1
|
Delpech C, Schaeffer J, Vilallongue N, Delaunay A, Benadjal A, Blot B, Excoffier B, Plissonnier E, Gascon E, Albert F, Paccard A, Saintpierre A, Gasnier C, Zagar Y, Castellani V, Belin S, Chédotal A, Nawabi H. Axon guidance during mouse central nervous system regeneration is required for specific brain innervation. Dev Cell 2024; 59:3213-3228.e8. [PMID: 39353435 DOI: 10.1016/j.devcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target. Axon guidance is considered to be active only during development. Here, using the mouse visual system, we show that axon guidance is still active in the adult brain in regenerative conditions. We highlight that regenerating retinal ganglion cell axons avoid one of their primary targets, the suprachiasmatic nucleus (SCN), due to Slit/Robo repulsive signaling. Together with promoting regeneration, silencing Slit/Robo in vivo enables regenerating axons to enter the SCN and form active synapses. The newly formed circuit is associated with neuronal activation and functional recovery. Our results provide evidence that axon guidance mechanisms are required to reconnect regenerating axons to specific brain nuclei.
Collapse
Affiliation(s)
- Céline Delpech
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Noemie Vilallongue
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Apolline Delaunay
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Amin Benadjal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Beatrice Blot
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Elise Plissonnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Eduardo Gascon
- Aix Marseille University, CNRS, INT, Institute of Neurosci Timone, Marseille, France
| | - Floriane Albert
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Ana Saintpierre
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Celestin Gasnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Valérie Castellani
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | - Stephane Belin
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France; Institut de pathologie, groupe hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Homaira Nawabi
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
2
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Comai S, Gobbi G. Melatonin, Melatonin Receptors and Sleep: Moving Beyond Traditional Views. J Pineal Res 2024; 76:e13011. [PMID: 39400423 DOI: 10.1111/jpi.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Sleep, constituting approximately one-third of the human lifespan, is a crucial physiological process essential for physical and mental well-being. Normal sleep consists of an orderly progression through wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, all of which are tightly regulated. Melatonin, often referred to as the "hormone of sleep," plays a pivotal role as a regulator of the sleep/wake cycle and exerts its effects through high-affinity G-protein coupled receptors known as MT1 and MT2. Selective modulation of these receptors presents a promising therapeutic avenue for sleep disorders. This review examines research on the multifaceted role of melatonin in sleep regulation, focusing on selective ligands targeting MT1 and MT2 receptors, as well as studies involving MT1 and MT2 knockout mice. Contrary to common beliefs, growing evidence suggests that melatonin, through MT1 and MT2 receptors, might not only influence circadian aspects of sleep but likely, also modulate the homeostatic process of sleep and sleep architecture, or could be the molecule linking the homeostatic and circadian regulation of sleep. Furthermore, the distinct brain localization of MT1 and MT2 receptors, with MT1 receptors primarily regulating REM sleep and MT2 receptors regulating NREM sleep, is discussed. Collectively, sleep regulation extends beyond the circulating levels and circadian peak of melatonin; it also critically involves the expression, molecular activation, and regulatory functions of MT1 and MT2 receptors across various brain regions and nuclei involved in the regulation of sleep. This research underscores the importance of ongoing investigation into the selective roles of MT1 and MT2 receptors in sleep. Such research efforts are expected to pave the way for the development of targeted MT1 or MT2 receptors ligands, thereby optimizing therapeutic interventions for sleep disorders.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
- IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University and McGill University Health Center, Montreal, Québec, Canada
| |
Collapse
|
4
|
Stevenson TJ. Defining the brain control of physiological stability. Horm Behav 2024; 164:105607. [PMID: 39059231 DOI: 10.1016/j.yhbeh.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The last few decades have seen major advances in neurobiology and uncovered novel genetic and cellular substrates involved in the control of physiological set points. In this Review, I discuss the limitations in the definition of homeostatic set points established by Walter B Canon and highlight evidence that two other physiological systems, namely rheostasis and allostasis provide distinct inputs to independently modify set-point levels. Using data collected over the past decade, the hypothalamic and genetic basis of regulated changes in set-point values by rheostatic mechanisms are described. Then, the role of higher-order brain regions, such as hippocampal circuits, for experience-dependent, allostatic induced changes in set-points are outlined. I propose that these systems provide a hierarchical organization of physiological stability that exists to maintain set-point values. The hierarchical organization of physiology has direct implications for basic and medical research, and clinical practice.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
5
|
Steponenaite A, Lalic T, Atkinson L, Tanday N, Brown L, Mathie A, Cader ZM, Lall GS. TASK-3, two-pore potassium channels, contribute to circadian rhythms in the electrical properties of the suprachiasmatic nucleus and play a role in driving stable behavioural photic entrainment. Chronobiol Int 2024; 41:802-816. [PMID: 38757583 DOI: 10.1080/07420528.2024.2351515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.
Collapse
Affiliation(s)
| | - Tatjana Lalic
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | | - Neil Tanday
- Medway School of Pharmacy, University of Kent, Kent, UK
| | - Lorna Brown
- Medway School of Pharmacy, University of Kent, Kent, UK
| | | | - Zameel M Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
7
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Van Loh BM, Yaw AM, Breuer JA, Jackson B, Nguyen D, Jang K, Ramos F, Ho EV, Cui LJ, Gillette DLM, Sempere LF, Gorman MR, Tonsfeldt KJ, Mellon PL, Hoffmann HM. The transcription factor VAX1 in VIP neurons of the suprachiasmatic nucleus impacts circadian rhythm generation, depressive-like behavior, and the reproductive axis in a sex-specific manner in mice. Front Endocrinol (Lausanne) 2023; 14:1269672. [PMID: 38205198 PMCID: PMC10777845 DOI: 10.3389/fendo.2023.1269672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.
Collapse
Affiliation(s)
- Brooke M. Van Loh
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Alexandra M. Yaw
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Brooke Jackson
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Krystal Jang
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Fabiola Ramos
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Emily V. Ho
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Laura J. Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dominique L. M. Gillette
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lorenzo F. Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Michael R. Gorman
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Hanne M. Hoffmann
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Yao Y, Green IK, Taub AB, Tazebay R, LeSauter J, Silver R. Vasculature of the Suprachiasmatic Nucleus: Pathways for Diffusible Output Signals. J Biol Rhythms 2023; 38:571-585. [PMID: 37553858 PMCID: PMC10652420 DOI: 10.1177/07487304231189537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Transplant studies demonstrate unequivocally that the suprachiasmatic nucleus (SCN) produces diffusible signals that can sustain circadian locomotor rhythms. There is a vascular portal pathway between the SCN and the organum vasculosum of the lamina terminalis in mouse brain. Portal pathways enable low concentrations of neurosecretions to reach specialized local targets without dilution in the systemic circulation. To explore the SCN vasculature and the capillary vessels whereby SCN neurosecretions might reach portal vessels, we investigated the blood vessels (BVs) of the core and shell SCN. The arterial supply of the SCN differs among animals, and in some animals, there are differences between the 2 sides. The rostral SCN is supplied by branches from either the superior hypophyseal artery (SHpA) or the anterior cerebral artery or the anterior communicating artery. The caudal SCN is consistently supplied by the SHpA. The rostral SCN is drained by the preoptic vein, while the caudal is drained by the basal vein, with variations in laterality of draining vessels. In addition, several key features of the core and shell SCN regions differ: Median BV diameter is significantly smaller in the shell than the core based on confocal image measurements, and a similar trend occurs in iDISCO-cleared tissue. In the cleared tissue, whole BV length density and surface area density are significantly greater in the shell than the core. Finally, capillary length density is also greater in the shell than the core. The results suggest three hypotheses: First, the distinct arterial and venous systems of the rostral and caudal SCN may contribute to the in vivo variations of metabolic and neural activities observed in SCN networks. Second, the dense capillaries of the SCN shell are well positioned to transport blood-borne signals. Finally, variations in SCN vascular supply and drainage may contribute to inter-animal differences.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY
| | | | - Alana B. Taub
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Ruya Tazebay
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Joseph LeSauter
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York City, NY
- Zuckerman Institute, Columbia University, New York City, NY
| |
Collapse
|
11
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
12
|
Silver R, Yao Y, Roy RK, Stern JE. Parallel trajectories in the discovery of the SCN-OVLT and pituitary portal pathways: Legacies of Geoffrey Harris. J Neuroendocrinol 2023; 35:e13245. [PMID: 36880566 PMCID: PMC10423749 DOI: 10.1111/jne.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.
Collapse
Affiliation(s)
- Rae Silver
- Department of Neuroscience, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
- Department of Psychology, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
| | - Yifan Yao
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
13
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Sajonia IR, Olivieri JJ, Calhan OY, Deppmann CD, Campbell JN, Podyma B, Güler AD. Leptin receptor neurons in the dorsomedial hypothalamus input to the circadian feeding network. SCIENCE ADVANCES 2023; 9:eadh9570. [PMID: 37624889 PMCID: PMC10456850 DOI: 10.1126/sciadv.adh9570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Isabelle R. Sajonia
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - O. Yipkin Calhan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
14
|
Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, Hastings MH. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2301330120. [PMID: 37186824 PMCID: PMC10214171 DOI: 10.1073/pnas.2301330120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.
Collapse
Affiliation(s)
- Andrew P. Patton
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emma L. Morris
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - David McManus
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Jason W. Chin
- PNAC Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Michael H. Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
15
|
Cao L, Feng R, Gao Y, Bao W, Zhou Z, Liang K, Hu X, Li H, Zhang L, Li Y, Zhuo L, Huang G, Huang X. Suprachiasmatic nucleus functional connectivity related to insomnia symptoms in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1154095. [PMID: 37260759 PMCID: PMC10228684 DOI: 10.3389/fpsyt.2023.1154095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Background Insomnia is a commonly seen symptom in adolescents with major depressive disorder (MDD). The suprachiasmatic nucleus (SCN), which is the circadian rhythm regulation center, plays a crucial role in the regulation of sleep-wake circulation. Nevertheless, how SCN function contributes to the exact neural mechanisms underlying the associations between insomnia and depressive symptoms has not been explored in adolescents. In the current study, we aimed to explore the relationship between SCN functional connectivity (FC) and insomnia symptoms in adolescents with MDD using a seed-based FC method. Methods In the current study, we recruited sixty-eight first-episode drug-naïve adolescents with MDD and classified them into high insomnia (MDD-HI) and low insomnia (MDD-LI) groups according to the sleep disturbance subscale of the Hamilton Depression Rating Scale (HAMD-S). Forty-three age/gender-matched healthy controls (HCs) were also recruited. SCN FC maps were generally for all subjects and compared among three groups using one-way ANOVA with age, gender and adjusted HAMD score as covariates. We used partial correlations to explore associations between altered FC and clinical symptoms, including sleep quality scores. Results Adolescents with MDD showed worse sleep quality, which positively correlated with the severity of depression. Compared to MDD-LI and HCs, MDD-HI adolescents demonstrated significantly decreased FC between the right SCN and bilateral precuneus, and there was no significant difference between the MDD-LI and HC groups. The HAMD-S scores were negatively correlated with bilateral SCN-precuneus connectivity, and the retardation factor score of HAMD was negatively correlated with right SCN-precuneus connectivity. Conclusion The altered FC between the SCN and precuneus may underline the neural mechanism of sleep-related symptoms in depressive adolescents and provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingling Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ruohan Feng
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yang Li
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Guoping Huang
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
16
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
17
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
18
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
19
|
Wang Y, Guo H, He F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 2023; 42:297-322. [PMID: 36513953 DOI: 10.1007/s10555-022-10072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Olivieri JJ, Deppmann CD, Campbell JN, Podyma B, Güler AD. A leptin-responsive hypothalamic circuit inputs to the circadian feeding network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529901. [PMID: 36865258 PMCID: PMC9980144 DOI: 10.1101/2023.02.24.529901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
21
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
22
|
Ravichandran S, Suhasini R, Madheswaran Deepa S, Selvaraj DB, Vergil Andrews JF, Thiagarajan V, Kandasamy M. Intertwining Neuropathogenic Impacts of Aberrant Circadian Rhythm and Impaired Neuroregenerative Plasticity in Huntington’s Disease: Neurotherapeutic Significance of Chemogenetics. JOURNAL OF MOLECULAR PATHOLOGY 2022; 3:355-371. [DOI: 10.3390/jmp3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by abnormal progressive involuntary movements, cognitive deficits, sleep disturbances, and psychiatric symptoms. The onset and progression of the clinical symptoms have been linked to impaired adult neurogenesis in the brains of subjects with HD, due to the reduced neurogenic potential of neural stem cells (NSCs). Among various pathogenic determinants, an altered clock pathway appears to induce the dysregulation of neurogenesis in neurodegenerative disorders. Notably, gamma-aminobutyric acid (GABA)-ergic neurons that express the vasoactive intestinal peptide (VIP) in the brain play a key role in the regulation of circadian rhythm and neuroplasticity. While an abnormal clock gene pathway has been associated with the inactivation of GABAergic VIP neurons, recent studies suggest the activation of this neuronal population in the brain positively contributes to neuroplasticity. Thus, the activation of GABAergic VIP neurons in the brain might help rectify the irregular circadian rhythm in HD. Chemogenetics refers to the incorporation of genetically engineered receptors or ion channels into a specific cell population followed by its activation using desired chemical ligands. The recent advancement of chemogenetic-based approaches represents a potential scientific tool to rectify the aberrant circadian clock pathways. Considering the facts, the defects in the circadian rhythm can be rectified by the activation of VIP-expressing GABAergic neurons using chemogenetics approaches. Thus, the chemogenetic-based rectification of an abnormal circadian rhythm may facilitate the neurogenic potentials of NSCs to restore the neuroregenerative plasticity in HD. Eventually, the increased neurogenesis in the brain can be expected to mitigate neuronal loss and functional deficits.
Collapse
Affiliation(s)
- Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramalingam Suhasini
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sudhiksha Madheswaran Deepa
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
23
|
Day time-restricted feeding shows differential synchronizing effects on age-related changes of serotonin metabolism in SCN and the pineal gland in male Wistar rats. Biogerontology 2022; 23:771-788. [PMID: 36322233 DOI: 10.1007/s10522-022-09994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The circadian timing system is synchronized by the environmental photic and non-photic signals. Light is the major cue that entrains the master circadian oscillator located in suprachiasmatic nucleus (SCN). With aging condition ocular light impairs because of the age-related deficiencies in the eye as a result the clock becomes less sensitive to light. In such case non-photic cues may play a major role in synchronizing the clock. Earlier studies have linked altered meal timings to induce many physiological changes including serotonin in different brain regions such as hypothalamus, brain stem and striatum. Much is not known about the effect of timed food restriction as a non-photic stimulus on serotonergic system in SCN under aging condition. We report here the synchronizing effects of time-restricted feeding (TRF) as a non-photic stimulus on serotonin and its related metabolites in the SCN and pineal gland of male Wistar rats upon aging. Under food restriction daily rhythmicity of serotonin 5-HT and 5-HTOH was abolished whereas NAS, 5-MIAA and NAT showed a significant decrease in their daily pulses upon food restriction in 3 months (m) old rats. Under forced day time feeding schedule the mean 24 h levels of serotonin have significantly decreased in 12 and 24 m old animals in SCN and pineal gland. Most of the serotonin metabolites in the SCN and pineal gland of 12 and 24 m old ad libitum fed group rats have shown rhythmicity. 5-HT, NAS, MEL and NAT have shown daily rhythm in the SCN of 12 and 24 m old rats whereas 5-MIAA and 5-MTOH did not show daily rhythm in both the age groups. The mean 24 h levels of 5-HTP, 5-HIAA, 5-MIAA, 5-MTOH, MEL and NAT were increased in the pineal gland of 12 and 24 months old rats. This work help demonstrate the role of TRF in synchronising age induced desynchronization in serotonin metabolome.
Collapse
|
24
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Morimoto T, Yoshikawa T, Nagano M, Shigeyoshi Y. Regionality of short and long period oscillators in the suprachiasmatic nucleus and their manner of synchronization. PLoS One 2022; 17:e0276372. [PMID: 36256675 PMCID: PMC9578605 DOI: 10.1371/journal.pone.0276372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
In mammals, the center of the circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Many studies have suggested that there are multiple regions generating different circadian periods within the SCN, but the exact localization of the regions has not been elucidated. In this study, using a transgenic rat carrying a destabilized luciferase reporter gene driven by a regulatory element of Per2 gene (Per2::dLuc), we investigated the regional variation of period lengths in horizontal slices of the SCN. We revealed a distinct caudal medial region (short period region, SPR) and a rostro-lateral region (long period region, LPR) that generate circadian rhythms with periods shorter than and longer than 24 hours, respectively. We also found that the core region of the SCN marked by dense VIP (vasoactive intestinal peptide) mRNA-expressing neurons covered a part of LPR, and that the shell region of the SCN contains both SPR and the rest of the LPR. Furthermore, we observed how synchronization is achieved between regions generating distinct circadian periods in the SCN. We found that the longer circadian rhythm of the rostral region appears to entrain the circadian rhythm in the caudal region. Our findings clarify the localization of regionality of circadian periods and the mechanism by which the integrated circadian rhythm is formed in the SCN.
Collapse
Affiliation(s)
- Tadamitsu Morimoto
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan,* E-mail:
| |
Collapse
|
26
|
Hypotensive effects of melatonin in rats: Focus on the model, measurement, application, and main mechanisms. Hypertens Res 2022; 45:1929-1944. [PMID: 36123396 DOI: 10.1038/s41440-022-01031-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin's lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect.
Collapse
|
27
|
Smolensky MH, Hermida RC, Sackett-Lundeen L, Hermida-Ayala RG, Geng YJ. Does Patient-Applied Testosterone Replacement Therapy Pose Risk for Blood Pressure Elevation? Circadian Medicine Perspectives. Compr Physiol 2022; 12:4165-4184. [PMID: 35950658 DOI: 10.1002/cphy.c220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We reviewed medication package inserts, US Food and Drug Administration (FDA) reports, and journal publications concerning the 10 nonbiosimilar patient-applied (PA) testosterone (T) replacement therapies (TRTs) for intraday serum T patterning and blood pressure (BP) effects. Blood T concentration is circadian rhythmic in young adult eugonadal males, being highest around awakening and lowest before bedtime. T level and 24 h variation are blunted in primary and secondary hypogonadism. Utilized as recommended, most PA-TRTs achieve nonphysiologic T 24 h patterning. Only Androderm® , an evening PA transdermal patch, closely replicates the normal T circadian rhythmicity. Accurate determination of risk for BP elevation and hypertension (HTN) by PA-TRTs is difficult due to limitations of office BP measurements (OBPM) and suboptimal methods and endpoints of ambulatory BP monitoring (ABPM). OBPM is subject to "White Coat" pressor effect resulting in unrepresentative BP values plus masked normotension and masked HTN, causing misclassification of approximately 45% of trial participants, both before and during treatment. Change in guideline-recommended diagnostic thresholds over time causes misclassification of an additional approximately 15% of participants. ABPM is improperly incorporated into TRT safety trials. It is done for 24 h rather than preferred 48 h; BP is oversampled during wakefulness, biasing derived 24 h mean values; 24 h mean systolic and diastolic BP (SBP, DBP) are inappropriate primary outcomes, because of not being best predictors of risk for major acute cardiovascular events (MACE); "daytime" and "nighttime" BP means referenced to clock time are reported rather than biologically relevant wake-time and sleep-time BP means; most importantly, asleep SBP mean and dipping, strongest predictors of MACE, are disregarded. © 2022 American Physiological Society. Compr Physiol 12: 1-20, 2022.
Collapse
Affiliation(s)
- Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA.,The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ramon C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), University of Vigo, Vigo, Spain
| | - Linda Sackett-Lundeen
- American Association for Medical Chronobiology and Chronotherapeutics, Roseville, Minnesota, USA
| | - Ramon G Hermida-Ayala
- Circadian Ambulatory Technology & Diagnostics (CAT&D), Santiago de Compostela, Spain
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
28
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
29
|
Persistence of Anxiety/Depression Symptoms in Early Adolescence: A Prospective Study of Daily Life Stress, Rumination, and Daytime Sleepiness in a Genetically Informative Cohort. Twin Res Hum Genet 2022; 25:115-128. [PMID: 35856184 DOI: 10.1017/thg.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this prospective study of mental health, we examine the influence of three interrelated traits - perceived stress, rumination, and daytime sleepiness - and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9-14 years at baseline and 152 pairs aged 10-16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8-11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic-pituitary-adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.
Collapse
|
30
|
Namisnak LH, Haghayegh S, Khoshnevis S, Diller KR. Bioheat Transfer Basis of Human Thermoregulation: Principles and Applications. JOURNAL OF HEAT TRANSFER 2022; 144:031203. [PMID: 35833149 PMCID: PMC8823203 DOI: 10.1115/1.4053195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/06/2021] [Indexed: 05/29/2023]
Abstract
Thermoregulation is a process that is essential to the maintenance of life for all warm-blooded mammalian and avian species. It sustains a constant core body temperature in the face of a wide array of environmental thermal conditions and intensity of physical activities that generate internal heat. A primary component of thermoregulatory function is the movement of heat between the body core and the surface via the circulation of blood. The peripheral vasculature acts as a forced convection heat exchanger between blood and local peripheral tissues throughout the body enabling heat to be convected to the skin surface where is may be transferred to and from the environment via conduction, convection, radiation, and/or evaporation of water as local conditions dictate. Humans have evolved a particular vascular structure in glabrous (hairless) skin that is especially well suited for heat exchange. These vessels are called arteriovenous anastomoses (AVAs) and can vasodilate to large diameters and accommodate high flow rates. We report herein a new technology based on a physiological principle that enables simple and safe access to the thermoregulatory control system to allow manipulation of thermoregulatory function. The technology operates by applying a small amount of heating local to control tissue on the body surface overlying the cerebral spine that upregulates AVA perfusion. Under this action, heat exchangers can be applied to glabrous skin, preferably on the palms and soles, to alter the temperature of elevated blood flow prior to its return to the core. Therapeutic and prophylactic applications are discussed.
Collapse
Affiliation(s)
- Laura H Namisnak
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Shahab Haghayegh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712; Department of Biostatics, T.H. Chan School of Public Health, Harvard Medical School, Boston, MA 02138
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Kenneth R Diller
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
31
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
32
|
Chen Z, Zhao S, Tian S, Yan R, Wang H, Wang X, Zhu R, Xia Y, Yao Z, Lu Q. Diurnal mood variation symptoms in major depressive disorder associated with evening chronotype: Evidence from a neuroimaging study. J Affect Disord 2022; 298:151-159. [PMID: 34715183 DOI: 10.1016/j.jad.2021.10.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/16/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is often accompanied with classic diurnal mood variation (DMV) symptoms. Patients with DMV symptoms feel a mood improvement and prefer activities at dusk or in the evening, which is consistent with the evening chronotype. Their neural alterations are unclear. In this study, we aimed to explore the neuropathological mechanisms underlying the circadian rhythm of mood and the association with chronotype in MDD. METHODS A total of 126 depressed patients, including 48 with DMV, 78 without, and 67 age/gender-matched healthy controls (HC) were recruited and underwent a resting-state functional magnetic resonance imaging. Spontaneous neural activity was investigated using amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) analyses were conducted. The Morningness-Eveningness Questionnaire (MEQ) was utilized to evaluate participant chronotypes and Pearson correlations were calculated between altered ALFF/FC values and MEQ scores in patients with MDD. RESULTS Compared with NMV, DMV group exhibited lower MEQ scores, and increased ALFF values in the right orbital superior frontal gyrus (oSFG). We observed that increased FC between the left suprachiasmatic nucleus (SCN) and supramarginal gyrus (SMG). ALFF in the oSFG and FC of rSCN-SMG were negatively correlated with MEQ scores. LIMITATION Some people's chronotypes information is missing. CONCLUSION Patients with DMV tended to be evening type and exhibited abnormal brain functions in frontal lobes. The synergistic changes between frontotemporal lobe, SCN-SMG maybe the characteristic of patients with DMV symptoms.
Collapse
Affiliation(s)
- Zhilu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xumiao Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China.
| |
Collapse
|
33
|
Astiz M, Delgado-García LM, López-Mascaraque L. Astrocytes as essential time-keepers of the central pacemaker. Glia 2021; 70:808-819. [PMID: 34816453 DOI: 10.1002/glia.24121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Since the early observations made by Santiago Ramon y Cajal more than a century ago till now, astrocytes have gradually gained protagonism as essential partners of neurons in building brain circuits that regulate complex behavior. In mammals, processes such as sleep-wake cycle, locomotor activity, cognition and memory consolidation, homeostatic and hedonic appetite and stress response (among others), are synchronized in 24-h rhythms by the circadian system. In such a way, physiology efficiently anticipates and adapts to daily recurring changes in the environment. The hypothalamic suprachiasmatic nucleus (SCN) is considered the central pacemaker, it has been traditionally described as a nucleus of around 10,000 neurons nearly all GABAergic able to be entrained by light and to convey time information through multiple neuronal and hormonal pathways. Only recently, this neuro-centered view was challenged by breakthrough discoveries implicating astrocytes as essential time-keepers. In the present review, we will describe the current view on the SCN circuit and discuss whether astrocytic functions described in other brain regions and state-of-the-art experimental approaches, could help explaining better those well- and not so well-known features of the central pacemaker.
Collapse
Affiliation(s)
- Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
34
|
Salaberry NL, Mendoza J. The circadian clock in the mouse habenula is set by catecholamines. Cell Tissue Res 2021; 387:261-274. [PMID: 34816282 DOI: 10.1007/s00441-021-03557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France.
| |
Collapse
|
35
|
Brain Clocks, Sleep, and Mood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34773227 DOI: 10.1007/978-3-030-81147-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The suprachiasmatic nucleus houses the master clock, but the genes which encode the circadian clock components are also expressed throughout the brain. Here, we review how circadian clock transcription factors regulate neuromodulator systems such as histamine, dopamine, and orexin that promote arousal. These circadian transcription factors all lead to repression of the histamine, dopamine, and orexin systems during the sleep period, so ensuring integration with the ecology of the animal. If these transcription factors are deleted or mutated, in addition to the global disturbances in circadian rhythms, this causes a chronic up-regulation of neuromodulators leading to hyperactivity, elevated mood, and reduced sleep, which have been suggested to be states resembling mania.
Collapse
|
36
|
Sueviriyapan N, Granados-Fuentes D, Simon T, Herzog ED, Henson MA. Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping. J R Soc Interface 2021; 18:20210454. [PMID: 34520693 PMCID: PMC8440032 DOI: 10.1098/rsif.2021.0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABAA receptor subunits, often referred to as synaptic GABAA (gamma subunit) and extra-synaptic GABAA (delta subunit). To test the functional roles of these distinct GABAA in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABAA receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABAA reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABAA densities could enhance synchrony, as opposed to increasing delta GABAA densities. Overall, our model reveals how blocking GABAA receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABAA density in the winter could underlie the tighter phase relationships among SCN cells.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Tatiana Simon
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
37
|
Jamieson BB, Bouwer GT, Campbell RE, Piet R. Estrous Cycle Plasticity in the Central Clock Output to Kisspeptin Neurons: Implications for the Preovulatory Surge. Endocrinology 2021; 162:6213415. [PMID: 33824970 DOI: 10.1210/endocr/bqab071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
Coordination of ovulation and behavior is critical to reproductive success in many species. During the female estrous cycle, the preovulatory gonadotropin surge occurs when ovarian follicles reach maturity and, in rodents, it begins just before the daily onset of activity, ensuring that ovulation coincides with sex behavior. Timing of the surge relies on projections from the suprachiasmatic nucleus (SCN), the locus of the central circadian clock, to hypothalamic circuits that regulate gonadotropin secretion. The cellular mechanisms through which the SCN controls these circuits and gates the preovulatory surge to the appropriate estrous cycle stage, however, are poorly understood. We investigated in mice the functional impact of SCN arginine-vasopressin (AVP) neuron projections to kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3VKiss1), responsible for generating the preovulatory surge. Conditional anterograde tracing revealed that SCNAVP neurons innervate approximately half of the RP3VKiss1 neurons. Optogenetic activation of SCNAVP projections in brain slices caused an AVP-mediated stimulation of RP3VKiss1 action potential firing in proestrus, the cycle stage when the surge is generated. This effect was less prominent in diestrus, the preceding cycle stage, and absent in estrus, following ovulation. Remarkably, in estrus, activation of SCNAVP projections resulted in GABA-mediated inhibition of RP3VKiss1 neuron firing, an effect rarely encountered in other cycle stages. Together, these data reveal functional plasticity in SCNAVP neuron output that drives opposing effects on RP3VKiss1 neuron activity across the ovulatory cycle. This might contribute to gating activation of the preovulatory surge to the appropriate estrous cycle stage.
Collapse
Affiliation(s)
- Bradley B Jamieson
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
38
|
Hancox TPM, Skene DJ, Dallmann R, Dunn WB. Tick-Tock Consider the Clock: The Influence of Circadian and External Cycles on Time of Day Variation in the Human Metabolome-A Review. Metabolites 2021; 11:328. [PMID: 34069741 PMCID: PMC8161100 DOI: 10.3390/metabo11050328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
The past decade has seen a large influx of work investigating time of day variation in different human biofluid and tissue metabolomes. The driver of this daily variation can be endogenous circadian rhythms driven by the central and/or peripheral clocks, or exogenous diurnal rhythms driven by behavioural and environmental cycles, which manifest as regular 24 h cycles of metabolite concentrations. This review, of all published studies to date, establishes the extent of daily variation with regard to the number and identity of 'rhythmic' metabolites observed in blood, saliva, urine, breath, and skeletal muscle. The probable sources driving such variation, in addition to what metabolite classes are most susceptible in adhering to or uncoupling from such cycles is described in addition to a compiled list of common rhythmic metabolites. The reviewed studies show that the metabolome undergoes significant time of day variation, primarily observed for amino acids and multiple lipid classes. Such 24 h rhythms, driven by various factors discussed herein, are an additional source of intra/inter-individual variation and are thus highly pertinent to all studies applying untargeted and targeted metabolomics platforms, particularly for the construction of biomarker panels. The potential implications are discussed alongside proposed minimum reporting criteria suggested to acknowledge time of day variation as a potential influence of results and to facilitate improved reproducibility.
Collapse
Affiliation(s)
- Thomas P. M. Hancox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Warwick B. Dunn
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Voros GB, Dauchy RT, Myers L, Hill SM, Blask DE, Dobek GL. Effects of Daytime Blue-Enriched LED Light on Physiologic Parameters of Three Common Mouse Strains Maintained on an IVC System. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:259-271. [PMID: 33673880 DOI: 10.30802/aalas-jaalas-20-000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Light has been a crucial part of everyday life since the beginning of time. Most recently, light-emitting diode (LED) light enriched in the blue-appearing portion of the visible spectrum (465 to 485 nm), which is more efficient in energy use, is becoming the normal lighting technology in facilities around the world. Previous reports revealed that blue-enriched LED light at day (bLAD) enhances animal health and wellbeing as compared with cool white fluorescent (CWF) lighting. We hypothesized that bLAD, compared with CWF light, has a positive influence on basic physiologic indices such as food consumption, water consumption, weight gain, nesting behavior, complete blood count, and blood chemistry profile. To test this, we allocated 360 mice into equal-sized groups by sex, strain (C3H/HeNCrl, C57BL/6NCrl, BALB/cAnNCrl), lighting conditions, and 6 blood collection time points (n = 5 mice/sex/strain/lighting condition/time point). Food consumption, water consumption, body weight, nest location, and nest type were recorded every 3 d. At the end of the study, all mice were anesthetized over a period of 1 wk and blood was collected via cardiocentesis at 6 different time points. Overall, male C3H/HeNCrl consumed more food under bLAD conditions as compared with CWF conditions; male C3H/HeNCrl had lower cholesterol levels under bLAD conditions than under CWF conditions; female BALB/cAnNCrl mice had higher serum total protein under bLAD conditions than under CWF conditions; female C57BL/6NCrl mice had higher phosphorus levels under bLAD conditions than under CWF conditions, and female C3H/HeNCrl mice had a higher neutrophil count under bLAD conditions as compared with CWF conditions. Although sex and strain differences were found in various physiologic parameters under bLAD as compared with CWF lighting conditions, the differences were minimal. Thus, this study suggests that for these strains of mice, bLAD and CWF are largely equivalent with regard to indices of health and wellbeing, although some differences could affect research outcomes.
Collapse
Affiliation(s)
- George B Voros
- Department of Comparative Medicine, Tulane University, New Orleans, Louisiana; Biological Resources Unit, Cleveland Clinic, Cleveland, Ohio;,
| | - Robert T Dauchy
- Departments of Structural and Cellular Biology, Tulane University, New Orleans, Louisiana
| | - Leann Myers
- Departments of Biostatistics and Data Science, Tulane University, New Orleans, Louisiana
| | - Steven M Hill
- Departments of Structural and Cellular Biology, Tulane University, New Orleans, Louisiana
| | - David E Blask
- Departments of Structural and Cellular Biology, Tulane University, New Orleans, Louisiana
| | - Georgina L Dobek
- Department of Comparative Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
40
|
McGowan NM, Saunders KEA. The Emerging Circadian Phenotype of Borderline Personality Disorder: Mechanisms, Opportunities and Future Directions. Curr Psychiatry Rep 2021; 23:30. [PMID: 33835306 PMCID: PMC8035096 DOI: 10.1007/s11920-021-01236-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW We review the recent evidence suggesting that circadian rhythm disturbance is a common unaddressed feature of borderline personality disorder (BPD); amelioration of which may confer substantial clinical benefit. We assess chronobiological BPD studies from a mechanistic and translational perspective and highlight opportunities for the future development of this hypothesis. RECENT FINDINGS The emerging circadian phenotype of BPD is characterised by a preponderance of comorbid circadian rhythm sleep-wake disorders, phase delayed and misaligned rest-activity patterns and attenuated amplitudes of usually well-characterised circadian rhythms. Such disturbances may exacerbate symptom severity, and specific maladaptive personality dimensions may produce a liability towards extremes in chronotype. Pilot studies suggest intervention may be beneficial, but development is limited. Endogenous and exogenous circadian rhythm disturbances appear to be common in BPD. The interface between psychiatry and chronobiology has led previously to novel efficacious strategies for the treatment of psychiatric disorders. We believe that better characterisation of the circadian phenotype in BPD will lead to a directed biological target for treatment in a condition where there is a regrettable paucity of accessible therapies.
Collapse
Affiliation(s)
- Niall M McGowan
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Kate E A Saunders
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
41
|
Monteiro F, Rodrigues P, Nascimento CS, Simões F, Miguel M. The daily rhythms of working memory and their methodological constraints: a critical overview. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1907511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fábio Monteiro
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | - Paulo Rodrigues
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | | | - Fátima Simões
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
- Research Center in Education and Psychology of the University of Évora, University of Évora, Évora, Portugal
| | - Mário Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
42
|
Mendoza J. Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us. Clocks Sleep 2021; 3:236-250. [PMID: 33915800 PMCID: PMC8167723 DOI: 10.3390/clockssleep3020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us "to live in darkness", our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience CNRS UPR3212, University of Strasburg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
43
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
44
|
Page AJ. Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms. Nutrients 2021; 13:nu13030844. [PMID: 33807524 PMCID: PMC7998414 DOI: 10.3390/nu13030844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal vagal afferents (VAs) play an important role in food intake regulation, providing the brain with information on the amount and nutrient composition of a meal. This is processed, eventually leading to meal termination. The response of gastric VAs, to food-related stimuli, is under circadian control and fluctuates depending on the time of day. These rhythms are highly correlated with meal size, with a nadir in VA sensitivity and increase in meal size during the dark phase and a peak in sensitivity and decrease in meal size during the light phase in mice. These rhythms are disrupted in diet-induced obesity and simulated shift work conditions and associated with disrupted food intake patterns. In diet-induced obesity the dampened responses during the light phase are not simply reversed by reverting back to a normal diet. However, time restricted feeding prevents loss of diurnal rhythms in VA signalling in high fat diet-fed mice and, therefore, provides a potential strategy to reset diurnal rhythms in VA signalling to a pre-obese phenotype. This review discusses the role of the circadian system in the regulation of gastrointestinal VA signals and the impact of factors, such as diet-induced obesity and shift work, on these rhythms.
Collapse
Affiliation(s)
- Amanda J. Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; ; Tel.: +61-8-8128-4840
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institution (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
45
|
Gómez-Martínez DG, Ramos M, del Valle-Padilla JL, Rosales JH, Robles F, Ramos F. A bioinspired model of short-term satiety of hunger influenced by food properties in virtual creatures. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch KF, Knutti D, Liani A, Weitz C, Emmenegger Y, Franken P, Bonacina L, Dibner C, Schibler U. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev 2021; 35:329-334. [PMID: 33602874 PMCID: PMC7919413 DOI: 10.1101/gad.346460.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
In this study, Sinturel et al. sought to show that the suprachiasmatic nucleus (SCN) synchronizes peripheral circadian oscillators. By using long-term bioluminescence recordings in freely moving mice, they show that the SCN is indeed required for maintaining synchrony between organs and that circadian oscillations persist in the livers of mice devoid of an SCN or oscillators in cells other than hepatocytes. It has been assumed that the suprachiasmatic nucleus (SCN) synchronizes peripheral circadian oscillators. However, this has never been convincingly shown, since biochemical time series experiments are not feasible in behaviorally arrhythmic animals. By using long-term bioluminescence recording in freely moving mice, we show that the SCN is indeed required for maintaining synchrony between organs. Surprisingly, however, circadian oscillations persist in the livers of mice devoid of an SCN or oscillators in cells other than hepatocytes. Hence, similar to SCN neurons, hepatocytes can maintain phase coherence in the absence of Zeitgeber signals produced by other organs or environmental cycles.
Collapse
Affiliation(s)
- Flore Sinturel
- Department of Medicine, Division of Endocrinology, Diabetes, Nutrition, and Patient Education, University Hospital of Geneva, 1211 Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pascal Gos
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Department of Medicine, Division of Endocrinology, Diabetes, Nutrition, and Patient Education, University Hospital of Geneva, 1211 Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Claudia Hagedorn
- Center of Biomedical Education and Research, University Witten/Herdecke, 58448 Witten, Germany
| | - Florian Kreppel
- Center of Biomedical Education and Research, University Witten/Herdecke, 58448 Witten, Germany
| | - Kai-Florian Storch
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darko Knutti
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andre Liani
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
| | - Charles Weitz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Charna Dibner
- Department of Medicine, Division of Endocrinology, Diabetes, Nutrition, and Patient Education, University Hospital of Geneva, 1211 Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
47
|
Bulyk RY, Smetanyuk OV, Vlasova KV, Kryvchanska MI, Yosypenko VR, Voloshyn VL, Tymchuk KY, Bulyk TS, Rynzhuk LV, Sheremet MI, Proniaiev DV. Morphohistochemical alterations of neurons of the supraoptic nucleus of the rat hypothalamus at different durations of the photoperiod and melatonin administration. J Med Life 2021; 14:810-815. [PMID: 35126752 PMCID: PMC8811669 DOI: 10.25122/jml-2021-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
We studied the morphologic and histochemical organization of neurons of the hypothalamic supraoptic nucleus in rats exposed to different durations of photoperiod and injection of melatonin. Morphometric and histochemical analyses of neurons were performed after staining brain histological sections for RNA. Prolonged illumination leads to more pronounced changes in the parameters of hypothalamic structures at 2 a.m. than at 2 p.m., particularly decreasing the concentration of RNA in the cell nuclei. The use of exogenous melatonin does not normalize the revealed changes in the parameters of the studied structures of the neurons of the supraoptic nucleus of the hypothalamus caused by the prolonged stay of rats under conditions of constant illumination.
Collapse
Affiliation(s)
- Roman Yevgenovych Bulyk
- Department of Medical Biology and Genetics, Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | | | | | | - Kateryna Yuriivna Tymchuk
- Department of Medical Biology and Genetics, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Tetyana Sergiivna Bulyk
- Department of Obstetrics and Gynecology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Larysa Vasylivna Rynzhuk
- Department of Obstetrics and Gynecology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Michael Ivanovych Sheremet
- Surgery Department No.1, Bukovinian State Medical University, Chernivtsi, Ukraine,Corresponding Author: Michael Ivanovych Sheremet, MD, Ph.D., Associate Professor, Surgery Department No.1, Bukovinian State Medical University, Chernivtsi, Ukraine. E-mail:
| | | |
Collapse
|
48
|
Míková H, Kuchtiak V, Svobodová I, Spišská V, Pačesová D, Balík A, Bendová Z. Circadian Regulation of GluA2 mRNA Processing in the Rat Suprachiasmatic Nucleus and Other Brain Structures. Mol Neurobiol 2021; 58:439-449. [PMID: 32964314 DOI: 10.1007/s12035-020-02141-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
The mammalian circadian system consists of a major circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in the body, including brain structures. The SCN depends on glutamatergic neurotransmission for transmitting signals from the retina, and it exhibits spontaneous 24-h rhythmicity in neural activity. The aim of this work was to evaluate the degree and circadian rhythmicity of AMPA receptor GluA2 subunit R/G editing and alternative flip/flop splicing in the SCN and other brain structures in Wistar rats. Our data show that the circadian rhythmicity in the SCN's GluA2 mRNA level was highest at dawn, while the circadian rhythm in R/G editing peaked at CT10 and the rhythmic flip varied with the acrophase at the late subjective night. The circadian rhythmicity was confirmed for R/G editing and splicing in the CA3 hippocampal area, and rhythmic variation of the flip isoform was also measured in the olfactory bulbs and cerebellum. The correlations between the R/G editing and alternative flip/flop splicing revealed a structure-dependent direction. In the hippocampus, the edited (G)-form level was positively correlated with the flip variant abundance, in accord with published data; by contrast, in the SCN, the flip variant was in associated more with the unedited (R) form. The edited (G) form and flop isoform also predominated in the retina and cerebellum.
Collapse
Affiliation(s)
- Hana Míková
- Faculty of Science, Department of Physiology, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic
| | - Viktor Kuchtiak
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Irena Svobodová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Veronika Spišská
- Faculty of Science, Department of Physiology, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Department of Physiology, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Aleš Balík
- Faculty of Science, Department of Physiology, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic.
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| | - Zdeňka Bendová
- Faculty of Science, Department of Physiology, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic.
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
49
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
50
|
Flanagan A, Bechtold DA, Pot GK, Johnston JD. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem 2020; 157:53-72. [PMID: 33222161 DOI: 10.1111/jnc.15246] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light-dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono-nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono-nutrition interventions such as time-restricted feeding. Chrono-nutrition may have therapeutic application for individuals with and at-risk of metabolic disease and convey health benefits within the general population.
Collapse
Affiliation(s)
- Alan Flanagan
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David A Bechtold
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gerda K Pot
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Nutrition and Health Department, Louis Bolk Instituut, Bunnik, the Netherlands
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|