1
|
Orleanska J, Bik E, Baranska M, Majzner K. Mechanisms of mitotic inhibition in human aorta endothelial cells: Molecular and morphological in vitro spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124623. [PMID: 39002470 DOI: 10.1016/j.saa.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Ewelina Bik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Salama SA, Youssef ME. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur J Pharm Sci 2024; 203:106939. [PMID: 39423903 DOI: 10.1016/j.ejps.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has proven efficacy against various malignancies. However, its clinical utility is hampered by its dose-limiting toxicities, including nephrotoxicity, ototoxicity, neurotoxicity, and myelosuppression. This review aims to provide a comprehensive overview of cisplatin toxicity, encompassing its underlying mechanisms, risk factors, and emerging therapeutic strategies. The mechanisms of cisplatin toxicity are multifactorial and involve oxidative stress, inflammation, DNA damage, and cellular apoptosis. Various risk factors contribute to the interindividual variability in susceptibility to cisplatin toxicity. The risk of developing cisplatin-induced toxicity could be related to pre-existing conditions, including kidney disease, hearing impairment, neuropathy, impaired liver function, and other comorbidities. Additionally, this review highlights the emerging therapeutic strategies that could be applied to minimize cisplatin-induced toxicities and aid in optimizing cisplatin treatment regimens, improving patient outcomes, and enhancing the overall quality of cancer care.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salama A Salama
- Department of Zoology, Faculty of Science, Damanhour University, Egypt; Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
3
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
4
|
Hohmann A, Zhang K, Mooshage CM, Jende JME, Rotkopf LT, Schlemmer HP, Bendszus M, Wick W, Kurz FT. Whole-Brain Vascular Architecture Mapping Identifies Region-Specific Microvascular Profiles In Vivo. AJNR Am J Neuroradiol 2024; 45:1346-1354. [PMID: 39054290 PMCID: PMC11392379 DOI: 10.3174/ajnr.a8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND PURPOSE The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles. MATERIALS AND METHODS This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging. Voxelwise plotting of resulting values for gradient-echo (R2*) versus spin-echo (R2) relaxation rates during contrast agent bolus administration generates vessel vortex curves that allow the extraction of vascular architecture mapping parameters representative of, eg, vessel type, vessel radius, or CBV in the underlying voxel. Averaged whole-brain parametric maps were calculated for 9 parameters, and VOI analysis was conducted on the basis of a standardized brain atlas and individual cortical GM and WM segmentation. RESULTS Prevalence of vascular risk factors among subjects (n = 106; mean age, 39.2 [SD, 12.5] years; 56 women) was similar to those in the German population. Compared with WM, we found cortical GM to have larger mean vascular calibers (5.80 [SD, 0.59] versus 4.25 [SD, 0.62] P < .001), increased blood volume fraction (20.40 [SD, 4.49] s-1 versus 11.05 [SD, 2.44] s-1; P < .001), and a dominance of venous vessels. Distinct microvascular profiles emerged for cortical GM, where vascular architecture mapping vessel type indicator differed, eg, between the thalamus and cortical GM (mean, -2.47 [SD, 4.02] s-2 versus -5.41 [SD, 2.84] s-2; P < .001). Intraclass correlation coefficient values indicated overall high test-retest reliability for vascular architecture mapping parameter mean values when comparing multiple scans per subject. CONCLUSIONS Whole-brain vascular architecture mapping in the adult brain reveals region-specific microvascular profiles. The obtained parameter reference ranges for distinct anatomic and functional brain areas may be used for future vascular architecture mapping studies on cerebrovascular pathologies and might facilitate early discovery of microvascular changes, in, eg, neurodegeneration and neuro-oncology.
Collapse
Affiliation(s)
- Anja Hohmann
- From the Department of Neurology (A.H., W.W.), Heidelberg University Hospital, Heidelberg, Germany
| | - Ke Zhang
- Department of Diagnostic and Interventional Radiology (K.Z.), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph M Mooshage
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas T Rotkopf
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Department of Neurology (A.H., W.W.), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology (W.W.), German Cancer Research Center, Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
- Division of Neuroradiology (F.T.K.), University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Letsou W. Settling the score: what composite measures of social determinants tell us about hypertension risk. JNCI Cancer Spectr 2024; 8:pkae065. [PMID: 39222406 PMCID: PMC11368122 DOI: 10.1093/jncics/pkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- William Letsou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| |
Collapse
|
6
|
Dillon HT, Foulkes SJ, Baik AH, Scott JM, Touyz RM, Herrmann J, Haykowsky MJ, La Gerche A, Howden EJ. Cancer Therapy and Exercise Intolerance: The Heart Is But a Part: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:496-513. [PMID: 39239327 PMCID: PMC11372306 DOI: 10.1016/j.jaccao.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 09/07/2024] Open
Abstract
The landscape of cancer therapeutics is continually evolving, with successes in improved survivorship and reduced disease progression for many patients with cancer. Improved cancer outcomes expose competing comorbidities, some of which may be exacerbated by cancer therapies. The leading cause of disability and death for many early-stage cancers is cardiovascular disease (CVD), which is often attributed to direct or indirect cardiac injury from cancer therapy. In this review, the authors propose that toxicities related to conventional and novel cancer therapeutics should be considered beyond the heart. The authors provide a framework using the oxygen pathway to understand the impact of cancer treatment on peak oxygen uptake, a marker of integrative cardiopulmonary function and CVD risk. Peripheral toxicities and the impact on oxygen transport are discussed. Consideration for the broad effects of cancer therapies will improve the prediction and identification of cancer survivors at risk for CVD, functional disability, and premature mortality and those who would benefit from therapeutic intervention, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Hayley T. Dillon
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Stephen J. Foulkes
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
- Heart Exercise and Research Trials (HEART) Lab, St Vincent’s Institute, Fitzroy, Victoria, Australia
| | - Alan H. Baik
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jessica M. Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark J. Haykowsky
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - André La Gerche
- Heart Exercise and Research Trials (HEART) Lab, St Vincent’s Institute, Fitzroy, Victoria, Australia
- Cardiology Department, St. Vincent’s Hospital Melbourne, Fitzroy, Australia
- HEART Lab, Victor Chang Cardiovascular Research Institute, Darlinghurst, NSW, Australia
| | - Erin J. Howden
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Grosicki M, Wojnar-Lason K, Mosiolek S, Mateuszuk L, Stojak M, Chlopicki S. Distinct profile of antiviral drugs effects in aortic and pulmonary endothelial cells revealed by high-content microscopy and cell painting assays. Toxicol Appl Pharmacol 2024; 490:117030. [PMID: 38981531 DOI: 10.1016/j.taap.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 μM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Sylwester Mosiolek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
8
|
Gupta P, Canonico ME, Faaborg-Andersen C, Prabhu N, Kondapalli L, Quintana RA. Updates in the management of cancer therapy-related hypertension. Curr Opin Cardiol 2024; 39:235-243. [PMID: 38391284 DOI: 10.1097/hco.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW To provide a comprehensive review of hypertension among patients with cancer. Several cancer therapies cause hypertension which has resulted in a growing and vulnerable population of patients with difficult to control hypertension which has significant downstream effects. RECENT FINDINGS Hypertension affects up to 50% of cancer patients and higher comorbidity when compared to the general population. Many anticancer therapies can cause hypertension through their treatment effect. Antihypertensive treatment is crucial given cardiovascular mortality is a leading cause of death among cancer patients. It is already known that hypertension is poorly controlled in the general population, and there are additional challenges in management among patients with cancer. Patients with cancer suffer from multimorbidity, are on multiple medications creating concern for drug interactions, and often have blood pressure lability, which can worsen clinical inertia among patients and their providers. It is crucial to effectively treat hypertension in cancer patients to mitigate downstream adverse cardiovascular events. SUMMARY In recent years, there have been significant changes in management guidelines of hypertension and simultaneously as influx of new cancer therapeutics. We provide an update on hypertension treatment among patients with cancer on different chemotherapeutic agents.
Collapse
Affiliation(s)
- Prerna Gupta
- Department of Medicine, Division of Cardiology, University of Colorado
| | - Mario Enrico Canonico
- Department of Medicine, Division of Cardiology, University of Colorado
- CPC Clinical Research, Aurora, Colorado
| | - Christian Faaborg-Andersen
- Department of Medicine, Massachusetts General Hospital / Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Prabhu
- Department of Medicine, Division of Cardiology, University of Colorado
| | | | | |
Collapse
|
9
|
Nagasawa H, Kaneko H, Suzuki Y, Okada A, Fujiu K, Takeda N, Morita H, Nishiyama A, Yano Y, Node K, Viera AJ, Carey RM, Oparil S, Yasunaga H, Touyz RM, Komuro I. Association of cancer with the risk of developing hypertension. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2024; 10:228-234. [PMID: 37321962 PMCID: PMC11112520 DOI: 10.1093/ehjqcco/qcad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Although the importance of hypertension in patients with cancer is widely recognized, little is known about the risk of developing hypertension in patients with a history of cancer. METHODS AND RESULTS This retrospective observational cohort study analysed data from the JMDC Claims Database between 2005 and 2022, including 78 162 patients with a history of cancer and 3692 654 individuals without cancer. The primary endpoint was the incidence of hypertension.During a mean follow-up period of 1208 ± 966 days, 311 197 participants developed hypertension. The incidence of hypertension was 364.6 [95% confidence interval (CI) 357.0-372.2] per 10 000 person-years among those with a history of cancer, and 247.2 (95% CI 246.3-248.1) per 10 000 person-years in those without cancer. Individuals with a history of cancer had an elevated risk of developing hypertension, according to multivariable Cox regression analyses [hazard ratio (HR) 1.17, 95% CI 1.15-1.20]. Both cancer patients requiring active antineoplastic therapy (HR 2.01, 95% CI 1.85-2.20), and those who did not require active antineoplastic therapy (HR 1.14, 95% CI 1.12-1.17) had an increased risk of hypertension. A multitude of sensitivity analyses confirmed the robustness of the relationship between cancer and incident hypertension. Patients with certain types of cancer were found to have a higher risk of developing hypertension than those without cancer, with varying risks dependent on the type of cancer. CONCLUSION Our analysis of a nationwide epidemiological database revealed that individuals with a history of cancer have a higher risk of developing hypertension, and this finding applies to both cancer patients who require active antineoplastic therapy and those who do not.
Collapse
Affiliation(s)
- Hajime Nagasawa
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hidehiro Kaneko
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- The Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan
| | - Yuta Suzuki
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health, Saitama, Japan
| | - Akira Okada
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhito Fujiu
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- The Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichiro Yano
- Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Anthony J Viera
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Robert M Carey
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Suzanne Oparil
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hideo Yasunaga
- The Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Rhian M Touyz
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Issei Komuro
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
10
|
Basar OY, Mohammed S, Qoronfleh MW, Acar A. Optimizing cancer therapy: a review of the multifaceted effects of metronomic chemotherapy. Front Cell Dev Biol 2024; 12:1369597. [PMID: 38813084 PMCID: PMC11133583 DOI: 10.3389/fcell.2024.1369597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Metronomic chemotherapy (MCT), characterized by the continuous administration of chemotherapeutics at a lower dose without prolonged drug-free periods, has garnered significant attention over the last 2 decades. Extensive evidence from both pre-clinical and clinical settings indicates that MCT induces distinct biological effects than the standard Maximum Tolerated Dose (MTD) chemotherapy. The low toxicity profile, reduced likelihood of inducing acquired therapeutic resistance, and low cost of MCT render it an attractive chemotherapeutic regimen option. One of the most prominent aspects of MCT is its anti-angiogenesis effects. It has been shown to stimulate the expression of anti-angiogenic molecules, thereby inhibiting angiogenesis. In addition, MCT has been shown to decrease the regulatory T-cell population and promote anti-tumor immune response through inducing dendritic cell maturation and increasing the number of cytotoxic T-cells. Combination therapies utilizing MCT along with oncolytic virotherapy, radiotherapy or other chemotherapeutic regimens have been studied extensively. This review provides an overview of the current status of MCT research and the established mechanisms of action of MCT treatment and also offers insights into potential avenues of development for MCT in the future.
Collapse
Affiliation(s)
- Oyku Yagmur Basar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Sawsan Mohammed
- Qatar University, QU Health, College of Medicine, Doha, Qatar
| | - M. Walid Qoronfleh
- Q3 Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
11
|
Chavda VP, Vuppu S, Balar PC, Mishra T, Bezbaruah R, Teli D, Sharma N, Alom S. Propolis in the management of cardiovascular disease. Int J Biol Macromol 2024; 266:131219. [PMID: 38556227 DOI: 10.1016/j.ijbiomac.2024.131219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Propolis is a resinous compound that is obtained from honey bees. It consists of numerous chemical constituents that impart different therapeutic action. The heart is the core of the body and cardiovascular disease (CVD) is a burden for the human being. This article emphasizes how propolis is fruitful in the management of various CVDs. SCOPE AND APPROACH This review focuses on how various constituents of the propolis (such as terpenes, flavonoids, phenolics, etc.) impart cardio protective actions. KEY FINDING AND CONCLUSION With the support of various clinical trials and research outcomes, it was concluded that propolis owns niche cardio protective properties that can be a boon for various cardiac problems (both in preventive and therapeutic action) such as atherosclerosis, excessive angiogenesis, hypertension, and many more.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Pankti C Balar
- Pharmacy Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Rajashri Bezbaruah
- Institute of Pharmacy, Assam medical College and hospital, Dibrugarh, Assam, India
| | - Divya Teli
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shahnaz Alom
- Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Tezpur, Sonitpur, Assam, India
| |
Collapse
|
12
|
Mouillot P, Favrolt N, Khouri C, Grandvuillemin A, Chaumais MC, Schenesse D, Seferian A, Jais X, Savale L, Beltramo G, Sitbon O, Cracowski JL, Humbert M, Georges M, Bonniaud P, Montani D. Characteristics and outcomes of gemcitabine-associated pulmonary hypertension. ERJ Open Res 2024; 10:00654-2023. [PMID: 38770007 PMCID: PMC11103709 DOI: 10.1183/23120541.00654-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Background Despite its known cardiac and lung toxicities, the chemotherapy drug gemcitabine has only rarely been associated with pulmonary hypertension (PH), and the underlying mechanism remains unclear. The objective of the present study was to assess the association between gemcitabine and PH. Methods We identified incident cases of precapillary PH confirmed by right heart catheterisation in patients treated with gemcitabine from the French PH Registry between January 2007 and December 2022. The aetiology, clinical, functional, radiological and haemodynamic characteristics of PH were reviewed at baseline and during follow-up. A pharmacovigilance disproportionality analysis was conducted using the World Health Organization (WHO) pharmacovigilance database. Results We identified nine cases of pulmonary arterial hypertension, either induced (in eight patients) or exacerbated (in one patient) by gemcitabine. Patients exhibited severe precapillary PH, with a median mean pulmonary arterial pressure of 40 (range 26-47) mmHg, a cardiac index of 2.4 (1.6-3.9) L·min-1·m-2 and a pulmonary vascular resistance of 6.3 (3.1-12.6) Wood units. The median time from the initiation of gemcitabine to the onset of PH was 7 (4-50) months, with patients receiving a median of 16 (6-24) gemcitabine injections. Six patients showed clinical improvement upon discontinuation of gemcitabine. In the WHO pharmacovigilance database, we identified a significant signal with 109 cases reporting at least one adverse event related to PH with gemcitabine. Conclusion Both clinical cases and pharmacovigilance data substantiate a significant association between gemcitabine use and the onset or worsening of precapillary PH. The observed improvement following the discontinuation of treatment underscores the importance of PH screening in gemcitabine-exposed patients experiencing unexplained dyspnoea.
Collapse
Affiliation(s)
- Pierre Mouillot
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Nicolas Favrolt
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Charles Khouri
- Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
- Clinical Pharmacology Department INSERM CIC1406, Grenoble Alpes University Hospital, Grenoble, France
- HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France
| | | | - Marie-Camille Chaumais
- Faculty of Pharmacy, Université Paris-Saclay, Orsay, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Pharmacy Department, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
| | - Déborah Schenesse
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Andrei Seferian
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Xavier Jais
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Guillaume Beltramo
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Olivier Sitbon
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jean-Luc Cracowski
- Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
- HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marjolaine Georges
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Philippe Bonniaud
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
- P. Bonniaud and D. Montani contributed equally
| | - David Montani
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- P. Bonniaud and D. Montani contributed equally
| |
Collapse
|
13
|
Alam S, Pepine CJ. Physiology and functional significance of the coronary microcirculation: An overview of its implications in health and disease. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100381. [PMID: 38586427 PMCID: PMC10994960 DOI: 10.1016/j.ahjo.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024]
Abstract
Ischemic, Coronary Heart Disease (CHD) is a leading cause of morbidity and death worldwide.
Collapse
Affiliation(s)
- Samir Alam
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Carl J Pepine
- Department of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
14
|
Benkhedda S, Bengherbi N, Cherifi Y, Ouabdesselam S, Waheed N, Harris CM. Arterial Stiffness Changes in Adult Cancer Patients Receiving Anticancer Chemotherapy: A Real-World Bicentric Experience. Cureus 2024; 16:e56647. [PMID: 38646338 PMCID: PMC11032169 DOI: 10.7759/cureus.56647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Chemotherapy correlates to acute and long-term cardiotoxicity, is reflected clinically by myocardial and vascular endothelial dysfunction, and can cause cardiovascular complications. Thus, early diagnosis of cardiovascular disease in cancer patients undergoing anti-cancer treatment is necessary to enhance long-term survival. Our principal objective in this study was to discern the impact of specific anti-cancer chemotherapeutics and biologics on arterial stiffness alterations before and after the administration. Methods Conducted at Mustafa Bacha University Hospital, Algeria, the study focused on arterial stiffness in anti-cancer chemotherapy patients. Assessments included blood pressure, diabetes, and dyslipidemia, with precise measurements using validated systems, particularly pulse wave velocity (PWV). Various chemotherapy protocols were applied, and statistical analysis with R software (R Foundation for Statistical Computing, Vienna, Austria) maintained a significance level of p=0.05. Key outcomes centered on carotid-femoral PWV and secondary endpoints such as central and peripheral pressures and pulse pressure (PP). Univariate and bivariate analyses were conducted using appropriate statistical tests. Results A comparative prospective observational study was completed on 58 patients (34 women and 24 men; mean age: 52.64 +/- 12.12 years) treated with anti-cancer chemotherapy agents. Our evaluation included a complete clinical exam, electrocardiogram, Doppler echocardiography, and applanation tonometry with arterial stiffness measurement using PWV. Patients presented significantly higher levels of carotid-femoral PWV, regardless of the chosen chemotherapy protocol, with no return to the initial level after one year of stopping treatment (p-value < 0.01). Moreover, this increase was more significant in patients with diabetes and hypertension and patients treated with monoclonal antibodies or intercalants. Conclusion This prospective study shows that chemotherapy patients have elevated arterial stiffness, emphasizing the need to assess PWV and monitor cardiovascular risk factors. PP measurement with PWV could improve risk management.
Collapse
Affiliation(s)
- Salim Benkhedda
- Cardiology, Cardiology Oncology Collaborative Research Group, Faculty of Family Medicine, University of Algiers Benyoucef Benkhedda, Algiers, DZA
| | - Nacera Bengherbi
- Cardiology, Cardiology Oncology Collaborative Research Group, Faculty of Family Medicine, University of Algiers Benyoucef Benkhedda, Algiers, DZA
| | - Yahia Cherifi
- Cardiology, Cardiology Oncology Collaborative Research Group, Faculty of Family Medicine, University of Algiers Benyoucef Benkhedda, Algiers, DZA
| | - Souhila Ouabdesselam
- Cardiology, Cardiology Oncology Collaborative Research Group, Faculty of Family Medicine, University of Algiers Benyoucef Benkhedda, Algiers, DZA
| | - Nabila Waheed
- Radiation Oncology, The Center for Cancer & Blood Disorders, Fort Worth, USA
| | - Clara M Harris
- Internal Medicine, Baylor Scott & White All Saints Medical Center - Fort Worth, Fort Worth, USA
| |
Collapse
|
15
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Barachini S, Ghelardoni S, Varga ZV, Mehanna RA, Montt-Guevara MM, Ferdinandy P, Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity - An update. Vascul Pharmacol 2023; 153:107223. [PMID: 37678516 DOI: 10.1016/j.vph.2023.107223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, Laboratory for Cell Therapy, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary; MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Radwa A Mehanna
- Medical Physiology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Bettariga F, Bishop C, Taaffe DR, Galvão DA, Maestroni L, Newton RU. Time to consider the potential role of alternative resistance training methods in cancer management? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:715-725. [PMID: 37399886 PMCID: PMC10658316 DOI: 10.1016/j.jshs.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Exercise has emerged as fundamental therapeutic medicine in the management of cancer. Exercise improves health-related outcomes, including quality of life, neuromuscular strength, physical function, and body composition, and it is associated with a lower risk of disease recurrence and increased survival. Moreover, exercise during or post cancer treatments is safe, can ameliorate treatment-related side effects, and may enhance the effectiveness of chemotherapy and radiation therapy. To date, traditional resistance training (RT) is the most used RT modality in exercise oncology. However, alternative training modes, such as eccentric, cluster set, and blood flow restriction are gaining increased attention. These training modalities have been extensively investigated in both athletic and clinical populations (e.g., age-related frailty, cardiovascular disease, type 2 diabetes), showing considerable benefits in terms of neuromuscular strength, hypertrophy, body composition, and physical function. However, these training modes have only been partially or not at all investigated in cancer populations. Thus, this study outlines the benefits of these alternative RT methods in patients with cancer. Where evidence in cancer populations is sparse, we provide a robust rationale for the possible implementation of certain RT methods that have shown positive results in other clinical populations. Finally, we provide clinical insights for research that may guide future RT investigations in patients with cancer and suggest clear practical applications for targeted cancer populations and related benefits.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Luca Maestroni
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
18
|
Prousi GS, Joshi AM, Atti V, Addison D, Brown SA, Guha A, Patel B. Vascular Inflammation, Cancer, and Cardiovascular Diseases. Curr Oncol Rep 2023; 25:955-963. [PMID: 37261651 DOI: 10.1007/s11912-023-01426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE OF REVIEW Cancer and cardiovascular disease are among the leading causes of morbidity and mortality in the USA. Cancer and cardiovascular disease have inflammatory underpinnings that have been associated with both the development and progression of these disease states. RECENT FINDINGS Inflammatory signaling has been found to be a critical event in both cardiovascular disease and cancer formation and progression. Further, many chemotherapeutic agents potentiate inflammation exacerbating existing cardiovascular disease or leading to its presence. The exact mechanisms of these interactions remain poorly understood. The proinflammatory milieu observed in both cancer and cardiovascular disease likely plays an important role in the development and potentiation of both conditions. Further evaluation of this relationship will be critical in the development of new diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
| | - Amogh M Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | - Varun Atti
- Heart and Vascular Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26505, USA
| | - Daniel Addison
- Department of Cardiology, Ohio State University, Columbus, OH, USA
| | - Sherry-Ann Brown
- Department of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Avirup Guha
- Department of Cardiology, Medical College of Georgia, Augusta, GA, USA
| | - Brijesh Patel
- Heart and Vascular Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26505, USA.
| |
Collapse
|
19
|
Davezac M, Meneur C, Buscato M, Zahreddine R, Arnal JF, Dalenc F, Lenfant F, Fontaine C. The beneficial effects of tamoxifen on arteries: a key player for cardiovascular health of breast cancer patient. Biochem Pharmacol 2023:115677. [PMID: 37419371 DOI: 10.1016/j.bcp.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Breast cancer is the most common cancer in women. Over the past few decades, advances in cancer detection and treatment have significantly improved survival rate of breast cancer patients. However, due to the cardiovascular toxicity of cancer treatments (chemotherapy, anti-HER2 antibodies and radiotherapy), cardiovascular diseases (CVD) have become an increasingly important cause of long-term morbidity and mortality in breast cancer survivors. Endocrine therapies are prescribed to reduce the risk of recurrence and specific death in estrogen receptor-positive (ER+) early breast cancer patients, but their impact on CVD is a matter of debate. Whereas aromatase inhibitors and luteinizing hormone-releasing hormone (LHRH) analogs inhibit estrogen synthesis, tamoxifen acts as a selective estrogen receptor modulator (SERM), opposing estrogen action in the breast but mimicking their actions in other tissues, including arteries. This review aims to summarize the main clinical and experimental studies reporting the effects of tamoxifen on CVD. In addition, we will discuss how recent findings on the mechanisms of action of these therapies may contribute to a better understanding and anticipation of CVD risk in breast cancer patients.
Collapse
Affiliation(s)
- Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Cecile Meneur
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France; PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France; CREFRE-Anexplo, Service de Microchirurgie Experimentale, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Florence Dalenc
- Department of Medical Oncology, Claudius Regaud Institute, IUCT-Oncopole, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France.
| |
Collapse
|
20
|
Cortes-Santiago N, Patel KR, Wu H, Sartain SE, Bhar S, Silva-Carmona M, Pogoriler J. Pulmonary Histopathologic Findings in Pediatric Patients After Hematopoietic Stem Cell Transplantation: An Autopsy Study. Pediatr Dev Pathol 2023; 26:362-373. [PMID: 37165556 DOI: 10.1177/10935266231170101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pathologic characterization of pulmonary complications following hematopoietic stem cell transplantation (HSCT) is limited. We describe lung findings in pediatric patients who died following HSCT and attempt to identify potential clinical associations. METHODS Pathology databases at Texas Children's Hospital and the Children's Hospital of Philadelphia were queried (2013-2018 CHOP and 2017-2018 TCH). Electronic medical records and slides were reviewed. RESULTS Among 29 patients, 19 received HSCT for hematologic malignancy, 8 for non-malignant hematologic disorders, and 2 for metastatic solid tumors. Twenty-five patients (86%) showed 1 or more patterns of acute and organizing lung injury. Sixty-two percent had microvascular sclerosis, with venous involvement noted in most cases and not correlating with clinical history of pulmonary hypertension, clinical transplant-associated thrombotic microangiopathy, irradiation, or graft-versus-host disease. Features suggestive of graft-versus-host-disease were uncommon: 6 patients had lymphocytic bronchiolitis, and only 2 patients had evidence of bronchiolitis obliterans (both clinically unexpected), both with a mismatched unrelated donor transplant. CONCLUSIONS Acute and subacute alveolar injury (diffuse alveolar damage or organizing pneumonia) is common in pediatric patients who died following HSCT and is difficult to assign to a specific etiology. Microvascular sclerosis was frequent and did not correlate with a single distinct clinical feature.
Collapse
Affiliation(s)
- Nahir Cortes-Santiago
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Wu
- Department of Pathology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Sarah E Sartain
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology and Critical Care Medicine, Bone Marrow Transplantation, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Manuel Silva-Carmona
- Department of Pediatrics, Section of Pulmonology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
21
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
22
|
Zhou Q, Quirk JD, Hu Y, Yan H, Gaut JP, Pham CTN, Wickline SA, Pan H. Rapamycin Perfluorocarbon Nanoparticle Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:6086. [PMID: 37047059 PMCID: PMC10093942 DOI: 10.3390/ijms24076086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Qingyu Zhou
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Hu
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Huimin Yan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P. Gaut
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
23
|
Gao XS, Boere IA, van Beekhuizen HJ, Franckena M, Nout R, Kruip MJHA, Kulawska MD, van Doorn HC. Acute and long-term toxicity in patients undergoing induction chemotherapy followed by thermoradiotherapy for advanced cervical cancer. Int J Hyperthermia 2022; 39:1440-1448. [DOI: 10.1080/02656736.2022.2146213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- X. S. Gao
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - I. A. Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - H. J. van Beekhuizen
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - M. Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - R. Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - M. J. H. A. Kruip
- Department of Haematology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - M. D. Kulawska
- Department of Radiology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - H. C. van Doorn
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Papadopoulos E, Abdulrehman J, Alibhai SM. The Value of Performance Status in Predicting Clinical Outcomes in Patients With Cancer-Associated Pulmonary Embolism. JACC CardioOncol 2022; 4:519-521. [PMID: 36444228 PMCID: PMC9700245 DOI: 10.1016/j.jaccao.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
| | - Jameel Abdulrehman
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shabbir M.H. Alibhai
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Chuquin D, Abbate A, Bottinor W. Hypertension in Cancer Survivors: A Review of the Literature and Suggested Approach to Diagnosis and Treatment. J Cardiovasc Pharmacol 2022; 80:522-530. [PMID: 36027586 PMCID: PMC9547865 DOI: 10.1097/fjc.0000000000001342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of morbidity and mortality among cancer survivors. Hypertension, which is common among cancer survivors with a prevalence of greater than 70% by age 50, potentiates the risk for CVD in a more than additive fashion. For example, childhood cancer survivors who develop hypertension may have up to a 12 times higher risk for heart failure than survivors who remain normotensive. Studies have shown that mild valvular disease (28% incidence), cardiomyopathy (7.4%), arrhythmias (4.6%), and coronary artery disease (3.8%) are among the most common CVDs in childhood cancer survivors. Among adolescent and young adult cancer survivors, the most common reasons for cardiovascular-related hospital admission are venous/lymphatic disease (absolute excess risk 19%), cardiomyopathy and arrhythmia (15%), hypertension (13%), and ischemic heart disease (12%). In addition, cancer therapies can increase the risk for hypertension and CVD. Therefore, early detection and treatment of hypertension is essential to reducing cardiovascular morbidity and mortality among survivors. METHODS We present a literature review, which identified over 20 clinical trials, systemic reviews, and meta-analyses (13 clinical trials, 8 systemic reviews or meta-analyses) by searching PubMed, Google Scholar, and the Cochrane Library for relevant articles addressing hypertension in cancer survivors. RESULTS Although our understanding of the complex relationship between cancer therapies and CVD has grown significantly over the past 2 decades, there remain several gaps in knowledge when specifically addressing CVD in the survivor population. This review provides an up-to-date survivor-centered approach to the screening and treatment of hypertension, which considers survivor-specific cardiovascular risk, applies guideline directed therapies when appropriate, screens for survivor-specific factors that may influence antihypertensive medication selection, and finally considers the prohypertensive mechanisms of antineoplastic agents as a potential target for antihypertensive medications. CONCLUSIONS Screening for and treating hypertension among survivors can promote cardiovascular health in this vulnerable population.
Collapse
Affiliation(s)
- David Chuquin
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA
| | | | | |
Collapse
|
26
|
Mędrek S, Szmit S. Are cardiovascular comorbidities always associated with a worse prognosis in patients with lung cancer? Front Cardiovasc Med 2022; 9:984951. [PMID: 36211566 PMCID: PMC9537604 DOI: 10.3389/fcvm.2022.984951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Many factors contribute to mortality in lung cancer, including the presence of concomitant cardiovascular disease. In the treatment of early stage of lung cancer, the presence of comorbidities and occurence of cardiotoxicity may be prognostic. The effect of cardiotoxicity of radiotherapy and chemoradiotherapy on overall survival has been documented. Acute arterial and venous thromboembolic events seem to correlate with the degree of the histological malignancy, its clinical advancement, and even with optimal cardiac treatment, they may influence the survival time. In the case of high-grade and advanced lung cancer stage especially in an unresectable stadium, the prognosis depends primarily on the factors related to the histopathological and molecular diagnosis. Electrocardiographic and echocardiographic abnormalities may be prognostic factors, as they seem to correlate with the patient's performance status as well as tumor localization and size.
Collapse
Affiliation(s)
- Sabina Mędrek
- Department of Cardiology, Subcarpathian Oncological Center, Brzozów, Poland
- *Correspondence: Sabina Mędrek
| | - Sebastian Szmit
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| |
Collapse
|
27
|
Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther 2022; 237:108116. [PMID: 35063569 PMCID: PMC9294076 DOI: 10.1016/j.pharmthera.2022.108116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Recent strides in anti-cancer therapeutics have improved longevity and led to a growing population of cancer survivors, who are increasingly likely to die of other causes. Treatment-induced cardiotoxicity is a complication of several therapeutic agents with acute and long-term consequences for cancer patients. Vascular endothelial dysfunction is a precursor and hallmark of ischemic coronary disease and may play a role in anti-cancer therapy-induced cardiotoxicity. This review summarizes clinical evidence for endothelial dysfunction following anti-cancer therapy and extends the discussion to include the impact of therapeutic agents on conduit arteries and the microcirculation. We highlight the role of innate immune system activation and cross-talk between inflammation and oxidative stress as pathogenic mechanisms underlying anti-cancer therapy-induced vascular toxicity. Understanding the impact of anti-cancer agents on the vascular endothelium will inform therapeutic approaches to prevent or reverse treatment-induced cardiotoxicity and may serve as an important tool to predict, monitor, and prevent adverse cardiovascular outcomes in patients undergoing treatment.
Collapse
Affiliation(s)
- Janée D Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
28
|
Kourek C, Touloupaki M, Rempakos A, Loritis K, Tsougkos E, Paraskevaidis I, Briasoulis A. Cardioprotective Strategies from Cardiotoxicity in Cancer Patients: A Comprehensive Review. J Cardiovasc Dev Dis 2022; 9:jcdd9080259. [PMID: 36005423 PMCID: PMC9409997 DOI: 10.3390/jcdd9080259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiotoxicity is a significant complication of chemotherapeutic agents in cancer patients. Cardiovascular incidents including LV dysfunction, heart failure (HF), severe arrhythmias, arterial hypertension, and death are associated with high morbidity and mortality. Risk stratification of cancer patients prior to initiation of chemotherapy is crucial, especially in high-risk patients for cardiotoxicity. The early identification and management of potential risk factors for cardiovascular side effects seems to contribute to the prevention or minimization of cardiotoxicity. Screening of cancer patients includes biomarkers such as cTnI and natriuretic peptide and imaging measurements such as LV function, global longitudinal strain, and cardiac MRI. Cardioprotective strategies have been investigated over the last two decades. These strategies for either primary or secondary prevention include medical therapy such as ACE inhibitors, ARBs, b-blockers, aldosterone antagonists, statins and dexrazoxane, physical therapy, and reduction of chemotherapeutic dosages. However, data regarding dosages, duration of medical therapy, and potential interactions with chemotherapeutic agents are still limited. Collaboration among oncologists, cardiologists, and cardio-oncologists could establish management cardioprotective strategies and approved follow-up protocols in patients with cancer receiving chemotherapy.
Collapse
Affiliation(s)
- Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Athanasios Rempakos
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Loritis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elias Tsougkos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
29
|
Badescu MC, Badulescu OV, Scripcariu DV, Butnariu LI, Bararu-Bojan I, Popescu D, Ciocoiu M, Gorduza EV, Costache II, Rezus E, Rezus C. Myocardial Ischemia Related to Common Cancer Therapy-Prevention Insights. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071034. [PMID: 35888122 PMCID: PMC9325217 DOI: 10.3390/life12071034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Modern antineoplastic therapy improves survival and quality of life in cancer patients, but its indisputable benefits are accompanied by multiple and major side effects, such as cardiovascular ones. Endothelial dysfunction, arterial spasm, intravascular thrombosis, and accelerated atherosclerosis affect the coronary arteries, leading to acute and chronic coronary syndromes that negatively interfere with the oncologic treatment. The cardiac toxicity of antineoplastic agents may be mitigated by using adequate prophylactic measures. In the absence of dedicated guidelines, our work provides the most comprehensive, systematized, structured, and up-to-date analyses of the available literature focusing on measures aiming to protect the coronary arteries from the toxicity of cancer therapy. Our work facilitates the implementation of these measures in daily practice. The ultimate goal is to offer clinicians the necessary data for a personalized therapeutic approach for cancer patients receiving evidence-based oncology treatments with potential cardiovascular toxicity.
Collapse
Affiliation(s)
- Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (D.P.); (I.I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.B.-B.); (M.C.)
- Hematology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
- Correspondence: (O.V.B.); (D.V.S.); (L.I.B.)
| | - Dragos Viorel Scripcariu
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- 1st Surgical Oncology Unit, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Correspondence: (O.V.B.); (D.V.S.); (L.I.B.)
| | - Lăcrămioara Ionela Butnariu
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Correspondence: (O.V.B.); (D.V.S.); (L.I.B.)
| | - Iris Bararu-Bojan
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.B.-B.); (M.C.)
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (D.P.); (I.I.C.); (C.R.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.B.-B.); (M.C.)
| | - Eusebiu Vlad Gorduza
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Irina Iuliana Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (D.P.); (I.I.C.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (D.P.); (I.I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| |
Collapse
|
30
|
Schneider C, González-Jaramillo N, Marcin T, Campbell KL, Suter T, Bano A, Wilhelm M, Eser P. Time-Dependent Effect of Anthracycline-Based Chemotherapy on Central Arterial Stiffness: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:873898. [PMID: 35865379 PMCID: PMC9295862 DOI: 10.3389/fcvm.2022.873898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims Anthracycline-based chemotherapy (ANTH-BC) has been proposed to increase arterial stiffness, however, the time-dependency of these effects remain unclear. This systematic review and meta-analysis aimed to investigate the time-dependent effect of ANTH-BC on markers of central aortic stiffness, namely aortic distensibility (AD) and pulse-wave-velocity (PWV) in cancer patients. Methods An extensive literature search without language restrictions was performed to identify all studies presenting longitudinal data on the effect of ANTH-BC on either AD and/or central PWV in cancer patients of all ages. An inverse-variance weighted random-effect model was performed with differences from before to after chemotherapy, as well as for short vs. mid-term effects. Results Of 2,130 articles identified, 9 observational studies with a total of 535 patients (mean age 52 ± 11; 73% women) were included, of which four studies measured AD and seven PWV. Short-term (2–4 months), there was a clinically meaningful increase in arterial stiffness, namely an increase in PWV of 2.05 m/s (95% CI 0.68–3.43) and a decrease in AD (albeit non-significant) of −1.49 mmHg-1 (−3.25 to 0.27) but a smaller effect was observed mid-term (6–12 months) for PWV of 0.88 m/s (−0.25 to 2.02) and AD of −0.37 mmHg-1 (−1.13 to 0.39). There was considerable heterogeneity among the studies. Conclusions Results from this analysis suggest that in the short-term, ANTH-BC increases arterial stiffness, but that these changes may partly be reversible after therapy termination. Future studies need to elucidate the long-term consequences of ANTH-BC on arterial stiffness, by performing repeated follow-up measurements after ANTH-BC termination. Systematic Review Registration [www.crd.york.ac.uk/prospero/], identifier [CRD42019141837].
Collapse
Affiliation(s)
- Caroline Schneider
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Nathalia González-Jaramillo
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Thimo Marcin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Thomas Suter
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Matthias Wilhelm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Prisca Eser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Prisca Eser,
| |
Collapse
|
31
|
Zhang K, Du Z, Yuan T, Huang J, Zhao X, Mi S. Long-term cultured microvascular networks on chip for tumor vascularization research and drug testing. BIOMICROFLUIDICS 2022; 16:044101. [PMID: 35845724 PMCID: PMC9282889 DOI: 10.1063/5.0090027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The vascular structure of the tumor microenvironment (TME) plays an essential role in the process of metastasis. In vitro microvascular structures that can be maintained for a long time will greatly promote metastasis research. In this study, we constructed a mimicking breast cancer invasion model based on a microfluidic chip platform, and the maintenance time of the self-assembled microvascular networks significantly improved by culturing with fibroblasts (up to 13 days). Using this model, we quantified the invasion ability of breast cancer cells and angiogenesis sprouts caused by cancer cells, and the intravasation behavior of cancer cells was also observed in sprouts. We found that cancer cells could significantly cause angiogenesis by promoting sprouting behaviors of the self-assembled human umbilical vein endothelial cells, which, in turn, promoted the invasion behavior of cancer cells. The drug test results showed that the drug resistance of the widely used anti-cancer drugs 5-Fluorouracil (5-FU) and Doxorubicin (DOX) in the 3D model was higher than that in the 2D model. Meanwhile, we also proved that 5-FU and DOX had the effect of destroying tumor blood vessels. The anti-angiogenic drug Apatinib (VEGFR inhibitor) enhanced the drug effect of DOX on MDA-MB-231 cells, further proving the promoting effect of angiogenesis on the invasion ability of cancer cells. These results indicate that our model is of great value in reconstructing TME and drug testing in vitro.
Collapse
Affiliation(s)
- Ke Zhang
- Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhichang Du
- College of Mechanical and Energy Engineering, Jimei University, Xiamen, China
| | - Tianying Yuan
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyu Zhao
- Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shengli Mi
- Author to whom correspondence should be addressed:
| |
Collapse
|
32
|
Shamoon L, Espitia-Corredor JA, Dongil P, Menéndez-Ribes M, Romero A, Valencia I, Díaz-Araya G, Sánchez-Ferrer CF, Peiró C. RESOLVIN E1 ATTENUATES DOXORUBICIN-INDUCED ENDOTHELIAL SENESCENCE BY MODULATING NLRP3 INFLAMMASOME ACTIVATION. Biochem Pharmacol 2022; 201:115078. [PMID: 35551917 DOI: 10.1016/j.bcp.2022.115078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023]
Abstract
Endothelial cell senescence contributes to chronic inflammation and endothelial dysfunction, while favoring cardiovascular disorders and frailty. Senescent cells acquire a pro-inflammatory secretory phenotype that further propagates inflammation and senescence to neighboring cells. Cell senescence can be provoked by plethora of stressors, including inflammatory molecules and chemotherapeutic drugs. Doxorubicin (Doxo) is a powerful anthracycline anticancer drug whose clinical application is constrained by a dose-limiting cardiovascular toxicity. We here investigated whether cell senescence can contribute to the vascular damage elicited by Doxo. In human umbilical vein endothelial cells (HUVEC) cultures, Doxo (10-100 nM) increased the number of SA-β-gal positive cells and the levels of γH2AX, p21 and p53, used as markers of senescence. Moreover, we identified Doxo-induced senescence to be mediated by the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome, a key player of the immune innate system capable of releasing interleukin (IL)-1β. In fact, IL-1β itself mimicked the stimulatory action of Doxo on both NLRP3 activation and cellular senescence, while the pharmacological blockade of IL-1 receptors markedly attenuated the pro-senescence effects of Doxo. In search of additional pharmacological strategies to attenuate Doxo-induced endothelial senescence, we identified resolvin E1 (RvE1), an endogenous pro-resolving mediator, as capable of reducing cell senescence induced by both Doxo and IL-1β by interfering with the increased expression of pP65, NLRP3, and pro-IL-1β proteins and with the formation of active NLRP3 inflammasome complexes. Overall, RvE1 and the blockade of the NLRP3 inflammasome-IL-1β axis may offer a novel therapeutic approach against Doxo-induced cardiovascular toxicity and subsequent sequelae.
Collapse
Affiliation(s)
- Licia Shamoon
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Jenaro A Espitia-Corredor
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain; Laboratorio de Farmacología Molecular (FARMOLAB), Department of Pharmaceutical and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, Universidad de Chile, Santiago, Chile
| | - Pilar Dongil
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Marta Menéndez-Ribes
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Alejandra Romero
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Inés Valencia
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- Laboratorio de Farmacología Molecular (FARMOLAB), Department of Pharmaceutical and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic diseases ACCDiS, Universidad de Chile, Santiago, Chile.
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain.
| |
Collapse
|
33
|
Chen CH, Chen MC, Hsu YH, Chou TC. Far-infrared radiation alleviates cisplatin-induced vascular damage and impaired circulation via activation of HIF-1α. Cancer Sci 2022; 113:2194-2206. [PMID: 35411640 PMCID: PMC9207382 DOI: 10.1111/cas.15371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/03/2022] Open
Abstract
Severe vascular damage and complications are often observed in cancer patients during treatment with chemotherapeutic drugs such as cisplatin. Thus, development of potential options to ameliorate the vascular side effects is urgently needed. In this study, the effects and the underlying mechanisms of far‐infrared radiation (FIR) on cisplatin‐induced vascular injury and endothelial cytotoxicity/dysfunction in mice and human umbilical vein endothelial cells (HUVECs) were investigated. An important finding is that the severe vascular stenosis and poor blood flow seen in cisplatin‐treated mice were greatly mitigated by FIR irradiation (30 minutes/day) for 1‐3 days. Moreover, FIR markedly increased the levels of phosphorylation of PI3K and Akt, and VEGF secretion, as well as the expression and the activity of hypoxia‐inducible factor 1α (HIF‐1α) in cisplatin‐treated HUVECs in a promyelocytic leukemia zinc finger protein (PLZF)‐dependent manner. However, FIR‐stimulated endothelial angiogenesis and VEGF release were significantly diminished by transfection with HIF‐1α siRNA. We also confirmed that HIF‐1α, PI3K, and PLZF contribute to the inhibitory effect of FIR on cisplatin‐induced apoptosis in HUVECs. Notably, FIR did not affect the anticancer activity and the HIF‐1α/VEGF cascade in cisplatin‐treated cancer cells under normoxic or hypoxic condition, indicating that the actions of FIR may specifically target endothelial cells. It is the first study to demonstrate that FIR effectively attenuates cisplatin‐induced vascular damage and impaired angiogenesis through activation of HIF‐1α–dependent processes via regulation of PLZF and PI3K/Akt. Taken together, cotreatment with the noninvasive and easily performed FIR has a therapeutic potential to prevent the pathogenesis of vascular complications in cancer patients during cisplatin treatment.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Meng-Chuan Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Tz-Chong Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan.,China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan.,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.,Cathay Medical Research Institute, Cathay General Hospital, New Taipei City, 22174, Taiwan
| |
Collapse
|
34
|
Riedl JM, Schwarzenbacher E, Moik F, Horvath L, Gantschnigg A, Renneberg F, Posch F, Barth DA, Stotz M, Pichler M, Hatzl S, Fandler-Höfler S, Gressenberger P, Gary T, Jost PJ, Greil R, Ay C, Djanani A, Gerger A, Schlick K. Patterns of Thromboembolism in Patients with Advanced Pancreatic Cancer Undergoing First-Line Chemotherapy with FOLFIRINOX or Gemcitabine/nab-Paclitaxel. Thromb Haemost 2022; 122:633-645. [PMID: 34255340 DOI: 10.1055/a-1548-4847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recent advances in prophylactic anticoagulation and antineoplastic treatment for advanced pancreatic cancer (aPC) warrant an updated reassessment of thromboembolic risk in this population. This multicenter retrospective cohort study aims to comprehensively characterize incidence, risk factors, and outcomes of venous (VTE) and arterial thromboembolism (ATE) in homogenously treated patients with aPC. METHODS Four hundred and fifty-five patients with aPC undergoing palliative first-line chemotherapy (Gemcitabine/nab-Paclitaxel (GN) or FOLIRINOX) were included. Primary outcomes were objectively confirmed VTE and/or ATE. RESULTS Over a median follow-up of 26 months, 86 VTE (cumulative incidence: 20.0%; 95% confidence interval [CI]: 16.3-24.0) and 11 ATE events (cumulative incidence: 2.8%; 95% CI: 1.5-4.9) were observed. VTE diagnosis was associated with increased mortality (transition hazard ratio [THR]: 1.59 [95% CI: 1.21-2.09]) and increased risk of cancer progression (THR: 1.47 [95% CI: 1.08-2.01]), while the impact of ATE on mortality was numerically but not statistically significant (THR: 1.85 [95% CI: 0.87-3.94]). The strongest predictor of increased VTE risk was history of cancer-associated VTE (subdistribution hazard ratio [SHR]: 3.29 [95% CI: 2.09-5.18]), while the Khorana score (SHR: 0.78 [0.57-1.06]) failed to predict VTE risk. A history of cerebrovascular disease was associated with markedly increased ATE risk (SHR: 22.05 [95% CI: 6.83-71.22], p < 0.001), especially ischemic stroke. Risk of VTE/ATE did not significantly differ according to type of first-line chemotherapy. CONCLUSION Patients with aPC undergoing palliative first-line chemotherapy with FOLFIRINOX or GN face a high risk for VTE/ATE and its diagnosis is linked to worse clinical outcomes. VTE-risk prediction models have limited ability to sub-stratify thrombotic events in this high-risk scenario.
Collapse
Affiliation(s)
- Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Esther Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Moik
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Lena Horvath
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Felix Renneberg
- IIIrd Medical Department of Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectious Disease, Salzburg Cancer Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Paul Gressenberger
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Richard Greil
- IIIrd Medical Department of Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectious Disease, Salzburg Cancer Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Konstantin Schlick
- IIIrd Medical Department of Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectious Disease, Salzburg Cancer Research Institute, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
35
|
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, Ruga S, Coppoletta AR, Guarnieri L, Cardamone A, Bava I, Musolino V, Paone S, Palma E, Mollace V. The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. Int J Mol Sci 2022; 23:ijms23073698. [PMID: 35409057 PMCID: PMC8999124 DOI: 10.3390/ijms23073698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
- Correspondence: (J.M.); (M.G.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Correspondence: (J.M.); (M.G.)
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Irene Bava
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
| | - Sara Paone
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
36
|
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, Chaykovskaya A, Makhanova A, Bukkieva T, Kayumova E, Combs S, Shevtsov M. Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. PATHOPHYSIOLOGY 2022; 29:52-65. [PMID: 35366289 PMCID: PMC8952280 DOI: 10.3390/pathophysiology29010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common tumor in women worldwide with high mortality rates. Surgical methods followed by radio–chemotherapy are used to treat these tumors. Such treatment can lead to various side effects, including neurological complications. The development of a reliable biomarker to predict the onset of CNS complications could improve clinical outcomes. In the current study, ICAM-1 and PECAM-1 serum levels were measured as potential biomarkers in 45 female patients in a long-term follow-up period after breast cancer treatment, and compared to 25 age-matched female healthy volunteers. Serum levels of both biomarkers, ICAM-1 and PECAM-1 were significantly higher in patients after breast cancer treatment and could be associated with cognitive dysfunction, depression, and vestibulocerebellar ataxia. In conclusion, our results provide a first hint that elevated serum levels of ICAM-1 and PECAM-1 could serve as early predictive biomarkers in breast cancer survivors that might help to improve the management of these patients.
Collapse
Affiliation(s)
- Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nikita Trofimov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Mariya Topuzova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Alexandra Chaykovskaya
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Evgeniya Kayumova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Stephanie Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 Saint Petersburg, Russia
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
- Correspondence: ; Tel.: +49-173-1488882
| |
Collapse
|
37
|
Cadour F, Thuny F, Sourdon J. New Insights in Early Detection of Anticancer Drug-Related Cardiotoxicity Using Perfusion and Metabolic Imaging. Front Cardiovasc Med 2022; 9:813883. [PMID: 35198613 PMCID: PMC8858802 DOI: 10.3389/fcvm.2022.813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs, their mechanisms, and their diagnosis for better management. Anthracyclines, anti-vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi) are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of microvascular and metabolic dysfunction allows for better imaging assessment before overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would therefore advance the prevention and patient care. In this review, we provide a comprehensive overview of the cardiotoxic effects of anticancer drugs and describe myocardial perfusion, metabolic, and mitochondrial function imaging approaches to detect them before over LVEF impairment.
Collapse
Affiliation(s)
- Farah Cadour
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, North Hospital, Assistance Publique - Hôpitaux de Marseille, Centre for CardioVascular and Nutrition Research (C2VN), Inserm 1263, Inrae 1260, Marseille, France
| | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- *Correspondence: Joevin Sourdon
| |
Collapse
|
38
|
Kirichenko YY, Ilgisonis IS, Ivanova TV, Zolotukhina AS, Khabarova NV, Privalova EV, Belenkov YN. Cardiovascular toxicity of antitumor therapy: effect on myocardial and vascular remodeling. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the effect of multiagent chemotherapy on structural and functional vascular, electrophysiological parameters and cardiac hemodynamics in patients with stomach cancer.Material and methods. The study included 3 groups of 25 people: healthy volunteers, those with established cardiac disease (hypertension + coronary artery disease), gastric adenocarcinoma (fluoropyrimidine/platinum-based chemotherapy). Cancer patients before and after chemotherapy courses underwent non-invasive assessment of vascular wall and endothelial dysfunction (videocapillaroscopy, digital photoplethysmography), as well as electrocardiography and echocardiography. Healthy volunteers and cardiac patients were examined once.Results. In cancer patients, even before chemotherapy courses, endothelial dysfunction (ED) (occlusal index, 1,7 (1,4; 1,9), normal values >1,8) and structural vascular disorders (stiffness index, 8,9 m/s (7,7; 9,7), normal values <8 m/s; refractive index, 32,4% (27,5; 37,7), normal values <30%). All above-mentioned parameters significantly worsened after multiagent chemotherapy (progression of ED and vascular wall remodeling: occlusal index, 1,3 (1,2; 1,5) (p<0,0002); stiffness index, 10,3 m/s (9,5; 11,2) (p<0,0001); reflection index, 40,2% (35,5; 43,6) (p<0,001) Decrease in left ventricular ejection fraction and diastolic function was detected. The number of supraventricular and ventricular premature beats during chemotherapy increased 9 and 10 times, respectively (p<0,05).Conclusion. The study for the first time assessed the effect of multiagent chemotherapy on ED, vascular stiffness and cardiac hemodynamics in patients with gastric cancer. A significant aggravation of all endothelial function parameters after treatment has been proven, which requires further study in order to develop criteria for early cardiovascular toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - E. V. Privalova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yu. N. Belenkov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
39
|
Mureşan M, Olteanu D, Filip GA, Clichici S, Baldea I, Jurca T, Pallag A, Marian E, Frum A, Gligor FG, Svera P, Stancu B, Vicaș L. Comparative Study of the Pharmacological Properties and Biological Effects of Polygonum aviculare L. herba Extract-Entrapped Liposomes versus Quercetin-Entrapped Liposomes on Doxorubicin-Induced Toxicity on HUVECs. Pharmaceutics 2021; 13:pharmaceutics13091418. [PMID: 34575493 PMCID: PMC8467102 DOI: 10.3390/pharmaceutics13091418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the comparative biological effects of Polygonum aviculare L. herba (PAH) extract and quercetin-entrapped liposomes on doxorubicin (Doxo)-induced toxicity in HUVECs. HUVECs were treated with two formulations of liposomes loaded with PAH extract (L5 and L6) and two formulations of liposomes loaded with quercetin (L3 prepared with phosphatidylcholine and L4 prepared with phosphatidylserine). The results obtained with atomic force microscopy, zeta potential and entrapment liposome efficiency confirmed the interactions of the liposomes with PAH or free quercetin and a controlled release of flavonoids entrapped in all the liposomes. Doxo decreased the cell viability and induced oxidative stress, inflammation, DNA lesions and apoptosis in parallel with the activation of Nrf2 and NF-kB. Free quercetin, L3 and L4 inhibited the oxidative stress and inflammation and reduced apoptosis, particularly L3. Additionally, these compounds diminished the Nrf2 and NF-kB expressions and DNA lesions, principally L4. PAH extract, L5 and L6 exerted antioxidant and anti-inflammatory activities, reduced γH2AX formation and inhibited extrinsic apoptosis and transcription factors activation but to a lesser extent. The loading of quercetin in liposomes increased the cell viability and exerted better endothelial protection compared to free quercetin, especially L3. The liposomes with PAH extract had moderate efficiency, mainly due to the antioxidant and anti-inflammatory effects and the inhibition of extrinsic apoptosis.
Collapse
Affiliation(s)
- Mariana Mureşan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
- Correspondence: or
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Adina Frum
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Paula Svera
- INCEMC-National Institute for Research and Development in Electrochemistry and Condensed Matter-Timisoara, No. 144 Dr. A. Paunescu Podeanu Street, 300569 Timisoara, Romania;
| | - Bogdan Stancu
- 2nd Department of General Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| |
Collapse
|
40
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
41
|
Wu C, Lin D, Ma F, Jiang F, Wang Y. New progress in elucidating the relationship between cancer therapy and cardiovascular toxicity. Biosci Trends 2021; 15:211-218. [PMID: 34305102 DOI: 10.5582/bst.2021.01278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Onco-cardiology is an emerging field linking cancer with cardiovascular injury. Understanding the mechanism of cardiac injury helps improve the quality of life of cancer survivors. A series of studies on adverse reactions to cancer or oncological treatments has indicated that adverse cardiovascular events related to cancer treatments may occur over a longer period of survival, and even years after therapy has concluded. Current cancer therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have been found to have latent cardiovascular toxicity. These toxic effects are often progressive and irreversible and ultimately lead to cardiovascular events such as heart failure, hypertension, coronary heart diseases, arrhythmia, and thromboembolism. Therefore, more emphasis should be placed on revealing the mechanism of cancer treatment-related cardiovascular toxicity. This would help to guide prevention, diagnosis, and treatment of CVDs in cancer survivors.
Collapse
Affiliation(s)
- Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dawei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Yaosheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Herradón E, González C, González A, Uranga JA, López-Miranda V. Cardiovascular Toxicity Induced by Chronic Vincristine Treatment. Front Pharmacol 2021; 12:692970. [PMID: 34366848 PMCID: PMC8333869 DOI: 10.3389/fphar.2021.692970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vincristine is an effective anticancer agent for treating leukemias, lymphomas, and other solid tumors. Vincristine's better-known severe side effects include bone marrow depression, hyponatremia, peripheral neuropathy, and gastrointestinal distress. In recent years, cardiovascular damage also has been described during vincristine treatments. However, the vascular toxicity induced by vincristine is little studied. The aim of the present is to evaluate whether these alterations remain after the suspension of chemotherapy treatment (sequelae) and the possible mechanisms involved in this vascular damage. Adult male Wistar rats were used. The animals were divided into four treatment groups: two groups of saline (0.9% NaCl; saline, sequelae saline) and two groups of vincristine (100 μg/kg; vincristine, sequelae vincristine). Saline or vincristine was administered intraperitoneally in two cycles of 5 days each, leaving a rest period between cycles of 2 days. The final cumulative vincristine dose administered was 1 mg/kg. Sequelae groups correspond to 2 weeks after stopping treatment with the antitumor agent. At the end of the different experimental protocols, cardiac and vascular functions were analyzed. Alterations in the expression of different proteins in the cardiovascular tissues were also investigated. Chronic treatment with vincristine did not produce significant changes in basal cardiac function but provoked significant endothelial dysfunction in the aorta and a significant decrease in the mesenteric contractile function. These cardiovascular functional alterations disappeared 2 weeks after the suspension of chemotherapy treatment. Vincristine treatment caused a significant increase in the expression of tumor necrosis factor-alpha (TNFα), endothelial and inducible nitric oxide synthases (eNOS and iNOS), and connexin 43 in cardiac tissue. In the aorta, the chronic treatment with vincristine caused a slight non-significant increase in TNFα expression, a significant increase in eNOS and iNOS, and a significant decrease in connexin 43. After 2 weeks of vincristine treatment (sequelae group), the expression of TNFα increased and eNOS and iNOS expressions disappeared, but a significant decrease in the expression of connexin 43 was still observed in the aorta. In mesenteric arteries, similar data to those found in the aorta were observed. In conclusion, chronic treatment with vincristine causes functional alterations in the vascular function of both conductance and resistance vessels and changes in the expressions of TNFα, eNOS, iNOS, and connexin 43 in cardiovascular tissues, implicating direct toxicity during its treatment. These functional alterations are transitory and disappear after the suspension of its treatment.
Collapse
Affiliation(s)
- Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Cristina González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| |
Collapse
|
43
|
Wagner BJ, Hobbach HP, Hobbach AJ, Hieggelke LK, Grond M, Monsefi N, Buettner R. Cardiac metastasis causes paradoxical malignant embolism. Cancer Rep (Hoboken) 2021; 5:e1513. [PMID: 34264008 PMCID: PMC9124501 DOI: 10.1002/cnr2.1513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/05/2022] Open
Abstract
Background Embolic events play an important role in clinical everyday practice. Malignant arterial embolism is a rare nevertheless often fatal entity for cardiac, cerebral or systemic ischemia, requiring immediate diagnosis and treatment. Case This is a case report of a 65 years‐old female, suffering from pulmonal adenocarcinoma, who was hospitalized due to neurological deficits caused by an acute ischemic stroke, followed by anterior myocardial infarction within 3 days. Diagnostic work‐up revealed metastasis of the pulmonal adenocarcinoma in the right atrium and a patent foramen ovale. Histopathological examination of the coronary embolus verified paradoxical arterial embolism of the pulmonal adenocarcinoma into a coronary vessel and consequently cerebral arteries. Conclusion The present case underlines the need for (i), consideration of malignant embolism, (ii) histopathological examination of the embolus to determine its etiology, and (iii) interdisciplinary discussion of individual therapeutic and prevention strategies in cancer patients with cerebral, cardiac or systemic embolic events.
Collapse
Affiliation(s)
- Britta Janina Wagner
- Institute of Pathology, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Hans-Peter Hobbach
- Department of Cardiology, Angiology and Internal Intensive Care, Hospital of Siegen, Siegen, Germany
| | | | - Lena Katharina Hieggelke
- Institute of Pathology, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Martin Grond
- Department of Neurology and Neurological Geriatric Medicine, Hospital of Siegen, Siegen, Germany
| | - Nadejda Monsefi
- Department of Cardiothoracic Surgery, Helios Heart Center NRW, Siegburg-Wuppertal, University of Witten Herdecke, Helios Hospital Siegburg, Siegburg, Germany
| | - Reinhard Buettner
- Institute of Pathology, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
44
|
Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C, Zhang L, Holland E, Yao L, Qin L, Binder ZA, O'Rourke DM, Brem S, Koumenis C, Gong Y, Fan Y. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 2021; 12:12/532/eaay7522. [PMID: 32102932 DOI: 10.1126/scitranslmed.aay7522] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic resistance remains a persistent challenge for patients with malignant tumors. Here, we reveal that endothelial cells (ECs) acquire transformation into mesenchymal stem cell (MSC)-like cells in glioblastoma (GBM), driving tumor resistance to cytotoxic treatment. Transcriptome analysis by RNA sequencing (RNA-seq) revealed that ECs undergo mesenchymal transformation and stemness-like activation in GBM microenvironment. Furthermore, we identified a c-Met-mediated axis that induces β-catenin phosphorylation at Ser675 and Wnt signaling activation, inducing multidrug resistance-associated protein-1(MRP-1) expression and leading to EC stemness-like activation and chemoresistance. Last, genetic ablation of β-catenin in ECs overcome GBM tumor resistance to temozolomide (TMZ) chemotherapy in vivo. Combination of Wnt inhibition and TMZ chemotherapy eliminated tumor-associated ECs, inhibited GBM growth, and increased mouse survival. These findings identified a cell plasticity-based, microenvironment-dependent mechanism that controls tumor chemoresistance, and suggest that targeting Wnt/β-catenin-mediated EC transformation and stemness activation may overcome therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janet Y Wu
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biology, Oberlin College, Oberlin, OH 44074, USA
| | - Kun Xing
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eujin Yeo
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chunsheng Li
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lutian Yao
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Glioblastoma Translational Center of Excellence, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Chen L, Holder R, Porter C, Shah Z. Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS One 2021; 16:e0252816. [PMID: 34101754 PMCID: PMC8186764 DOI: 10.1371/journal.pone.0252816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
The toxicity of doxorubicin to the cardiovascular system often limits its benefits and widespread use as chemotherapy. The mechanisms involved in doxorubicin-induced cardiovascular damage and possible protective interventions are not well-explored. Using human aortic endothelial cells, we show vitamin D3 strongly attenuates doxorubicin-induced senescence and cell cycle arrest. We further show the protective effects of vitamin D3 are mediated by the upregulation of IL-10 and FOXO3a expression through fine modulation of pAMPKα/SIRT1/FOXO3a complex activity. These results have great significance in finding a target for mitigating doxorubicin-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rachel Holder
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Charles Porter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Zubair Shah
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Parr SK, Steele CC, Hammond ST, Turpin VRG, Ade CJ. Arterial stiffness is associated with cardiovascular and cancer mortality in cancer patients: Insight from NHANESIII. Int J Cardiol Hypertens 2021; 9:100085. [PMID: 34095811 PMCID: PMC8167280 DOI: 10.1016/j.ijchy.2021.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cancer survivors are at greater risk for cardiovascular disease (CVD) than second malignancy, resulting in a decreased quality of life and increased cost of care. Additional knowledge of CVD prevention by identifying possible risk factors has clinical relevance. Our main objective was to determine the relevance of a clinical index of arterial stiffness, pulse pressure, in predicting CVD mortality in cancer patients, with a second objective to examine its relationship with cancer mortality. METHODS We retrospectively analyzed 781 cancer patients from Third National Health and Nutrition Examination Survey and Linked Mortality File, including demographic, anthropometric, blood pressure, and cause of death. Kaplan-Meier survival curve and Cox hazard regression analyses were performed to assess the relationship between pulse pressure and cardiovascular, cancer, and all-cause mortality. RESULTS During a mean follow-up time of 8.1 years, 603 deaths, 257 cancer and 151 CVD, occurred. In unadjusted models, the risk of CVD, cancer, and all-cause mortality were 3.8-fold, 5.3-fold, and 1.6-fold higher, respectively, for pulse pressure ≥70 mmHg compared to <50 mmHg. Adjusted analyses revealed a higher CVD mortality in cancer patients <65 years with a pulse pressure 60-70 mmHg (adjusted hazard ratio, 5.26; 95%CI, 1.12-24.78) when compared to pulse pressure of <50 mmHg. Pulse pressure was not associated with risk of all-cause, CVD, or cancer in those ≥65 years. CONCLUSION Pulse pressure, an index of arterial stiffness, is predictive of CVD mortality in cancer patients. Our findings support non-invasive office-setting measurements of arterial stiffness to identify high risk patients.
Collapse
Affiliation(s)
- Shannon K. Parr
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, USA
| | - Catherine C. Steele
- Department of Psychology and Communication, College of Arts and Sciences, Texas A&M International University, USA
| | - Stephen T. Hammond
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, USA
| | - Vanessa Rose G. Turpin
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, USA
| | - Carl J. Ade
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, USA
- Physician Assistant Studies, College of Health and Human Sciences, Kansas State University, USA
- Johnson Cancer Center, Kansas State University, USA
| |
Collapse
|
47
|
Narezkina A, Narayan HK, Zemljic-Harpf AE. Molecular mechanisms of anthracycline cardiovascular toxicity. Clin Sci (Lond) 2021; 135:1311-1332. [PMID: 34047339 PMCID: PMC10866014 DOI: 10.1042/cs20200301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Anthracyclines are effective chemotherapeutic agents, commonly used in the treatment of a variety of hematologic malignancies and solid tumors. However, their use is associated with a significant risk of cardiovascular toxicities and may result in cardiomyopathy and heart failure. Cardiomyocyte toxicity occurs via multiple molecular mechanisms, including topoisomerase II-mediated DNA double-strand breaks and reactive oxygen species (ROS) formation via effects on the mitochondrial electron transport chain, NADPH oxidases (NOXs), and nitric oxide synthases (NOSs). Excess ROS may cause mitochondrial dysfunction, endoplasmic reticulum stress, calcium release, and DNA damage, which may result in cardiomyocyte dysfunction or cell death. These pathophysiologic mechanisms cause tissue-level manifestations, including characteristic histopathologic changes (myocyte vacuolization, myofibrillar loss, and cell death), atrophy and fibrosis, and organ-level manifestations including cardiac contractile dysfunction and vascular dysfunction. In addition, these mechanisms are relevant to current and emerging strategies to diagnose, prevent, and treat anthracycline-induced cardiomyopathy. This review details the established and emerging data regarding the molecular mechanisms of anthracycline-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Anna Narezkina
- Department of Medicine, Division of Cardiovascular Medicine, UCSD Cardiovascular Institute, University of California, San Diego
| | - Hari K. Narayan
- Department of Pediatrics, Division of Cardiology, University of California, San Diego
| | - Alice E. Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and management of hypertension in patients with cancer. CARDIO-ONCOLOGY 2021; 7:14. [PMID: 33823943 PMCID: PMC8022405 DOI: 10.1186/s40959-021-00101-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The pathophysiology of hypertension and cancer are intertwined. Hypertension has been associated with an increased likelihood of developing certain cancers and with higher cancer-related mortality. Moreover, various anticancer therapies have been reported to cause new elevated blood pressure or worsening of previously well-controlled hypertension. Hypertension is a well-established risk factor for the development of cardiovascular disease, which is rapidly emerging as one of the leading causes of death and disability in patients with cancer. In this review, we discuss the relationship between hypertension and cancer and the role that hypertension plays in exacerbating the risk for anthracycline- and trastuzumab-induced cardiomyopathy. We then review the common cancer therapies that have been associated with the development of hypertension, including VEGF inhibitors, small molecule tyrosine kinase inhibitors, proteasome inhibitors, alkylating agents, glucocorticoids, and immunosuppressive agents. When available, we present strategies for blood pressure management for each drug class. Finally, we discuss blood pressure goals for patients with cancer and strategies for assessment and management. It is of utmost importance to maintain optimal blood pressure control in the oncologic patient to reduce the risk of chemotherapy-induced cardiotoxicity and to decrease the risk of long-term cardiovascular disease.
Collapse
Affiliation(s)
- Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Meghana Singh
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - John G Tiu
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Agnes S Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA. .,Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
49
|
Fredslund SO, Buus NH, Højgaard Skjold C, Laugesen E, Jensen AB, Laursen BE. Changes in vascular function during breast cancer treatment. Br J Clin Pharmacol 2021; 87:4230-4240. [PMID: 33769580 DOI: 10.1111/bcp.14837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Niels Henrik Buus
- Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, Aarhus C, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Esben Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Britt Elmedal Laursen
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, Aarhus C, Denmark.,Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
50
|
Chen J, Sun H, Wu M, Zhong X, Zhang Y. Spontaneous arterial thrombosis in a patient with advanced ovarian clear cell cancer: a case report and literature review. J Int Med Res 2021; 48:300060520926742. [PMID: 32485125 PMCID: PMC7273781 DOI: 10.1177/0300060520926742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with ovarian cancer are often in a hypercoagulable state and have a high
risk of venous thrombosis, including deep vein thrombosis and pulmonary
embolism. However, arterial thrombosis is relatively rare in ovarian cancer. We
report a case a 46-year-old woman with ovarian clear cell carcinoma who
developed arterial and venous thrombosis in the lower extremities as the first
manifestation. Her arterial thrombosis-related ischemic symptoms were not
responsive to anticoagulant treatment of low-molecular-weight heparin, but
improved after neoadjuvant chemotherapy and surgery. Therefore, we hypothesize
that the optimal therapy for arterial thrombosis in ovarian cancer is treatment
for the underlying disease (i.e., ovarian cancer). A thorough investigation is
required to determine the relationships between arterial thrombosis and ovarian
cancer and antithrombotic treatments for ovarian cancer related-arterial
thrombosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gynecology & Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huimin Sun
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Minrong Wu
- Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaolin Zhong
- Department of Gynecology & Obstetrics, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yuqin Zhang
- Department of Gynecology & Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|