1
|
Peruhova M, Stoyanova D, Miteva DG, Kitanova M, Mirchev MB, Velikova T. Genetic factors that predict response and failure of biologic therapy in inflammatory bowel disease. World J Exp Med 2025; 15:97404. [DOI: 10.5493/wjem.v15.i1.97404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a significant disease burden marked by chronic inflammation and complications that adversely affect patients’ quality of life. Effective diagnostic strategies involve clinical assessments, endoscopic evaluations, imaging studies, and biomarker testing, where early diagnosis is essential for effective management and prevention of long-term complications, highlighting the need for continual advancements in diagnostic methods. The intricate interplay between genetic factors and the outcomes of biological therapy is of critical importance. Unraveling the genetic determinants that influence responses and failures to biological therapy holds significant promise for optimizing treatment strategies for patients with IBD on biologics. Through an in-depth examination of current literature, this review article synthesizes critical genetic markers associated with therapeutic efficacy and resistance in IBD. Understanding these genetic actors paves the way for personalized approaches, informing clinicians on predicting, tailoring, and enhancing the effectiveness of biological therapies for improved outcomes in patients with IBD.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, Burgas 1000, Bulgaria
| | - Daniela Stoyanova
- Department of Gastroenterology, Military Medical Academy, Sofia 1606, Bulgaria
| | | | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
2
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Mallick R, Basak S, Chowdhury P, Bhowmik P, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies. Pharmaceuticals (Basel) 2025; 18:104. [PMID: 39861166 PMCID: PMC11769149 DOI: 10.3390/ph18010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Premanjali Chowdhury
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden;
- Department of Textile Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico;
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
4
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
5
|
Lekpor CE, Botchway FA, Driss A, Bashi A, Abrahams AD, Kusi KA, Futagbi G, Alema-Mensah E, Agbozo W, Solomon W, Harbuzariu A, Adjei AA, Stiles JK. Circulating biomarkers associated with pediatric sickle cell disease. Front Mol Biosci 2024; 11:1481441. [PMID: 39749215 PMCID: PMC11694143 DOI: 10.3389/fmolb.2024.1481441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage. SCD genotypes include HbSS, HbSC (HbC is an abnormal variant of hemoglobin), and HbS/β-thalassemia. Sickle cell trait (SCT), HbAS, represents the carrier state, while other hemoglobin variants include HbCC, HbAC, and the normal HbAA. Over 7.5 million people worldwide live with SCD, with a high mortality rate in sub-Saharan Africa, including Ghana. Despite its prevalence, SCD is underdiagnosed and poorly managed, especially in children. Characterized by intravascular hemolysis, SCD leads to oxidative stress, endothelial activation, and systemic inflammation. Identifying circulating blood biomarkers indicative of organ damage and systemic processes is vital for understanding SCD and improving patient management. However, research on biomarkers in pediatric SCD is limited and few have been identified and validated. This study explores specific circulating biomarkers in pediatric SCD in Ghana (West Africa), hypothesizing that inflammatory and neuronal injury markers in children with SCD could predict disease outcomes. Methods Clinical data were collected from 377 children aged 3-8 years with various Hb genotypes, including SCD and SCT, at Korle-Bu Teaching Hospital in Accra, Ghana (2021-2022). A total of 80 age- and sex-matched subjects were identified. A cross-sectional study utilized a multiplexed immunoassay procedure to evaluate serum biomarkers, including cytokines, chemokines, vascular injury markers, systemic inflammation markers, cell-free heme scavengers, brain-derived neurotrophic factor (BDNF), and angiogenic factors. Results Elevated levels of BDNF, Ang-2, CXCL10, CCL11, TNF-α, IL-6, IL-10, IL12p40, ICAM-1, VCAM-1, Tie-2, and VEGFA were observed in HbSS subjects, correlating with hemoglobin level, leukocyte, and erythrocyte counts. Heme scavengers like HO-1, hemopexin, and haptoglobin also correlated with these parameters. ROC and AUC analyses demonstrated the potential of these biomarkers in predicting SCD outcomes. Conclusion These findings suggest that there are significant differences between biomarker expression among the different genotypes examined. We conclude that a predictive algorithm based on these biomarkers could be developed and validated through longitudinal assessment of within-genotype differences and correlation of the data with disease severity or outcomes. With such a tool one can enhance SCD management and improve patient outcomes. This approach may pave the way for personalized interventions and better clinical care for pediatric SCD patients.
Collapse
Affiliation(s)
- Cecilia Elorm Lekpor
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
- Department of Animal Biology and Conservation Sciences, University of Ghana, Accra, Ghana
| | | | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Afua D. Abrahams
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Godfred Futagbi
- Department of Animal Biology and Conservation Sciences, University of Ghana, Accra, Ghana
| | - Ernest Alema-Mensah
- Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - William Agbozo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | | | - Andrew A. Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Zhao R, Luo J, Kim Chung S, Xu B. Anti-depression molecular mechanism elucidation of the phytochemicals in edible flower of Hemerocallis citrina Baroni. Food Sci Nutr 2024; 12:10164-10180. [PMID: 39723076 PMCID: PMC11666966 DOI: 10.1002/fsn3.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/17/2024] [Indexed: 12/28/2024] Open
Abstract
The edible flower of Hemerocallis citrina Baroni, commonly known as "Huang Huacai" in China, has anti-depressant effects. However, targets and molecular mechanisms of Hemerocallis citrina Baroni edible flowers (HEF) in depression treatment are still unclear. The potential anti-depression targets in HEF were identified by the intersecting results from typical drug databases. The network construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were carried out for core targets. The molecular docking was conducted to predict the binding affinity between the active components and the central targets. The intersecting results indicated that there were 24 active components in HEF, with 449 anti-depression targets identified. After screening through degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC), 166 core targets were determined. Tumor protein 53 (TP53) and interleukin 6 (IL-6) had the highest degree values. The results of GO enrichment analysis associated with anti-depression revealed that the biological processes were negative regulation of osteoclast differentiation and positive regulation of phosphorus metabolic process. KEGG enrichment analysis results revealed that pathways, such as the phosphatidylinositol 3‑kinase-protein kinase B (PI3K-Akt) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway, were primarily associated with anti-depression. Molecular docking results indicated that the top 10 active ingredients in HEF could bind to the central targets. This study applied network pharmacology to unveil the potential anti-depressive mechanisms of HEF, providing a theoretical basis for further exploration of the effective components in H. citrina edible flower parts.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Sookja Kim Chung
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Baojun Xu
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| |
Collapse
|
7
|
Atak M, Yigit E, Huner Yigit M, Topal Suzan Z, Yilmaz Kutlu E, Karabulut S. Synthetic and non-synthetic inhibition of ADAM10 and ADAM17 reduces inflammation and oxidative stress in LPS-induced acute kidney injury in male and female mice. Eur J Pharmacol 2024; 983:176964. [PMID: 39218341 DOI: 10.1016/j.ejphar.2024.176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1β, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.
Collapse
Affiliation(s)
- Mehtap Atak
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey.
| | - Ertugrul Yigit
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Merve Huner Yigit
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Zehra Topal Suzan
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Soner Karabulut
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey
| |
Collapse
|
8
|
Patel P, Garala K, Bagada A, Singh S, Prajapati BG, Kapoor D. Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review. Z NATURFORSCH C 2024:znc-2024-0153. [PMID: 39529585 DOI: 10.1515/znc-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis is a chronic autoimmune skin disease with a worldwide prevalence of 1-3 % results from uncontrolled proliferation of keratinocytes and affects millions of people. While there are various treatment options available, some of them may come with potential side effects and limitations. Recent research has shown that using bioactive compounds that originate from natural sources with a lower risk of side effects are relatively useful in safe management psoriasis. Bioactive compounds are molecules that are naturally available with potential therapeutic efficacy. Some of bioactive compounds that have shown promising results in the management of psoriasis include curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, etc., possess anti-inflammatory, antioxidant, immunomodulatory, and anti-proliferative properties, with capabilities to suppress overall pathogenesis of psoriasis. Moreover, these bioactive compounds are generally considered as safe and are well-tolerated, making them potential options for long-term use in the management of various conditions linked with psoriasis. In addition, these natural products may also offer a more holistic approach to treat the disease, which is appealing to many patients. This review explores the bioactive compounds in mitigation of psoriasis either in native or incorporated within novel drug delivery. Moreover, recent clinical findings in relation to natural product usage have been also explored.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat 360005, India
| | - Kevinkumar Garala
- School of Pharmaceutical Sciences, Atmiya University, Rajkot, Gujarat 360005, India
| | - Arti Bagada
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat 360005, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Gujarat 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Devesh Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| |
Collapse
|
9
|
Fu X, Huang X, Tan H, Huang X, Nie S. Regulatory Effect of Fucoidan Hydrolysates on Lipopolysaccharide-Induced Inflammation and Intestinal Barrier Dysfunction in Caco-2 and RAW264.7 Cells Co-Cultures. Foods 2024; 13:3532. [PMID: 39593947 PMCID: PMC11592468 DOI: 10.3390/foods13223532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Fucoidan, a sulfated polysaccharide rich in fucose, is derived from brown algae and marine invertebrates. Multiple bioactivities have been shown with fucoidan, while growing attraction has emerged in its low-molecular-weight (Mw) hydrolysates. Here, the anti-inflammatory effect of fucoidan, low-Mw acidolyzed fucoidan (LMAF, <1.5 kDa), and high-Mw acidolyzed fucoidan (HMAF, 1.5-20 kDa) were investigated in vitro using lipopolysaccharide (LPS)-stimulated Caco-2 and RAW264.7 co-cultures. Fucoidan, LMAF, and HMAF with different structures exhibited varied anti-inflammatory effects. LMAF and HMAF effectively decreased the nitric oxide release of RAW264.7 cells. LMAF exhibited a competitive effect in reducing tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 levels compared to HMAF and fucoidan. Transcriptome of RAW264.7 revealed that LPS and LMAF mainly regulated the transcriptional expression of genes, including Tnf, Il6, Il1b, Junb, and Nfkb1 in the TNF signaling pathway, NF-kappa B signaling pathway, and cytokine-cytokine receptor interaction. RT-PCR results indicated that LMAF markedly reduced the LPS-elevated expression of Cxcl2, Tnf, Ccl2, Il1b, and Csf2. Moreover, LMAF effectively increased the proteins expression of Claudin-1, Occludin, and Zonula occluden-1 in Caco-2 cells. This study highlights the potential of LMAF to improve inflammation and intestinal barrier integrity, offering a foundation for further application of low-Mw fucoidan hydrolysates.
Collapse
Affiliation(s)
- Xiaodan Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.F.); (X.H.); (H.T.); (X.H.)
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, China
| | - Xinru Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.F.); (X.H.); (H.T.); (X.H.)
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.F.); (X.H.); (H.T.); (X.H.)
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.F.); (X.H.); (H.T.); (X.H.)
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.F.); (X.H.); (H.T.); (X.H.)
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, China
| |
Collapse
|
10
|
Szentirmai É, Buckley K, Kapás L. Cyclooxygenase-2 (COX-2)-dependent mechanisms mediate sleep responses to microbial and thermal stimuli. Brain Behav Immun 2024; 122:325-338. [PMID: 39134184 PMCID: PMC11402559 DOI: 10.1016/j.bbi.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Prostaglandins (PGs) play a crucial role in sleep regulation, yet the broader physiological context that leads to the activation of the prostaglandin-mediated sleep-promoting system remains elusive. In this study, we explored sleep-inducing mechanisms potentially involving PGs, including microbial, immune and thermal stimuli as well as homeostatic sleep responses induced by short-term sleep deprivation using cyclooxygenase-2 knockout (COX-2 KO) mice and their wild-type littermates (WT). Systemic administration of 0.4 µg lipopolysaccharide (LPS) induced increased non-rapid-eye movement sleep (NREMS) and fever in WT animals, these effects were completely absent in COX-2 KO mice. This finding underscores the essential role of COX-2-dependent prostaglandins in mediating sleep and febrile responses to LPS. In contrast, the sleep and fever responses induced by tumor necrosis factor α, a proinflammatory cytokine which activates COX-2, were preserved in COX-2 KO animals, indicating that these effects are independent of COX-2-related signaling. Additionally, we examined the impact of ambient temperature on sleep. The sleep-promoting effects of moderate warm ambient temperature were suppressed in COX-2 KO animals, resulting in significantly reduced NREMS at ambient temperatures of 30 °C and 35 °C compared to WT mice. However, rapid-eye-movement sleep responses to moderately cold or warm temperatures did not differ between the two genotypes. Furthermore, 6 h of sleep deprivation induced rebound increases in sleep with no significant differences observed between COX-2 KO and WT mice. This suggests that while COX-2-derived prostaglandins are crucial for the somnogenic effects of increased ambient temperature, the homeostatic responses to sleep loss are COX-2-independent. Overall, the results highlight the critical role of COX-2-derived prostaglandins as mediators of the sleep-wake and thermoregulatory responses to various physiological challenges, including microbial, immune, and thermal stimuli. These findings emphasize the interconnected regulation of body temperature and sleep, with peripheral mechanisms emerging as key players in these integrative processes.
Collapse
Affiliation(s)
- Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States; Sleep and Performance Research Center, Washington State University, Spokane, WA United States.
| | - Katelin Buckley
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States; Sleep and Performance Research Center, Washington State University, Spokane, WA United States
| |
Collapse
|
11
|
Zhang J, Zhao H, Zhou Q, Yang X, Qi H, Zhao Y, Yang L. Discovery of Cyclic Peptide Inhibitors Targeted on TNFα-TNFR1 from Computational Design and Bioactivity Verification. Molecules 2024; 29:5147. [PMID: 39519786 PMCID: PMC11547827 DOI: 10.3390/molecules29215147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Huijian Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Qianqian Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Xiaoyue Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Haoran Qi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Yongxing Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Longhua Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| |
Collapse
|
12
|
Javaid N, Ahmad B, Patra MC, Choi S. Decoy peptides that inhibit TNF signaling by disrupting the TNF homotrimeric oligomer. FEBS J 2024; 291:4372-4391. [PMID: 39003565 DOI: 10.1111/febs.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its functional homotrimeric form interacts with the TNF receptor (TNFR) to activate downstream apoptotic, necroptotic, and inflammatory signaling pathways. Excessive activation of these pathways leads to various inflammatory diseases, which makes TNF a promising therapeutic target. Here, 12-mer peptides were selected from the interface of TNF-TNFR based upon their relative binding energies and were named 'TNF-inhibiting decoys' (TIDs). These decoy peptides inhibited TNF-mediated secretion of cytokines and cell death, as well as activation of downstream signaling effectors. Effective TIDs inhibited TNF signaling by disrupting the formation of TNF's functional homotrimeric form. Among derivatives of TIDs, TID3c showed slightly better efficacy in cell-based assays by disrupting TNF trimer formation. Moreover, TID3c oligomerized TNF to a high molecular weight configuration. In silico modeling and simulations revealed that TID3c and its parent peptide, TID3, form a stable complex with TNF through hydrogen bonds and electrostatic interactions, which makes them the promising lead to develop peptide-based anti-TNF therapeutics.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| |
Collapse
|
13
|
Banerjee S, Oguljahan B, Thompson WE, Chowdhury I. Neuregulin 1 Signaling Attenuates Tumor Necrosis Factor α-Induced Female Rat Luteal Cell Death. Endocrinology 2024; 165:bqae129. [PMID: 39312480 PMCID: PMC11456883 DOI: 10.1210/endocr/bqae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The corpus luteum (CL) is a transient ovarian endocrine structure that maintains pregnancy in primates during the first trimester and in rodents during the entire pregnancy by producing steroid hormone progesterone (P4). CL lifespan, growth, and differentiation are tightly regulated by survival and cell death signals through luteotrophic and luteolytic factors, including the epidermal growth factor (EGF)-like factor family. Neuregulin 1 (NRG1), a member of the EGF family, mediates its effect through ErbB2/3 receptors. However, the functional role of NRG1 in luteal cells (LCs) is unknown. Thus, this study investigated the role of NRG1 and its molecular mechanism of action in rat LC. Our experimental results suggest a strong positive correlation between steroidogenic acute regulatory protein (StAR) and NRG1 expression in mid-CL and serum P4 and estrogen (E2) production. In contrast, there was a decrease in StAR and NRG1 expression and P4 and E2 production with an increase in tumor necrosis factor α (TNFα) expression in regressing CL. Further in vitro studies in LCs showed that the knockdown of endogenous Nrg1 promoted the expression of proinflammatory and proapoptotic factors and decreased prosurvival factor expression. Subsequently, treatment with exogenous TNFα under these experimental conditions profoundly elevated proinflammatory and proapoptotic factors. Further analysis demonstrated that the phosphorylation status of ErbB2/3, PI3K, Ak strain transforming or protein kinase B (Akt), and ErK1/2 was significantly inhibited under these experimental conditions, whereas the treatment of TNFα further inhibited the phosphorylation of ErbB2/3, PI3K, Akt, and ErK1/2. Collectively, these studies provide new insights into the NRG1-mediated immunomodulatory and prosurvival role in LCs, which may maintain the function of CL.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Babayewa Oguljahan
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
14
|
Acevedo-Monroy SE, Hernández-Chiñas U, Rocha-Ramírez LM, Medina-Contreras O, López-Díaz O, Ahumada-Cota RE, Martínez-Gómez D, Huerta-Yepez S, Tirado-Rodríguez AB, Molina-López J, Castro-Luna R, Martínez-Cristóbal L, Rojas-Castro FE, Chávez-Berrocal ME, Verdugo-Rodríguez A, Eslava-Campos CA. UNAM-HIMFG Bacterial Lysate Activates the Immune Response and Inhibits Colonization of Bladder of Balb/c Mice Infected with the Uropathogenic CFT073 Escherichia coli Strain. Int J Mol Sci 2024; 25:9876. [PMID: 39337365 PMCID: PMC11432767 DOI: 10.3390/ijms25189876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Urinary tract infections (UTIs) represent a clinical and epidemiological problem of worldwide impact that affects the economy and the emotional state of the patient. Control of the condition is complicated due to multidrug resistance of pathogens associated with the disease. Considering the difficulty in carrying out effective treatment with antimicrobials, it is necessary to propose alternatives that improve the clinical status of the patients. With this purpose, in a previous study, the safety and immunostimulant capacity of a polyvalent lysate designated UNAM-HIMFG prepared with different bacteria isolated during a prospective study of chronic urinary tract infection (CUTI) was evaluated. In this work, using an animal model, results are presented on the immunostimulant and protective activity of the polyvalent UNAM-HIMFG lysate to define its potential use in the control and treatment of CUTI. Female Balb/c mice were infected through the urethra with Escherichia coli CFT073 (UPEC O6:K2:H1) strain; urine samples were collected before the infection and every week for up to 60 days. Once the animals were colonized, sublingual doses of UNAM-HIMFG lysate were administrated. The colonization of the bladder and kidneys was evaluated by culture, and their alterations were assessed using histopathological analysis. On the other hand, the immunostimulant activity of the compound was analyzed by qPCR of spleen mRNA. Uninfected animals receiving UNAM-HIMFG lysate and infected animals administered with the physiological saline solution were used as controls. During this study, the clinical status and evolution of the animals were evaluated. At ninety-six hours after infection, the presence of CFT073 was identified in the urine of infected animals, and then, sublingual administration of UNAM-HIMFG lysate was started every week for 60 days. The urine culture of mice treated with UNAM-HIMFG lysate showed the presence of bacteria for three weeks post-treatment; in contrast, in the untreated animals, positive cultures were observed until the 60th day of this study. The histological analysis of bladder samples from untreated animals showed the presence of chronic inflammation and bacteria in the submucosa, while tissues from mice treated with UNAM-HIMFG lysate did not show alterations. The same analysis of kidney samples of the two groups (treated and untreated) did not present alterations. Immunostimulant activity assays of UNAM-HIMFG lysate showed overexpression of TNF-α and IL-10. Results suggest that the lysate activates the expression of cytokines that inhibit the growth of inoculated bacteria and control the inflammation responsible for tissue damage. In conclusion, UNAM-HIMFG lysate is effective for the treatment and control of CUTIs without the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Osvaldo López-Díaz
- Laboratorio de Histopatología Veterinaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Ricardo Ernesto Ahumada-Cota
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - Daniel Martínez-Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - Ana Belén Tirado-Rodríguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - José Molina-López
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Frida Elena Rojas-Castro
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - María Elena Chávez-Berrocal
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Antonio Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
15
|
Lee IWZ, Baikunje S, Tan PH, Guo W. Case report: Crescentic IgA nephropathy with anti-neutrophil cytoplasmic antibodies, in a patient on golimumab. Int J Rheum Dis 2024; 27:e15330. [PMID: 39239851 DOI: 10.1111/1756-185x.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Ivan Wei Zhen Lee
- Department of Renal Medicine, Sengkang General Hospital, Singapore, Singapore
| | - Shashidhar Baikunje
- Department of Renal Medicine, Sengkang General Hospital, Singapore, Singapore
| | | | - Weiwen Guo
- Department of Renal Medicine, Sengkang General Hospital, Singapore, Singapore
| |
Collapse
|
16
|
Gogulescu A, Blidisel A, Soica C, Mioc A, Voicu A, Jojic A, Voicu M, Banciu C. Neurological Side Effects of TNF-α Inhibitors Revisited: A Review of Case Reports. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1409. [PMID: 39336450 PMCID: PMC11433993 DOI: 10.3390/medicina60091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Over the past two decades, the use of tumor necrosis factor alpha (TNF-α) inhibitors has significantly improved the treatment of patients with immune-mediated inflammatory diseases. Firstly, introduced for rheumatoid arthritis, these inhibitors are currently approved and used for a variety of conditions, including ankylosing spondylitis, Crohn's disease, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ulcerative colitis, and chronic uveitis. Despite their immense therapeutic efficacy, TNF-α inhibitors have been associated with neurological adverse effects that bring new clinical challenges. The present review collects data from multiple studies to evaluate the incidence and the relationship between TNF-α inhibitors and neurological side effects and to explore the potential underlying mechanisms of this association. Moreover, it highlights the importance of patient selection, particularly in the case of individuals with a history of demyelinating diseases, raises awareness for clinicians, and calls for ongoing research that will improve TNF-α targeting strategies and offer safer and more effective therapeutic options.
Collapse
Affiliation(s)
- Armand Gogulescu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandru Blidisel
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alina Jojic
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Christian Banciu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| |
Collapse
|
17
|
Hamdan A, Sharma S, Baynes K, Hajj Ali RA, Lowder CY, Srivastava SK. Management of Uveitis Patients on Anti-TNF Agents Who Develop Demyelinating Disease - A Case Series. J Ophthalmic Inflamm Infect 2024; 14:35. [PMID: 39078559 PMCID: PMC11289187 DOI: 10.1186/s12348-024-00403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND/AIMS Anti-tumor necrosis factor (Anti-TNF) agents have proven beneficial for the treatment of chronic non-infectious uveitis, yet rare neurological complications and demyelinating disease can occur with their use. Management of uveitis and neurological disease after developing these rare complications is not well understood. We sought to identify these specific cases and their outcomes through a retrospective observational case series. METHODS Electronic Medical Record (EMR) chart review of 394 non-infectious uveitis patients on anti-TNF therapy focused on identifying patients seen by uveitis specialists at a single institution who were on anti-TNF therapy and had developed neurological symptoms. Cases were reviewed for subsequent management and outcomes of both their neurologic and ocular inflammatory disease. RESULTS Five (5) patients were included following complaints of neurological symptoms while on anti-TNF therapy. Subsequent demyelinating diagnosis, acute treatment, and long-term course were described. All five patients continue to be inactive at around three years of anti-TNF discontinuation. CONCLUSION Unidentified rare neurological symptoms and demyelinating disease associated with the use of anti-TNF agents can be detrimental to patient treatment outcomes. Emphasis is given on possible avoidance and early identification of exacerbating underlying disease through a detailed neurologic history and use of imaging when suspicion is high. Patients may have no evidence of higher neurological risk prior to starting an anti-TNF treatment. Discontinuation of an anti-TNF agent and subsequent control of disease is possible with alternative immunosuppressive treatments.
Collapse
Affiliation(s)
- Abel Hamdan
- Cole Eye Institute, Cleveland Clinic, 2022 E 105th St I Building, Cleveland, OH, 44106, USA
| | - Sumit Sharma
- Cole Eye Institute, Cleveland Clinic, 2022 E 105th St I Building, Cleveland, OH, 44106, USA
| | - Kimberly Baynes
- Cole Eye Institute, Cleveland Clinic, 2022 E 105th St I Building, Cleveland, OH, 44106, USA
| | - Rula A Hajj Ali
- Department of Rheumatology, Cleveland Clinic, Cleveland, OH, USA
| | - Careen Y Lowder
- Cole Eye Institute, Cleveland Clinic, 2022 E 105th St I Building, Cleveland, OH, 44106, USA
| | - Sunil K Srivastava
- Cole Eye Institute, Cleveland Clinic, 2022 E 105th St I Building, Cleveland, OH, 44106, USA.
| |
Collapse
|
18
|
Kaur R, Harvey JM, Brambilla R, Chandrasekharan UM, Elaine Husni M. Targeting dendritic cell-specific TNFR2 improves skin and joint inflammation by inhibiting IL-12/ IFN-γ pathways in a mouse model of psoriatic arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.598545. [PMID: 38979358 PMCID: PMC11230259 DOI: 10.1101/2024.06.20.598545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Psoriasis (PsO) and Psoriatic arthritis (PsA) are immune-mediated inflammatory diseases affecting the skin and joints. Approximately, 30% of patients with PsO develop PsA over time with both conditions being associated with elevated tumor necrosis factor-alpha (TNF-α) expression. TNF-α mediates its effect through two membrane receptors, TNFR1 and TNFR2. While current TNF-α-neutralizing agents, targeting both TNFR1 and TNFR2 receptors, constitute the primary treatment for psoriatic diseases, their long-term use is limited due to an increase in opportunistic infections, tuberculosis reactivation and malignancies likely attributed to TNFR1 inactivation. Recent findings suggest a pivotal role of TNFR2 in psoriatic disease, as evidenced by its amelioration in global TNFR2-knockout (TNFR2KO) mice, but not in TNFR1KO mice. The diminished disease phenotype in TNFR2KO mice is accompanied by a decrease in DC populations. However, the specific contribution of TNFR2 in dendritic cells (DCs) remains unclear. Here, utilizing a mannan-oligosaccharide (MOS)-induced PsA model, we demonstrate a significant reduction in PsA-like skin scaling and joint inflammation in dendritic cell-specific TNFR2 knockout mice (DC-TNFR2KO). Notably, MOS treatment in control mice (TNFR2 fl/fl) led to an increase in conventional type 1 dendritic cells (cDC1) population in the spleen, a response inhibited in DC-TNFR2KO mice. Furthermore, DC-TNFR2KO mice exhibited reduced levels of interleukin-12 (IL-12), a Th1 cell activator, as well as diminished Th1 cells, and interferon-gamma (IFN-γ) levels in the serum compared to controls following MOS stimulation. In summary, our study provides compelling evidence supporting the role of TNFR2 in promoting PsA-like inflammation through cDC1/Th1 activation pathways.
Collapse
|
19
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
20
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
21
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
You J, Wang S, Zhu Y, Zhang Z, Wang J, Lou Y, Yao Y, Hao Y, Liu P. Natural Killer Cells Reprogram Myeloid-Derived Suppressor Cells to Induce TNF-α Release via NKG2D-Ligand Interaction after Cryo-Thermal Therapy. Int J Mol Sci 2024; 25:5151. [PMID: 38791188 PMCID: PMC11121051 DOI: 10.3390/ijms25105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (S.W.); (Y.Z.); (Z.Z.); (J.W.); (Y.L.); (Y.Y.); (Y.H.)
| |
Collapse
|
23
|
Gertel S, Rokach M, Polachek A, Litinsky I, Anouk M, Elkayam O, Furer V. Anti-inflammatory effects of infliximab and methotrexate on peripheral blood and synovial fluid mononuclear cells: ex vivo study. Scand J Rheumatol 2024; 53:188-198. [PMID: 38275170 DOI: 10.1080/03009742.2023.2300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE To investigate the effects of methotrexate (MTX) and the tumour necrosis factor inhibitor infliximab (IFX) on immune cells derived from peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) of inflammatory arthritis patients. METHOD Phytohaemagglutinin (PHA)-induced proliferation of healthy donors' PBMCs and synovial intermediate monocytes (CD14+CD16+ cells) in SFMCs derived from psoriatic arthritis (PsA) and rheumatoid arthritis (RA) patients was determined by flow cytometry following co-culture with IFX and MTX. PHA-induced interferon-γ (IFN-γ) production in PBMCs was measured by enzyme-linked immunosorbent assay. The drugs' effect on mRNA expression in SFMCs was determined by quantitative polymerase chain reaction. RESULTS The combination of IFX 10 μg/mL + MTX 0.1 μg/mL had the strongest inhibitory effect on PBMC proliferation (91%), followed by MTX 0.1 μg/mL (86%) and IFX 10 μg/mL (49%). In PHA-stimulated PBMCs, IFN-γ production was reduced by IFX 10 μg/mL, MTX 0.1 μg/mL, and IFX 10 μg/mL + MTX 0.1 μg/mL by 68%, 90%, and 85%, respectively. In SFMCs, IFX 10 µg/mL significantly reduced CD14+CD16+ cells compared to medium (PsA 54%, p < 0.01; RA 46%, p < 0.05), while MTX had no effect on this population. IFX + MTX led to a similar suppression of CD14+CD16+ cells as achieved by IFX alone. The drugs had different impacts on SFMC gene expression. CONCLUSION Both IFX and MTX effectively inhibited PBMC proliferation and IFN-γ production, but only IFX reduced synovial monocytes and pro-inflammatory gene expression in SFMCs, suggesting a differential impact of IFX and MTX on critical inflammatory cell populations ex vivo.
Collapse
Affiliation(s)
- S Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Rokach
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Litinsky
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Anouk
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - V Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Shams SF, Mehrad-Majd H. TNFα-308G>A Polymorphism and Susceptibility to Immune Thrombocytopenia Purpura (ITP): Evidence From a Systematic Review and Meta-analysis. Cytokine 2024; 177:156538. [PMID: 38368694 DOI: 10.1016/j.cyto.2024.156538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Relation between the emergence of ITP and the presence of TNFα 308G/A polymorphism in the involved individuals has been studied by previous researchers in different ethnicity, but a definite result was not gained. So, this meta-analysis was performed to find an absolute answer to the question whether TNF-α-308G/A polymorphism is a susceptibility factor for ITP or not? METHODS Electronic databases including PubMed, Google scholar, and Science Direct were searched and case control studies compatible to the defined inclusion criteria were selected; their references were also evaluated manually. Pooled OR with 95 % confidence intervals (CIs) as a strength of association between TNF-α-308G/A polymorphism and risk of ITP were calculated using a random-effect model. Funnel plot and Egger's linear regression test were conducted to examine the risk of publication bias. RESULTS Totally, 16 eligible articles were found involving 1470 ITP cases and 2324 healthy controls. The Meta-results revealed that TNFα 308G/A polymorphism is associated with increased risk of ITP under the genetic models of recessive (OR: 1.54, 95 % CI: 1.03-2.29), dominant (OR: 2.29, 95 % CI: 1.44-3.64), and the heterozygote (OR: 2.46, 95 % CI:1.49-4.6). Subgroup analysis suggested a remarkable role for this SNP as a risk factor in the Caucasian ethnicity and the chronic subtype. CONCLUSION TNFα 308G/A polymorphism can be an ITP susceptibility factor in the Caucasian population and the chronic subtype. Although more studies in large scale are needed for clinical decision but this finding can be used in the clinical trials to prevent the ITP consequences in the involved individuals.
Collapse
Affiliation(s)
- Seyyede Fatemeh Shams
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Molecular Pathology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Majid Z, Muhammad-Baqir B, Al-Shimerty DF, Hadi NR. The possible cardioprotective effect of ghrelin during experimental endotoxemia in mice. J Med Life 2024; 17:486-491. [PMID: 39144689 PMCID: PMC11320619 DOI: 10.25122/jml-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/04/2023] [Indexed: 08/16/2024] Open
Abstract
This study aimed to evaluate the cardioprotective effects of ghrelin in septic mice, focusing on its anti-inflammatory and antioxidant properties. Thirty-five male Swiss mice (8-12 weeks old, 23-33g) were randomly assigned to five groups (n = 7 each): (1) Normal, fed usual diets, (2) Sham, subjected to anesthesia and laparotomy, (3) Sepsis, subjected to cecal ligation and puncture, (4) Vehicle, given an equivalent volume of intraperitoneal saline injections immediately after cecal ligation and puncture, and (5) Ghrelin-treated, administered 80 µg/kg ghrelin intraperitoneal injections immediately following cecal ligation and puncture. Serum levels of tumor necrosis factor-alpha (TNF-α), macrophage migration inhibitory factor (MIF), toll-like receptor 4 (TLR4), and 8-epi-prostaglandin F2 alpha (8-epi-PGF2α) were measured. The extent of cardiac damage was also evaluated histologically. The mean serum levels of TNF-α, MIF, TLR4, and 8-epi-PGF2α levels were significantly higher in the sepsis and vehicle groups than in the normal and sham groups. The levels were significantly lower in the ghrelin-treated group than in the vehicle and sepsis groups. Histological analysis revealed normal myocardial architecture in the normal and sham groups, whereas the sepsis and vehicle groups had severe myocardial injury. The ghrelin-treated group displayed histological features similar to the sham group, indicating reduced myocardial damage. Ghrelin ameliorated sepsis-induced cardiotoxicity in mice by exhibiting strong anti-inflammatory and antioxidant effects. These findings suggest that ghrelin may be a promising therapeutic candidate for the prevention of sepsis-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | - Najah Rayish Hadi
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
26
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
27
|
Wang Y, Zheng J, Xiao X, Feng C, Li Y, Su H, Yuan D, Wang Q, Huang P, Jin L. Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis through PI3K/Akt Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:433-451. [PMID: 38577825 DOI: 10.1142/s0192415x24500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the leading cause of death worldwide. Ginsenoside Rd (GRd) has cardioprotective properties but its efficacy and mechanism of action in myocardial I/R injury have not been clarified. This study investigated GRd as a potent therapeutic agent for myocardial I/R injury. Oxygen-glucose deprivation and reperfusion (OGD/R) and left anterior descending (LAD) coronary artery ligation were used to establish a myocardial I/R injury model in vitro and in vivo. In vivo, GRd significantly reduced the myocardial infarct size and markers of myocardial injury and improved the cardiac function in myocardial I/R injury mice. In vitro, GRd enhanced cell viability and protected the H9c2 rat cardiomyoblast cell line from OGD-induced injury GRd. The network pharmacology analysis predicted 48 potential targets of GRd for the treatment of myocardial I/R injury. GO and KEGG enrichment analysis indicated that the cardioprotective effects of GRd were closely related to inflammation and apoptosis mediated by the PI3K/Akt signaling pathway. Furthermore, GRd alleviated inflammation and cardiomyocyte apoptosis in vivo and inhibited OGD/R-induced apoptosis and inflammation in cardiomyocytes. GRd also increased PI3K and Akt phosphorylation, suggesting activation of the PI3K/Akt pathway, whereas LY294002, a PI3K inhibitor, blocked the GRd-induced inhibition of OGD/R-induced apoptosis and inflammation in H9c2 cells. The therapeutic effect of GRd in vivo and in vitro against myocardial I/R injury was primarily dependent on PI3K/Akt pathway activation to inhibit inflammation and cardiomyocyte apoptosis. This study provides new evidence for the use of GRd as a cardiovascular drug.
Collapse
Affiliation(s)
- Yuanping Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Jiading Zheng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Xieyang Xiao
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Cailing Feng
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Yinghong Li
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Hui Su
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Ding Yuan
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Qinghai Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Peihong Huang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| | - Lili Jin
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P. R. China
| |
Collapse
|
28
|
Akçaöz-Alasar A, Tüncel Ö, Sağlam B, Gazaloğlu Y, Atbinek M, Cagiral U, Iscan E, Ozhan G, Akgül B. Epitranscriptomics m 6A analyses reveal distinct m 6A marks under tumor necrosis factor α (TNF-α)-induced apoptotic conditions in HeLa cells. J Cell Physiol 2024; 239:e31176. [PMID: 38179601 DOI: 10.1002/jcp.31176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Tumor necrosis factor-α (TNF-α) is a ligand that induces both intrinsic and extrinsic apoptotic pathways in HeLa cells by modulating complex gene regulatory mechanisms. However, the full spectrum of TNF-α-modulated epitranscriptomic m6A marks is unknown. We employed a genomewide approach to examine the extent of m6A RNA modifications under TNF-α-modulated apoptotic conditions in HeLa cells. miCLIP-seq analyses revealed a plethora of m6A marks on 632 target mRNAs with an enrichment on 99 mRNAs associated with apoptosis. Interestingly, the m6A RNA modification patterns were quite different under cisplatin- and TNF-α-mediated apoptotic conditions. We then examined the abundance and translational efficiencies of several mRNAs under METTL3 knockdown and/or TNF-α treatment conditions. Our analyses showed changes in the translational efficiency of TP53INP1 mRNA based on the polysome profile analyses. Additionally, TP53INP1 protein amount was modulated by METTL3 knockdown upon TNF-α treatment but not CP treatment, suggesting the existence of a pathway-specific METTL3-TP53INP1 axis. Congruently, METLL3 knockdown sensitized HeLa cells to TNF-α-mediated apoptosis, which was also validated in a zebrafish larval xenograft model. These results suggest that apoptotic pathway-specific m6A methylation marks exist in cells and TNF-α-METTL3-TP53INP1 axis modulates TNF-α-mediated apoptosis in HeLa cells.
Collapse
Affiliation(s)
- Azime Akçaöz-Alasar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| | - Özge Tüncel
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| | - Buket Sağlam
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| | - Yasemin Gazaloğlu
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| | - Melis Atbinek
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| | - Umut Cagiral
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
| | - Bünyamin Akgül
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Türkiye
| |
Collapse
|
29
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
30
|
Beigoli S, Amin F, Kazemi Rad H, Rezaee R, Boskabady MH. Occupational respiratory disorders in Iran: a review of prevalence and inducers. Front Med (Lausanne) 2024; 11:1310040. [PMID: 38390570 PMCID: PMC10881831 DOI: 10.3389/fmed.2024.1310040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
The link between occupational respiratory diseases (ORD) and exposure to harmful factors that are present in the workplace has been well shown. Factors such as physical activity, age and duration of occupational exposure playing important roles in ORD severity, should be identified in the workplace, their effects on workers health should be studied, and ultimately, exposure to them must be minimized. We carried out a literature review by searching PubMed, Scopus, and Web of Science databases to retrieve studies published from 1999 until the end of April 2023 reporting the prevalence and inducers of ORD in Iran. In Iranian workers, several ORD such as interstitial lung disease, silicosis, occupational asthma, pulmonary inflammatory diseases, chronic obstructive pulmonary diseases, and lung cancers have been reported. It was indicated that ORD mainly occur due to repeated and prolonged exposure to noxious agents in the workplace. We also extracted the prevalence of ORD in different regions of Iran from the retrieved reports. Based on our literature review, the prevalence of ORD among Iranian workers highlights the importance of regular assessment of the risk of exposure to noxious agents in the workplace to develop measures for preventing potential adverse effects.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamideh Kazemi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Zhu ZB, Liu MJ, Wang J, Shu Z, Cao J. Secoemestrin C Ameliorates Psoriasis-like Skin Inflammation in Mice by Suppressing the TNF-α/NF-κB Signaling Pathway. Curr Med Sci 2024; 44:232-240. [PMID: 38393530 DOI: 10.1007/s11596-024-2828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/03/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Secoemestrin C (SC), an epitetrathiodioxopiperazine isolated from Aspergillus nidulans, has been previously reported to have immunomodulatory and hepatoprotective effects against acute autoimmune hepatitis. However, the effect of SC on regulating the inflammation and its underlying mechanisms in the pathogenesis of psoriasis remain unclear. This study aimed to evaluate the effects of SC on inflammatory dermatosis both in vitro and in vivo. METHODS In vitro, HaCaT cells were induced with tumor necrosis factor-alpha (TNF-α, 10 ng/mL) to establish an inflammatory injury model, and the expression of nuclear transcription factor-κB (NF-κB) pathway components was measured using qRT-PCR and Western blotting. An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like skin inflammation was used to evaluate the effectiveness of SC in alleviating psoriasis. RESULTS SC significantly blocked the activation of NF-κB signaling in TNF-α-stimulated HaCaT cells. In addition, systemic and local administration of SC improved psoriatic dermatitis in the IMQ-induced mouse model. SC reduced skin scale and significantly inhibited the secretion of inflammatory factors in skin lesions. CONCLUSION The protective effect of SC against psoriatic-associated inflammation reveals its potential therapeutic value for treating psoriasis.
Collapse
Affiliation(s)
- Zhi-Bin Zhu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Meng-Jie Liu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhou Shu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
32
|
Nguyen KL, Bhatt IJ, Gupta S, Showkat N, Swanson KA, Fischer R, Kontermann RE, Pfizenmaier K, Bracchi-Ricard V, Bethea JR. Tumor necrosis factor receptor 2 activation elicits sex-specific effects on cortical myelin proteins and functional recovery in a model of multiple sclerosis. Brain Res Bull 2024; 207:110885. [PMID: 38246200 PMCID: PMC10923072 DOI: 10.1016/j.brainresbull.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.
Collapse
MESH Headings
- Humans
- Male
- Female
- Mice
- Animals
- Multiple Sclerosis
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/therapeutic use
- Tumor Necrosis Factor Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Myelin Proteins
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Knockout
Collapse
Affiliation(s)
- Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| | - Ishaan J Bhatt
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Shruti Gupta
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Nazaf Showkat
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Kathryn A Swanson
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| |
Collapse
|
33
|
Tomala J, Cao SD, Spangler JB. Engineering Anticytokine Antibodies for Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:225-234. [PMID: 38166248 DOI: 10.4049/jimmunol.2300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The delicate balance of immune homeostasis is regulated by the interactions between cytokines and their cognate cell surface signaling receptors. There is intensive interest in harnessing cytokines as drugs for diseases such as cancer and autoimmune disorders. However, the multifarious and often contradictory activities of cytokines, coupled with their short serum half-lives, limit clinical performance and result in dangerous toxicities. There is thus growing emphasis on manipulating natural cytokines to enhance their selectivity, safety, and durability through various strategies. One strategy that has gained traction in recent years is the development of anticytokine Abs that not only extend the circulation half-life of cytokines but also specifically bias their immune activities through multilayered molecular mechanisms. Although Abs are notorious for their antagonistic activities, this review focuses on anticytokine Abs that selectively agonize the activity of the target protein. This approach has potential to help realize the clinical promise of cytokine-based therapies.
Collapse
Affiliation(s)
- Jakub Tomala
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shanelle D Cao
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
34
|
Aciole MR, Gonçales JP, Neves PAF, Soares CRP, de Oliveira MI, de Melo HRL, de Lima Neto RG, Moura LCRV, Araújo PSR, de Lorena VMB. Levels of soluble TNF receptors (sTNFR1 and sTNFR2) increase with clinical worsening of patients and are related to COVID-19 mortality. Immunobiology 2024; 229:152748. [PMID: 38128238 DOI: 10.1016/j.imbio.2023.152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The present study aimed to inspect the serum levels of the soluble receptors, sTNFR1 and sTNFR2, in patients with COVID-19. The large production of inflammatory cytokines is an essential process in the pathogenesis of COVID-19. TNF is a multifaceted proinflammatory cytokine which has soluble and membrane receptors. Thus, knowing the role of these receptors will help better understand this disease's immunopathogenesis. We included 131 patients confirmed for SARS-CoV-2, separated into three groups: ward patients without O2 support, group A (n = 14); ward patients with O2 support, group B (n = 85), and patients in an intensive care unit (ICU), group C (n = 32), making up the receptors dosed by flow cytometry. The results showed that sTNFR1 and sTNFR2 are associated with disease severity, being higher in group C when compared to group A. As for the levels of receptors and their relationship with the degree of lung involvement, we found higher values of sTNFR1 in patients in group 1 (pulmonary involvement < 25%), suggesting that inflammatory processes related to TNF are not necessarily associated with the primary site of infection. When we analysed the patients who passed away compared to those who recovered, both receptors significantly increased the mortality numbers. These findings suggest a relevant influence of soluble receptors in the inflammatory processes involved in the pathogenesis of COVID-19. Wherefore, we suggest using these receptors as biomarkers of severity and mortality of the disease.
Collapse
Affiliation(s)
- Melayne Rocha Aciole
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Juliana Prado Gonçales
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Patrícia Areias Feitosa Neves
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | - Marta Iglis de Oliveira
- Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
38
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-Induced Altered miRNA Expression Links to NF-κB Signaling Pathway in Endometriosis. Inflammation 2023; 46:2055-2070. [PMID: 37389684 PMCID: PMC10673760 DOI: 10.1007/s10753-023-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Aaron Doctor
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ceana Nezhat
- Nezhat Medical Center, 5555 Peachtree Dunwoody Road, Atlanta, GA, 30342, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
39
|
Babaahmadi M, Tayebi B, Gholipour NM, Kamardi MT, Heidari S, Baharvand H, Eslaminejad MB, Hajizadeh-Saffar E, Hassani SN. Rheumatoid arthritis: the old issue, the new therapeutic approach. Stem Cell Res Ther 2023; 14:268. [PMID: 37741991 PMCID: PMC10518102 DOI: 10.1186/s13287-023-03473-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease of unknown etiology. The most common form of this disease is chronic inflammatory arthritis, which begins with inflammation of the synovial membrane of the affected joints and eventually leads to disability of the affected limb. Despite significant advances in RA pharmaceutical therapies and the availability of a variety of medicines on the market, none of the available medicinal therapies has been able to completely cure the disease. In addition, a significant percentage (30-40%) of patients do not respond appropriately to any of the available medicines. Recently, mesenchymal stromal cells (MSCs) have shown promising results in controlling inflammatory and autoimmune diseases, including RA. Experimental studies and clinical trials have demonstrated the high power of MSCs in modulating the immune system. In this article, we first examine the mechanism of RA disease, the role of cytokines and existing medicinal therapies. We then discuss the immunomodulatory function of MSCs from different perspectives. Our understanding of how MSCs work in suppressing the immune system will lead to better utilization of these cells as a promising tool in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mahnaz Babaahmadi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Behnoosh Tayebi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Nima Makvand Gholipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Mehrnaz Tayebi Kamardi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
| |
Collapse
|
40
|
Su Z, Wu Y. How does the same ligand activate signaling of different receptors in TNFR superfamily: a computational study. J Cell Commun Signal 2023; 17:657-671. [PMID: 36167956 PMCID: PMC10409953 DOI: 10.1007/s12079-022-00701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
TNFα is a highly pleiotropic cytokine inducing inflammatory signaling pathways. It is initially presented on plasma membrane of cells (mTNFα), and also exists in a soluble variant (sTNFα) after cleavage. The ligand is shared by two structurally similar receptors, TNFR1 and TNFR2. Interestingly, while sTNFα preferentially stimulates TNFR1, TNFR2 signaling can only be activated by mTNFα. How can two similar receptors respond to the same ligand in such a different way? We employed computational simulations in multiple scales to address this question. We found that both mTNFα and sTNFα can trigger the clustering of TNFR1. The size of clusters induced by sTNFα is constantly larger than the clusters induced by mTNFα. The systems of TNFR2, on the other hand, show very different behaviors. Only when the interactions between TNFR2 are very weak, mTNFα can trigger the receptors to form very large clusters. Given the same weak binding affinity, only small oligomers were obtained in the system of sTNFα. Considering that TNF-mediated signaling is modulated by the ligand-induced clustering of receptors on cell surface, our study provided the mechanistic foundation to the phenomenon that different isoforms of the ligand can lead to highly distinctive signaling patterns for its receptors.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Chien LH, Deng JS, Jiang WP, Chou YN, Lin JG, Huang GJ. Evaluation of lung protection of Sanghuangporus sanghuang through TLR4/NF-κB/MAPK, keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 signaling pathways mediating apoptosis and autophagy. Biomed Pharmacother 2023; 165:115080. [PMID: 37392658 DOI: 10.1016/j.biopha.2023.115080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial pneumonia characterized by chronic and progressive fibrosis with an unknown etiology. Previous pharmacological studies have shown that Sanghuangporus sanghuang possesses various beneficial properties including immunomodulatory, hepatoprotective, antitumor, antidiabetic, anti-inflammatory, and neuroprotective effects. This study used a bleomycin (BLM)-induced IPF mouse model to illustrate the possible benefits of SS in ameliorating IPF. BLM was administered on day 1 to establish a pulmonary fibrosis mouse model, and SS was administered through oral gavage for 21 d. Hematoxylin and eosin (H&E) and Masson's trichrome staining results showed that SS significantly reduced tissue damage and decreased fibrosis expression. We observed that SS treatment resulted in a substantial lowering in the level of pro-inflammatory cytokines like TGF-β, TNF-α, IL-1β, and IL-6 as well as MPO. In addition, we observed a notable increase in glutathione (GSH) levels. Western blot analysis of SS showed that it reduces inflammatory factors (TWEAK, iNOS, and COX-2), MAPK (JNK, p-ERK, and p-38), fibrosis-related molecules (TGF-β, SMAD3, fibronectin, collagen, α-SMA, MMP2, and MMP9), apoptosis (p53, p21, and Bax), and autophagy (Beclin-1, LC3A/B-I/II, and p62), and notably increases caspase 3, Bcl-2, and antioxidant (Catalase, GPx3, and SOD-1) levels. SS alleviates IPF by regulating the TLR4/NF-κB/MAPK, Keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 pathways. These results suggest that SS has a pharmacological activity that protects the lungs and has the potential to improve pulmonary fibrosis.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jaung-Geng Lin
- Department of Chinese Medical, China Medical University, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
42
|
Coco G, Ambrosini G, Poletti S, Meliante LA, Taloni A, Scorcia V, Giannaccare G. Recent advances in drug treatments for dry eye disease. Expert Opin Pharmacother 2023; 24:2059-2079. [PMID: 37804227 DOI: 10.1080/14656566.2023.2269090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Dry eye disease (DED) is a common ocular condition with a significant impact on patients' quality of life. Conventional treatments include behavioral changes, tear substitutes, and anti-inflammatory agents; however, recent advances in the understanding of DED pathogenesis have opened the way to the development of novel treatment strategies able to target several pathways involved in the onset and persistence of DED. AREAS COVERED Literature search was conducted on PubMed and Scopus around the term 'dry eye disease' and others involving its pathophysiology and therapeutic strategy. The primary focus was on recent drugs approved by FDA or under investigation in phase 3 clinical trials. Google and ClinicalTrials.gov were used for obtaining information about the status of FDA approval and ongoing clinical trials. EXPERT OPINION Due to its multifaced pathogenesis, DED management is often challenging, and patients' needs are frequently unmet. Recently, several novel treatments have been either FDA-approved or studied in late-phase trials. These novel drugs target-specific biological components of the ocular surface and reduce inflammation and ocular pain. Additionally, new drug delivery systems allow for increased bioavailability, improve effective dosing, and minimize ocular side effects. These advances in drug therapies show real promise for better management of DED patients.
Collapse
Affiliation(s)
- Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Ambrosini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Poletti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Antonia Meliante
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Taloni
- Department of Ophthalmology, University of Magna Græcia, Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University of Magna Græcia, Catanzaro, Italy
| | | |
Collapse
|
43
|
Kim J, Jung E, Yang W, Kim CK, Durnaoglu S, Oh IR, Kim CW, Sinskey AJ, Mihm MC, Lee JH. A Novel Multi-Component Formulation Reduces Inflammation In Vitro and Clinically Lessens the Symptoms of Chronic Eczematous Skin. Int J Mol Sci 2023; 24:12979. [PMID: 37629159 PMCID: PMC10454735 DOI: 10.3390/ijms241612979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Long-term treatments for inflammatory skin diseases like atopic dermatitis or eczema can cause adverse effects. Super Protein Multifunction (SPM) was investigated as a potential treatment for managing skin inflammation by monitoring the expression of pro-inflammatory cytokines induced using LPS and poly(I:C)/TNFα in HaCaT keratinocytes and Hs27 fibroblasts as measured via RT-PCR. SPM solution was also assessed for its effect on cytokine release, measured using ELISA, in a UVB-irradiated 3D human skin model. To evaluate the efficiency of SPM, 20 patients with mild eczematous skin were randomized to receive SPM or vehicle twice a day for three weeks in a double-blind controlled trial. In vitro studies showed SPM inhibited inflammation-induced IL-1β, IL-6, IL-33, IL-1α, TSLP, and TNFα expression or release. In the clinical study, the SPM group showed significant improvements in the IGA, PA, and DLQI scores compared to the vehicle group. Neither group showed significant differences in VAS (pruritus). Histological analysis showed reduced stratum corneum thickness and inflammatory cell infiltration. The results suggest that SPM may reduce inflammation in individuals with chronic eczematous skin.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| | - Eunjoong Jung
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Wonmi Yang
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Chun-Kang Kim
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Serpen Durnaoglu
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - In-Rok Oh
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Chan-Wha Kim
- Biocoz Global Korea, R & D Center, Seoul 03181, Republic of Korea; (E.J.); (W.Y.); (C.-K.K.); (S.D.); (I.-R.O.); (C.-W.K.)
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin C. Mihm
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
44
|
Li X, Liu Z, Gao T, Liu W, Yang K, Guo R, Li C, Tian Y, Wang N, Zhou D, Bei W, Yuan F. Tea Polyphenols Protects Tracheal Epithelial Tight Junctions in Lung during Actinobacillus pleuropneumoniae Infection via Suppressing TLR-4/MAPK/PKC-MLCK Signaling. Int J Mol Sci 2023; 24:11842. [PMID: 37511601 PMCID: PMC10380469 DOI: 10.3390/ijms241411842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins β-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.
Collapse
Affiliation(s)
- Xiaoyue Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ningning Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
45
|
Morales T, Stamper C, Brenner L. High molar ratios of tumor necrosis factor α (TNF α) soluble receptors I and II to the TNF ligand in human plasma from male veterans with comorbid posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI). THE EUROPEAN JOURNAL OF PSYCHIATRY 2023; 37:141-148. [PMID: 37577070 PMCID: PMC10421642 DOI: 10.1016/j.ejpsy.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background and Objectives Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are associated with chronic inflammation, as inferred from increased, but variable, peripheral levels of cytokines. We sought proof of concept for the notion that peripheral cytokine binding proteins and/or soluble receptors can confound measures of cytokines in those with a history of physical and psychological traumatic exposures. Efforts were focused on one of the major cytokines involved in inflammation, tumor necrosis factor-α (TNF-α). Methods We examined blood plasma concentrations of TNF-α, its soluble receptors (TNF-soluble receptors (sR) I and TNFsRII), and C-reactive protein (CRP-1) in a cohort of US Veterans. In a previous study, CRP-1 was shown to be reduced by probiotic anti-inflammatory treatment in this patient cohort. All participants (n = 22) were diagnosed with PTSD and had a history of mild TBI with persistent post-concussive symptoms. Exclusion criteria included medications directly targeting inflammation. Results Molar concentrations of soluble TNFsRI and II exceeded concentrations of the TNF-α ligand. TNFsRI, but not TNFsRII, was significantly associated with CRP-1 (Spearman Rho correlations = 0.518; p=.016 and 0.365; p = .104, respectively). Conclusions TNF soluble receptors may bind to and sequester free TNF-α, suggesting that only measuring ligand concentrations may not provide a fully comprehensive view of inflammation, and potentially lead to inaccurate conclusions. TNFsRI concentration may provide a better estimate of inflammation than TNF-α for those with PTSD and post-acute mTBI with post-concussive symptoms, a hypothesis that invites further testing in larger studies.
Collapse
Affiliation(s)
- T.I Morales
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, Aurora, CO 80045-8020, USA
- Departments of Psychiatry, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - C.E Stamper
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, Aurora, CO 80045-8020, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - L.A Brenner
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, Aurora, CO 80045-8020, USA
- Departments of Psychiatry, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Neurology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| |
Collapse
|
46
|
Waerlop G, Janssens Y, Jacobs B, Jarczowski F, Diessner A, Leroux-Roels G, Klimyuk V, Leroux-Roels I, Thieme F. Immune responses in healthy adults elicited by a bivalent norovirus vaccine candidate composed of GI.4 and GII.4 VLPs without adjuvant. Front Immunol 2023; 14:1188431. [PMID: 37435073 PMCID: PMC10331465 DOI: 10.3389/fimmu.2023.1188431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The development of an efficacious vaccine against norovirus is of paramount importance given its potential to reduce the global burden of norovirus-associated morbidity and mortality. Here, we report a detailed immunological analysis of a phase I, double-blind, placebo-controlled clinical trial performed on 60 healthy adults, ages 18 to 40. Total serum immunoglobulin and serum IgA against vaccine strains and cross-reactive serum IgG against non-vaccine strains were measured by enzyme immunoassays, whereas cell-mediated immune responses were quantified using intracellular cytokine staining by flow cytometry. A significant increase in humoral and cellular responses, e.g., IgA and CD4+ polypositive T cells, was triggered by the GI.4 Chiba 407 (1987) and GII.4 Aomori 2 (2006) VLP-based norovirus vaccine candidate rNV-2v, which is formulated without adjuvant. No booster effect was observed after the second administration in the pre-exposed adult study population. Furthermore, a cross-reactive immune response was elicited, as shown by IgG titers against GI.3 (2002), GII.2 OC08154 (2008), GII.4 (1999), GII.4 Sydney (2012), GII.4 Washington (2018), GII.6 Maryland (2018), and GII.17 Kawasaki 308 (2015). Due to viral infection via mucosal gut tissue and the high variety of potentially relevant norovirus strains, a focus should be on IgA and cross-protective humoral and cell-mediated responses in the development of a broadly protective, multi-valent norovirus vaccine. Clinical trial registration https://clinicaltrials.gov, identifier NCT05508178. EudraCT number: 2019-003226-25.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Bart Jacobs
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Frank Thieme
- Icon Genetics GmbH, a Denka Company, Halle, Germany
| |
Collapse
|
47
|
Vunnam N, Yang M, Lo CH, Paulson C, Fiers WD, Huber E, Been M, Ferguson DM, Sachs JN. Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS BIO & MED CHEM AU 2023; 3:270-282. [PMID: 37363080 PMCID: PMC10288500 DOI: 10.1021/acsbiomedchemau.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chih Hung Lo
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn Paulson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evan Huber
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - MaryJane Been
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department
of Medicinal Chemistry and Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
48
|
Gc JB, Chen J, Pokharel SM, Mohanty I, Mariasoosai C, Obi P, Panipinto P, Bandyopadhyay S, Bose S, Natesan S. Molecular basis for the recognition of 24-(S)-hydroxycholesterol by integrin αvβ3. Sci Rep 2023; 13:9166. [PMID: 37280310 DOI: 10.1038/s41598-023-36040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/28/2023] [Indexed: 06/08/2023] Open
Abstract
A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvβ3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvβ3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.
Collapse
Affiliation(s)
- Jeevan B Gc
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Justin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Swechha M Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Charles Mariasoosai
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Peter Obi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Paul Panipinto
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA.
| |
Collapse
|
49
|
Lee CS, Hwang G, Nam YW, Hwang CH, Song J. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ 2023; 30:1575-1584. [PMID: 37085671 PMCID: PMC10244383 DOI: 10.1038/s41418-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
50
|
Meyer-Arndt L, Kerkering J, Kuehl T, Infante AG, Paul F, Rosiewicz KS, Siffrin V, Alisch M. Inflammatory Cytokines Associated with Multiple Sclerosis Directly Induce Alterations of Neuronal Cytoarchitecture in Human Neurons. J Neuroimmune Pharmacol 2023; 18:145-159. [PMID: 36862362 PMCID: PMC10485132 DOI: 10.1007/s11481-023-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived (H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quantitative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key signalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on neuronal cytoarchitecture and function.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Tess Kuehl
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ana Gil Infante
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| |
Collapse
|