1
|
Xu X, Lu F, Yu D, Wang Y, Chen P, Hu W, Wo J, Jia S, Liu S. Cortex Dictamni induces retinitis pigmentosa in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119282. [PMID: 39716511 DOI: 10.1016/j.jep.2024.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Dictamni (CD) is the dried root skin of Dictamnus dasycarpus Turcz, widely used in the field of traditional Chinese medicine. Recent adverse reactions to CD limited the clinical application in combination with other traditional Chinese medicines. AIM OF THE STUDY To investigate the retinitis pigmentosa (RP) effects of CD using the zebrafish model and elucidate the underlying molecular mechanism of CD-induced RP in zebrafish. MATERIALS AND METHODS The 3-dpf zebrafish larvae were divided into the control group and the CD group. RNA sequencing was conducted, followed by qRT-PCR to validate the expression of miRNAs and mRNAs. The dual luciferase reporter assay confirmed the interaction between mmu-mir-6240-p3_2 and pde6a. HT22 cells were transfected, treated with CD, and then evaluated for migration, invasion, malondialdehyde levels, superoxide dismutase activity, and acetylcholine activity. RESULTS The results showed 6228 differentially expressed genes and 66 miRNAs differentially expressed in zebrafish exposed to CD. The person correlation coefficient results showed that mmu-mir-6240-p3_2 had the highest correlation coefficient with pde6a, indicating a negative regulatory relationship. Furthermore, the results of dual luciferase reporter gene further showed that pde6a gene was the direct target of mmu-mir-6240-p3_2. Cell experiment results showed that inhibiting mir-6240-p3_2 can upregulate pde6a expression, alleviate HT22 cell injury, and reverse the inhibition of cell migration and invasion induced by CD. CONCLUSIONS CD induces RP in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. These findings have important implications for understanding the potential side effects of CD and for developing safer therapeutic strategies involving traditional Chinese medicines.
Collapse
Affiliation(s)
- Xiaomin Xu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Fang Lu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Donghua Yu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Pingping Chen
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Wenkai Hu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Jiameixue Wo
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Suxia Jia
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Shumin Liu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China.
| |
Collapse
|
2
|
Wang Q, Xu X, Chen S, Lu R, Li L, Lo CH, Liu Z, Ning K, Li T, Kowal TJ, Wang B, Hartnett ME, Wang S, Qi LS, Sun Y. dCasMINI-mediated therapy rescues photoreceptors degeneration in a mouse model of retinitis pigmentosa. SCIENCE ADVANCES 2024; 10:eadn7540. [PMID: 39693439 DOI: 10.1126/sciadv.adn7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Retinitis pigmentosa (RP) is characterized by degeneration of rod and cone photoreceptors that progresses to irreversible blindness. Now, there are no mutation-agnostic approaches to treat RP. Here, we utilized a single adeno-associated virus (AAV)-based CRISPR activation system to activate phosphodiesterase 6B (Pde6b) to mitigate the severe degeneration in Pde6anmf363 mice. We demonstrate that transcriptional activation of Pde6b can rescue the loss of Pde6a, with preservation of retinal structure, restoration of electroretinography responses, and improvement of visual function as assessed by optokinetic response and looming-induced escape behaviors. These findings demonstrate the therapeutic potential of a dCasMINI-mediated activation strategy that provides a mutation-independent treatment for retinal degeneration. This study offers a promising therapeutic approach for RP and potentially other forms of genetic diseases.
Collapse
Affiliation(s)
- Qing Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Siyu Chen
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Liang Li
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Chien-Hui Lo
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Zhiquan Liu
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Ke Ning
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Tingting Li
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tia J Kowal
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Biao Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Mary E Hartnett
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Sui Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Yang Sun
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
- Maternal Child Health Research Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, USA
- BioX, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
3
|
Liu Z, Chen S, Davis AE, Lo C, Wang Q, Li T, Ning K, Zhang Q, Zhao J, Wang S, Sun Y. Efficient Rescue of Retinal Degeneration in Pde6a Mice by Engineered Base Editing and Prime Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405628. [PMID: 39297417 PMCID: PMC11558111 DOI: 10.1002/advs.202405628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Indexed: 11/14/2024]
Abstract
Retinitis pigmentosa (RP) is a complex spectrum of inherited retinal diseases marked by the gradual loss of photoreceptor cells, ultimately leading to blindness. Among these, mutations in PDE6A, responsible for encoding a cGMP-specific phosphodiesterase, stand out as pivotal in autosomal recessive RP (RP43). Unfortunately, no effective therapy currently exists for this specific form of RP. However, recent advancements in genome editing, such as base editing (BE) and prime editing (PE), offer a promising avenue for precise and efficient gene therapy. Here, it is illustrated that the engineered BE and PE systems, particularly PE, exhibit high efficiency in rescuing a target point mutation with minimal bystander effects in an RP mouse model carrying the Pde6a (c.2009A > G, p.D670G) mutation. The optimized BE and PE systems are first screened in N2a cells and subsequently assessed in electroporated mouse retinas. Notably, the optimal PE system, delivered via dual adeno-associated virus (AAV), precisely corrects the pathogenic mutation with average 9.4% efficiency, with no detectable bystander editing. This correction restores PDE6A protein expression, preserved photoreceptors, and rescued retinal function in Pde6a mice. Therefore, this study offers a proof-of-concept demonstration for the treatment of Pde6a-related retinal degeneration using BE and PE systems.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Siyu Chen
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Alexander E. Davis
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Chien‐Hui Lo
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Qing Wang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Tingting Li
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
- Department of OphthalmologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ke Ning
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Qi Zhang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Jingyu Zhao
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Sui Wang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Yang Sun
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
- Palo Alto Veterans AdministrationPalo AltoCA94304USA
| |
Collapse
|
4
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa. Mol Cell Proteomics 2024; 23:100855. [PMID: 39389360 PMCID: PMC11602984 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Chen M, Wen J, Qiu Y, Gao X, Zhang J, Lin Y, Wu Z, Lin X, Zhu A. Combining Multiple Omics with Molecular Dynamics Reveals SCP2-Mediated Cytotoxicity Effects of Aflatoxin B1 in SW480 Cells. Toxins (Basel) 2024; 16:375. [PMID: 39330833 PMCID: PMC11435460 DOI: 10.3390/toxins16090375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Aflatoxins belong to a class of mycotoxins, among which aflatoxin B1 (AFB1) has detrimental effects on the health of both animals and humans. It is associated with long-term exposure-induced carcinogenicity, hepatotoxicity, renal toxicity, neurotoxicity, and immunosuppressive properties, resulting in a variety of diseases. The intestine is the first barrier for human exposure to AFB1, but limited investigations have been conducted to clarify the underlying mechanisms of intestinal cytotoxicity. The mechanism of AFB1-induced cytotoxicity was investigated in this study using an integrated approach combining transcriptome, proteome, and metabolome analysis along with molecular dynamics simulation. After exposing SW480 cells to 50 μM AFB1 for 72 h, the transcriptome, proteome, and metabolome exhibited significant enrichment in pathways associated with oxidative stress, fatty acid and lipid metabolism, and glutathione metabolism. The experimental results demonstrated that AFB1 significantly reduces SW480 cells viability, and induces oxidative stress, calcium overload, mitochondrial damage, and lipid metabolism disorders.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jiaxin Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Yiyan Qiu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- Jimei District Center for Disease Control and Prevention, Xiamen 361022, China
| | - Xinyue Gao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Zekai Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Xiaohuang Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
6
|
Goswami MT, Weh E, Subramanya S, Weh KM, Durumutla HB, Hager H, Miller N, Chaudhury S, Andren A, Sajjakulnukit P, Zhang L, Besirli CG, Lyssiotis CA, Wubben TJ. Glutamine catabolism supports amino acid biosynthesis and suppresses the integrated stress response to promote photoreceptor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.582525. [PMID: 38586045 PMCID: PMC10996599 DOI: 10.1101/2024.03.26.582525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown. Here, we investigated the dependence of photoreceptors on Gln catabolism. Gln is converted to glutamate via glutaminase (GLS), so mice lacking GLS in rod photoreceptors were generated to inhibit Gln catabolism. Loss of GLS produced rapid rod photoreceptor degeneration. In vivo metabolomic methodologies and metabolic supplementation identified Gln catabolism as critical for glutamate and aspartate biosynthesis. Concordant with this amino acid deprivation, the integrated stress response (ISR) was activated with protein synthesis attenuation, and inhibiting the ISR delayed photoreceptor loss. Furthermore, supplementing asparagine, which is synthesized from aspartate, delayed photoreceptor degeneration. Hence, Gln catabolism is integral to photoreceptor health, and these data reveal a novel metabolic axis in these metabolically-demanding neurons.
Collapse
Affiliation(s)
- Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hima Bindu Durumutla
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Nolan ND, Cui X, Robbings BM, Demirkol A, Pandey K, Wu WH, Hu HF, Jenny LA, Lin CS, Hass DT, Du J, Hurley JB, Tsang SH. CRISPR editing of anti-anemia drug target rescues independent preclinical models of retinitis pigmentosa. Cell Rep Med 2024; 5:101459. [PMID: 38518771 PMCID: PMC11031380 DOI: 10.1016/j.xcrm.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.
Collapse
Affiliation(s)
- Nicholas D Nolan
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Brian M Robbings
- Department of Biochemistry, The University of Washington, Seattle, WA 98195, USA; Diabetes Institute, The University of Washington, Seattle, WA 98195, USA
| | - Aykut Demirkol
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA; Vocational School of Health Services, Uskudar University, 34672 Istanbul, Turkey
| | - Kriti Pandey
- Department of Biochemistry, The University of Washington, Seattle, WA 98195, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Hannah F Hu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Laura A Jenny
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Departments of Ophthalmology, Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA 98195, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26501, USA
| | - James B Hurley
- Department of Biochemistry, The University of Washington, Seattle, WA 98195, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, Columbia Stem Cell Initiative, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA; Departments of Ophthalmology, Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Subramanya S, Goswami MT, Miller N, Weh E, Chaudhury S, Zhang L, Andren A, Hager H, Weh KM, Lyssiotis CA, Besirli CG, Wubben TJ. Rod photoreceptor-specific deletion of cytosolic aspartate aminotransferase, GOT1, causes retinal degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1306019. [PMID: 38725581 PMCID: PMC11081273 DOI: 10.3389/fopht.2023.1306019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Photoreceptor cell death is the cause of vision loss in many forms of retinal disease. Metabolic dysfunction within the outer retina has been shown to be an underlying factor contributing to photoreceptor loss. Therefore, a comprehensive understanding of the metabolic pathways essential to photoreceptor health and function is key to identifying novel neuroprotective strategies. Glutamic-oxaloacetic transaminase 1 (Got1) encodes for a cytosolic aspartate aminotransferase that reversibly catalyzes the transfer of an amino group between glutamate and aspartate and is an important aspect of the malate-aspartate shuttle (MAS), which transfers reducing equivalents from the cytosol to the mitochondrial matrix. Previous work has demonstrated that the activity of this enzyme is highest in photoreceptor inner segments. Furthermore, ex vivo studies have demonstrated that the retina relies on aspartate aminotransferase for amino acid metabolism. Importantly, aspartate aminotransferase has been suggested to be an early biomarker of retinal degeneration in retinitis pigmentosa and a possible target for neuroprotection. In the present study, we characterized the effect of Got1 deletion on photoreceptor metabolism, function, and survival in vivo by using a rod photoreceptor-specific, Got1 knockout mouse model. Loss of the GOT1 enzyme from rod photoreceptors resulted in age-related photoreceptor degeneration with an accumulation of retinal aspartate and NADH and alterations in the expression of genes involved in the MAS, the tricarboxylic acid (TCA) cycle, and redox balance. Hence, GOT1 is critical to in vivo photoreceptor metabolism, function, and survival.
Collapse
Affiliation(s)
- Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Velez G, Wolf J, Dufour A, Mruthyunjaya P, Mahajan VB. Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37955612 PMCID: PMC10653261 DOI: 10.1167/iovs.64.14.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose The purpose of this study was to profile protein expression liquid vitreous biopsies from patients with uveal melanoma (UM) using mass spectrometry to identify prognostic biomarkers, signaling pathways, and therapeutic targets. Methods Vitreous biopsies were collected from two cohorts in a pilot study: comparative control eyes with epiretinal membranes (ERM; n = 3) and test eyes with UM (n = 8). Samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identified proteins were compared to data from a targeted multiplex ELISA proteomics platform. Results A total of 69 significantly elevated proteins were detected in the UM vitreous, including LYVE-1. LC-MS/MS identified 62 significantly upregulated proteins in UM vitreous that were not previously identified by ELISA. Analysis of differential protein expression by tumor molecular classification (gene expression profiling [GEP] and preferentially expressed antigen in melanoma [PRAME]) further identified proteins that correlated with these classifications. Patients with high-risk GEP tumors displayed elevated vitreous expression of HGFR (fold-change [FC] = 2.66E + 03, P value = 0.003) and PYGL (FC = 1.02E + 04, P = 1.72E-08). Patients with PRAME positive tumors displayed elevated vitreous expression of ENPP-2 (FC = 3.21, P = 0.04), NEO1 (FC = 2.65E + 03, P = 0.002), and LRP1 (FC = 5.59E + 02, P value = 0.01). IGF regulatory effectors were highly represented (P value = 1.74E-16). Cross-platform analysis validated seven proteins identified by ELISA and LC-MS/MS. Conclusions Proteomic analysis of liquid biopsies may provide prognostic information supporting gene expression of tumor biopsies. The use of multiple protein detection platforms in the same patient samples increases the sensitivity of candidate biomarker detection and allows for precise characterization of the vitreous proteome.
Collapse
Affiliation(s)
- Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Julian Wolf
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
10
|
Venanzi AW, Carmy-Bennun T, Marino FS, Ribeiro M, Hackam AS. Context-Dependent Effects of the Ketogenic Diet on Retinal Ganglion Cell Survival and Axonal Regeneration After Optic Nerve Injury. J Ocul Pharmacol Ther 2023; 39:509-518. [PMID: 37172141 PMCID: PMC10616950 DOI: 10.1089/jop.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023] Open
Abstract
Purpose: There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules. In this study, we investigated whether the KD promoted RGC survival and axonal regeneration after ON injury in the presence and absence of neuroprotective Wnt3a ligand. Methods: Adult mice were placed on a KD or control diet before ON crush injury and remained on the diet until the end of the experiment. Nutritional ketosis was confirmed by measuring serum beta-hydroxybutyrate levels. Mice were intravitreally injected with Wnt3a ligand or phosphate-buffered saline (PBS), and RGC survival, function, axonal regeneration, and inflammatory responses were measured. Results: Mice fed the KD showed increased RGC survival and reduced inflammatory cells in PBS-injected mice. Also, mice fed the KD had increased RGC functional responses but not increased RGC numbers in the presence of Wnt3a, indicating that the KD did not enhance the prosurvival effect of Wnt3a. The KD did not promote axonal regeneration in the presence or absence of Wnt3a. Conclusions: The KD has a complex protective effect after ON injury and cotreatment with Wnt3a. This work sets the foundation for studies identifying underlying molecular mechanisms.
Collapse
Affiliation(s)
- Alexander W. Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tal Carmy-Bennun
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Felicia S. Marino
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marcio Ribeiro
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Zhu JY, Ni XS, Han XY, Liu S, Ji YK, Yao J, Yan B. Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol Med Rep 2023; 28:178. [PMID: 37539744 PMCID: PMC10433715 DOI: 10.3892/mmr.2023.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non‑ONT group. The untargeted metabolomics were carried out using liquid chromatography‑tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid‑like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid‑related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.
Collapse
Affiliation(s)
- Jun-Ya Zhu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Xi-Sen Ni
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Yan Han
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Sha Liu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Ke Ji
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Yao
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
- National Health Commission Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200030, P.R. China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200030, P.R. China
| |
Collapse
|
12
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
13
|
Kong Y, Liu P, Li Y, Nolan ND, Quinn PMJ, Hsu C, Jenny LA, Zhao J, Cui X, Chang Y, Wert KJ, Sparrow JR, Wang N, Tsang SH. HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy. EMBO Mol Med 2023; 15:e16525. [PMID: 36645044 PMCID: PMC9906391 DOI: 10.15252/emmm.202216525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO-related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO-related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α-ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO-chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO-related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.
Collapse
Affiliation(s)
- Yang Kong
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Pei‐Kang Liu
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Department of OphthalmologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Yao Li
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Nicholas D Nolan
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Department of Biomedical Engineering, The Fu Foundation School of Engineering and Applied ScienceColumbia UniversityNew YorkNYUSA
| | - Peter M J Quinn
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Chun‐Wei Hsu
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Laura A Jenny
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Jin Zhao
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Xuan Cui
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Ya‐Ju Chang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Katherine J Wert
- Departments of Ophthalmology and Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- The Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Janet R Sparrow
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Nan‐Kai Wang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Stephen H Tsang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| |
Collapse
|
14
|
Kim AH, Kolesnikova M, Ngo WK, Tsang SH. Effects of medications on hypoxia-inducible factor in the retina: A review. Clin Exp Ophthalmol 2023; 51:205-216. [PMID: 36594241 DOI: 10.1111/ceo.14161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Hypoxia-inducible factor (HIF) plays a critical role in the mechanisms that allow cells to adapt to various oxygen levels in the environment. Specifically, HIF-1⍺ has shown to be widely involved in cellular repair, survival, and energy metabolism. HIF-1⍺ has also been found in increased levels in cancer cells, highlighting the importance of balance in the hypoxic response. Promoting HIF-1⍺ activity as a potential therapy for degenerative diseases and inhibiting HIF-1⍺ as a therapy for pathologies with overactive cell proliferation are actively being explored. Digoxin and metformin, HIF-1⍺ inhibitors, and deferoxamine and ⍺-ketoglutarate analogues, HIF-1⍺ activators, are being studied for application in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, these same medications have retinal toxicities that must be assessed before implementation of therapeutic care. Herein, we highlight the duality of therapeutic and toxic potential of HIF-1⍺ that must be carefully assessed prior to its clinical application in retinal disorders.
Collapse
Affiliation(s)
- Angela H Kim
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Masha Kolesnikova
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Wei Kiong Ngo
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,Departments of Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, New York, USA.,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Rowe AA, Chen X, Nettesheim ER, Issioui Y, Dong T, Hu Y, Messahel S, Kayani SN, Gray SJ, Wert KJ. Long-term progression of retinal degeneration in a preclinical model of CLN7 Batten disease as a baseline for testing clinical therapeutics. EBioMedicine 2022; 85:104314. [PMID: 36374771 PMCID: PMC9626557 DOI: 10.1016/j.ebiom.2022.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Batten disease is characterized by cognitive and motor impairment, retinal degeneration, and seizures leading to premature death. Recent studies have shown efficacy for a gene therapy approach for CLN7 Batten disease. This gene therapy approach is promising to treat cognitive and motor impairment, but is not likely to delay vision loss. Additionally, the natural progression of retinal degeneration in CLN7 Batten disease patients is not well-known. METHODS We performed visual examinations on five patients with CLN7 Batten disease and found that patients were far progressed in degeneration within their first five years of life. To better understand the disease progression, we characterized the retina of a preclinical mouse model of CLN7 Batten disease, through the age at which mice present with paralysis and premature death. FINDINGS We found that this preclinical model shows signs of photoreceptor to bipolar synaptic defects early, and displays rod-cone dystrophy with late loss of bipolar cells. This vision loss could be followed not only via histology, but using clinical live imaging similar to that used in human patients. INTERPRETATION Natural history studies of rare paediatric neurodegenerative conditions are complicated by the rapid degeneration and limited availability of patients. Characterization of degeneration in the preclinical model allows for future experiments to better understand the mechanisms underlying the retinal disease progression in order to find therapeutics to treat patients, as well as to evaluate these therapeutic options for future human clinical trials. FUNDING Van Sickle Family Foundation Inc., NIHP30EY030413, Morton Fichtenbaum Charitable Trust and 5T32GM131945-03.
Collapse
Affiliation(s)
- Ashley A Rowe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emily R Nettesheim
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yacine Issioui
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Thomas Dong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuhui Hu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Souad Messahel
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saima N Kayani
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Children's Health, Children's Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA; McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine J Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
17
|
Metabolomics and Biomarkers in Retinal and Choroidal Vascular Diseases. Metabolites 2022; 12:metabo12090814. [PMID: 36144219 PMCID: PMC9503269 DOI: 10.3390/metabo12090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is one of the most important structures in the eye, and the vascular health of the retina and choroid is critical to visual function. Metabolomics provides an analytical approach to endogenous small molecule metabolites in organisms, summarizes the results of “gene-environment interactions”, and is an ideal analytical tool to obtain “biomarkers” related to disease information. This study discusses the metabolic changes in neovascular diseases involving the retina and discusses the progress of the study from the perspective of metabolomics design and analysis. This study advocates a comparative strategy based on existing studies, which encompasses optimization of the performance of newly identified biomarkers and the consideration of the basis of existing studies, which facilitates quality control of newly discovered biomarkers and is recommended as an additional reference strategy for new biomarker discovery. Finally, by describing the metabolic mechanisms of retinal and choroidal neovascularization, based on the results of existing studies, this study provides potential opportunities to find new therapeutic approaches.
Collapse
|
18
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
19
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
20
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
21
|
Soelter TM, Whitlock JH, Williams AS, Hardigan AA, Lasseigne BN. Nucleic acid liquid biopsies in Alzheimer's disease: current state, challenges, and opportunities. Heliyon 2022; 8:e09239. [PMID: 35469332 PMCID: PMC9034064 DOI: 10.1016/j.heliyon.2022.e09239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Andrew A. Hardigan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Kanan Y, Hackett SF, Taneja K, Khan M, Campochiaro PA. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa. Free Radic Biol Med 2022; 181:143-153. [PMID: 35134532 PMCID: PMC8891093 DOI: 10.1016/j.freeradbiomed.2022.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Retinitis pigmentosa occurs due to mutations that cause rod photoreceptor degeneration. Once most rods are lost, gradual degeneration of cone photoreceptors occurs. Oxidative damage and abnormal glucose metabolism have been implicated as contributors to cone photoreceptor death. Herein, we show increased phosphorylation of key enzymes of glucose metabolism in the retinas of rd10 mice, a model of RP, and retinas of wild type mice with paraquat-induced oxidative stress, thereby inhibiting these key enzymes. Dietary supplementation with glucose and pyruvate failed to overcome the inhibition, but increased reducing equivalents in the retina and improved cone function and survival. Dichloroacetate reversed the increased phosphorylation of pyruvate dehydrogenase in rd10 retina and increased histone acetylation and levels of TP53-induced glycolysis and apoptosis regulator (TIGAR), which redirected glucose metabolism toward the pentose phosphate pathway. These data indicate that oxidative stress induced damage can be reversed by shifting glycolytic intermediates toward the pentose phosphate pathway which increases reducing equivalents and provides photoreceptor protection.
Collapse
Affiliation(s)
- Yogita Kanan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean F Hackett
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Taneja
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahmood Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Campochiaro
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr 2021; 8:782657. [PMID: 34888340 PMCID: PMC8650112 DOI: 10.3389/fnut.2021.782657] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat low-carbohydrate diet that has been used for decades as a non-pharmacologic approach to treat metabolic disorders and refractory pediatric epilepsy. In recent years, enthusiasm for the KD has increased in the scientific community due to evidence that the diet reduces pathology and improves various outcome measures in animal models of neurodegenerative disorders, including multiple sclerosis, stroke, glaucoma, spinal cord injury, retinal degenerations, Parkinson's disease and Alzheimer's disease. Clinical trials also suggest that the KD improved quality of life in patients with multiple sclerosis and Alzheimer's disease. Furthermore, the major ketone bodies BHB and ACA have potential neuroprotective properties and are now known to have direct effects on specific inflammatory proteins, transcription factors, reactive oxygen species, mitochondria, epigenetic modifications and the composition of the gut microbiome. Neuroprotective benefits of the KD are likely due to a combination of these cellular processes and other potential mechanisms that are yet to be confirmed experimentally. This review provides a comprehensive summary of current evidence for the effectiveness of the KD in humans and preclinical models of various neurological disorders, describes molecular mechanisms that may contribute to its beneficial effects, and highlights key controversies and current gaps in knowledge.
Collapse
Affiliation(s)
- Sarah M Gough
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alicia Casella
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kristen Jasmin Ortega
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
25
|
Technological advancements to study cellular signaling pathways in inherited retinal degenerative diseases. Curr Opin Pharmacol 2021; 60:102-110. [PMID: 34388439 DOI: 10.1016/j.coph.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Inherited retinal degenerative diseases (IRDs) are rare neurodegenerative disorders with mutations in hundreds of genes leading to vision loss, primarily owing to photoreceptor cell death. This genetic diversity is impeding development of effective treatment options. Gene-based therapies have resulted in the first FDA-approved drug (Luxturna) for RPE65-specific IRD. Although currently explored in clinical trials, genomic medicines are mutation-dependent, hence suitable only for patients harboring a specific mutation. Better understanding of the pathways leading to photoreceptor degeneration may help to determine common targets and develop mutation-independent therapies for larger groups of patients with IRDs. In this review, we discuss the key pathways involved in photoreceptor cell death studied by transcriptomics, proteomics, and metabolomics techniques to identify potential therapeutic targets in IRDs.
Collapse
|
26
|
Rowe AA, Patel PD, Gordillo R, Wert KJ. Replenishment of TCA cycle intermediates provides photoreceptor resilience against neurodegeneration during progression of retinitis pigmentosa. JCI Insight 2021; 6:e150898. [PMID: 34292885 PMCID: PMC8492344 DOI: 10.1172/jci.insight.150898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
The metabolic environment is important for neuronal cells, such as photoreceptors. When photoreceptors undergo degeneration, as occurs during retinitis pigmentosa (RP), patients have progressive loss of vision that proceeds to full blindness. Currently, there are no available treatments for the majority of RP diseases. We performed metabolic profiling of the neural retina in a preclinical model of RP and found that TCA cycle intermediates were reduced during disease. We then determined that (a) promoting citrate production within the TCA cycle in retinal neurons during disease progression protected the photoreceptors from cell death and prolonged visual function, (b) supplementation with single metabolites within the TCA cycle provided this therapeutic effect in vivo over time, and (c) this therapeutic effect was not specific to a particular genetic mutation but had broad applicability for patients with RP and other retinal degenerative diseases. Overall, targeting TCA cycle activity in the neural retina promoted photoreceptor survival and visual function during neurodegenerative disease.
Collapse
Affiliation(s)
- Ashley A Rowe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| | - Pinkal D Patel
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| | - Ruth Gordillo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States of America
| | - Katherine J Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
27
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
28
|
Shankar V, Tibshirani R, Zare RN. MassExplorer: a computational tool for analyzing desorption electrospray ionization mass spectrometry data. Bioinformatics 2021; 37:btab282. [PMID: 34009252 DOI: 10.1093/bioinformatics/btab282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/04/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Summary In the last few years, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) has been increasingly used for simultaneous detection of thousands of metabolites and lipids from human tissues and biofluids. To successfully find the most significant differences between two sets of DESI-MSI data (e.g., healthy vs disease) requires the application of accurate computational and statistical methods that can pre-process the data under various normalization settings and help identify these changes among thousands of detected metabolites. Here, we report MassExplorer, a novel computational tool, to help pre-process DESI-MSI data, visualize raw data, build predictive models using the statistical lasso approach to select for a sparse set of significant molecular changes, and interpret selected metabolites. This tool, which is available for both online and offline use, is flexible for both chemists and biologists and statisticians as it helps in visualizing structure of DESI-MSI data and in analyzing the statistically significant metabolites that are differentially expressed across both sample types. Based on the modules in MassExplorer, we expect it to be immediately useful for various biological and chemical applications in mass spectrometry. Availability and implementation MassExplorer is available as an online R-Shiny application or Mac OS X compatible standalone application. The application, sample performance, source code and corresponding guide can be found at: https://zarelab.com/research/massexplorer-a-tool-to-help-guide-analysis-of-mass-spectrometry-samples/. Supplementary informationMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vishnu Shankar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Robert Tibshirani
- Department of Statistics and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Murenu E, Kostidis S, Lahiri S, Geserich AS, Imhof A, Giera M, Michalakis S. Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. Int J Mol Sci 2021; 22:ijms22052345. [PMID: 33652907 PMCID: PMC7956175 DOI: 10.3390/ijms22052345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Shibojyoti Lahiri
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Anna S. Geserich
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Axel Imhof
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-77325
| |
Collapse
|
30
|
Peptidomimetics Therapeutics for Retinal Disease. Biomolecules 2021; 11:biom11030339. [PMID: 33668179 PMCID: PMC7995992 DOI: 10.3390/biom11030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Ocular disorders originating in the retina can result in a partial or total loss of vision, making drug delivery to the retina of vital importance. However, effectively delivering drugs to the retina remains a challenge for ophthalmologists due to various anatomical and physicochemical barriers in the eye. This review introduces diverse administration routes and the accordant pharmacokinetic profiles of ocular drugs to aid in the development of safe and efficient drug delivery systems to the retina with a focus on peptidomimetics as a growing class of retinal drugs, which have great therapeutic potential and a high degree of specificity. We also discuss the pharmacokinetic profiles of small molecule drugs due to their structural similarity to small peptidomimetics. Lastly, various formulation strategies are suggested to overcome pharmacokinetic hurdles such as solubility, retention time, enzymatic degradation, tissue targeting, and membrane permeability. This knowledge can be used to help design ocular delivery platforms for peptidomimetics, not only for the treatment of various retinal diseases, but also for the selection of potential peptidomimetic drug targets.
Collapse
|
31
|
Hou XW, Wang Y, Pan CW. Metabolomics in Age-Related Macular Degeneration: A Systematic Review. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 33315052 PMCID: PMC7735950 DOI: 10.1167/iovs.61.14.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is one of the leading causes of blindness among the elderly, and the exact pathogenesis of the AMD remains unclear. The purpose of this review is to summarize potential metabolic biomarkers and pathways of AMD that might facilitate risk predictions and clinical diagnoses of AMD. Methods We obtained relevant publications of metabolomics studies of human beings by systematically searching the MEDLINE (PubMed) database before June 2020. Studies were included if they performed mass spectrometry-based or nuclear magnetic resonance-based metabolomics approach for humans. In addition, AMD was assessed from fundus photographs based on standardized protocols. The metabolic pathway analysis was performed using MetaboAnalyst 3.0. Results Thirteen studies were included in this review. Repeatedly identified metabolites including phenylalanine, adenosine, hypoxanthine, tyrosine, creatine, citrate, carnitine, proline, and maltose have the possibility of being biomarkers of AMD. Validation of the biomarker panels was observed in one study. Dysregulation of metabolic pathways involves lipid metabolism, carbohydrate metabolism, nucleotide metabolism, amino acid metabolism, and translation, which might play important roles in the development and progression of AMD. Conclusions This review summarizes the potential metabolic biomarkers and pathways related to AMD, providing opportunities for the construction of diagnostic or predictive models for AMD and the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
33
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|
34
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
35
|
Baxter AA, Poon IK. Apoptotic cells secrete metabolites to regulate immune homeostasis. Immunol Cell Biol 2020; 98:355-357. [PMID: 32338398 DOI: 10.1111/imcb.12333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan Kh Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|
36
|
Hurley JB, Chao JR. Retinal disease: How to use proteomics to speed up diagnosis and metabolomics to slow down degeneration. EBioMedicine 2020; 53:102687. [PMID: 32113163 PMCID: PMC7047175 DOI: 10.1016/j.ebiom.2020.102687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Department of Ophthalmology, University of Washington, Seattle, WA 98109, United States.
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|