1
|
Suades R, Greco MF, Padró T, de Santisteban V, Domingo P, Benincasa G, Napoli C, Greco S, Madè A, Ranucci M, Devaux Y, Martelli F, Badimon L. Blood CD45 +/CD3 + lymphocyte-released extracellular vesicles and mortality in hospitalized patients with coronavirus disease 2019. Eur J Clin Invest 2025; 55:e14354. [PMID: 39548690 DOI: 10.1111/eci.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The global pandemic of coronavirus disease 2019 (COVID-19) represented a major public health concern. Growing evidence shows that plasma of COVID-19 patients contains large numbers of circulating extracellular vesicles (cEVs) that correlate with disease severity and recovery. In this study, we sought to characterize the longitudinal cEV signature in critically ill COVID-19 patients during hospitalization and its relation to mortality risk. METHODS cEVs were quantitatively and phenotypically analysed in hospitalized non-surviving COVID-19 patients at baseline (n = 42) and before exitus (n = 40) and in 40 healthy volunteers as a reference group by high sensitivity nano flow cytometry using specific markers for parental cell sources and activation. RESULTS Levels of cEV subtypes differed between patients with severe COVID-19 and healthy subjects, specifically those from platelets and endothelial, inflammatory and viral infected cells, which associate to high mortality risk. In the longitudinal analysis from baseline to the time point immediately preceding death, no changes were found for platelet, pan-leukocyte, and lung epithelial cell-shed cEVs, while endothelial cell releases of EVs (eEVs) significantly differed. Vascular endothelial growth factor receptor 2-positive eEVs were significantly increased before death compared to admission whereas endoglin and E-selectin-containing eEVs did not change. Conversely, lymphocyte (ℓEV), monocyte, macrophage, pericyte and progenitor cell-derived cEVs displayed significant reductions before exitus. Noteworthy, levels of CD45+/CD3+-ℓEVs were significantly associated to the patient's survival time. CONCLUSIONS An evolving cEV profile able to discriminate prompt risk of death during hospitalization has been defined suggesting a role for circulating and vascular cell-derived EVs in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Rosa Suades
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria F Greco
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Padró
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Pere Domingo
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau-IR SANT PAU, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Giuditta Benincasa
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Ranucci
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Lina Badimon
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
2
|
Qian H, Zang R, Zhang R, Zheng G, Qiu G, Meng J, Wang J, Xia J, Huang R, Le Z, Shu Q, Xu J. Circulating extracellular vesicles from severe COVID-19 patients induce lung inflammation. mSphere 2024; 9:e0076424. [PMID: 39475319 PMCID: PMC11580465 DOI: 10.1128/msphere.00764-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Circulating extracellular vesicles (EVs) have been associated with the development of COVID-19 due to their roles in viral infection, inflammatory response, and thrombosis. However, the direct induction of lung inflammation by circulating EVs from severe COVID-19 patients remains unknown. EVs were extracted from the plasma of severe COVID-19 patients admitted to intensive care and healthy controls. To study the effect of COVID-19 EVs on lung inflammation, mice were intratracheally instilled with EVs. To examine the proinflammatory effects of EVs in vitro, bone marrow-derived macrophages were treated with EVs. COVID-19 but not control EVs triggered lung inflammation, as assessed by total protein level, total cell count, neutrophil count, and levels of proinflammatory cytokines in the bronchoalveolar lavage. COVID-19 EVs also promoted M1 polarization of alveolar macrophages in vivo. Treatment of bone marrow-derived macrophages with COVID-19 EVs enhanced the M1 phenotype and augmented the production of IL-1β, IL-6, and TNF-α. In summary, circulating EVs from severe COVID-19 patients induce lung inflammation in mice. EVs could become a potential therapeutic target for alleviating lung injury in COVID-19. IMPORTANCE Extracellular vesicles (EVs) have been reported to facilitate cytokine storm, coagulation, vascular dysfunction, and the spread of the virus in COVID-19. The direct role of circulating EVs from severe COVID-19 patients in lung injury remains unrecognized. Our study demonstrated that plasma EVs obtained from severe COVID-19 patients induced lung inflammation and polarization of alveolar macrophages in vivo. In vitro experiments also revealed the proinflammatory effects of COVID-19 EVs. The present study sheds fresh insight into the mechanisms of COVID-19-induced lung injury, highlighting EVs as a potential therapeutic target in combating the disease.
Collapse
Affiliation(s)
- Huifeng Qian
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Ruoxi Zang
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruoyang Zhang
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Guanguan Qiu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Jianbiao Meng
- Tongde Hospital of Zhejiang, Hangzhou, Zhejiang, China
| | - Jiangmei Wang
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Xia
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruoqiong Huang
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenkai Le
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianguo Xu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
- National Clinical Research Center for Child Health, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
4
|
de Miguel-Perez D, Arroyo-Hernandez M, La Salvia S, Gunasekaran M, Pickering EM, Avila S, Gebru E, Becerril-Vargas E, Monraz-Perez S, Saharia K, Grazioli A, McCurdy MT, Frieman M, Miorin L, Russo A, Cardona AF, García-Sastre A, Kaushal S, Hirsch FR, Atanackovic D, Sahoo S, Arrieta O, Rolfo C. Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19. J Extracell Vesicles 2024; 13:e70001. [PMID: 39558820 PMCID: PMC11574309 DOI: 10.1002/jev2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.
Collapse
Affiliation(s)
- Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Sabrina La Salvia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Muthukumar Gunasekaran
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward M Pickering
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stephanie Avila
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Etse Gebru
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | | | | - Kapil Saharia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison Grazioli
- Department of Medicine, Program in Trauma, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrés F Cardona
- Institute for Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sunjay Kaushal
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djordje Atanackovic
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerologia (INCan), Mexico City, Mexico
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Cetinkaya PG, Abras IF, Evcili I, Yildirim T, Ceylan Y, Kara Eroglu F, Kayaoglu B, İpekoglu EM, Akarsu A, Yıldırım M, Kahraman T, Cengiz AB, Sahiner UM, Sekerel BE, Ozsurekci Y, Soyer O, Gursel I. Plasma Extracellular Vesicles Derived from Pediatric COVID-19 Patients Modulate Monocyte and T Cell Immune Responses Based on Disease Severity. Immunol Invest 2024; 53:1141-1175. [PMID: 39115924 DOI: 10.1080/08820139.2024.2385992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND The COVID-19 pandemic has caused significant morbidity and mortality globally. The role of plasma-derived extracellular vesicles (EVs) in pediatric COVID-19 patients remains unclear. METHODS We isolated EVs from healthy controls (n = 13) and pediatric COVID-19 patients (n = 104) with varying severity during acute and convalescent phases using serial ultracentrifugation. EV effects on healthy PBMCs, naïve CD4+ T cells, and monocytes were assessed through in vitro assays, flow cytometry, and ELISA. RESULTS Our findings indicate that COVID-19 severity correlates with diverse immune responses. Severe acute cases exhibited increased cytokine levels, decreased IFNγ levels, and lower CD4+ T cell and monocyte counts, suggesting immunosuppression. EVs from severe acute patients stimulated healthy cells to express higher PDL1, increased Th2 and Treg cells, reduced IFNγ secretion, and altered Th1/Th17 ratios. Patient-derived EVs significantly reduced proinflammatory cytokine production by monocytes (p < .001 for mild, p = .0025 for severe cases) and decreased CD4+ T cell (p = .043) and monocyte (p = .033) populations in stimulated healthy PBMCs. CONCLUSION This study reveals the complex relationship between immunological responses and EV-mediated effects, emphasizing the impact of COVID-19 severity. We highlight the potential role of plasma-derived EVs in early-stage immunosuppression in severe COVID-19 patients.
Collapse
Affiliation(s)
- Pınar Gur Cetinkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Fatma Abras
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugçe Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yasemin Ceylan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fehime Kara Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Başak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert İpekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Aysegul Akarsu
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ali Bülent Cengiz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Umit Murat Sahiner
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bulent Enis Sekerel
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Ozsurekci
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozge Soyer
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
6
|
Barion BG, Saito RDF, da Rocha TRF, Nóbrega TDR, Okazaki E, Ho YL, Villaça PR, Rocha VG, Orsi FA. Enhanced thrombin generation induced by extracellular vesicles from severe COVID-19 cases. J Thromb Thrombolysis 2024; 57:1233-1236. [PMID: 39066820 DOI: 10.1007/s11239-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Bárbara Gomes Barion
- University of Sao Paulo Medical School, Sao Paulo, Brazil
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Tania Rubia Flores da Rocha
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Thaís Dourado Reis Nóbrega
- University of Sao Paulo Medical School, Sao Paulo, Brazil
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Erica Okazaki
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Yeh-Li Ho
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Paula Ribeiro Villaça
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Vanderson Geraldo Rocha
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil
| | - Fernanda Andrade Orsi
- Hospital das Clínicas da Faculdade de Medicina de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira César, São Paulo, 05403- 000, SP, Brasil.
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
8
|
Nunki N, Hernaningsih Y, Wardhani P, Herawati A, Yusoff NM, Moses EJ, Semedi BP. Platelet and Monocyte Microvesicles as Potential Biomarkers of COVID-19 Severity: A Cross-Sectional Analysis. Ann Lab Med 2024; 44:392-400. [PMID: 38469637 PMCID: PMC11169774 DOI: 10.3343/alm.2023.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Background Coronavirus disease (COVID-19) induces inflammation, coagulopathy following platelet and monocyte activation, and fibrinolysis, resulting in elevated D-dimer levels. Activated platelets and monocytes produce microvesicles (MVs). We analyzed the differences in platelet and monocyte MV counts in mild, moderate, and severe COVID-19, as well as their correlation with D-dimer levels. Methods In this cross-sectional study, blood specimens were collected from 90 COVID-19 patients and analyzed for D-dimers using SYSMEX CS-2500. Platelet MVs (PMVs; PMVCD42b+ and PMVCD41a+), monocyte MVs (MMVs; MMVCD14+), and phosphatidylserine-binding annexin V (PS, AnnV+) were analyzed using a BD FACSCalibur instrument. Results PMV and MMV counts were significantly increased in COVID-19 patients. AnnV+ PMVCD42b+ and AnnV+ PMVCD41a+ cell counts were higher in patients with severe COVID-19 than in those with moderate clinical symptoms. The median (range) of AnnV+ PMVCD42b+ (MV/μL) in mild, moderate, and severe COVID-19 was 1,118.3 (328.1-1,910.5), 937.4 (311.4-2,909.5), and 1,298.8 (458.2-9,703.5), respectively (P =0.009). The median (range) for AnnV+ PMVCD41a+ (MV/μL) in mild, moderate, and severe disease was 885.5 (346.3-1,682.7), 663.5 (233.8-2,081.5), and 1,146.3 (333.3-10,296.6), respectively (P =0.007). D-dimer levels (ng/mL) weak correlated with AnnV+ PMVCD41a+ (P =0.047, r=0.258). Conclusions PMV PMVCD42b+ and PMVCD41a+ counts were significantly increased in patients with severe clinical symptoms, and PMVCD41a+ counts correlated with D-dimer levels. Therefore, MV counts can be used as a potential biomarker of COVID-19 severity.
Collapse
Affiliation(s)
- Nastasya Nunki
- Laboratory Medicine Study Interest, Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Medical Laboratory Technology, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, East Java, Indonesia
| | - Yetti Hernaningsih
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Teaching Hospital, Surabaya, East Java, Indonesia
| | - Puspa Wardhani
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Teaching Hospital, Surabaya, East Java, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Postgraduate School of Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Asih Herawati
- Clinical Pathology Specialist Program, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Teaching Hospital, Surabaya, East Java, Indonesia
| | - Narazah Mohd Yusoff
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Teaching Hospital, Surabaya, East Java, Indonesia
- Genetics Unit, Clinical Diagnostics Lab, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Genetics Unit, Clinical Diagnostics Lab, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bambang Pujo Semedi
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Teaching Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
9
|
Eustes AS, Ahmed A, Swamy J, Patil G, Jensen M, Wilson KM, Kudchadkar S, Wahab A, Perepu U, Miller FJ, Lentz SR, Dayal S. Extracellular histones: a unifying mechanism driving platelet-dependent extracellular vesicle release and thrombus formation in COVID-19. J Thromb Haemost 2024; 22:2514-2530. [PMID: 38815756 PMCID: PMC11343660 DOI: 10.1016/j.jtha.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND COVID-19 can cause profound inflammation and coagulopathy, and while many mechanisms have been proposed, there is no known common pathway leading to a prothrombotic state. OBJECTIVES From the beginning of the COVID-19 pandemic, elevated levels of extracellular histones have been found in plasma of patients infected with SARS-CoV-2. We hypothesized that platelet activation triggered by extracellular histones might represent a unifying mechanism leading to increased thrombin generation and thrombosis. METHODS We utilized blood samples collected from an early clinical trial of hospitalized COVID-19 patients (NCT04360824) and recruited healthy subjects as controls. Using plasma samples, we measured the procoagulant and prothrombotic potential of circulating extracellular histones and extracellular vesicles (EVs). Platelet prothrombotic activity was assessed via thrombin generation potential and platelet thrombus growth. Circulating EVs were assessed for thrombin generation potential in vitro in plasma and enhancement of thrombotic susceptibility in vivo in mice. RESULTS Compared with controls, COVID-19 patients had elevated plasma levels of citrullinated histone H3, cell-free DNA, nucleosomes, and EVs. Plasma from COVID-19 patients promoted platelet activation, platelet-dependent thrombin generation, thrombus growth under venous shear stress, and release of platelet-derived EVs. These prothrombotic effects of COVID-19 plasma were inhibited by an RNA aptamer that neutralizes both free and DNA-bound histones. EVs isolated from COVID-19 plasma enhanced thrombin generation in vitro and potentiated venous thrombosis in mice in vivo. CONCLUSION We conclude that extracellular histones and procoagulant EVs drive the prothrombotic state in COVID-19 and that histone-targeted therapy may prove beneficial.
Collapse
Affiliation(s)
- Alicia S Eustes
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Azaj Ahmed
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jagadish Swamy
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melissa Jensen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katina M Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shibani Kudchadkar
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Abdul Wahab
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Usha Perepu
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francis J Miller
- Department of Internal Medicine, Vanderbilt University Medical Center and VA Medical Center, Nashville, Tennessee, USA
| | - Steven R Lentz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; Iowa City VA Healthcare System, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Tayer AH, Jahromi HK, Kamravan M, Farhangdoost F, Ahmadi T, Kolaei M. Evaluation of circulating microvesicles and their procoagulant activity in patients with COVID-19. BMC Res Notes 2024; 17:233. [PMID: 39175048 PMCID: PMC11342662 DOI: 10.1186/s13104-024-06875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Several pathological conditions trigger the formation of microvesicles (MVs), including infectious diseases such as COVID-19. The shedding of MVs increases the levels of inflammatory factors (e.g., interleukin-6; IL-6) and ultimately leads to an inflammatory cascade response, while also increasing the procoagulant response. The current study aimed to evaluate the level of circulating MVs and their procoagulant activity as well as the serum level of IL-6 in patients with COVID-19 and healthy controls. In this case-control study, 65 patients with COVID-19 and 30 healthy individuals were sampled after obtaining written informed consent. MVs counting was measured using conjugated CD61, CD45, CD235a, and Annexin-V antibodies. Additionally, the procoagulant activity of MVs and the IL-6 level were estimated using enzyme-linked immunosorbent assay (ELISA). RESULTS The majority of MVs were platelet-derived MVs (PMVs). Patients with COVID-19 had significantly higher levels of MVs, procoagulant MVs, and IL-6 compared to healthy controls (p < 0.001). MVs were significantly correlated with procoagulant MVs, D-Dimer levels, fibrinogen, and IL-6, but not with platelet, lymphocyte, and neutrophil counts. CONCLUSION Elevated levels of procoagulant MVs and their association with inflammatory and coagulation markers in patients with COVID-19 are suggested as a novel circulatory biomarker to evaluate and predict the procoagulant activity and severity of COVID-19.
Collapse
Affiliation(s)
- Akbar Hashemi Tayer
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Maryam Kamravan
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Farzad Farhangdoost
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Tara Ahmadi
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | |
Collapse
|
11
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
12
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
13
|
Zhu X, Lin X, Hu L, Wang L, Zhu Q. Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:358-370. [PMID: 39697627 PMCID: PMC11648403 DOI: 10.20517/evcna.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are increasingly acknowledged as important mediators of intercellular communication, closely related to the occurrence and development of a variety of diseases. Numerous studies have demonstrated that EVs play a multifaceted role in the infection process of viral diseases, elucidating their ability to both facilitate viral spread and inhibit infection progression. These versatile entities not only enhance infection rates and widen the scope of viral infection through the transmission of entire viruses or viral genomes, but also trigger antiviral responses and prompt cytokine secretion near the infection site, thereby fortifying the host's defense mechanisms and safeguarding neighboring cells against infection. This complicated crosstalk between EVs and viral infections prompts a deeper exploration into their roles in potential clinical applications. In this review, we aim to encapsulate the recent advances in understanding the intricate interplay between viruses and EVs, shedding light on the mechanisms underlying this vesicle-to-virion crosstalk. Furthermore, we underscore the significance of harnessing this knowledge for diagnostic and therapeutic functions in combating viral diseases.
Collapse
Affiliation(s)
- Xinxi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiuhui Lin
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
14
|
Suades R, Greco MF, Prieto P, Padró T, Devaux Y, Domingo P, Badimon L. CD66b +/CD68 + circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity during and after infection. J Extracell Vesicles 2024; 13:e12456. [PMID: 39007437 PMCID: PMC11247396 DOI: 10.1002/jev2.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
| | | | - Paula Prieto
- Infectious Diseases Unit, Department of Internal MedicineHospital de la Santa Creu i Sant Pau – IR SANT PAUBarcelonaSpain
| | - Teresa Padró
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | - Pere Domingo
- Infectious Diseases Unit, Department of Internal MedicineHospital de la Santa Creu i Sant Pau – IR SANT PAUBarcelonaSpain
- Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Lina Badimon
- Cardiovascular Program ICCCInstitut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos IIIMadridSpain
- Cardiovascular Research Chair, UABBarcelonaSpain
| |
Collapse
|
15
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
17
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
18
|
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye‐Lehmann S, Mao X, Zhu T, Liu J, Chen C. Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305554. [PMID: 38143270 PMCID: PMC10933635 DOI: 10.1002/advs.202305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Erya Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yi Hu
- Department of Cardiology, Honghui hospitalXi'an Jiaotong UniversityXi'an710049China
| | - Lining Wu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liyun Deng
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shixin Ye‐Lehmann
- Diseases and Hormones of the Nervous System University of Paris‐Scalay Bicêtre Hosptial BâtGrégory Pincus 80 Rue du Gal Leclerc, CedexLe Kremlin Bicêtre94276France
| | - Xiaobo Mao
- Department of NeurologyInstitute of Cell EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tao Zhu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jin Liu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chan Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
19
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
20
|
Caponnetto F, De Martino M, Stefanizzi D, Del Sal R, Manini I, Kharrat F, D'Aurizio F, Fabris M, Visentini D, Poz D, Sozio E, Tascini C, Cesselli D, Isola M, Beltrami AP, Curcio F. Extracellular vesicle features are associated with COVID-19 severity. J Cell Mol Med 2023; 27:4107-4117. [PMID: 37964734 PMCID: PMC10746943 DOI: 10.1111/jcmm.17996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
COVID-19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID-19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID-19 patients. A total of 146 patients with severe or critical COVID-19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID-19 patients' plasma EVs was conducted. Elastic net logistic regression with cross-validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA-DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N-cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N-terminal pro-brain natriuretic peptide (NT-proBNP), age, procalcitonin, Charlson Comorbidity Index and pro-adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.
Collapse
Affiliation(s)
| | | | | | | | - Ivana Manini
- Department of MedicineUniversity of UdineUdineItaly
| | | | | | - Martina Fabris
- Department of MedicineUniversity of UdineUdineItaly
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | | | - Donatella Poz
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Emanuela Sozio
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Carlo Tascini
- Department of MedicineUniversity of UdineUdineItaly
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Daniela Cesselli
- Department of MedicineUniversity of UdineUdineItaly
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Miriam Isola
- Department of MedicineUniversity of UdineUdineItaly
| | - Antonio Paolo Beltrami
- Department of MedicineUniversity of UdineUdineItaly
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Francesco Curcio
- Department of MedicineUniversity of UdineUdineItaly
- Azienda Sanitaria Universitaria Friuli CentraleUdineItaly
| |
Collapse
|
21
|
Eichhorn T, Weiss R, Huber S, Ebeyer-Masotta M, Mostageer M, Emprechtinger R, Knabl L, Knabl L, Würzner R, Weber V. Expression of Tissue Factor and Platelet/Leukocyte Markers on Extracellular Vesicles Reflect Platelet-Leukocyte Interaction in Severe COVID-19. Int J Mol Sci 2023; 24:16886. [PMID: 38069209 PMCID: PMC10707108 DOI: 10.3390/ijms242316886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.
Collapse
Affiliation(s)
- Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Marwa Mostageer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Robert Emprechtinger
- Faculty of Health and Medicine, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Ludwig Knabl
- Department of Internal Medicine, Hospital St. Vinzenz, 6511 Zams, Austria;
| | | | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| |
Collapse
|
22
|
Serretiello E, Ballini A, Smimmo A, Acunzo M, Raimo M, Cantore S, Di Domenico M. Extracellular Vesicles as a Translational Approach for the Treatment of COVID-19 Disease: An Updated Overview. Viruses 2023; 15:1976. [PMID: 37896755 PMCID: PMC10611252 DOI: 10.3390/v15101976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in the years 2020-2022. With a high prevalence, an easy route of transmission, and a long incubation time, SARS-CoV-2 spread quickly and affected public health and socioeconomic conditions. Several points need to be elucidated about its mechanisms of infection, in particular, its capability to evade the immune system and escape from neutralizing antibodies. Extracellular vesicles (EVs) are phospholipid bilayer-delimited particles that are involved in cell-to-cell communication; they contain biological information such as miRNAs, proteins, nucleic acids, and viral components. Abundantly released from biological fluids, their dimensions are highly variable, which are used to divide them into exosomes (40 to 150 nm), microvesicles (40 to 10,000 nm), and apoptotic bodies (100-5000 nm). EVs are involved in many physiological and pathological processes. In this article, we report the latest evidence about EVs' roles in viral infections, focusing on the dual role of exosomes in promoting and inhibiting SARS-CoV-2 infection. The involvement of mesenchymal stromal/stem cells (MSCs) and MSC-derived EVs in COVID-19 treatment, such as the use of translational exosomes as a diagnostical/therapeutic approach, is also investigated. These elucidations could be useful to better direct the discovery of future diagnostical tools and new exosome-derived COVID-19 biomarkers, which can help achieve optimal therapeutic interventions and implement future vaccine strategies.
Collapse
Affiliation(s)
- Enrica Serretiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Annafrancesca Smimmo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Acunzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Mariarosaria Raimo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| |
Collapse
|
23
|
Brambilla M, Frigerio R, Becchetti A, Gori A, Cretich M, Conti M, Mazza A, Pengo M, Camera M. Head-to-Head Comparison of Tissue Factor-Dependent Procoagulant Potential of Small and Large Extracellular Vesicles in Healthy Subjects and in Patients with SARS-CoV-2 Infection. BIOLOGY 2023; 12:1233. [PMID: 37759632 PMCID: PMC10525820 DOI: 10.3390/biology12091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The relative contribution of small (sEVs) and large extracellular vesicles (lEVs) to the total plasma procoagulant potential is not yet well defined. Thus, we compared total and TFpos-sEVs and -lEVs isolated from healthy subjects and COVID-19 patients during the acute phase of the infection and after symptom remission in terms of (1) vesicle enumeration using nanoparticle tracking assay, imaging flow cytometry, and TF immunofluorescence localization in a single-vesicle analysis using microarrays; (2) cellular origin; and (3) TF-dependent Xa generation capacity, as well as assessing the contribution of the TF inhibitor, TFPI. In healthy subjects, the plasma concentration of CD9/CD63/CD81pos sEVs was 30 times greater than that of calceinpos lEVs, and both were mainly released by platelets. Compared to lEVs, the levels of TFpos-sEVs were 2-fold higher. The TF-dependent Xa generation capacity of lEVs was three times greater than that of sEVs, with the latter being hindered by TFPI. Compared to HSs, the amounts of total and TFpos-sEVs and -lEVs were significantly greater in acute COVID-19 patients, which reverted to the physiological values at the 6-month follow-up. Interestingly, the FXa generation of lEVs only significantly increased during acute infection, with that of sEV being similar to that of HSs. Thus, in both healthy subjects and COVID-19 patients, the TF-dependent procoagulant potential is mostly sustained by large vesicles.
Collapse
Affiliation(s)
- Marta Brambilla
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Roberto Frigerio
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | | | - Alessandro Gori
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | - Marina Cretich
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | - Maria Conti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Antonella Mazza
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Martino Pengo
- Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
24
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
25
|
George MS, Sanchez J, Rollings C, Fear D, Irving P, Sinclair LV, Schurich A. Extracellular vesicles in COVID-19 convalescence can regulate T cell metabolism and function. iScience 2023; 26:107280. [PMID: 37520724 PMCID: PMC10371842 DOI: 10.1016/j.isci.2023.107280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term T cell dysregulation has been reported following COVID-19 disease. Prolonged T cell activation is associated with disease severity and may be implicated in producing long-covid symptoms. Here, we assess the role of extracellular vesicles (EV) in regulating T cell function over several weeks post COVID-19 disease. We find that alterations in cellular origin and protein content of EV in COVID-19 convalescence are linked to initial disease severity. We demonstrate that convalescent donor-derived EV can alter the function and metabolic rewiring of CD4 and CD8 T cells. Of note, EV following mild, but not severe disease, show distinctly immune-suppressive properties, reducing T cell effector cytokine production and glucose metabolism. Mechanistically our data indicate the involvement of EV-surface ICAM-1 in facilitating EV-T cell interaction. Our data demonstrate that circulatory EV are phenotypically and functionally altered several weeks following acute infection, suggesting a role for EV as long-term immune modulators.
Collapse
Affiliation(s)
- Molly S. George
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenifer Sanchez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Christina Rollings
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - David Fear
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Peter Irving
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
- Department of Gastroenterology, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
| | - Linda V. Sinclair
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - Anna Schurich
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
26
|
Dangot A, Zavaro M, Bar-Lev TH, Bannon L, Zilberman A, Pickholz E, Avivi I, Aharon A. Characterization of extracellular vesicles in COVID-19 infection during pregnancy. Front Cell Dev Biol 2023; 11:1135821. [PMID: 37560162 PMCID: PMC10407400 DOI: 10.3389/fcell.2023.1135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: SARS-CoV-2 infection may cause a severe inflammatory response, inflicting severe morbidity and mortality. This risk is modestly increased in pregnant patients. Despite the hypercoagulability and immunosuppression associated with pregnancy, most pregnant women experience a mild COVID-19 infection. Maternal extracellular vesicles (EVs) may interact with endothelial and immune components to facilitate a favorable disease course. This pilot study aimed to explore the characteristics of EVs released during COVID-19 infection occurring during the third trimester of pregnancy. Methods: In this prospective study, blood samples were obtained from 16 healthy non-pregnant (NP), 18 healthy-pregnant (HP), and 22 COVID-19 positive pregnant subjects (CoV-P). Disease course and pregnancy outcomes were assessed and EVs were characterized. Of note, limited volumes of sample acquired from the subjects made it necessary to use smaller and different subsets of samples for each analysis. Results: The majority (91%) of the COVID-19-pregnant subjects (18 mild and 2 moderate disease) experienced good pregnancy-related outcomes. EV concentrations were higher in healthy-pregnant subjects compared to non-pregnant subjects (p = 0.0041) and lower in COVID-19-pregnant subjects compared to healthy-pregnant subjects (p = 0.0150). CD63 exosome marker expression was higher in EVs of healthy-pregnant subjects and COVID-19-pregnant subjects compared to EVs of non-pregnant subjects (p = 0.0149, p = 0.0028, respectively). Similar levels of SARS-CoV-2 entry proteins (ACE-2 and TMPRSS2) were found in all three groups. Cytokine content increased in healthy-pregnant subject-EVs compared to non-pregnant EVs, while IL-2 and IL-6 levels were decreased in COVID-19-pregnant subject-EVs compared to healthy-pregnant subject-EVs (p = 0.043, p = 0.0390, respectively). CD8+, cytotoxic T-cell marker, was lower in non-pregnant EVs compared to healthy-pregnant subject-EVs and to COVID-19-pregnant subjects (p = 0.0108, p < 0.0001, respectively). COVID-19- pregnant subject-EVs demonstrated higher levels of platelet activation marker (CD62P) than non-pregnant (p = 0.0327) and healthy-pregnant subjects (p = 0.0365). Endothelial marker EV-CD144+ was lower in healthy-pregnant subjects versus non-pregnant subjects (p = 0.0093), but similar in COVID-19-pregnant and non-pregnant subjects. Other EVs' coagulation markers/activity, D-Dimer and fibrinogen levels were similar in healthy-pregnant subjects and COVID-19 positive pregnant subjects. Conclusion: COVID-19 positive pregnant subjects' EVs demonstrated an attenuated inflammatory response, with no additional activation of the coagulation system.
Collapse
Affiliation(s)
- Ayelet Dangot
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Obstetrics and Gynecology Department, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Hana Bar-Lev
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ayala Zilberman
- Obstetrics and Gynecology Department, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eliana Pickholz
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Aharon
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
28
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
29
|
Ryan TAJ, Hooftman A, Rehill AM, Johansen MD, Brien ECO, Toller-Kawahisa JE, Wilk MM, Day EA, Weiss HJ, Sarvari P, Vozza EG, Schramm F, Peace CG, Zotta A, Miemczyk S, Nalkurthi C, Hansbro NG, McManus G, O'Doherty L, Gargan S, Long A, Dunne J, Cheallaigh CN, Conlon N, Carty M, Fallon PG, Mills KHG, Creagh EM, Donnell JSO, Hertzog PJ, Hansbro PM, McLoughlin RM, Wygrecka M, Preston RJS, Zasłona Z, O'Neill LAJ. Dimethyl fumarate and 4-octyl itaconate are anticoagulants that suppress Tissue Factor in macrophages via inhibition of Type I Interferon. Nat Commun 2023; 14:3513. [PMID: 37316487 PMCID: PMC10265568 DOI: 10.1038/s41467-023-39174-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.
Collapse
Affiliation(s)
- Tristram A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Alexander Hooftman
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Eóin C O' Brien
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Juliana E Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mieszko M Wilk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Hauke J Weiss
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Pourya Sarvari
- Center for Infection and Genomics of the Lung, German Center for Lung Research (DZL), Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Emilio G Vozza
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fabian Schramm
- Center for Infection and Genomics of the Lung, German Center for Lung Research (DZL), Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Christian G Peace
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefan Miemczyk
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Laura O'Doherty
- Department of Infectious Diseases, St. James's Hospital, Dublin, Ireland
- Clinical Research Facility, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Gargan
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Jean Dunne
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Clíona Ní Cheallaigh
- Department of Infectious Diseases, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Clinical Research Facility, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - James S O' Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung, German Center for Lung Research (DZL), Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
30
|
Giovanazzi A, van Herwijnen MJC, Kleinjan M, van der Meulen GN, Wauben MHM. Surface protein profiling of milk and serum extracellular vesicles unveils body fluid-specific signatures. Sci Rep 2023; 13:8758. [PMID: 37253799 DOI: 10.1038/s41598-023-35799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/24/2023] [Indexed: 06/01/2023] Open
Abstract
Cell-derived extracellular vesicles (EVs) are currently in the limelight as potential disease biomarkers. The promise of EV-based liquid biopsy resides in the identification of specific disease-associated EV signatures. Knowing the reference EV profile of a body fluid can facilitate the identification of such disease-associated EV-biomarkers. With this aim, we purified EVs from paired human milk and serum samples and used the MACSPlex bead-based flow-cytometry assay to capture EVs on bead-bound antibodies specific for a certain surface protein, followed by EV detection by the tetraspanins CD9, CD63, and CD81. Using this approach we identified body fluid-specific EV signatures, e.g. breast epithelial cell signatures in milk EVs and platelet signatures in serum EVs, as well as body fluid-specific markers associated to immune cells and stem cells. Interestingly, comparison of pan-tetraspanin detection (simultaneous CD9, CD63 and CD81 detection) and single tetraspanin detection (detection by CD9, CD63 or CD81) also unveiled body fluid-specific tetraspanin distributions on EVs. Moreover, certain EV surface proteins were associated with a specific tetraspanin distribution, which could be indicative of the biogenesis route of this EV subset. Altogether, the identified body fluid-specific EV profiles can contribute to study EV profile deviations in these fluids during disease processes.
Collapse
Affiliation(s)
- Alberta Giovanazzi
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- TRAIN-EV Marie Skłodowska-Curie Action-ITN, Utrecht, The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marije Kleinjan
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- TRAIN-EV Marie Skłodowska-Curie Action-ITN, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
33
|
Sutanto H, Soegiarto G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol Rep 2023; 15:225-243. [PMID: 37092518 PMCID: PMC10123679 DOI: 10.3390/hematolrep15020024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) increases the risk of thromboembolic events, especially in patients with severe infections requiring intensive care and cardiorespiratory support. COVID-19 patients with thromboembolic complications have a higher risk of death, and if they survive, these complications are expected to negatively affect these patients’ quality of life. Moreover, recent data reported that the risk of thromboembolism remains high months after a COVID-19 infection. Therefore, understanding the pathogenesis of thrombosis in the setting of COVID-19 may facilitate the early prevention and treatment of COVID-19-associated thromboembolism to reduce concomitant morbidity, mortality, and disability. This review will first discuss the clinical characteristics of COVID-19 infections, particularly with regard to the underlying pathophysiology. Then, the pathogenesis of COVID-19-associated thrombosis at the molecular and cellular levels will be comprehensively reviewed. Next, the clinical manifestations of venous and arterial thromboembolism in COVID-19 as well as the potential benefits of several laboratory markers of thrombosis will be further discussed. Lastly, the preventive and therapeutic management of thromboembolism during and after COVID-19 will also be explained.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo Teaching Hospital, Surabaya 60286, Indonesia
| | - Gatot Soegiarto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo Teaching Hospital, Surabaya 60286, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
34
|
Verta R, Saccu G, Tanzi A, Grange C, Buono L, Fagoonee S, Deregibus MC, Camussi G, Scalabrin S, Nuzzi R, Bussolati B. Phenotypic and functional characterization of aqueous humor derived extracellular vesicles. Exp Eye Res 2023; 228:109393. [PMID: 36709863 DOI: 10.1016/j.exer.2023.109393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are double membrane vesicles, abundant in all biological fluids. However, the characterization of EVs in aqueous humor (AH) is still limited. The aim of the present work was to characterize EVs isolated from AH (AH-EVs) in terms of surface markers of cellular origin and functional properties. We obtained AHs from patients with cataract undergoing surgical phacoemulsification and insertion of intraocular lenses (n = 10). Nanoparticle tracking analysis, electron microscopy, super resolution microscopy and bead-based cytofluorimetry were used to characterize EVs from AH. Subsequently, we investigated the effects of AH-EVs on viability, proliferation and wound healing of human immortalized keratinocyte (HaCaT) cells in vitro in comparison with the effect of mesenchymal stromal cell-EVs (MSC-EVs). AH-EVs had a mean size of around 100 nm and expressed the classical tetraspanins (CD9, CD63 and CD81). Super resolution microscopy revealed co-expression of CD9, CD63 and CD81. Moreover, cytofluorimetric analysis highlighted the expression of mesenchymal, stem, epithelial and endothelial markers. In the in vitro wound healing assay on HaCaT cells, AH-EVs induced a significantly faster wound repair, comparable to the effects of MSC-EVs, and promoted HaCaT cell viability and proliferation. We provide evidence, herein, of the possible AH-EV origin from stromal cells, limbal epithelial/stem cells, ciliary epithelium and corneal endothelium. In addition, we showed their in vitro proliferative and regenerative capacities.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Gabriele Saccu
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Raffaele Nuzzi
- Department of Surgical Sciences, University of Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
35
|
Ryan TAJ, O’Neill LAJ. An Emerging Role for Type I Interferons as Critical Regulators of Blood Coagulation. Cells 2023; 12:778. [PMID: 36899914 PMCID: PMC10001161 DOI: 10.3390/cells12050778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Type I interferons (IFNs) are central mediators of anti-viral and anti-bacterial host defence. Detection of microbes by innate immune cells via pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and cGAS-STING, induces the expression of type I IFN-stimulated genes. Primarily comprising the cytokines IFN-α and IFN-β, type I IFNs act via the type I IFN receptor in an autocrine or exocrine manner to orchestrate rapid and diverse innate immune responses. Growing evidence pinpoints type I IFN signalling as a fulcrum that not only induces blood coagulation as a core feature of the inflammatory response but is also activated by components of the coagulation cascade. In this review, we describe in detail recent studies identifying the type I IFN pathway as a modulator of vascular function and thrombosis. In addition, we profile discoveries showing that thrombin signalling via protease-activated receptors (PARs), which can synergize with TLRs, regulates the host response to infection via induction of type I IFN signalling. Thus, type I IFNs can have both protective (via maintenance of haemostasis) and pathological (facilitating thrombosis) effects on inflammation and coagulation signalling. These can manifest as an increased risk of thrombotic complications in infection and in type I interferonopathies such as systemic lupus erythematosus (SLE) and STING-associated vasculopathy with onset in infancy (SAVI). We also consider the effects on coagulation of recombinant type I IFN therapies in the clinic and discuss pharmacological regulation of type I IFN signalling as a potential mechanism by which aberrant coagulation and thrombosis may be treated therapeutically.
Collapse
Affiliation(s)
- Tristram A. J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | | |
Collapse
|
36
|
Xiang M, Wu X, Jing H, Novakovic VA, Shi J. The intersection of obesity and (long) COVID-19: Hypoxia, thrombotic inflammation, and vascular endothelial injury. Front Cardiovasc Med 2023; 10:1062491. [PMID: 36824451 PMCID: PMC9941162 DOI: 10.3389/fcvm.2023.1062491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The role of hypoxia, vascular endothelial injury, and thrombotic inflammation in worsening COVID-19 symptoms has been generally recognized. Damaged vascular endothelium plays a crucial role in forming in situ thrombosis, pulmonary dysfunction, and hypoxemia. Thrombotic inflammation can further aggravate local vascular endothelial injury and affect ventilation and blood flow ratio. According to the results of many studies, obesity is an independent risk factor for a variety of severe respiratory diseases and contributes to high mechanical ventilation rate, high mortality, and slow recovery in COVID-19 patients. This review will explore the mechanisms by which obesity may aggravate the acute phase of COVID-19 and delay long COVID recovery by affecting hypoxia, vascular endothelial injury, and thrombotic inflammation. A systematic search of PubMed database was conducted for papers published since January 2020, using the medical subject headings of "COVID-19" and "long COVID" combined with the following keywords: "obesity," "thrombosis," "endothelial injury," "inflammation," "hypoxia," "treatment," and "anticoagulation." In patients with obesity, the accumulation of central fat restricts the expansion of alveoli, exacerbating the pulmonary dysfunction caused by SARS-CoV-2 invasion, inflammatory damage, and lung edema. Abnormal fat secretion and immune impairment further aggravate the original tissue damage and inflammation diffusion. Obesity weakens baseline vascular endothelium function leading to an early injury and pre-thrombotic state after infection. Enhanced procoagulant activity and microthrombi promote early obstruction of the vascular. Obesity also prolongs the duration of symptoms and increases the risk of sequelae after hospital discharge. Persistent viral presence, long-term inflammation, microclots, and hypoxia may contribute to the development of persistent symptoms, suggesting that patients with obesity are uniquely susceptible to long COVID. Early interventions, including supplemental oxygen, comprehensive antithrombotic therapy, and anti-inflammatory drugs, show effectiveness in many studies in the prevention of serious hypoxia, thromboembolic events, and systemic inflammation, and are therefore recommended to reduce intensive care unit admission, mortality, and sequelae.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Schiavello M, Vizio B, Bosco O, Pivetta E, Mariano F, Montrucchio G, Lupia E. Extracellular Vesicles: New Players in the Mechanisms of Sepsis- and COVID-19-Related Thromboinflammation. Int J Mol Sci 2023; 24:ijms24031920. [PMID: 36768242 PMCID: PMC9916541 DOI: 10.3390/ijms24031920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.
Collapse
|
38
|
Setua S, Thangaraju K, Dzieciatkowska M, Wilkerson RB, Nemkov T, Lamb DR, Tagaya Y, Boyer T, Rowden T, Doctor A, D'Alessandro A, Buehler PW. Coagulation potential and the integrated omics of extracellular vesicles from COVID-19 positive patient plasma. Sci Rep 2022; 12:22191. [PMID: 36564503 PMCID: PMC9780627 DOI: 10.1038/s41598-022-26473-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.
Collapse
Affiliation(s)
- Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Derek R Lamb
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tori Boyer
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tobi Rowden
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA.
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
39
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
40
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
41
|
Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res 2022; 220:35-47. [PMID: 36265412 PMCID: PMC9525243 DOI: 10.1016/j.thromres.2022.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hema Kothari
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
42
|
Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Mol Cell Biochem 2022; 478:1487-1518. [PMID: 36394787 DOI: 10.1007/s11010-022-04601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
43
|
Zebardast A, Latifi T, Shabani M, Hasanzadeh A, Danesh M, Babazadeh S, Sadeghi F. Thrombotic storm in coronavirus disease 2019: from underlying mechanisms to its management. J Med Microbiol 2022; 71. [PMID: 36346830 DOI: 10.1099/jmm.0.001591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Introduction. Coronavirus disease 2019 (COVID-19) identified in December 2019 in Wuhan, China, is associated with high mortality rates worldwide.Hypothesis/Gap Statement. Thrombotic problems, such as coagulopathy, are common in COVID-19 patients. Despite anticoagulation, thrombosis is more common in patients in the intensive care unit and patients with more severe disease. Although the exact mechanisms of coagulopathy in COVID-19 patients are still unclear, studies showed that overactivation of the renin-angiotensin system (RAS), cytokine storm, endothelial damage, formation of neutrophil extracellular traps (NETs), and also extracellular vesicles (EVs) in response to COVID-19 induced inflammation can lead to systemic coagulation and thrombosis.Aim. The management of COVID-19 patients requires the use of basic and readily available laboratory markers, both on admission and during hospitalization. Because it is critical to understand the pathophysiology of COVID-19 induced coagulopathy and treatment strategies, in this review we attempt to explain the underlying mechanism of COVID-19 coagulopathy, its diagnosis, and the associated successful treatment strategies.Conclusion. The exact mechanisms behind COVID-19-related coagulopathy are still unclear, but several studies revealed some mechanisms. More research is needed to determine the best anticoagulant regimen and to study other therapeutic options.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shabani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Manizheh Danesh
- Assistant Professor, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Babazadeh
- Department of Pathology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
44
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
45
|
Xiang M, Wu X, Jing H, Liu L, Wang C, Wang Y, Novakovic VA, Shi J. The impact of platelets on pulmonary microcirculation throughout COVID-19 and its persistent activating factors. Front Immunol 2022; 13:955654. [PMID: 36248790 PMCID: PMC9559186 DOI: 10.3389/fimmu.2022.955654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Chunxu Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi, ;
| |
Collapse
|
46
|
Mackman N, Sachetto ATA, Hisada Y. Measurement of tissue factor-positive extracellular vesicles in plasma: strengths and weaknesses of current methods. Curr Opin Hematol 2022; 29:266-274. [PMID: 35852819 DOI: 10.1097/moh.0000000000000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review evaluates the different methods used to measure levels of tissue factor (TF) in plasma and on extracellular vesicles (EVs). Levels of TF-positive (TF+) EVs in blood are increased in a variety of diseases, such as cancer, sepsis, and viral infection, and are associated with thrombosis. Highly sensitive assays are required to measure the low levels of TF+ EVs in blood. RECENT FINDINGS TF antigen levels in plasma have been measured using standard ELISAs, SimpleStep ELISA technology, and solid-phase proximity ligation assay. Some studies reported the detection of TF+ EVs in plasma by flow cytometry. In addition, TF+ EVs can be captured onto beads and chips using anti-TF antibodies. Several assays have been developed to measure TF activity in EVs isolated from plasma. Importantly, activity-based assays are more sensitive than antigen-based assays as a single TF/FVIIa complex can generate large amounts of FXa. SUMMARY We recommend isolating EVs from plasma and measuring TF activity using a functional assay in the presence and absence of an anti-TF antibody. We do not recommend using antigen-based assays as these are not sensitive enough to detect the low levels of TF in plasma.
Collapse
Affiliation(s)
- Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | |
Collapse
|
47
|
Tahyra ASC, Calado RT, Almeida F. The Role of Extracellular Vesicles in COVID-19 Pathology. Cells 2022; 11:cells11162496. [PMID: 36010572 PMCID: PMC9406571 DOI: 10.3390/cells11162496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Extracellular vesicles (EVs) have become a trending topic in recent years; they constitute a new intercellular communication paradigm. Extracellular vesicles are 30–4000 nanometers in diameter particles that are limited by a phospholipid bilayer and contain functional biomolecules, such as proteins, lipids, and nucleic acids. They are released by virtually all types of eukaryotic cells; through their cargoes, EVs are capable of triggering signaling in recipient cells. In addition to their functions in the homeostatic state, EVs have gained attention because of their roles in pathological contexts, eventually contributing to disease progression. In the Coronavirus disease 2019 (COVID-19) pandemic, aside from the scientific race for the development of preventive and therapeutic interventions, it is critical to understand the pathological mechanisms involved in SARS-CoV-2 infection. In this sense, EVs are key players in the main processes of COVID-19. Thus, in this review, we highlight the role of EVs in the establishment of the viral infection and in the procoagulant state, cytokine storm, and immunoregulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Aline Seiko Carvalho Tahyra
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence:
| |
Collapse
|
48
|
Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G, Napoli C. De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis 2022; 354:41-52. [PMID: 35830762 DOI: 10.1016/j.atherosclerosis.2022.06.1026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications. METHODS EVs were recovered from plasma of 19 ACS patients and 50 healthy subjects (HS). Flow cytometry, qRT-PCR, and Western blot (WB) were performed to evaluate both intra-vesicular and intra-cellular signals. ShinyGO, PANTHER, and STRING tools were used to perform GO and PPI network analyses. RESULTS ACS-derived EVs showed increased levels of DNA methyltransferases (DNMTs) (p<0.001) and Ten-eleven translocation (TET) genes reduction. Specifically, de novo methylation transcripts, as DNMT3A and DNMT3B, were significantly increased in plasma ACS-EVs. DNA methylation analysis on PBMCs from healthy donors treated with HS- and ACS-derived EVs showed an important role of DNMTs carried by EVs. PPI network analysis evidenced that ACS-EVs induced changes in PBMC methylome. In the most enriched subnetwork, the hub gene SRC was connected to NOTCH1, FOXO3, CDC42, IKBKG, RXRA, DGKG, BAIAP2 genes that were showed to have many molecular effects on various cell types into onset of several CVDs. Modulation in gene expression after ACS-EVs treatment was confirmed for SRC, NOTCH1, FOXO3, RXRA, DGKG and BAIAP2 (p<0.05). CONCLUSIONS Our data showed an important role for ACS-derived EVs in gene expression modulation through de novo DNA methylation signals, and modulating signalling pathways in target cells.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland.
| | - Carolina Balbi
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Jacopo Burrello
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Stefano Panella
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Lucio Barile
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| |
Collapse
|
49
|
Tertel T, Tomić S, Đokić J, Radojević D, Stevanović D, Ilić N, Giebel B, Kosanović M. Serum-derived extracellular vesicles: Novel biomarkers reflecting the disease severity of COVID-19 patients. J Extracell Vesicles 2022; 11:e12257. [PMID: 35979935 PMCID: PMC9451525 DOI: 10.1002/jev2.12257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.
Collapse
Affiliation(s)
- Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dejan Stevanović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| |
Collapse
|
50
|
Williams JO, Nash J, Whelan C, Raven BM, Davies AJ, Evans J, Watkeys L, Morris K, James PE. Early but reversible haemostatic changes in a-symptomatic females expressing COVID-19 antibodies. Thromb Res 2022; 217:76-85. [PMID: 35908384 PMCID: PMC9313537 DOI: 10.1016/j.thromres.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus, COVID-19 pandemic spread across the globe in 2020, with an initial high case mortality in those requiring intensive care treatment due to serious complication. A vaccine programme was quickly developed and currently the UK is one of highest double vaccinated and boosted countries in the world. Despite tremendous efforts by the UK, new cases of COVID-19 are still occurring, due to viral mutation. A major problem associated with COVID-19 is the large a-symptomatic spread within the population. Little investigation into the a-symptomatic population has been carried out and therefore we pose that the residual effects of a-symptomatic infection is still largely unknown. Prior to mass vaccination, a multi-phased single cohort study of IgM and IgG COVID-19 antibody prevalence and the associated haemostatic changes were assessed in a Welsh cohort of 739 participants, at three time points. Positive antibody participants with age and gender matched negative antibody controls were assessed at 0, 3 and 6 months. Antibody positive females appeared to have lower antibody responses in comparison to their a-symptomatic male counterparts. Despite this initial testing showed a unique significant increase in TRAP-6-induced platelet aggregation, prothrombin time (PT) and clot initiation time. Despite coagulation parameters beginning to return to normal at 3 months, significant decreases are observed in both haemoglobin and haematocrit levels. The production of extracellular vesicles (EV) was also determined in this study. Although the overall number of EV does not change throughout the study, at the initial 0 months' time point a significant increase in the percentage of circulating pro-coagulant platelet derived EV is seen, which does not appear to be related to the extent of platelet activation in the subject. We conclude that early, but reversible changes in haemostatic pathways within the a-symptomatic, female, antibody positive COVID-19 individuals are present. These changes may be key in identifying a period of pro-coagulative risk for a-symptomatic female patients.
Collapse
Affiliation(s)
- J O Williams
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland.
| | - J Nash
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - C Whelan
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - B M Raven
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - A J Davies
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - J Evans
- Independent Specialist Virology Centre, University Hospital Wales, United Kingdom of Great Britain and Northern Ireland
| | - L Watkeys
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - K Morris
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| | - P E James
- School of Sport and Health Science, Cardiff Metropolitan University, Llandaff Campus, CF52YB, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|