1
|
Gupta P, Kalvatala S, Joseph A, Panghal A, Santra S. Outline of Therapeutic Potential of Different Plants Reported Against Psoriasis via In Vitro, Pre-Clinical or Clinical Studies. Phytother Res 2025. [PMID: 39754500 DOI: 10.1002/ptr.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development. Although there is no cure for this disease, topical, oral, and systemic whole-body treatments are available to relieve symptoms. Several plants and phytochemicals which have been found effective in the management of the psoriasis experimentally (preclinical and clinical). These plants/phytochemicals have applications in topical, oral, and systemic treatments. Traditionally, some of the plants have been utilized as the primary treatment, including their extracts and/or phytochemicals, for individuals with moderate to severe psoriasis (due to fewer side effects), while phototherapy is generally reserved for more advanced cases. This report describes various plants and phytochemicals that have been found to be effective against psoriasis in in vitro, preclinical, and clinical studies. This review summarizes the key findings from experimental studies on various pathological aspects of psoriasis and may be useful, effective, and informative for future research.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
- Research and Development Cell, Lovely Professional University, Phagwara, India
| | - Sudhakar Kalvatala
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abhinav Joseph
- Research and Development Cell, Lovely Professional University, Phagwara, India
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Panghal
- Department of Processing and Food Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Soumava Santra
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Lotlikar VB, Sharma S, Londhe VY. Unlocking relief: formulation, characterization, and in vivo assessment of salicylic acid-loaded microemulgel for psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03447-3. [PMID: 39325151 DOI: 10.1007/s00210-024-03447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Psoriasis, a chronic skin condition, affects around 2-5% of the population. Topical corticosteroids treat the vast majority of cases (> 80%). Because of the physicochemical characteristics of the damaged stratum corneum, all treatments are ineffective. Nevertheless, systemic immunosuppression, the oral strategy, has substantial adverse effects that may be avoided using the topical procedure. The research sought to determine if a salicylic acid-loaded microemulsion-based gel (emulgel) could successfully infiltrate and maintain salicylic acid in skin tissue for psoriasis treatment. The pseudo-ternary phase was generated in different Smix ratios (1:1, 2:1, and 3:1; Labrasol:Transcutol® P). At a 3:1 ratio, the Smix had a substantial microemulsion area. Microemulsion was characterized for particle size, pH, etc. For topical application, the selected microemulsion was combined with Carbopol 940 gel, and ex vivo permeation and drug retention study were conducted. The effectiveness of the developed gel was checked using the IMQ-induced psoriatic plaque model. Salicylic acid microemulsion has an average globule size of 79.72 nm, pH 5.93, and 100% transmittance. In an ex vivo diffusion study, emulgel revealed greater penetration and more drug retention than ordinary salicylic acid gel. The emulgel was non-irritating on the skin of rats. In vivo studies revealed significant antipsoriatic activity of microemulsion-loaded gel compared to the marketed product. Developed emulgel was considered a potential product for an effective and safe way to administer salicylic acid for the treatment of skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Viswanath Baboy Lotlikar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
3
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
4
|
Radeva L, Zaharieva MM, Spassova I, Kovacheva D, Pencheva-El Tibi I, Najdenski H, Yoncheva K. Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin-Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells. Pharmaceuticals (Basel) 2024; 17:186. [PMID: 38399401 PMCID: PMC10891966 DOI: 10.3390/ph17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, doxorubicin was loaded in a chitosan-albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan-albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Maya M Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
5
|
Peram MR, Dhananjay C, Chandrasekhar N, Kumbar VM, Suryadevara V, Patil SR, El-Zahaby SA. Acitretin-loaded nanoethosomal gel for the treatment of psoriasis: Formulation, optimization,
in vitro
, and
in viv
o assessment. J DISPER SCI TECHNOL 2023:1-18. [DOI: 10.1080/01932691.2023.2278492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2024]
Affiliation(s)
- Malleswara Rao Peram
- Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Guntur, Andra Pradesh, India
| | - Chandrakant Dhananjay
- Department of Pharmaceutics, Maratha Mandal College of Pharmacy, Belagavi, Karnataka, India
| | - Nagesh Chandrasekhar
- Department of Pharmaceutics, Maratha Mandal College of Pharmacy, Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| | | | - Sachin R Patil
- Department of Pharmaceutics, Sarojini College of Pharmacy, Kolhapur, Maharashtra, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
6
|
Hassan SU, Khalid I, Hussain L, Imam MT, Shahid I. Topical Delivery of Terbinafine HCL Using Nanogels: A New Approach to Superficial Fungal Infection Treatment. Gels 2023; 9:841. [PMID: 37998931 PMCID: PMC10670406 DOI: 10.3390/gels9110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to fabricate gelatin-g-poly-(acrylic acid) nanogels. Ammonium persulphate (APS) and N, N'-methylene bisacrylamide (MBA) were used as the initiator and crosslinker, respectively. Developed gelatin-g-poly-(acrylic acid) nanogels were evaluated for the swelling study (pH 1.2, 5, 7.4), DEE, particle size, FTIR, thermal stability (TGA, DSC), XRD, SEM, DEE, and in vitro drug release study to obtain optimized nanogels. Optimized nanogels were incorporated into 1% HPMC gel and then evaluated in comparison with Lamisil cream 1% for TBH stratum corneum retention, skin irritation, and in vitro and in vivo antifungal activity studies. Optimized nanogels (AAG 7) demonstrated a 255 nm particle size, 82.37% DEE, pH-dependent swelling, 92.15% of drug release (pH) 7.4 within 12 h, and a larger zone of inhibition compared to Lamisil cream. HPMC-loaded nanogels significantly improved the TBH skin retention percentage, as revealed by an ex vivo skin retention study, indicating the usefulness of nanogels for topical use. In vivo studies conducted on animal models infected with a fungal infection have further confirmed the effectiveness of nanogels compared with the Lamisil cream. Hence, Gelatin-g-poly-(acrylic acid) nanogels carrying poorly soluble TBH can be a promising approach for treating superficial fungal infections.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Mohammad T. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
7
|
Wang J, Viola M, Migliorini C, Paoletti L, Arpicco S, Di Meo C, Matricardi P. Polysaccharide-Based Nanogels to Overcome Mucus, Skin, Cornea, and Blood-Brain Barriers: A Review. Pharmaceutics 2023; 15:2508. [PMID: 37896268 PMCID: PMC10610445 DOI: 10.3390/pharmaceutics15102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Ju Wang
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| |
Collapse
|
8
|
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023; 9:753. [PMID: 37754434 PMCID: PMC10529964 DOI: 10.3390/gels9090753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The delivery of active molecules via the skin seems to be an efficient technology, given the various disadvantages of oral drug administration. Skin, which is the largest human organ of the body, has the important role of acting as a barrier for pathogens and other molecules including drugs; in fact, it serves as a primary defense system blocking any particle from entering the body. Therefore, to overcome the skin barriers and poor skin permeability, researchers implement novel carriers which can effectively carry out transdermal delivery of the molecules. Another significant issue which medical society tries to solve is the effective dermal delivery of molecules especially for topical wound delivery. The application of nanogels is only one of the available approaches offering promising results for both dermal and transdermal administration routes. Nanogels are polymer-based networks in nanoscale dimensions which have been explored as potent carriers of poorly soluble drugs, genes and vaccines. The nanogels present unique physicochemical properties, i.e., high surface area, biocompatibility, etc., and, importantly, can improve solubility. In this review, authors aimed to summarize the available applications of nanogels as possible vehicles for dermal and transdermal delivery of active pharmaceutical ingredients and discuss their future in the pharmaceutical manufacturing field.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Life Sciences, School of Sciences, Faculty of Pharmacy, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, 34116 Istanbul, Turkey;
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey;
| |
Collapse
|
9
|
Kesharwani P, Prajapati SK, Jain A, Sharma S, Mody N, Jain A. Biodegradable Nanogels for Dermal Applications: An Insight. CURRENT NANOSCIENCE 2023; 19:509-524. [DOI: 10.2174/1573413718666220415095630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 08/22/2024]
Abstract
Abstract:
Biodegradable nanogels in the biomedical field are emerging vehicles comprising
dispersions of hydrogel nanoparticles having 3D crosslinked polymeric networks. Nanogels show
distinguished characteristics including their homogeneity, adjustable size, low toxicity, stability
in serum, stimuli-responsiveness (pH, temperature, enzymes, light, etc.), and relatively good
drug encapsulation capability. Due to these characteristics, nanogels are referred to as nextgeneration
drug delivery systems and are suggested as promising carriers for dermal applications.
The site-specific delivery of drugs with effective therapeutic effects is crucial in transdermal drug
delivery. The nanogels made from biodegradable polymers can show external stimuliresponsiveness
which results in a change in gel volume, water content, colloidal stability, mechanical
strength, and other physical and chemical properties, thus improving the site-specific
topical drug delivery. This review provides insight into the advances in development, limitations,
and therapeutic significance of nanogels formulations. It also highlights the process of release of
drugs in response to external stimuli, various biodegradable polymers in the formulation of the
nanogels, and dermal applications of nanogels and their role in imaging, anti‐inflammatory therapy,
antifungal and antimicrobial therapy, anti‐psoriatic therapy, and ocular and protein/peptide
drug delivery.
Collapse
Affiliation(s)
- Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan 304022, India
| | - Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
| | - Anushka Jain
- Raj Kumar
Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan-304022-India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (MP) 470003, India
| | - Ankit Jain
- Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012 (Karnataka), India
| |
Collapse
|
10
|
Elkhawaga OY, Ellety MM, Mofty SO, Ghanem MS, Mohamed AO. Review of natural compounds for potential psoriasis treatment. Inflammopharmacology 2023; 31:1183-1198. [PMID: 36995575 PMCID: PMC10229448 DOI: 10.1007/s10787-023-01178-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023]
Abstract
Psoriasis represents an immune-mediated disease with an unclear cause that's marked by inflammation triggered by dysfunction in the immune system, which results in inflammation in various parts of the skin. There could be obvious symptoms, such as elevated plaques; these plaques may appear differently depending on the type of skin. This disease can cause inflammation in the elbows, lower back, scalp, knees, or other regions of the body. It can begin at any age, although it most commonly affects individuals between the ages of 50 and 60. Specific cells (such as T cells) have been observed to play an obvious role in the pathogenesis of psoriasis, in addition to specific immunological molecules such as TNF-, IL-12, IL-23, IL-17, and other molecules that can aid in the pathogenesis of psoriasis. So, during the past two decades, biologists have created chemical drugs that target these cells or molecules and therefore prevent the disease from occurring. Alefacept, efalizumab, Adalimumab, Ustekinumab, and Secukinumab are a few examples of chemical drugs. It was discovered that these chemical drugs have long-term side effects that can cause defects in the patient's body, such as the development of the rare but life-threatening disorder progressive multifocal leukoencephalopathy (PCL). Its rapidly progressive infection of the central nervous system caused by the JC virus and other drugs may cause increased production of neutralising anti-drug antibodies (ADA) and the risk of infusion reactions like pruritus, flushing, hypertension, headache, and rash. So, our context intends to talk in our review about natural products or plants that may have therapeutic characteristics for this disease and may have few or no side effects on the patient's body.
Collapse
Affiliation(s)
- Omali Y Elkhawaga
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed M Ellety
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Sheref O Mofty
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed S Ghanem
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah O Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
11
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
12
|
Mathew AA, Mohapatra S, Panonnummal R. Formulation and evaluation of magnesium sulphate nanoparticles for improved CNS penetrability. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:567-576. [PMID: 36474021 DOI: 10.1007/s00210-022-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg2+) is the fourth most abundant cation in the human body and is involved in maintaining varieties of cellular and neurological functions. Magnesium deficiency has been associated with numerous diseases, particularly neurological disorders, and its supplementation has proven beneficial. However, magnesium therapy in neurological diseases is limited because of the inability of magnesium to cross the blood-brain barrier (BBB). The present study focuses on developing magnesium sulphate nanoparticles (MGSN) to improve blood-brain barrier permeability. MGSN was prepared by precipitation technique with probe sonication. The developed formulation was characterized by DLS, EDAX, FT-IR and quantitative and qualitative estimation of magnesium. According to the DLS report, the average size of the prepared MGSN is found to be 247 nm. The haemocompatibility assay studies revealed that the prepared MGSN are biocompatible at different concentrations. The in vitro BBB permeability assay conducted by Parallel Artificial Membrane Permeability Assay (PAMPA) using rat brain tissue revealed that the prepared MGSN exhibited enhanced BBB permeability as compared to the marketed i.v. MgSO4 injection. The reversal effect of MGSN to digoxin-induced Na+/K+ ATPase enzyme inhibition using brain microslices confirmed that MGSN could attenuate the altered levels of Na+ and K+ and is useful in treating neurological diseases with altered expression of Na+/K+ ATPase activity.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sudeshna Mohapatra
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
13
|
Ahmad MZ, Mohammed AA, Algahtani MS, Mishra A, Ahmad J. Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. J Funct Biomater 2022; 14:jfb14010019. [PMID: 36662067 PMCID: PMC9867016 DOI: 10.3390/jfb14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a typical dermal condition that has been anticipated since prehistoric times when it was mistakenly implicit in being a variant of leprosy. It is an atypical organ-specific autoimmune disorder, which is triggered by the activation of T-cells and/or B-cells. Until now, the pathophysiology of this disease is not completely explicated and still, many research investigations are ongoing. Different approaches have been investigated to treat this dreadful skin disease using various anti-psoriatic drugs of different modes of action through smart drug-delivery systems. Nevertheless, there is no ideal therapy for a complete cure of psoriasis owing to the dearth of an ideal drug-delivery system for anti-psoriatic drugs. The conventional pharmacotherapy approaches for the treatment of psoriasis demand various classes of anti-psoriatic drugs with optimum benefit/risk ratio and insignificant untoward effects. The advancement in nanoscale drug delivery had a great impact on the establishment of a nanomedicine-based therapy for better management of psoriasis in recent times. Nanodrug carriers are exploited to design and develop nanomedicine-based therapy for psoriasis. It has a promising future in the improvement of the therapeutic efficacy of conventional anti-psoriatic drugs. The present manuscript aims to discuss the pathophysiology, conventional pharmacotherapy, and contemporary research in the area of nanoscale topical drug delivery systems for better management of psoriasis including the significance of targeted pharmacotherapy in psoriasis.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Correspondence: or
| |
Collapse
|
14
|
Shree D, Patra CN, Sahoo BM. Novel Herbal Nanocarriers for Treatment of Dermatological Disorders. Pharm Nanotechnol 2022; 10:246-256. [PMID: 35733305 DOI: 10.2174/2211738510666220622123019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. METHODS In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. CONCLUSION Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| |
Collapse
|
15
|
Ma Y, Liu J, Cui X, Hou J, Yu F, Wang J, Wang X, Chen C, Tong L. Hyaluronic Acid Modified Nanostructured Lipid Carrier for Targeting Delivery of Kaempferol to NSCLC: Preparation, Optimization, Characterization, and Performance Evaluation In Vitro. Molecules 2022; 27:4553. [PMID: 35889427 PMCID: PMC9318624 DOI: 10.3390/molecules27144553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022] Open
Abstract
Lung cancer seriously threatens the health of human beings, with non-small cell lung cancer (NSCLC) accounting for 80%. Nowadays, the potential position of nano-delivery in treating cancer has been the subject of continuous research. The present research aimed to prepare two molecular weight hyaluronic acid (HA)-modified kaempferol (KA)-loaded nanostructured lipid carriers (HA-KA-NLCs) by the method of melting ultrasonic and electrostatic adsorption, and to assess the antitumor effect of the preparations on A549 cells. The characterization and safety evaluation of the preparations illustrated that they are acceptable for drug delivery for cancer. Subsequently, differential scanning calorimetry (DSC) curve and transmission electron microscopy (TEM) images indicated that the drug was adequately incorporated in the carrier, and the particle appeared as a sphere. Moreover, HA-KA-NLC showed predominant in vitro antitumor effects, inhibiting proliferation, migration, and invasion, promoting apoptosis and increasing cellular uptake of A549 cells. Otherwise, the Western blot assay revealed that preparations could activate epithelial-mesenchymal transition (EMT)-related signaling pathways and modulate the expression of E-cadherin, N-cadherin, and Vimentin in A549 cells. Our present findings demonstrated that HA-KA-NLC could be considered as a secure and effective carrier for targeted tumor delivery and may have potential application prospects in future clinic therapy of NSCLC.
Collapse
Affiliation(s)
- Yufei Ma
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Jinli Liu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Xinyu Cui
- Department of Public Health, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Jiafu Hou
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Fengbo Yu
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Jinghua Wang
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Xiaoxue Wang
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Cong Chen
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Lei Tong
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| |
Collapse
|
16
|
Kadukkattil Ramanunny A, Wadhwa S, Kumar Singh S, Kumar B, Gulati M, Kumar A, Almawash S, Al Saqr A, Gowthamrajan K, Dua K, Singh H, Vishwas S, Khursheed R, Rahana Parveen S, Venkatesan A, Paudel KR, Hansbro PM, Kumar Chellappan D. Topical non-aqueous nanoemulsion of Alpinia galanga extract for effective treatment in psoriasis: in vitro and in vivo evaluation. Int J Pharm 2022; 624:121882. [PMID: 35671853 DOI: 10.1016/j.ijpharm.2022.121882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Non-aqueous nanoemulsion (NANE) of Alpinia galanga extract (AGE) was prepared using Palmester 3595 (MCT oil) as oil phase, Cremophor RH 40-Transcutol P® as surfactant-co-surfactant (Smix), and glycerin as non-aqueous polar continuous phase. The composition was optimized by applying three-level, four factor Box-Behnken design (BBD). The mean droplet size and zeta potential of the optimized AGE NANE was found to be 60.81 ± 18.88 nm and -7.99 ± 4.14 mV, respectively. The ex vivo permeation studies of AGE NANE and AGE per se on porcine skin reported flux of 125.58 ± 8.36 µg/cm2 h-1 and 12.02 ± 1.64 µg/cm2h-1, respectively. Therefore, the enhancement ratio has shown 10-folds increase in the flux for AGE NANE when compared to extract per se. Later, confocal laser scanning microcopy confirmed that AGE NANE were able to penetrate into skin's stratum by trans-follicular transport mechanism. The stability studies of AGE NANE confirmed its stability at 30 ± 2℃ /75 ± 5 % RH and 5 ± 3℃. The efficacy of AGE NANE was evaluated in vivo on imiquimod (IMQ) induced mouse model. The mice treated with low and high doses of AGE NANE (groups VI and VII) showed significant (p<0.05) amelioration of psoriasis. Results of histopathology indicated reduction in psoriasis area severity index in AGE NANE treated mice (group VI and group VII).
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Kuppusamy Gowthamrajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harpreet Singh
- Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shaik Rahana Parveen
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
17
|
Hassan SU, Khalid I, Hussain L, Barkat K, Khan IU. Development and Evaluation of pH-Responsive Pluronic F 127 Co-Poly- (Acrylic Acid) Biodegradable Nanogels for Topical Delivery of Terbinafine HCL. Dose Response 2022; 20:15593258221095977. [PMID: 35558872 PMCID: PMC9087256 DOI: 10.1177/15593258221095977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Research aimed to develop and evaluate biodegradable, pH-responsive chemically
cross-linked Pluronic F127 co-poly- (acrylic acid) nanogels for dermal delivery
of Terbinafine HCL (TBH) to increase its permeability and as a new approach to
treat skin fungal infections. TBH-loaded nanogels were successfully synthesized
from acrylic acid (AA) and Pluronic F127 by free-radical copolymerization
technique using N,N′-methylene bisacrylamide (MBA) as crosslinker and ammonium
persulphate (APS) as initiator. Prepared nanogels exhibited 93.51% drug
entrapment efficiency (DEE), 45 nm particle size, pH-dependent swelling and
release behavior. Nanogels were characterized using different physicochemical
techniques. The ex-vivo skin retention studies through rat skin
showed about 42.34% drug retention from nanogels while 1% Lamisil cream
(marketed product) showed about 26.56% drug retention. Moreover, skin irritation
studies showed that nanogels were not irritating. Nanogels showed improved
in-vitro antifungal activity against Candida
albicans compared to commercial product. In-vivo
studies on rats infected with Candida albicans confirmed
superiority of nanogels over 1% Lamisil for eradication of fungal infection.
This confirms that TBH loaded in Pluronic F127 co-poly-(acrylic acid) nanogels
provided greater targetibility and cure rates of poorly soluble TBH in animal
model and hence nanogels could be a potential carrier for effective topical
delivery of TBH for skin fungal infection treatment.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
18
|
Jogpal V, Sanduja M, Dutt R, Garg V, Tinku. Advancement of nanomedicines in chronic inflammatory disorders. Inflammopharmacology 2022; 30:355-368. [PMID: 35217901 PMCID: PMC8879181 DOI: 10.1007/s10787-022-00927-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
Chronic diseases, as stated by the WHO, are a threat to human health which kill 3 out of every 5 people worldwide. Therapeutics for such illnesses can be developed using traditional medicine. However, it is not an easy path from natural products to Western pharmacological and pharmaceutical methods. For several decades, chronic inflammatory disorders, especially in Westernized countries, have increased incidence and prevalence. Several NSAIDs are used to decrease inflammation and pain; however, there are numerous negative consequences of these anti-inflammatory medications, whereas plant-based natural products have anti-inflammatory therapeutic benefits that have little or no adverse effects. Nanoparticles are a new type of drug delivery device that may be designed to provide excellent target selectivity for certain cells and tissues while also having a high drug loading capacity, resulting in better pharmacokinetics, pharmacodynamics (PKPD), and therapeutic bioavailability. The size and polarity of phytochemical compounds make it hard to pass the blood-brain barrier (BBB), blood-vessel endothelial lining, gastrointestinal tract and mucosa. In addition, the gastrointestinal system is enzymatically destroyed. Therefore, nanoparticles or nanocrystals might also be used for encapsulation or conjugation of these chemicals as a method to improve their organic effectiveness through their gastrointestinal stability, absorption rate and dispersion. The therapy of numerous inflammatory illnesses, including arthritis, gastritis, Nephritis, Hepatitis (Type A, B &C), ulcerative colitis, Alzheimer's disease, atherosclerosis, allergic responses (asthma, eczema) or autoimmune disorders, is characterised by nanoparticles. This review paper provides information on the numerous nanosystem described with their probable mechanism to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Vikas Jogpal
- School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurgaon, 122103 Haryana India
| | - Mohit Sanduja
- School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurgaon, 122103 Haryana India
| | - Rohit Dutt
- School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurgaon, 122103 Haryana India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, MD University Rohtak, Rohtak, 124001 Haryana India
| | - Tinku
- School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurgaon, 122103 Haryana India
| |
Collapse
|
19
|
Mahajan M, Kaur M, Thakur S, Singh A, Shahtaghi NR, Shivgotra R, Bhardwaj N, Saini S, Jain SK. Solid Lipid Nanoparticles as Carrier to Increase Local Bioavailability of Acitretin After Topical Administration in Psoriasis Treatment. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
21
|
Sundararajan B, Sathishkumar G, Seetharaman PK, Moola AK, Duraisamy SM, Mutayran AASB, Seshadri VD, Thomas A, Ranjitha Kumari BD, Sivaramakrishnan S, Kweka EJ, Zhou Z. Biosynthesized Gold Nanoparticles Integrated Ointment Base for Repellent Activity Against Aedes aegypti L. NEOTROPICAL ENTOMOLOGY 2022; 51:151-159. [PMID: 34822111 DOI: 10.1007/s13744-021-00920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The present study focused on preparing a nano-ointment base integrated with biogenic gold nanoparticles from Artemisia vulgaris L. leaf extract. As prepared, nano-ointment was characterized by using Fourier-transform infrared spectroscopy, and the morphology of the nano-ointment was confirmed through a scanning electron microscope. Initially, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed nano-ointment cytocompatibility at different concentrations (20-200 μg/mL) against L929 cells. The in vitro hemolysis assay also revealed that the nano-ointment is biocompatible. Further studies confirmed that nano-ointment has repellent activity with various concentrations (12.5, 25, 50, 75, and 100 ppm). At 100 ppm concentration, the highest repellent activity was observed at 60-min protection time against the Aedes aegypti L. female mosquitoes. The results indicated that the increasing concentration of nano-ointment prolongs the protection time. Moreover, the outcome of this study provides an alternative nano-ointment to synthetic repellent and insecticides after successful clinical trials. It could be an eco-friendly, safer nano-bio repellent, which can protect from dengue fever mosquitoes.
Collapse
Affiliation(s)
- Balasubramani Sundararajan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China.
| | | | | | - Anil Kumar Moola
- Dept of Biotechnology, Aditya Degree and PG College, Kakinada, Andhra Pradesh, India
| | | | | | | | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | | | | | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Mosquito Section, Tropical Pesticides Research Institute, Arusha, Tanzania
- Dept of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Ali F, Neha K, Sharma K, Khasimbi S, Chauhan G. Nanotechnology-based medicinal products and patents: a promising way to treat psoriasis. Curr Drug Deliv 2022; 19:587-599. [PMID: 35081890 DOI: 10.2174/1567201819666220126163943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Psoriasis is an autoimmune skin disorder that is characterised by chronic inflammation and erythematous scaly patches. It has a significant impact on the patient's quality of life and can cause psychological stress. There are several aspects which cause psoriasis for instance, environmental issues, immune disorders, bacterial infections, and genetic issues. Plentiful therapeutic means or treatments are accessible, but not any of them can completely and effectively cure psoriasis without hindering patient compliance. Hence, it becomes challenging to discover a new drug moiety or any drug delivery method to cure psoriasis. Conventional treatment of psoriasis involves anti-inflammatory agents, immune suppressants, phototherapy, and biologic treatment, those were given in different forms such as topical, oral, or systemic formulations, but these all were unsuccessful to accomplish complete reduction of psoriasis as well as causing adverse side effects. In terms of dose frequency, doses, efficacy, and side effects, nanotechnology-based new formulations are the most promising prospects for addressing the challenges and limits associated with present psoriasis formulations. Hence, our major goal of this review is to present various advanced nanotechnological approaches for effective topical treatment of psoriasis. In short, nano-formulations continue to be formed as very promising modality in the treatment of psoriasis as they suggest improved penetration, targeted delivery, increased safety, and efficacy.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority, Plot 112, International Finance Park, Gaborone, Botswana
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Kamna Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| |
Collapse
|
23
|
Lan J, Li Y, Wen J, Chen Y, Yang J, Zhao L, Xia Y, Du H, Tao J, Li Y, Zhu J. Acitretin-Conjugated Dextran Nanoparticles Ameliorate Psoriasis-like Skin Disease at Low Dosages. Front Bioeng Biotechnol 2022; 9:816757. [PMID: 35071218 PMCID: PMC8777251 DOI: 10.3389/fbioe.2021.816757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease mainly characterized by keratinocyte hyperproliferation and massive infiltration of inflammatory immune cells. Acitretin (ACT), an FDA-approved first-line systemic drug for psoriasis treatment, could suppress the proliferation of keratinocytes and downregulate the expression of inflammatory cytokines by modulating signal transducer and activator of transcription (STAT) signaling pathways. However, dose-dependent side effects of ACT limit its long-term administration in the clinic. Therefore, improving the therapeutic efficacy of ACT to reduce clinical dosage will benefit the patients. Here, we develop ACT-conjugated dextran nanoparticles (ACT-Dex NPs) and evaluated the potential for psoriasis treatment. Our results indicate that ACT-Dex NPs ameliorate psoriasis-like skin disease significantly at a low dosage which does not cause side effects, while neat ACT drugs at an equivalent dosage provide much less benefit. Moreover, we demonstrate that ACT-Dex NPs suppress keratinocyte proliferation more efficiently than neat ACT by enhancing the inhibitory effect on STAT3 phosphorylation. Thus, the proposed ACT-Dex NPs provide an effective and safe option for psoriasis treatment.
Collapse
Affiliation(s)
- Jiajia Lan
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuce Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.,State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jingjing Wen
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yu Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.,State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yang
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liang Zhao
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuting Xia
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Hongyao Du
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Juan Tao
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yan Li
- Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Hubei Engineering Research Center of Skin Disease Theranostics and Health, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.,State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
24
|
Li N, Qin Y, Dai D, Wang P, Shi M, Gao J, Yang J, Xiao W, Song P, Xu R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front Bioeng Biotechnol 2022; 9:804415. [PMID: 35141215 PMCID: PMC8819148 DOI: 10.3389/fbioe.2021.804415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated skin disorder involving hyperproliferation of the keratinocytes in the epidermis. As complex as its pathophysiology, the optimal treatment for psoriasis remains unsatisfactorily addressed. Though systemic administration of biological agents has made an impressive stride in moderate-to-severe psoriasis, a considerable portion of psoriatic conditions were left unresolved, mainly due to adverse effects from systemic drug administration or insufficient drug delivery across a highly packed stratum corneum via topical therapies. Along with the advances in nanotechnologies, the incorporation of nanomaterials as topical drug carriers opens an obvious prospect for the development of antipsoriatic topicals. Hence, this review aims to distinguish the benefits and weaknesses of individual nanostructures when applied as topical antipsoriatics in preclinical psoriatic models. In view of specific features of each nanostructure, we propose that a proper combination of distinctive nanomaterials according to the physicochemical properties of loaded drugs and clinical features of psoriatic patients is becoming a promising option that potentially drives the translation of nanomaterials from bench to bedside with improved transdermal drug delivery and consequently therapeutic effects.
Collapse
Affiliation(s)
- Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yeping Qin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Dai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwei Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ping Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Interdisciplinary of Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| |
Collapse
|
25
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
26
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
27
|
Mehta CH, Narayan R, Acharya S, Nayak UY. Design and development of surface modified epigallocatechin 3-gallate NanoCubogel for localized delivery to oral submucous fibrosis therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54621-54647. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.
Collapse
Affiliation(s)
- Hao Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Cangqian, Yuhang District, Hangzhou 311121, China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Chen Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
29
|
Singh S, Sharma N, Behl T, Sarkar BC, Saha HR, Garg K, Singh SK, Arora S, Amran MS, Abdellatif AAH, Bilgrami AL, Ashraf GM, Rahman MS. Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics 2021; 13:pharmaceutics13111978. [PMID: 34834393 PMCID: PMC8623849 DOI: 10.3390/pharmaceutics13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disorder that moderately affects social and interpersonal relationships. Conventional treatments for psoriasis have certain problems, such as poor drug penetration through the skin, hyper-pigmentation, and a burning sensation on normal and diseased skin. Colloidal drug delivery systems overcome the pitfalls of conventional approaches for psoriasis therapeutics and have improved patient safety parameters, compliance, and superior effectiveness. They also entail reduced toxicity. This comprehensive review’s topics include the pathogenesis of psoriasis, causes and types of psoriasis, conventional treatment alternatives for psoriasis, the need for colloidal drug delivery systems, and recent studies in colloidal drug delivery systems for the treatment of psoriasis. This review briefly describes colloidal drug delivery approaches, such as emulsion systems—i.e., multiple emulsion, microemulsion, and nano-emulsion; vesicular systems—i.e., liposomes, ethosomes, noisomes, and transferosomes; and particulate systems—i.e., solid lipid nanoparticles, solid lipid microparticles, nano-structured lipid carriers, dendrimers, nanocrystals, polymeric nanoparticles, and gold nanoparticles. The review was compiled through an extensive search of the literature through the PubMed, Google Scholar, and ScienceDirect databases. A survey of literature revealed seven formulations based upon emulsion systems, six vesicular drug delivery systems, and fourteen particulate systems reported for antipsoriatic drugs. Based on the literature studies of colloidal approaches for psoriasis management carried out in recent years, it has been concluded that colloidal pharmaceutical formulations could be investigated broadly and have a broad scope for effective management of many skin disorders in the coming decades.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| | - Bidhan Chandra Sarkar
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Hasi Rani Saha
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Kanika Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Supriya Kamari Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Sandeep Arora
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| |
Collapse
|
30
|
Rashid SA, Bashir S, Naseem F, Farid A, Rather IA, Hakeem KR. Olive Oil Based Methotrexate Loaded Topical Nanoemulsion Gel for the Treatment of Imiquimod Induced Psoriasis-like Skin Inflammation in an Animal Model. BIOLOGY 2021; 10:biology10111121. [PMID: 34827114 PMCID: PMC8615261 DOI: 10.3390/biology10111121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Psoriasis, being chronic inflammatory illness, provoked by genetic and environmental factors is linked to several other life-threatening diseases. Methotrexate is regarded as gold standard for the management of psoriasis, so an attempt was made to incorporate this drug into nanoemulsion gel. Thus olive oil based formulation was fabricated to target animal model induced psoriasis- like skin inflammation. The optimized methotrexate nanoemulsion gel formulation produced a psoriasis area and severity Index (PASI) decrease that was similar or better than the 91% reduction seen in the methotrexate tablet group. The results of this study revealed effectiveness of methotrexate nanoemulsion gel formulation to treat psoriasis and reduce the remission of psoriasis-like symptoms. Abstract Psoriasis, a chronic inflammatory illness, is on the rise and is linked to several other life-threatening diseases. The primary goal of this study was to create a nanoemulsion gel loaded with methotrexate and olive oil (MTX NEG). The formulation was evaluated for physicochemical characterization, entrapment efficiency, drug release kinetics, skin permeation studies and stability tests. In addition, the efficacy of MTX NEG against psoriasis was tested using imiquimod-induced psoriasis in a rat model. The final optimized MTX NEG was developed with a particle size of 202.6 ± 11.59 nm and a PDI of 0.233 ± 0.01, with a 76.57 ± 2.48% average entrapment efficiency. After 20 h, the release kinetics predicted a 72.47% drug release at pH 5.5. FTIR findings demonstrated that the optimized MTX NEG formulation effectively fluidized both the epidermis and dermis of the skin, potentially increasing drug permeability and retention. The application of Tween 80 and PEG 400, on the other hand, significantly enhanced these effects, as these are well known penetration enhancers. After 24 h, an average of 70.78 ± 5.8 μg/cm2 of methotrexate was permeated from the nanoemulsion gel with a flux value of 2.078 ± 0.42 μg/cm2/h, according to permeation measurements. Finally, in vivo experiments on rabbit skin revealed that the increased skin penetration of methotrexate-loaded nanoemulsion gel was not due to structural alterations in intercellular lipid layers in the stratum corneum. In vivo antipsoriatic studies on rats revealed that MTX NEG produced a PASI decrease that was extremely similar and even better than the 91% reduction seen in the MTX tablet group. According to the pharmacokinetic profile, Cmax was 8.5 μg/mL, Tmax was 12 h, and t1/2 was 15.5 ± 2.37 h. These findings reinforce that MTX-NEG based on olive oil could be a possible treatment for psoriasis and could decrease the remission of psoriasis-like symptoms.
Collapse
Affiliation(s)
- Sheikh Abdur Rashid
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Faiza Naseem
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Arshad Farid
- Gomal Centre of Biochemistry & Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| |
Collapse
|
31
|
Yadav K, Singh D, Singh MR. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Optimization of dextran sulfate/poly-l-lysine based nanogels polyelectrolyte complex for intranasal ovalbumin delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Ay Şenyiğit Z, Coşkunmeriç N, Çağlar EŞ, Öztürk İ, Atlıhan Gündoğdu E, Siafaka PI, Üstündağ Okur N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm Dev Technol 2021; 26:852-866. [PMID: 34193003 DOI: 10.1080/10837450.2021.1948570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of this study was to develop and examine the nanogel-based topical delivery system of mupirocin. Nanogels were prepared with chitosan and bovine serum albumin by ionic gelation and Carbopol 940 was added to improve the gelling/adhesive properties. Detailed characterization studies were performed and the cellular binding capacity of radiolabeled nanogels was investigated on CCD-1070Sk cell lines. Results indicate the successful formation of nanogels with particle size and zeta potential ranged between 341.920-603.320 nm and 13.120-24.300 mV, respectively. The mechanical and rheological studies proved pseudoplastic and strong elastic gel behavior (G' > G''). Mupirocin was successfully entrapped into nanogels with a ratio of more than 95% and the loaded drug was slowly released up to 93.89 ± 3.07% within 24 h. The ex vivo penetration and permeation percentages of mupirocin were very low (1.172 ± 0.202% and 0.161 ± 0.136%) indicating the suitability of nanogels for dermal use against superficial skin infections. The microbiological studies pointed out the effectiveness of nanogels against Staphylococcus aureus strains. Nanogels did not show toxicity signs and the cell binding capacity of radiolabeled formulations was found to be higher than [99mTc]NaTcO4 to CCD-1070Sk cell line. Overall, mupirocin nanogels might be considered as a potential and safe topical treatment option for bacterial skin infections.
Collapse
Affiliation(s)
- Zeynep Ay Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nesrin Coşkunmeriç
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - İsmail Öztürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Panoraia I Siafaka
- Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,KES College, Nicosia, Cyprus
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
34
|
Dabholkar N, Rapalli VK, Singhvi G. Potential herbal constituents for psoriasis treatment as protective and effective therapy. Phytother Res 2021; 35:2429-2444. [PMID: 33277958 DOI: 10.1002/ptr.6973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a multifactorial and chronic skin disorder. It is a recurrent disease that requires incessant therapy. Psoriasis treatment includes topical and systemic routes using synthetic drugs that lead to severe unwanted adverse effects. Herbal therapy is widely used for thousands of years in countries like China and India. The use of herbal therapy in the developed region enhanced to a great extent and showed better efficacy towards psoriasis alone or as adjuvant to synthetic therapy. Herbal medicines have gained great attention in the treatment of psoriasis due to their lesser side effects compared to synthetic drugs. In this review, the various plant sources which have been found effective in psoriasis and can be used to develop novel therapeutics have been discussed. The mechanisms by which the phytoconstituents elicit anti-psoriatic activity and various research studies that have proven the effectiveness of these natural products have also been compiled in this review.
Collapse
Affiliation(s)
- Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vamshi K Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
35
|
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Formulation and evaluation of transdermal nanogel for delivery of artemether. Drug Deliv Transl Res 2021; 11:1655-1674. [PMID: 33742415 DOI: 10.1007/s13346-021-00951-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Artemether (ART) is second to artesunate in being the most widely used derivatives of artemisinin in combination therapy of malaria. Nanostructured lipid carrier (NLC) formulations were prepared following our previous report using optimized ART concentration of 0.25 g dissolved in 5% w/v mixture of solid (Gelucire 43/01 and Phospholipon 85G) and liquid (Transcutol) lipids at 90 °C. An aqueous surfactant phase at 90 °C was added (dropwise) under magnetic stirring (1000 rpm) for 5 min. The pre-emulsion was speedily homogenized at 28,000 rpm for 15 min and further probe sonicated at 60% amplitude (15 min). Resultant sample was cooled at room temperature and frozen at - 80 °C prior to lyophilization. The freeze-dried sample was used for solid-state characterization as well as in the formulation of transdermal nanogels using three polymers (Carbopol 971P, Poloxamer 407, and Prosopis africana peel powder) to embed the ART-NLC, using ethanol as a penetration enhancer. Transdermal ART-nanogels were characterized accordingly (physical examination, pH, drug content, rheology, spreadability, stability, particle size and morphology, skin irritation, in vitro and ex vivo skin permeation, and analysis of permeation data), P < 0.05. Results indicated that ART nanogels showed good encapsulation, drug release, pH-dependent swelling, stability, and tolerability. Overall, ART nanogels prepared from Poloxamer 407 showed the most desirable drug permeation, pH, swellability, spreadability, viscosity, and transdermal antiplasmodial properties superior to PAPP-ANG > C971P-ANG. A two-patch/week concurrent application of the studied nanogels could offer 100% cure of malaria as a lower-dose (50 mg ART) patient-friendly regimen devoid of the drug's many side effects.
Collapse
|
37
|
Pradhan M, Alexander A, Singh MR, Singh D, Saraf S, Saraf S, Yadav K, Ajazuddin. Statistically optimized calcipotriol fused nanostructured lipid carriers for effectual topical treatment of psoriasis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ramanunny AK, Wadhwa S, Singh SK, Sharma DS, Khursheed R, Awasthi A. Treatment Strategies Against Psoriasis: Principle, Perspectives and Practices. Curr Drug Deliv 2020; 17:52-73. [PMID: 31752655 DOI: 10.2174/1567201816666191120120551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psoriasis is a genetically predisposed autoimmune disease mediated by cytokines released by the activated immune cells. It manifests inflammatory, scaly red or white silvery flaky skin which may be a fluid-filled lesion with soreness and itchiness. The prevalence rate of psoriasis is increasing day by day. Despite having such a high prevalence rate, the treatment of psoriasis is still limited. Hence, there is a need to rethink the various treatment strategies available in the allopathic as well as in the alternative systems of medicine. METHODS Various bibliographic databases of previously published peer-reviewed research papers were explored and systematic data culminated in terms of various treatment strategies used for the management of psoriasis. The prime focus is given towards modern as well as alternative systems of medicine such as phototherapy, a combination of phototherapy with pharmacotherapy such as Ayurveda, Yoga and naturopathy, Unani, Siddha, and Homeopathy to treat psoriasis. RESULTS A comprehensive review of 161 papers, including both research and review articles, was carried out to make the article readily understandable. The pathogenesis including inflammatory mediators and type of psoriasis is discussed before the treatment strategies to understand the pathophysiology of the disease. The uniqueness, procedure, advantages, and limitations of conventional, advanced, and traditional systems of medicine to treat psoriasis are discussed in detail. Emphasis has also been given towards marine sources such as fish oil, marine sponges, and algae. CONCLUSION Although there are many modern and alternative treatment strategies available to treat psoriasis, none of them have been proven to provide complete relief to patients. Moreover, they are associated with certain side effects. In order to overcome them, novel drug delivery systems have been utilized and found effective; however, their stability and safety become the major impediments towards their successful positioning. Traditional and alternative treatment strategies have found to be safe and effective but their use is localized to certain areas. In a nutshell, to achieve successful treatment of psoriasis, there is a need to focus on the development of stable and non-toxic novel drug delivery systems or the promotion of traditional systems to treat psoriasis.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| |
Collapse
|
40
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
41
|
Development, characterization and evaluation of nanocarrier based formulations of antipsoriatic drug “acitretin” for skin targeting. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Ramanunny AK, Wadhwa S, Thakur D, Singh SK, Kumar R. Treatment Modalities of Psoriasis: A Focus on Requisite for Topical Nanocarrier. Endocr Metab Immune Disord Drug Targets 2020; 21:418-433. [PMID: 32496998 DOI: 10.2174/1871530320666200604162258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Psoriasis is an autoimmune skin disease involving cascading release of cytokines activated by the innate and acquired immune system. The increasing prevalence rate of psoriasis demands for more appropriate therapy. The existing chemical moiety is promising for better therapeutic outcome, but the selection of a proper channel for administration has to be reviewed. Hence there is a need to select the most appropriate dosage form and route of administration for improving the curative rate of psoriasis. RESULTS A total of 108 systematic reviews of research and review articles were conducted to make the manuscript comprehensible. The role of inflammatory mediators in the pathogenesis of the disease is discussed for a better understanding of the selection of pharmacotherapy. The older and newer therapeutic moiety with its mode of administration for psoriasis treatment has been discussed. With a comparative review on topical and oral administration of first-line drugs such as methotrexate (MTX), cyclosporine (CsA), and betamethasone, its benefits-liabilities in the selected routes were accounted for. Emphasis has also been paid on advanced nanocarriers for dermatologic applications. CONCLUSION For a better therapeutic outcome, proper selection of drug moiety with its appropriate administration is the major requisite. With the advent of nanotechnology, the development of nanocarrier for dermatologic application has been successfully demonstrated in positioning the systemically administrated drug into topical targeted delivery. In a nutshell, to achieve successful treatment strategies towards psoriasis, there is a need to focus on the development of stable, non-toxic nanocarrier for topical delivery. Inclusion of the existing orally administered drug moiety into nanocarriers for topical delivery is proposed in order to enhance therapeutics payload with reduced side effects which serves as a better treatment approach for relief of the psoriasis condition.
Collapse
Affiliation(s)
- Arya K Ramanunny
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Divya Thakur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
43
|
Pandey K. An Overview on Promising Nanotechnological Approaches for the Treatment of Psoriasis. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:102-118. [PMID: 32013854 DOI: 10.2174/1872210514666200204124130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Psoriasis is a chronic autoimmune disorder of the skin which is characterized by the reoccurring episodes of inflammatory lesions with a worldwide occurrence of around 2-5%. Psoriasis can be categorized as mild, moderate and severe conditions. In mild psoriasis, there is the formation of rashes, and when it becomes moderate, the skin turns scaly. In severe conditions, the red patches can be seen on the skin surface and the skin becomes itchy. The different treatment approaches include phototherapy, topical, oral and other systemic drug deliveries. Dermal treatment is now highly endorsed in topical indications for psoriatic patients, due to its higher penetration which can be achieved using pharmaceutical carriers. OBJECTIVE Though various conventional formulations are there, therapeutic benefits can be provided only to a limited extent. The objective of this review was to highlight newer biocompatible and biodegradable materials like phospholipids, and forefront drug delivery methods like liposomes, microemulsions, nanoemulsions, niosomes, ethosomes, etc. which has increased the possibility to improve the efficacy and safety of the topical products. Apart from this, many medicinal plants are available in nature that are used for treating skin diseases like psoriasis. CONCLUSION The new trends in nanotechnology are marked by subsequent changes in the pharmaceutical research field. To safeguard the research works in the research field, various patents have been introduced, such as Glaxo Smith Kline (GSK 2981278) - RORγ antagonist, etc. The causes, pathophysiology and the herbal plants that are used in treating the disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Pandey
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| |
Collapse
|
44
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
45
|
Mielanczyk A, Mrowiec K, Kupczak M, Mielanczyk Ł, Scieglinska D, Gogler-Piglowska A, Michalski M, Gabriel A, Neugebauer D, Skonieczna M. Synthesis and in vitro cytotoxicity evaluation of star-shaped polymethacrylic conjugates with methotrexate or acitretin as potential antipsoriatic prodrugs. Eur J Pharmacol 2019; 866:172804. [PMID: 31738938 DOI: 10.1016/j.ejphar.2019.172804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Water-soluble polymer-drug conjugates were obtained and analyzed towards their potential use as prodrugs for two hydrophobic antipsoriatic agents, including methotrexate (MTX) and acitretin (AC). The conjugation efficacy of MTX decreased with a decreasing molar ratio of N,N-dimethylaminoethyl methacrylate (DMAEMA) repeating units in the polymethacrylic chains. Cytotoxicity of positively charged (from +5 to +10 mV) nano- and microparticles (3-1500 nm in DMEM at 37 °C) were estimated by in vitro MTT and Annexin-V apoptosis assays on Me45, NHDF, HaCaT and BEAS-2B cell lines. Further, cell cycle analysis revealed arrest in G0/G1 phase in melanoma cells, while neither apoptosis induction nor cell cycle arrest occurred in normal epidermal and epithelial cells. Tested conjugates displayed a novel cytostatic effect in Me45 cells and a pro-apoptotic effect in HaCaT cells. Epithelial BEAS-2B cells were the most sensitive to the tested conjugates and responded via induction of necrosis. Cell line models allowed for characterization of the biologically relevant potential action of pro-drugs. Additionally, a skin in vitro evaluation assay provided the first known evidence of side-effect reduction with pro-drug use. Histological examinations confirmed the lack of negative effects of conjugates on the skin and showed no irritating properties.
Collapse
Affiliation(s)
- Anna Mielanczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland.
| | - Katarzyna Mrowiec
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland
| | - Łukasz Mielanczyk
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Piglowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Andrzej Gabriel
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- System Engineering Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
46
|
Dong X, Zeng Y, Liu Y, You L, Yin X, Fu J, Ni J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother Res 2019; 34:270-281. [PMID: 31680350 DOI: 10.1002/ptr.6532] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
Aloe-emodin is a naturally anthraquinone derivative and an active ingredient of Chinese herbs, such as Cassia occidentalis, Rheum palmatum L., Aloe vera, and Polygonum multiflorum Thunb. Emerging evidence suggests that aloe-emodin exhibits many pharmacological effects, including anticancer, antivirus, anti-inflammatory, antibacterial, antiparasitic, neuroprotective, and hepatoprotective activities. These pharmacological properties lay the foundation for the treatment of various diseases, including influenza virus, inflammation, sepsis, Alzheimer's disease, glaucoma, malaria, liver fibrosis, psoriasis, Type 2 diabetes, growth disorders, and several types of cancers. However, an increasing number of published studies have reported adverse effects of aloe-emodin. The primary toxicity among these reports is hepatotoxicity and nephrotoxicity, which are of wide concern worldwide. Pharmacokinetic studies have demonstrated that aloe-emodin has a poor intestinal absorption, short elimination half-life, and low bioavailability. This review aims to provide a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of aloe-emodin reported to date with an emphasis on its biological properties and mechanisms of action.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Tiwari N, Sonzogni AS, Calderón M. Can dermal delivery of therapeutics be improved using thermoresponsive nanogels? Nanomedicine (Lond) 2019; 14:2891-2895. [DOI: 10.2217/nnm-2019-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Neha Tiwari
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ana S Sonzogni
- Group of Polymers & Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
48
|
A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int J Pharm 2019; 570:118659. [PMID: 31493495 DOI: 10.1016/j.ijpharm.2019.118659] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 09/01/2019] [Indexed: 11/22/2022]
Abstract
This study aimed to develop a dual action, namely anti-inflammatory and antimicrobial, nanogels (NG) for the treatment of periodontitis using triclosan (TCS) and flurbiprofen (FLB). Triclosan, an antimicrobial drug, was prepared as nanoparticles (NPs) using poly-ε-caprolactone (PCL), while flurbiprofen, an anti-inflammatory drug, was directly loaded in a chitosan (CS) based hydrogel. The entwinement of both NPs and hydrogel loaded systems resulted in the NG. The characterisation data confirmed that the developed formulation consists of nanosized spherical structures and displays pH-dependent swelling/erosion and temperature-responsiveness. Besides, the NG exhibited adequate bioadhesiveness using the chicken pouch model and displayed antibacterial activity through the agar plate method. An in-vivo study of the NG on experimental periodontitis (EP) rats confirmed the dual antibacterial and anti-inflammatory effects which revealed an excellent therapeutic outcome. In conclusion, a dual action NG was successfully developed and proved to have superior therapeutic effects in comparison to physical mixtures of the individual drugs.
Collapse
|
49
|
Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019; 307:221-246. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
Abstract
The current limitations in the use of nanocarriers to treat constantly evolving diseases call for the design of novel and smarter drug delivery systems (DDS). Nanogels (NGs) are three-dimensional crosslinked polymers with dimensions on the nanoscale and with a great potential for use in the biomedical field. Particular interest focuses on their application as DDS to minimize severe toxic effects and increase the therapeutic index of drugs. They have recently gained attention, since they can include responsive modalities within their structure, which enable them to excerpt a therapeutic function on demand. Their bigger sizes and controlled architecture and functionality, when compared to non-crosslinked polymers, make them particularly interesting to explore novel modalities to cross biological barriers. The present review summarizes the most significant developments of NGs as smart carriers, with focus on smart modalities to cross biological barriers such as cellular membrane, tumor stroma, mucose, skin, and blood brain barrier. We discuss the properties of each barrier and highlight the importance that the NG design has on their capability to overcome them and deliver the cargo at the site of action.
Collapse
Affiliation(s)
- Julio César Cuggino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina; Grupo de Polímeros, Departamento de Ingeniería Química, Facultad Regional San Francisco, Universidad Tecnológica Nacional. Av. de la Universidad 501, San Francisco, 2400 Córdoba, Argentina
| | - Ernesto Rafael Osorio Blanco
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany; POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Luis Marcelino Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Cecilia Inés Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), IPQA-CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| | - Marcelo Calderón
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
50
|
Sreedhar R, Kumar VS, Bhaskaran Pillai AK, Mangalathillam S. Omega-3 Fatty Acid Based Nanolipid Formulation of Atorvastatin for Treating Hyperlipidemia. Adv Pharm Bull 2019; 9:271-280. [PMID: 31380253 PMCID: PMC6664121 DOI: 10.15171/apb.2019.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: In the current study, attempts have been made to formulate an omega-3 fatty acid based nanostructured lipid carriers of atorvastatin (AT), for treating hyperlipidemia; and to evaluate their antihyperlipidemic activity using in vitro and in vivo studies. Methods: Omega-3 fatty acid based AT-loaded nanolipid carriers (NLC) were formulated by the melt emulsification ultrasonication technology. The prepared NLC consist of stearic acid (as solid lipid), omega-3 fatty acid (as liquid lipid), Tween 80, poloxamer 188 (surfactants) and soya-lecithin (co-surfactant). Results: AT loaded NLCs have a particle size of 74.76 ± 4.266 nm, a zeta potential value of -36.03 ± 1.504 mV and a high drug entrapment efficiency (EE) of 86.70 % ± 0.155. The release of AT from NLCs exhibited a sustained behaviour, which made it an ideal vehicle for drug delivery. MTT assay results indicated that NLCs are compatible with L929 (mouse fibroblast) cell lines. Anti-hyperlipidemic study showed a significant reduction in LDL and TG levels in serum with the orally administered Omega-3 fatty acid based AT loaded NLCs when compared to marketed formulation. Conclusion: The results demonstrated that the omega-3 fatty acid based NLC has the potential to be a promising nanomedicine for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Revathy Sreedhar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Vrinda Sasi Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Sabitha Mangalathillam
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|