemli, Zürich
| | - Stephan Lautenschlager
- Institut für Dermatologie und Venerologie, Departement für Innere Medizin, Stadtspital Triemli, Zürich
| |
Collapse
|
26
|
Quintero-Gil C, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of Canine Distemper Virus: Consolidating Evidence to Understand Potential Zoonoses. Front Microbiol 2019; 10:1982. [PMID: 31555226 PMCID: PMC6722215 DOI: 10.3389/fmicb.2019.01982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
27
|
Shah Y, Pant DK, Ojha K, Sharma M, Peter F. Possible Transmission Dynamics of Canine Distemper Virus at Khumbu Region of Nepal. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Abstract
Although viruses comprise the most abundant genetic material in the biosphere, to date only several thousand virus species have been formally defined. Such a limited perspective on virus diversity has in part arisen because viruses were traditionally considered only as etiologic agents of overt disease in humans or economically important species and were often difficult to identify using cell culture. This view has dramatically changed with the rise of metagenomics, which is transforming virus discovery and revealing a remarkable diversity of viruses sampled from diverse cellular organisms. These newly discovered viruses help fill major gaps in the evolutionary history of viruses, revealing a near continuum of diversity among genera, families, and even orders of RNA viruses. Herein, we review some of the recent advances in our understanding of the RNA virosphere that have stemmed from metagenomics, note future directions, and highlight some of the remaining challenges to this rapidly developing field.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen Wang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Chen Qin
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Feline morbillivirus in Northern Italy: prevalence in urine and kidneys with and without renal disease. Vet Microbiol 2019; 233:133-139. [PMID: 31176399 PMCID: PMC7127068 DOI: 10.1016/j.vetmic.2019.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Feline morbillivirus (FeMV) is an emerging virus that was first described in Hong Kong in 2012. Several reports suggested the epidemiological association of FeMV infection with chronic kidney disease (CKD) in cats. The aim of this study was to investigate the presence and the genetic diversity of FeMV as well as the relationship between FeMV infection and CKD in cats from Northern Italy. Urine (n = 81) and kidney samples (n = 27) from 92 cats admitted to the Veterinary Teaching Hospital of the University of Milan between 2014 and 2017 were investigated for FeMV infection. FeMV RNA was detected in one urine sample (1.23%; 95% CI: 0.03-6.68%) and in two kidneys (7.40%; 95% CI: 0.91-24.28%). FeMV RNA was revealed only in urine or kidneys of cats without evidence of CKD. Phylogenetic analysis showed that the three strains clustered with FeMV strains retrieved from public database, forming a distinct sub-cluster of FeMV. The presence of distinct genotypes of FeMV found in this study is in accordance with previous studies demonstrating that FeMV strains are genetically diverse. A clear relationship between the presence of FeMV infection and CKD in the cats from Northern Italy was not observed, confirming recent reports that do not support the hypothesis that FeMV infection is associated with the development of CKD.
Collapse
|
30
|
Uhl EW, Kelderhouse C, Buikstra J, Blick JP, Bolon B, Hogan RJ. New world origin of canine distemper: Interdisciplinary insights. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 24:266-278. [PMID: 30743216 DOI: 10.1016/j.ijpp.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Canine distemper virus (CDV), human measles virus (HMV), and rinderpest virus (RPV) of cattle are morbilliviruses that have caused devastating outbreaks for centuries. This paper seeks to reconstruct the evolutionary history of CDV. MATERIALS AND METHODS An interdisciplinary approach is adopted, synthesizing paleopathological analysis of 96 Pre-Columbian dogs (750-1470 CE) from the Weyanoke Old Town, Virginia site, with historical reports, molecular analysis and morbilliviral epidemiology. RESULTS Both measles (c.900CE) and rinderpest (c. 376 BCE) were first reported in Eurasia, while canine distemper was initially described in South America much later (1735 CE); there are no paleopathological indications of CDV in Weyanoke Old Town dogs. Molecularly, CDV is closely related to HMV, while viral codon usage indicates CDV may have previously infected humans; South American measles epidemics occurred prior to the emergence of canine distemper and would have facilitated HMV transmission and adaptation to dogs. CONCLUSIONS The measles epidemics that decimated indigenous South American populations in the 1500-1700 s likely facilitated the establishment of CDV as a canine pathogen, which eventually spread to Europe and beyond. SIGNIFICANCE Understanding the historical and environmental conditions that have driven morbilliviral evolution provides important insights into potential future threats of animal/human cross-species infections. LIMITATIONS Interpreting historical disease descriptions is difficult and the archaeological specimens are limited. Molecular sequence data and codon usage analyses rely on modern viruses. SUGGESTIONS FOR FURTHER RESEARCH Interdisciplinary approaches are increasingly needed to understand diseases of the past and present, as critical information and knowledge is scattered in different disciplines.
Collapse
Affiliation(s)
- Elizabeth W Uhl
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602-7388, USA.
| | - Charles Kelderhouse
- Augusta University/University of Georgia Medical Partnership, Athens, GA, 30602-7388, USA.
| | - Jane Buikstra
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402, USA.
| | - Jeffrey P Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA 31061-0490, USA
| | - Brad Bolon
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA 31061-0490, USA.
| | - Robert J Hogan
- Department of Veterinary Biosciences and Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602-7388, USA.
| |
Collapse
|
31
|
Beatty JA, Sharp CR, Duprex WP, Munday JS. Novel feline viruses: Emerging significance of gammaherpesvirus and morbillivirus infections. J Feline Med Surg 2019; 21:5-11. [PMID: 30472918 PMCID: PMC10814182 DOI: 10.1177/1098612x18808102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRACTICAL RELEVANCE New technologies capable of sequencing the genetic material in any given biological sample, combined with computer-based algorithms for sequence assembly and analysis, have revolutionised infectious disease research. The rate at which novel viruses are being discovered now exceeds our understanding of their clinical relevance. Novel viruses may contribute to diseases that are major causes of feline morbidity and mortality, including cancer and chronic kidney disease. The identification of new viral pathogens raises the prospect of not only improved patient outcomes through specific treatment but even disease prevention through viral control measures. CLINICAL CHALLENGES It can be difficult to determine the role of a novel virus in disease development. Disease may be an occasional outcome, often years after infection. A high prevalence of infection in the general population can make disease associations harder to identify and almost impossible to rule out. Host cofactors such as immune dysfunction, genetic background or coinfections may be required for manifestation of disease, and one virus species may be linked to a range of pathological sequelae. Establishing causality relies on evaluating accumulating evidence from multiple investigations, which is often hard to access by practitioners. GLOBAL IMPORTANCE The worldwide distribution of gammaherpesvirus and morbillivirus infections in domestic cats underlines the potential of these viruses to negatively impact feline health and welfare globally. EVIDENCE BASE This review relies on grade la-III evidence.
Collapse
Affiliation(s)
- Julia A Beatty
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, NSW 2006, Australia
| | - Claire R Sharp
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Australia
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, 620 Albany Street, Boston, Massachusetts, 02118, USA
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
32
|
Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. J Virol 2018; 92:JVI.01248-18. [PMID: 30232185 PMCID: PMC6232486 DOI: 10.1128/jvi.01248-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Morbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)-the small-ruminant morbillivirus-is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1-the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement for in situ derivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCE A significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus's evolution in the field. Of note, this study was undertaken in vitro, without generation of a fully infectious virus with this phenotype.
Collapse
|
33
|
Abstract
Measles is a highly contagious disease that results from infection with measles virus and is still responsible for more than 100 000 deaths every year, down from more than 2 million deaths annually before the introduction and widespread use of measles vaccine. Measles virus is transmitted by the respiratory route and illness begins with fever, cough, coryza, and conjunctivitis followed by a characteristic rash. Complications of measles affect most organ systems, with pneumonia accounting for most measles-associated morbidity and mortality. The management of patients with measles includes provision of vitamin A. Measles is best prevented through vaccination, and the major reductions in measles incidence and mortality have renewed interest in regional elimination and global eradication. However, urgent efforts are needed to increase stagnating global coverage with two doses of measles vaccine through advocacy, education, and the strengthening of routine immunisation systems. Use of combined measles-rubella vaccines provides an opportunity to eliminate rubella and congenital rubella syndrome. Ongoing research efforts, including the development of point-of-care diagnostics and microneedle patches, will facilitate progress towards measles elimination and eradication.
Collapse
Affiliation(s)
- William J Moss
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
34
|
Stejskalova K, Bayerova Z, Futas J, Hrazdilova K, Klumplerova M, Oppelt J, Splichalova P, Di Guardo G, Mazzariol S, Di Francesco CE, Di Francesco G, Terracciano G, Paiu RM, Ursache TD, Modry D, Horin P. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans. HLA 2017; 90:343-353. [DOI: 10.1111/tan.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/25/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022]
Affiliation(s)
- K. Stejskalova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - Z. Bayerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Futas
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - K. Hrazdilova
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
| | - M. Klumplerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Oppelt
- Ceitec MU, Masaryk University; Brno Czech Republic
- Faculty of Science, National Centre for Biomolecular Research; Masaryk University; Brno Czech Republic
| | - P. Splichalova
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - G. Di Guardo
- Faculty of Veterinary Medicine; University of Teramo; Teramo Italy
| | - S. Mazzariol
- Department of Comparative Biomedicine and Food Science, Viale dell'Università; University of Padua; Padua Italy
| | | | - G. Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - G. Terracciano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”; Pisa Italy
| | | | - T. D. Ursache
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca; Cluj-Napoca Romania
| | - D. Modry
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
- Department of Pathology and Parasitology; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Biology Center, Czech Academy of Sciences; České Budějovice Czech Republic
| | - P. Horin
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| |
Collapse
|
35
|
Ma XX, Chang QY, Ma P, Li LJ, Zhou XK, Zhang DR, Li MS, Cao X, Ma ZR. Analyses of nucleotide, codon and amino acids usages between peste des petits ruminants virus and rinderpest virus. Gene 2017; 637:115-123. [PMID: 28947301 DOI: 10.1016/j.gene.2017.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Peste des petits ruminants virus (PPRV) and rinderpest virus (RPV) are two causative agents of an economically important disease for ruminants (i.e., sheep, cattle and goat). In this study, the nucleotide, codon and amino acid usages for PPRV and RPV have been analyzed by multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis represents that ACG for Thr and GCG for Ala are selected with under-representation in both PPRV and RPV, and AGA for Arg in PPRV and AGG for Arg in RPV are used with over-representation. The usage of nucleotide pair (CpG) tends to be removed from viral genes of the two viruses, suggesting that other evolutionary forces take part in evolutionary processes for viral genes in addition to mutation pressure from nucleotide usage at the third codon position. The overall nucleotide usage of viral gene is not major factor in shaping synonymous codon usage patterns, while the nucleotide usages at the third codon position and the nucleotide pairs play important roles in shaping synonymous codon usage patterns. Although PPRV and RPV are closely related antigenically, the codon and amino acid usage patterns for viral genes represent a significant genetic diversity between PPRV and RPV. Moreover, the overall codon usage trends for viral genes between PPRV and RPV are mainly influenced by mutation pressure from nucleotide usage at the third codon position and translation selection from hosts. Taken together, this is first comprehensive analyses for nucleotide, codon and amino acid usages of viral genes of PPRV and RPV and the findings are expected to increase our understanding of evolutionary forces influencing viral evolutionary pathway and adaptation toward hosts.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Qiu-Yan Chang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Peng Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Lin-Jie Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xiao-Kai Zhou
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - De-Rong Zhang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Ming-Sheng Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xin Cao
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| | - Zhong-Ren Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| |
Collapse
|
36
|
de Vries RD, Ludlow M, de Jong A, Rennick LJ, Verburgh RJ, van Amerongen G, van Riel D, van Run PRWA, Herfst S, Kuiken T, Fouchier RAM, Osterhaus ADME, de Swart RL, Duprex WP. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog 2017; 13:e1006371. [PMID: 28481926 PMCID: PMC5436898 DOI: 10.1371/journal.ppat.1006371] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/18/2017] [Accepted: 04/23/2017] [Indexed: 12/19/2022] Open
Abstract
Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.
Collapse
Affiliation(s)
- Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Ludlow
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alwin de Jong
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Linda J. Rennick
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - R. Joyce Verburgh
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Geert van Amerongen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Peter R. W. A. van Run
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - W. Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
37
|
Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens. J Virol 2017; 91:JVI.02077-16. [PMID: 28148801 DOI: 10.1128/jvi.02077-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens.
Collapse
|
38
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
39
|
Sharp CR, Nambulli S, Acciardo AS, Rennick LJ, Drexler JF, Rima BK, Williams T, Duprex WP. Chronic Infection of Domestic Cats with Feline Morbillivirus, United States. Emerg Infect Dis 2016; 22:760-2. [PMID: 26982566 PMCID: PMC4806961 DOI: 10.3201/eid2204.151921] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
40
|
Laksono BM, de Vries RD, McQuaid S, Duprex WP, de Swart RL. Measles Virus Host Invasion and Pathogenesis. Viruses 2016; 8:E210. [PMID: 27483301 PMCID: PMC4997572 DOI: 10.3390/v8080210] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023] Open
Abstract
Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150⁺ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis.
Collapse
Affiliation(s)
- Brigitta M Laksono
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, BT7 1NN Belfast, UK.
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, 3015CN Rotterdam, The Netherlands.
| |
Collapse
|