1
|
Clark JW. Assembling the picture of stomatal evolution. THE NEW PHYTOLOGIST 2025; 245:6-8. [PMID: 39370534 DOI: 10.1111/nph.20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This article is a Commentary on Fortin & Friedman (2024), 245: 40–48.
Collapse
Affiliation(s)
- James W Clark
- Department of Life Sciences, Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
2
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
3
|
Fortin JP, Friedman WE. A stomate by any other name? The open question of hornwort gametophytic pores, their homology, and implications for the evolution of stomates. THE NEW PHYTOLOGIST 2025; 245:40-48. [PMID: 39256934 DOI: 10.1111/nph.20094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Advances in bryophyte genomics and the phylogenetic recovery of hornworts, mosses, and liverworts as a clade have spurred considerable recent interest in character evolution among early embryophytes. Discussion of stomatal evolution, however, has been incomplete; the result of the neglect of certain potential stomate homologues, namely the two-celled epidermal gametophytic pores of hornworts (typically referred to as 'mucilage clefts'). Confusion over the potential homology of these structures is the consequence of a relatively recent consensus that hornwort gametophytic pores ('HGPs' - our term) are not homologous to stomates. We explore the occurrence and diverse functions of stomates throughout the evolutionary history and diversity of extinct and extant embryophytes. We then address arguments for and against homology between known sporophyte- and gametophyte-borne stomates and HGPs and conclude that there is little to no evidence that contradicts the hypothesis of homology. We propose that 'intergenerational heterotopy' might well account for the novel expression of stomates in gametophytes of hornworts, if stomates first evolved in the sporophyte generation of embryophytes. We then explore phylogenetically based hypotheses for the evolution of stomates in both the gametophyte and sporophyte generations of early lineages of embryophytes.
Collapse
Affiliation(s)
- James Paul Fortin
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
| | - William E Friedman
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Horiuchi Y, Umakawa N, Otani R, Tamada Y, Kosetsu K, Hiwatashi Y, Wakisaka R, Yoshida S, Murata T, Hasebe M, Ishikawa M, Kofuji R. Physcomitrium LATERAL SUPPRESSOR genes promote formative cell divisions to produce germ cell lineages in both male and female gametangia. THE NEW PHYTOLOGIST 2024. [PMID: 39737561 DOI: 10.1111/nph.20372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified. We isolated genes expressed during gametangia development from previously established gene-trap lines of Physcomitrium patens and characterized their function during gametangia formation. We identified P. patens LATERAL SUPPRESSOR 1 (PpLAS1) from the gene-trap library, encoding a GRAS transcription factor. The double-deletion mutant with its paralog PpLAS2 failed to form inner cells in both gametangia. PpLASs are expressed in cells undergoing formative cell division, and introducing PpLAS1 into the double-deletion mutant successfully rescued the phenotype. These findings underscore the pivotal role of PpLASs in regulating formative cell divisions, ensuring the separation of reproductive cell lineages from surrounding cells in antheridia and archegonia. Furthermore, they suggest a link between PpLASs and the evolutionary origin of male and female gametangia in the common ancestor of land plants.
Collapse
Affiliation(s)
- Yuta Horiuchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Rina Otani
- School of Biological Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yuji Hiwatashi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai, 982-0215, Japan
| | - Rena Wakisaka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| | - Saiko Yoshida
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
- Department of Applied Chemistry and Bioscience, Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Basic Biology Program, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
- School of Biological Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| |
Collapse
|
5
|
Lim CJ, Seo HJ, Yin H, Cho NH, Yang HW, Park TH, Kim YJ, Kim WT, Seo DH. MpPUB9, a U-box E3 ubiquitin ligase, acts as a positive regulator by promoting the turnover of MpEXO70.1 under high salinity in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:2343-2363. [PMID: 39387122 PMCID: PMC11579444 DOI: 10.1111/nph.20169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Marchantia polymorpha, occupying a basal position in the monophyletic assemblage of land plants, displays a notable expansion of plant U-box (PUB) proteins compared with those in animals. We elucidated the roles of MpPUB9 in regulating salt stress tolerance in M. polymorpha. MpPUB9 expression was rapidly induced by high salinity and dehydration. MpPUB9 possessed an intact U-box domain in the N-terminus. MpPUB9-Citrine localized to punctate structures and was peripherally associated with microsomal membranes. Phenotypic analyses demonstrate that the hyponastic and epinastic thallus growth phenotypes, which were induced by the overexpression and suppression of MpPUB9, may provoke salt stress-resistant and -susceptible phenotypes, respectively. MpPUB9 was also found to directly interact with the exocyst protein MpEXO70.1, leading to its ubiquitination. Under high-salinity conditions, though the stability of MpPUB9 was dramatically increased, MpEXO70.1 showed slightly faster turnover rates. Transcriptome analyses showed that salt treatment and the overexpression of MpPUB9 co-upregulated the genes related to the modulation of H2O2 and cell wall organization. Overall, our results suggest that MpPUB9 plays a crucial role in the positive regulation of salt stress tolerance, resulting from its interaction with MpEXO70.1 and modulating turnover of the protein under high-salt conditions via the coordination of UPS with autophagy.
Collapse
Affiliation(s)
- Cheol Jin Lim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hyeon Ji Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Haijing Yin
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hee Woong Yang
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Tae Hyeon Park
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Yun Ju Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Dong Hye Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| |
Collapse
|
6
|
Kunz CF, de Vries S, de Vries J. Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230358. [PMID: 39343031 PMCID: PMC11528360 DOI: 10.1098/rstb.2023.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are tied to environmental responses that, however, impacted already the algal progenitors of land plants, streptophyte algae. Indeed, many streptophyte algae successfully dwell in terrestrial habitats and have homologues for enzymatic routes for the production of important phenolic compounds, such as the phenylpropanoid pathway. Here, we synthesize what is known about the production of specialized phenolic compounds across hundreds of millions of years of streptophyte evolution. We propose an evolutionary scenario in which selective pressures borne out of environmental cues shaped the chemodiversity of phenolics in streptophytes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Cäcilia F. Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen37077, Germany
| |
Collapse
|
7
|
Dierschke T, Levins J, Lampugnani ER, Ebert B, Zachgo S, Bowman JL. Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Curr Biol 2024; 34:5213-5222.e5. [PMID: 39447574 DOI: 10.1016/j.cub.2024.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Land plants evolved from an ancestral alga around 470 mya, evolving complex multicellularity in both haploid gametophyte and diploid sporophyte generations. The evolution of water-conducting tissues in the sporophyte generation was crucial for the success of land plants, paving the way for the colonization of a variety of terrestrial habitats. Class II KNOX (KNOX2) genes are major regulators of secondary cell wall formation and seed mucilage (pectin) deposition in flowering plants. Here, we show that, in the liverwort Marchantia polymorpha, loss-of-function alleles of the KNOX2 ortholog, MpKNOX2, or its dimerization partner, MpBELL1, have defects in capsule wall secondary cell wall and spore pectin biosynthesis. Both genes are expressed in the gametophytic calyptra surrounding the sporophyte and exert maternal effects, suggesting intergenerational regulation from the maternal gametophyte to the sporophytic embryo. These findings also suggest the presence of a secondary wall genetic program in the non-vascular liverwort capsule wall, with attributes of secondary walls in vascular tissues.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia; Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; School of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, 49076 Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
8
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
9
|
Bowles AMC, Williams TA, Donoghue PCJ, Campbell DA, Williamson CJ. Metagenome-assembled genome of the glacier alga Ancylonema yields insights into the evolution of streptophyte life on ice and land. THE NEW PHYTOLOGIST 2024; 244:1629-1643. [PMID: 38840553 DOI: 10.1111/nph.19860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1H3, Canada
| | | |
Collapse
|
10
|
Sanmartín M, Rojo E, Kurenda A, Larruy-García B, Zamarreño ÁM, Delgadillo MO, Brito-Gutiérrez P, García-Mina JM, Farmer EE, Sánchez-Serrano JJ. GLR-dependent calcium and electrical signals are not coupled to systemic, oxylipin-based wound-induced gene expression in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:870-882. [PMID: 38725409 DOI: 10.1111/nph.19803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 10/04/2024]
Abstract
In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.
Collapse
Affiliation(s)
- Maite Sanmartín
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - Enrique Rojo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Beatriz Larruy-García
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - M Otilia Delgadillo
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Pavel Brito-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Pamplona, 31008, Spain
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jose J Sánchez-Serrano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| |
Collapse
|
11
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2024. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
13
|
Woudenberg S, Alvarez MD, Rienstra J, Levitsky V, Mironova V, Scarpella E, Kuhn A, Weijers D. Analysis of auxin responses in the fern Ceratopteris richardii identifies the developmental phase as a major determinant for response properties. Development 2024; 151:dev203026. [PMID: 39324436 PMCID: PMC11449451 DOI: 10.1242/dev.203026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.
Collapse
Affiliation(s)
- Sjoerd Woudenberg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Melissa Dipp Alvarez
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Victor Levitsky
- Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk 630090, Russian Federation
| | - Victoria Mironova
- Department of Plant Systems Physiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
14
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Wu JJ, Deng QW, Qiu YY, Liu C, Lin CF, Ru YL, Sun Y, Lai J, Liu LX, Shen XX, Pan R, Zhao YP. Post-transfer adaptation of HGT-acquired genes and contribution to guanine metabolic diversification in land plants. THE NEW PHYTOLOGIST 2024; 244:694-707. [PMID: 39166427 DOI: 10.1111/nph.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Wen Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yi-Yang Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Feng Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Lu Ru
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Sun
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lai
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Tsuda K. Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102594. [PMID: 38943830 DOI: 10.1016/j.pbi.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
17
|
Bowles AMC. A Year at the Forefront of Streptophyte Algal Evolution. Biol Open 2024; 13:bio061673. [PMID: 39297435 PMCID: PMC11423916 DOI: 10.1242/bio.061673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Land plants originated from an algal ancestor ∼500 million years ago in one of the most important evolutionary events for life on Earth. Extant streptophyte algae, their closest living relatives, have subsequently received much attention to better understand this major evolutionary transition. Streptophyte algae occupy many different environments, have diverse genomes and display contrasting morphologies (e.g. unicellular, filamentous, three-dimensional). This has historically made inferring these evolutionary events challenging. This A Year at the Forefront Review focusses on research published between July 2023 and June 2024 and intends to provide a short overview of recent discoveries, innovations, resources, and hypotheses regarding streptophyte algal evolution. This work has provided mechanistic insights into ancient evolutionary events that prefigured the origin of land plants and raises new questions for future research into streptophyte algae.
Collapse
|
18
|
Wuyun T, Zhang L, Tosens T, Liu B, Mark K, Morales-Sánchez JÁ, Rikisahedew JJ, Kuusk V, Niinemets Ü. Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum. PLANT DIVERSITY 2024; 46:621-629. [PMID: 39290881 PMCID: PMC11403144 DOI: 10.1016/j.pld.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 09/19/2024]
Abstract
Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (A mass). Paradoxically, "soft and thin-leaved" mosses and spikemosses have very low A mass, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, A mass and LD were negatively correlated. In contrast, A mass was only related to LMA when LMA was greater than 14 g cm- 2. In fact, low A mass reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.
Collapse
Affiliation(s)
- Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - José Ángel Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Kuusk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
19
|
Zhang X, Ekwealor JTB, Mishler BD, Silva AT, Yu L, Jones AK, Nelson ADL, Oliver MJ. Syntrichia ruralis: emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. THE NEW PHYTOLOGIST 2024; 243:981-996. [PMID: 38415863 DOI: 10.1111/nph.19620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.
Collapse
Affiliation(s)
- Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jenna T B Ekwealor
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Brent D Mishler
- University and Jepson Herbaria, Berkeley, CA, 94720-2465, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | | | - Li'ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea K Jones
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew D L Nelson
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Melvin J Oliver
- Division of Plant Sciences and Technology and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
20
|
Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, Singh S, Gupta R, Xue D, Xu S, Chen ZH. Evolution of reactive oxygen species cellular targets for plant development. TRENDS IN PLANT SCIENCE 2024; 29:865-877. [PMID: 38519324 DOI: 10.1016/j.tplants.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shouli Feng
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018, China
| | - Shengchun Xu
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
21
|
Renner SS, Sokoloff DD. The sexual lability hypothesis for the origin of the land plant generation cycle. Curr Biol 2024; 34:R697-R707. [PMID: 39043145 DOI: 10.1016/j.cub.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The evolution of the land plant alternation of generations has been an open question for the past 150 years. Two hypotheses have dominated the discussion: the antithetic hypothesis, which posits that the diploid sporophyte generation arose de novo and gradually increased in complexity, and the homologous hypothesis, which holds that land plant ancestors had independently living sporophytes and haploid gametophytes of similar complexity. Changes in ploidy levels were unknown to early researchers. The antithetic hypothesis is contradicted by generation cycles in Lower Devonian Rhynie chert plants, whose sporophytes and gametophytes have similar morphologies and by some Silurian sporophytes whose complexity exceeds that of Rhynie chert sporophytes. The oldest unambiguous bryophyte gametophytes (thalli) are from the upper Middle Devonian, with an unconnected sporophyte nearby. Based on the 2024 discovery that conjugate algae are paraphyletic to land plants, we present a new hypothesis for the evolution of the land plant generation cycle, focusing on labile ploidy levels and types of reproduction found in conjugate algae. Our 'sexual lability' hypothesis assumes a period of unstable generation cycles (as regards ploidy), likely with predominant clonal growth, as is common in conjugate algae, resulting in sporophytes and gametophytes of similar morphology. When sexual reproduction became stabilized, the timing of gamete fusion, meiosis, and resistant wall formation, which are heterochronic in some conjugate algae, became standardized, with wall formation permanently delayed. In our scenario, independently living adult sporophytes are the land plant ancestral condition, and life-long sporophyte retention on the gametophyte is a bryophyte apomorphy.
Collapse
Affiliation(s)
- Susanne S Renner
- Department of Biology, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| | - Dmitry D Sokoloff
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997820, Israel
| |
Collapse
|
22
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Koga H, Ikematsu S, Kimura S. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:579-604. [PMID: 38424069 DOI: 10.1146/annurev-arplant-062923-024919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Shuka Ikematsu
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
| | - Seisuke Kimura
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan
| |
Collapse
|
24
|
Dhabalia Ashok A, de Vries S, Darienko T, Irisarri I, de Vries J. Evolutionary assembly of the plant terrestrialization toolkit from protein domains. Proc Biol Sci 2024; 291:20240985. [PMID: 39081174 PMCID: PMC11289646 DOI: 10.1098/rspb.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
25
|
Ma Y, Zhang L, Yang M, Qi Q, Yang Q, López-Pujol J, Wang L, Zhao D. Complete Organelle Genome of the Desiccation-Tolerant (DT) Moss Tortula atrovirens and Comparative Analysis of the Pottiaceae Family. Genes (Basel) 2024; 15:782. [PMID: 38927718 PMCID: PMC11202921 DOI: 10.3390/genes15060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes.
Collapse
Affiliation(s)
- Yang Ma
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China
| | - Lifang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Min Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qian Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Spain;
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Lihong Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Dongping Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
26
|
Sessa G, Carabelli M, Sassi M. The Ins and Outs of Homeodomain-Leucine Zipper/Hormone Networks in the Regulation of Plant Development. Int J Mol Sci 2024; 25:5657. [PMID: 38891845 PMCID: PMC11171833 DOI: 10.3390/ijms25115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.
Collapse
Affiliation(s)
| | | | - Massimiliano Sassi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy; (G.S.); (M.C.)
| |
Collapse
|
27
|
Li M, Boisson-Dernier A, Bertoldi D, Ardini F, Larcher R, Grotti M, Varotto C. Elucidation of arsenic detoxification mechanism in Marchantia polymorpha: The role of ACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134088. [PMID: 38555672 DOI: 10.1016/j.jhazmat.2024.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.
Collapse
Affiliation(s)
- Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Aurélien Boisson-Dernier
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | - Daniela Bertoldi
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Roberto Larcher
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
28
|
Vilizzi L, Piria M, Pietraszewski D, Giannetto D, Flory SL, Herczeg G, Sermenli HB, Britvec M, Jukoniene I, Petrulaitis L, Vitasović-Kosić I, Almeida D, Al-Wazzan Z, Bakiu R, Boggero A, Chaichana R, Dashinov D, De Zoysa M, Gilles AS, Goulletquer P, Interesova E, Kopecký O, Koutsikos N, Koyama A, Kristan P, Li S, Lukas J, Moghaddas SD, Monteiro JG, Mumladze L, Oh C, Olsson KH, Pavia RT, Perdikaris C, Pickholtz R, Preda C, Ristovska M, Švolíková KS, Števove B, Ta KAT, Uzunova E, Vardakas L, Verreycken H, Wei H, Yoğurtçuoğlu B, Ferincz Á, Kirkendall LR, Marszał L, Paganelli D, Stojchevska C, Tarkan AS, Yazlık A. Development and application of a second-generation multilingual tool for invasion risk screening of non-native terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170475. [PMID: 38296092 DOI: 10.1016/j.scitotenv.2024.170475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Under the increasing threat to native ecosystems posed by non-native species invasions, there is an urgent need for decision support tools that can more effectively identify non-native species likely to become invasive. As part of the screening (first step) component in non-native species risk analysis, decision support tools have been developed for aquatic and terrestrial organisms. Amongst these tools is the Weed Risk Assessment (WRA) for screening non-native plants. The WRA has provided the foundations for developing the first-generation WRA-type Invasiveness Screening Kit (ISK) tools applicable to a range of aquatic species, and more recently for the second-generation ISK tools applicable to all aquatic organisms (including plants) and terrestrial animals. Given the most extensive usage of the latter toolkits, this study describes the development and application of the Terrestrial Plant Species Invasiveness Screening Kit (TPS-ISK). As a second-generation ISK tool, the TPS-ISK is a multilingual turnkey application that provides several advantages relative to the WRA: (i) compliance with the minimum standards against which a protocol should be evaluated for invasion process and management approaches; (ii) enhanced questionnaire comprehensiveness including a climate change component; (iii) provision of a level of confidence; (iv) error-free computation of risk scores; (v) multilingual support; (vi) possibility for across-study comparisons of screening outcomes; (vii) a powerful graphical user interface; (viii) seamless software deployment and accessibility with improved data exchange. The TPS-ISK successfully risk-ranked five representative sample species for the main taxonomic groups supported by the tool and ten angiosperms previously screened with the WRA for Turkey. The almost 20-year continuous development and evolution of the ISK tools, as opposed to the WRA, closely meet the increasing demand by scientists and decision-makers for a reliable, comprehensive, updatable and easily deployable decision support tool. For terrestrial plant screening, these requirements are therefore met by the newly developed TPS-ISK.
Collapse
Affiliation(s)
- Lorenzo Vilizzi
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland; University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, 10000 Zagreb, Croatia
| | - Marina Piria
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland; University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, 10000 Zagreb, Croatia.
| | - Dariusz Pietraszewski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland; University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, 10000 Zagreb, Croatia
| | - Daniela Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Muğla, Turkiye
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL 32601, USA
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE-Eötvös Loránd University, Pázmány Péter ave 1/C, Budapest 1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter ave 1/C, Budapest 1117, Hungary
| | - Hayrünisa Baş Sermenli
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Muğla, Turkiye
| | - Mihaela Britvec
- University of Zagreb Faculty of Agriculture, Department of Agricultural Botany, 10000 Zagreb, Croatia
| | - Ilona Jukoniene
- Nature Research Centre, Institute of Botany, 12200 Vilnius, Lithuania
| | - Lukas Petrulaitis
- Nature Research Centre, Institute of Botany, 12200 Vilnius, Lithuania
| | - Ivana Vitasović-Kosić
- University of Zagreb Faculty of Agriculture, Department of Agricultural Botany, 10000 Zagreb, Croatia
| | - David Almeida
- Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | | | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana 1000, Albania; Albanian Center for Environmental Protection and Sustainable Development, Tirana 1000, Albania
| | - Angela Boggero
- National Research Council-Water Research Institute (CNR-IRSA), 28922 Verbania Pallanza, Italy
| | - Ratcha Chaichana
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Dimitriy Dashinov
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research, Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Allan S Gilles
- Department of Biological Sciences, College of Science, Research Center for the Natural and Applied Sciences, The Graduate School, University of Santo Tomas, Manila, 1008, Metro Manila, Philippines
| | - Philippe Goulletquer
- Scientific Direction, French Research Institute for Exploitation of the Sea (IFREMER), 44311 Nantes, France
| | - Elena Interesova
- Tomsk State University, Tomsk 634050, Russia; Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk Branch of Russian Federal Research Institute of Fisheries and Oceanography, Novosibirsk 630090, Russia
| | - Oldřich Kopecký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | - Nicholas Koutsikos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources & Inland Waters, Anavissos PO 19013, Attica, Greece
| | - Akihiko Koyama
- Fishery Research Laboratory, Kyushu University, Fukuoka 811-3304, Japan
| | - Petra Kristan
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, 10000 Zagreb, Croatia
| | - Shan Li
- Natural History Research Center, Shanghai Natural History Museum, Branch of Shanghai Science & Technology Museum, Shanghai 200041, China
| | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Seyed Daryoush Moghaddas
- Department of Biodiversity and Ecosystems Management, Environmental Sciences Research Institute, Shahid Beheshti University, 1983963113 Tehran, Iran
| | - João G Monteiro
- Faculty of Life Sciences, University of Madeira, 9000-072 Funchal, Portugal; MARE - Marine and Environmental Sciences Centre, Regional Agency for the Development of Research (ARDITI), 9000-072 Funchal, Portugal
| | - Levan Mumladze
- Institute of Zoology, Ilia State University, Tbilisi 0162, Georgia
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Gujwa-eup, Jeju 63349, Republic of Korea
| | - Karin H Olsson
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel; The Inter-University Institute for Marine Sciences in Eilat, Coral Beach, Eilat 8810302, Israel
| | - Richard T Pavia
- Department of Biological Sciences, College of Science, Research Center for the Natural and Applied Sciences, The Graduate School, University of Santo Tomas, Manila, 1008, Metro Manila, Philippines
| | - Costas Perdikaris
- Department of Fisheries, Regional Unit of Thesprotia, Region of Epirus, 46 100 Igoumenitsa, Greece
| | | | - Cristina Preda
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, Constanta 900470, Romania
| | - Milica Ristovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University "Ss. Cyril and Methodius", 1000 Skopje, North Macedonia
| | - Kristína Slovák Švolíková
- Department of Ecology, Faculty of Natural Sciences, Comenius University, 842 15 Mlynská dolina, Bratislava, Slovakia
| | - Barbora Števove
- Department of Ecology, Faculty of Natural Sciences, Comenius University, 842 15 Mlynská dolina, Bratislava, Slovakia
| | - Kieu Anh T Ta
- Nature and Biodiversity Conservation Agency, Ministry of Natural Resources and Environment, 10 Ton That Thuyet, Nam Tu Liem District, Hanoi, Viet Nam
| | - Eliza Uzunova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria
| | - Leonidas Vardakas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources & Inland Waters, Anavissos PO 19013, Attica, Greece
| | - Hugo Verreycken
- Research Institute for Nature and Forest (INBO), B-1630 Linkebeek, Belgium
| | - Hui Wei
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Key Laboratory of Alien Species and Ecological Security, Chinese Academy of Fisheries Science, Guangzhou, Guangdong 510380, PR China
| | - Baran Yoğurtçuoğlu
- Hydrobiology Section, Department of Biology, Faculty of Science, Hacettepe University, Çankaya-Ankara 06800, Turkiye
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | | | - Lidia Marszał
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland
| | - Daniele Paganelli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cvetanka Stojchevska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University "Ss. Cyril and Methodius", 1000 Skopje, North Macedonia
| | - Ali Serhan Tarkan
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000 Muğla, Turkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, Dorset, UK
| | - Ayşe Yazlık
- Department of Plant Protection, Faculty of Agriculture, Düzce University, 81620 Düzce, Turkiye
| |
Collapse
|
29
|
Leng F, Zhou G, Shi R, Liu C, Lin Y, Yu X, Zhang Y, He X, Liu Z, Sun M, Bao F, Hu Y, He Y. Development of PEG-mediated genetic transformation and gene editing system of Bryum argenteum as an abiotic stress tolerance model plant. PLANT CELL REPORTS 2024; 43:63. [PMID: 38340191 DOI: 10.1007/s00299-024-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.
Collapse
Affiliation(s)
- Fengjun Leng
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guiwei Zhou
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyuan Shi
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Chengyang Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yirui Lin
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xinqiang Yu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yanhua Zhang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiangxi He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zhu Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mingming Sun
- Laboratory for Micro-Sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing, 100048, China
| | - Fang Bao
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yong Hu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yikun He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
30
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
31
|
Donoghue PCJ, Clark JW. Plant evolution: Streptophyte multicellularity, ecology, and the acclimatisation of plants to life on land. Curr Biol 2024; 34:R86-R89. [PMID: 38320478 DOI: 10.1016/j.cub.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Land plants are celebrated as one of the three great instances of complex multicellularity, but new phylogenomic and phenotypic analyses are revealing deep evolutionary roots of multicellularity among algal relatives, prompting questions about the causal basis of this major evolutionary transition.
Collapse
Affiliation(s)
- Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| | - James W Clark
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AZ, UK
| |
Collapse
|
32
|
Kamble A, Michavila S, Gimenez-Ibanez S, Redkar A. Shared infection strategy of a fungal pathogen across diverse lineages of land plants, the Fusarium example. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102498. [PMID: 38142620 DOI: 10.1016/j.pbi.2023.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
Plants engage with a wide variety of microorganisms either in parasitic or mutualistic relationships, which have helped them to adapt to terrestrial ecosystems. Microbial interactions have driven plant evolution and led to the emergence of complex interaction outcomes via suppression of host defenses by evolving pathogens. The evolution of plant-microbe interactions is shaped by conserved host and pathogen gene modules and fast-paced lineage-specific adaptability which determines the interaction outcome. Recent findings from different microbes ranging from bacteria, oomycetes, and fungi suggest recurrent concepts in establishing interactions with evolutionarily distant plant hosts, but also clade-specific adaptation that ultimately contributes to pathogenicity. Here, we revisit some of the latest features that illustrate shared colonization strategies of the fungal pathogen Fusarium oxysporum on distant plant lineages and lineage-specific adaptability of mini-chromosomal units encoding effectors, for shaping host-specific pathogenicity in angiosperms.
Collapse
Affiliation(s)
- Avinash Kamble
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Santiago Michavila
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autonoma, Madrid, 28049, Spain
| | - Selena Gimenez-Ibanez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autonoma, Madrid, 28049, Spain
| | - Amey Redkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
33
|
Bowles AMC, Williamson CJ, Williams TA, Donoghue PCJ. Cryogenian Origins of Multicellularity in Archaeplastida. Genome Biol Evol 2024; 16:evae026. [PMID: 38333966 PMCID: PMC10883732 DOI: 10.1093/gbe/evae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, precluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology testing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early-Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multicellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
34
|
Brunkard JO. Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants. Results Probl Cell Differ 2024; 73:73-86. [PMID: 39242375 DOI: 10.1007/978-3-031-62036-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
36
|
Clark JW. Genome evolution in plants and the origins of innovation. THE NEW PHYTOLOGIST 2023; 240:2204-2209. [PMID: 37658677 DOI: 10.1111/nph.19242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Plant evolution has been characterised by a series of major novelties in their vegetative and reproductive traits that have led to greater complexity. Underpinning this diversification has been the evolution of the genome. When viewed at the scale of the plant kingdom, plant genome evolution has been punctuated by conspicuous instances of gene and whole-genome duplication, horizontal gene transfer and extensive gene loss. The periods of dynamic genome evolution often coincide with the evolution of key traits, demonstrating the coevolution of plant genomes and phenotypes at a macroevolutionary scale. Conventionally, plant complexity and diversity have been considered through the lens of gene duplication and the role of gene loss in plant evolution remains comparatively unexplored. However, in light of reductive evolution across multiple plant lineages, the association between gene loss and plant phenotypic diversity warrants greater attention.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
37
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
38
|
Crockford PW, Bar On YM, Ward LM, Milo R, Halevy I. The geologic history of primary productivity. Curr Biol 2023; 33:4741-4750.e5. [PMID: 37827153 DOI: 10.1016/j.cub.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.
Collapse
Affiliation(s)
- Peter W Crockford
- Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Yinon M Bar On
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Division of Geological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luce M Ward
- Department of Geosciences, Smith College, Northampton, MA 01063, USA
| | - Ron Milo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
39
|
van Es SW. In the Spotlight: Walk on the Wild Side. PHYSIOLOGIA PLANTARUM 2023; 175:e14103. [PMID: 38148245 DOI: 10.1111/ppl.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Sam W van Es
- Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
41
|
Clark JW, Hetherington AJ, Morris JL, Pressel S, Duckett JG, Puttick MN, Schneider H, Kenrick P, Wellman CH, Donoghue PCJ. Evolution of phenotypic disparity in the plant kingdom. NATURE PLANTS 2023; 9:1618-1626. [PMID: 37666963 PMCID: PMC10581900 DOI: 10.1038/s41477-023-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.
Collapse
Affiliation(s)
- James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| | - Alexander J Hetherington
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Jennifer L Morris
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | | - Mark N Puttick
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Harald Schneider
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- The Natural History Museum, London, UK
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | | | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
42
|
Causier B, McKay M, Hopes T, Lloyd J, Wang D, Harrison CJ, Davies B. The TOPLESS corepressor regulates developmental switches in the bryophyte Physcomitrium patens that were critical for plant terrestrialisation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1331-1344. [PMID: 37243383 PMCID: PMC10953049 DOI: 10.1111/tpj.16322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mary McKay
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Tayah Hopes
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - James Lloyd
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Dapeng Wang
- LeedsOmicsUniversity of LeedsLeedsLS2 9JTUK
- National Heart and Lung Institute, Imperial College LondonLondonSW3 6LYUK
| | - C. Jill Harrison
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
43
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
44
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
45
|
Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ, Wang F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. SCIENCE ADVANCES 2023; 9:eadf5069. [PMID: 37406125 PMCID: PMC10321748 DOI: 10.1126/sciadv.adf5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth's surface environment.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
46
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
47
|
Chang G, Ma J, Wang S, Tang M, Zhang B, Ma Y, Li L, Sun G, Dong S, Liu Y, Zhou Y, Hu X, Song CP, Huang J. Liverwort bHLH transcription factors and the origin of stomata in plants. Curr Biol 2023:S0960-9822(23)00682-6. [PMID: 37321212 DOI: 10.1016/j.cub.2023.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Stomata are distributed in nearly all major groups of land plants, with the only exception being liverworts. Instead of having stomata on sporophytes, many complex thalloid liverworts possess air pores in their gametophytes. At present, whether stomata in land plants are derived from a common origin remains under debate.1,2,3 In Arabidopsis thaliana, a core regulatory module for stomatal development comprises members of the bHLH transcription factor (TF) family, including AtSPCH, AtMUTE, and AtFAMA of subfamily Ia and AtSCRM1/2 of subfamily IIIb. Specifically, AtSPCH, AtMUTE, and AtFAMA each successively form heterodimers with AtSCRM1/2, which in turn regulate the entry, division, and differentiation of stomatal lineages.4,5,6,7 In the moss Physcomitrium patens, two SMF (SPCH, MUTE and FAMA) orthologs have been characterized, one of which is functionally conserved in regulating stomatal development.8,9 We here provide experimental evidence that orthologous bHLH TFs in the liverwort Marchantia polymorpha affect air pore spacing as well as the development of the epidermis and gametangiophores. We found that the bHLH Ia and IIIb heterodimeric module is highly conserved in plants. Genetic complementation experiments showed that liverwort SCRM and SMF genes weakly restored a stomata phenotype in atscrm1, atmute, and atfama mutant backgrounds in A. thaliana. In addition, homologs of stomatal development regulators FLP and MYB88 also exist in liverworts and weakly rescued the stomatal phenotype of atflp/myb88 double mutant. These results provide evidence not only for a common origin of all stomata in extant plants but also for relatively simple stomata in the ancestral plant.
Collapse
Affiliation(s)
- Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mengmeng Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yadi Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lijuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shanshan Dong
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiangyang Hu
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
48
|
Chini A, Monte I, Zamarreño AM, García-Mina JM, Solano R. Evolution of the jasmonate ligands and their biosynthetic pathways. THE NEW PHYTOLOGIST 2023; 238:2236-2246. [PMID: 36942932 DOI: 10.1111/nph.18891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
Different plant species employ different jasmonates to activate a conserved signalling pathway in land plants, where (+)-7-iso-JA-Ile (JA-Ile) is the ligand for the COI1/JAZ receptor in angiosperms and dn-cis-OPDA, dn-iso-OPDA and Δ4 -dn-iso-OPDA act as ligands in Marchantia polymorpha. In addition, some jasmonates play a COI1-independent role. To understand the distribution of bioactive jasmonates in the green lineage and how their biosynthetic pathways evolved, we performed phylogenetic analyses and systematic jasmonates profiling in representative species from different lineages. We found that both OPDA and dn-OPDA are ubiquitous in all tested land plants and present also in charophyte algae, underscoring their importance as ancestral signalling molecules. By contrast, JA-Ile biosynthesis emerged within lycophytes coincident with the evolutionary appearance of JAR1 function. We identified that the OPR3-independent JA biosynthesis pathway is ancient and predates the evolutionary appearance of the OPR3-dependent pathway. Moreover, we identified a negative correlation between dn-iso-OPDA and JA-Ile in land plants, which supports that in bryophytes and lycophytes dn-iso-OPDA represents the analogous hormone to JA-Ile in other vascular plants.
Collapse
Affiliation(s)
- Andrea Chini
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologia-CSIC (CNB-CSIC), 28049, Madrid, Spain
| | - Isabel Monte
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologia-CSIC (CNB-CSIC), 28049, Madrid, Spain
| | - Angel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra, 31008, Spain
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra, 31008, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologia-CSIC (CNB-CSIC), 28049, Madrid, Spain
| |
Collapse
|
49
|
Larson ER, Armstrong EM, Harper H, Knapp S, Edwards KJ, Grierson D, Poppy G, Chase MW, Jones JDG, Bastow R, Jellis G, Barnes S, Temple P, Clarke M, Oldroyd G, Grierson CS. One hundred important questions for plant science - reflecting on a decade of plant research. THE NEW PHYTOLOGIST 2023; 238:464-469. [PMID: 36924326 DOI: 10.1111/nph.18663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Emily R Larson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Emily May Armstrong
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Helen Harper
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Keith J Edwards
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, nr Loughborough, LE12 5RD, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | | | - Ruth Bastow
- Crop Health and Protection Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Graham Jellis
- Agrifood Charities Partnership, The Bullock Building, University Way, Cranfield, Bedford, MK43 OGH, UK
| | | | - Paul Temple
- Wold Farm, Driffield, East Yorkshire, YO25 3BB, UK
| | - Matthew Clarke
- Bayer - Crop Science, Monsanto UK Ltd, 230 Science Park, Cambridge, CB4 0WB, UK
| | - Giles Oldroyd
- Crop Science Centre, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Claire S Grierson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
50
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|