1
|
De Angelis E, Borghetti P, Passeri B, Cavalli V, Ferrari L, Andrani M, Martelli P, Saleri R. Hyperosmotic Stress Induces the Expression of Organic Osmolyte Transporters in Porcine Intestinal Cells and Betaine Exerts a Protective Effect on the Barrier Function. Biomedicines 2024; 12:2391. [PMID: 39457703 PMCID: PMC11503993 DOI: 10.3390/biomedicines12102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The porcine intestinal epithelium plays a fundamental role as a defence interface against pathogens. Its alteration can cause severe inflammatory conditions and diseases. Hyperosmotic stress under physiological conditions and upon pathogen challenge can cause malabsorption. Different cell types counteract the osmolarity increase by accumulating organic osmolytes such as betaine, taurine, and myo-inositol through specific transporters. Betaine is known for protecting cells from hyperosmotic stress and has positive effects when fed to pigs. The aim of this study is to demonstrate the modulation of osmolyte transporters gene expression in IPEC-J2 during osmolarity changes and assess the effects of betaine. Methods: IPEC-J2 were seeded in transwells, where differentiate as a polarized monolayer. Epithelial cell integrity (TEER), oxidative stress (NO) and gene expression of osmolyte transporters, tight junction proteins (TJp) and pro-inflammatory cytokines were evaluated. Results: Cells treated with NaCl hyperosmolar medium (500 mOsm/L) showed a TEER decrease at 3 h and detachment within 24 h, associated with an osmolyte transporters reduction. IPEC-J2 treated with mannitol hyperosmolar medium (500 mOsm/L) upregulated taurine (TauT), myo-inositol (SMIT) and betaine (BGT1) transporters expression. A decrease in TJp expression was associated with a TEER decrease and an increase in TNFα, IL6, and IL8. Betaine could attenuate the hyperosmolarity-induced reduction in TEER and TJp expression, the NO increase and cytokines upregulation. Conclusions: This study demonstrates the expression of osmolyte transporters in IPEC-J2, which was upregulated upon hyperosmotic treatment. Betaine counteracts changes in intracellular osmolarity by contributing to maintaining the epithelial barrier function and reducing the inflammatory condition. Compatible osmolytes may provide beneficial effects in therapies for diseases characterized by inflammation and TJp-related dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (E.D.A.); (P.B.); (B.P.); (V.C.); (L.F.); (P.M.); (R.S.)
| | | | | |
Collapse
|
2
|
Grigorean G, Du X, Kuhfeld R, Haberl EM, Lönnerdal B. Effect of In Vitro Digestion on Bioactive Peptides Related to Immune and Gut Health in Intact Cow's Milk and Hydrolyzed Protein-Based Infant Formulas. Nutrients 2024; 16:3268. [PMID: 39408235 PMCID: PMC11479043 DOI: 10.3390/nu16193268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Human milk is the optimal source of nutrition and protection against infection for infants. If breastfeeding is not possible, standard and hydrolyzed infant formulas (IF) are an alternative. Extensively hydrolyzed IFs (eHFs) contain bioactive peptides, but their activities have rarely been evaluated. The aim of this study was to characterize and compare the bioactive peptide profiles of different eHFs and standard IFs before and after in vitro digestion. Methods: Two forms, liquid and powder, of intact protein formula (iPF) and eHF were subjected to in vitro gastrointestinal digestion, mimicking a young infant's gut (age 0-4 months) and an older infant's gut (>6 months). Bioactive peptides of in vitro digested and undigested formulas were analysed with Liquid Chromatography-Mass Spectrometry (LC-MS). Results: In all samples, a variety of peptides with potential bioactive properties were found. Immuno-regulatory peptides, followed by antimicrobial and antioxidative peptides were most frequent, as were peptides promoting wound healing, increasing mucin secretion, regulating cholesterol metabolism, and preventing bacterial infection. Peptides typically found in yoghurt and colostrum were identified in some formula samples. Conclusions: The high amounts of bioactive peptides with various properties in eHFs and iPFs indicate a possible contribution to infection protection, healthy gut microbiomes, and immunological development of infants. eHFs showed similar compositions of bioactive peptides to iPFs, with intermittently increased peptide variety and quantity.
Collapse
Affiliation(s)
- Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Russell Kuhfeld
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| | | | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
3
|
Campos LL, Oliveira SRM, Amaral MNS, Gallotti B, Oliveira AF, Arantes RME, Ribeiro-Souza S, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Oral Treatment with Saccharomyces cerevisiae CNCM I-3856 Mitigates the Inflammatory Response Experimentally Induced by Salmonella enterica subsp. enterica Serovar Typhimurium in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10359-4. [PMID: 39243351 DOI: 10.1007/s12602-024-10359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Salmonella spp. are intracellular, Gram-negative pathogens responsible for a range of diarrheal diseases, which can present either as self-limited (gastroenteritis) or as a systemic form (typhoid fever), characterizing a serious public health problem. In this study, we investigated the therapeutic effects of oral administration of Saccharomyces cerevisiae CNCM I-3856 in a murine model infected with Salmonella Typhimurium (ST). This yeast species has previously demonstrated the potential to support immune function and reduce inflammation and the ability to exert antimicrobial activity, which is important considering the increasing prevalence of antibiotic-resistant bacteria. Our findings revealed that mice infected with ST and only treated with sterile saline exhibited a higher mortality rate and body weight loss. In contrast, mice treated with I-3856 showed a notable reduction in these adverse outcomes. The yeast demonstrated a high capacity for co-aggregation with the pathogen. Furthermore, the significant amounts of yeast found in the feces of treated mice suggest that intestinal colonization was effective, which was associated with several beneficial effects, including reduced intestinal permeability, which likely limits bacterial translocation to extraintestinal organs. Additionally, the administration of I-3856 reduced levels of sIgA and resulted in a decrease in the recruitment of neutrophils and eosinophils to infection sites, indicating a modulation of the inflammatory response. Histological analyses showed attenuated liver and intestinal lesions in the yeast-treated mice, corroborating the protective effects of the yeast. In conclusion, the results suggest that S. cerevisiae CNCM I-3856 has the potential to control the inflammatory response experimentally induced by S. Typhimurium when administered to mice.
Collapse
Affiliation(s)
- Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline F Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha Ribeiro-Souza
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Zhang Y, Zhang H. Current understanding and new insights in the treatment of IgA nephropathy. Nephrology (Carlton) 2024; 29 Suppl 2:75-79. [PMID: 38958055 DOI: 10.1111/nep.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, and almost all patients are at risk of progression to end-stage kidney disease within their lifetime. The mechanisms responsible for the presentation and development of IgAN are required for the development of highly targeted therapies for this disease. In this review, we first demonstrate the current treatment strategy of IgAN recommended by the 2021 KDIGO guideline. Then, we update the new insights into disease pathogenesis based on the well acknowledged 'multiple-hit hypothesis' and provide the potential therapeutic targets involved in the upstream production of pathogenic IgA1 and the downstream complement activation. Finally, the recent large randomized controlled trials focusing on these novel targets have been summarized, among which Nefecon and Sparsentan have received approval and Telitacicept have been used off-label for IgAN. In the future, emerging treatment approaches for IgAN is likely to evolve, which will signify a shift in the management of the IgAN from traditional immunosuppressive approaches to an era of targeted treatment based on the understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zhu Y, Cai H, Yan Z, Shen H, Fang S, Wang D, Liao S, Qi N, Lv M, Lin X, Hu J, Song Y, Chen X, Yin L, Zhang J, Li J, Sun M. Alleviating Pentatrichomonas hominis-induced damage in IPEC-J2 cells: the beneficial influence of porcine-derived lactobacilli. Vet Res Commun 2024; 48:2331-2342. [PMID: 38771449 DOI: 10.1007/s11259-024-10414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pentatrichomonas hominis is a common intestinal parasitic protozoan that causes abdominal pain and diarrhea, and poses a zoonotic risk. Probiotics, known for enhancing immunity and pathogen resistance, hold promise in combating parasitic infections. This study aimed to evaluate two porcine-derived probiotics, Lactobacillus reuteri LR1 and Lactobacillus plantarum LP1, against P. hominis infections in pigs. Taxonomic identity was confirmed through 16 S rRNA gene sequencing, with L. reuteri LR1 belonging to L. reuteri species and L. plantarum LP1 belonging to L. plantarum species. Both probiotics exhibited robust in vitro growth performance. Co-culturing intestinal porcine epithelial cell line (IPEC-J2) with these probiotics significantly improved cell viability compared with the control group. Pre-incubation probiotics significantly enhanced the mRNA expression of anti-oxidative response genes in IPEC-J2 cells compared with the PHGD group, with L. reuteri LR1 and L. plantarum LP1 significantly up-regulating CuZn-SOD、CAT and Mn-SOD genes expression (p < 0.05). The anti-oxidative stress effect of L. reuteri LR1 was significantly better than that of L. plantarum LP1 (p < 0.05). Furthermore, pre-incubation with the probiotics alleviated the P. hominis-induced inflammatory response. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated IL-6、IL-8 and TNF-α gene expression(p < 0.05) compared with the PHGD group. The probiotics also mitigated P. hominis-induced apoptosis. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated Caspase3 and Bax gene expression (p < 0.05), significantly up-regulated Bcl-2 gene expression (p < 0.05) compared with the PHGD group. Among them, L. plantarum LP1 showed better anti-apoptotic effect. These findings highlight the probiotics for mitigating P. hominis infections in pigs. Their ability to enhance anti-oxidative responses, alleviate inflammation, and inhibit apoptosis holds promise for therapeutic applications. Simultaneously, probiotics can actively contribute to inhibiting trichomonal infections, offering a novel approach for preventing and treating diseases such as P. hominis. Further in vivo studies are required to validate these results and explore their potential in animal and human health.
Collapse
Affiliation(s)
- Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Hanqin Shen
- Guangdong Jingjie Inspection and Testing Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Siyun Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Dingai Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Cinca-Morros S, Álvarez-Herms J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024; 12:1160. [PMID: 38930542 PMCID: PMC11205789 DOI: 10.3390/microorganisms12061160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Physiology and Molecular Laboratory (Phymolab), 40170 Collado Hermoso, Spain;
| |
Collapse
|
7
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
8
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
9
|
Nguyen A, du Toit G, Lack G, Marrs T. Optimising the management of peanut allergy by targeting immune plasticity. Clin Exp Allergy 2024; 54:169-184. [PMID: 38423799 DOI: 10.1111/cea.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 03/02/2024]
Abstract
Randomised controlled trials investigating the efficacy of oral tolerance induction to peanut have enabled detailed comparison of their clinical and immunological success. They have demonstrated that the regular consumption of peanut for at least 2 years by babies who are not allergic enables protection from developing peanut allergy. The LEAP study intervention tested the impact of regular peanut consumption for 4 years and demonstrated a sustained protection against the development of peanut allergy even after 12 months of peanut avoidance from 5 to 6 years of age. The PreventADALL trial introduced multiple allergens into babies' diets from early infancy and reduced the prevalence of food allergy at 3 years, especially by protecting against peanut allergy. Immunological studies from the LEAP cohort demonstrated that regular peanut consumption was associated with a prompt induction of peanut-specific IgG4 and reduced manufacture of peanut and Ara h 2-specific IgE. Even after stopping peanut consumption for 5 years, there continued to be a significant fall in peanut-specific Ara h 2 IgE in the consumption group from 5 to 6 years of age (p < .01). Children who developed peanut allergy by 5 years started to develop increasing sensitisation to linear sequential peanut epitopes from 2.5 years of age, suggesting that putative disease-modifying interventions should commence before 3 years. Data comparing clinical outcomes between children undergoing peanut immunotherapy from infancy suggest that younger children can consume higher portions of peanut without reaction on challenge whilst taking immunotherapy, have fewer side effects and are more likely to enjoy remission of PA. Peanut oral immunotherapy modulates T-cell populations in order to bring about hypo-responsiveness of allergy effector cells. Studies are now needed to characterise and compare different states of immunological tolerance. This will accelerate the design of interventions which can promote primary, secondary and tertiary levels of PA prevention across a range of age groups.
Collapse
Affiliation(s)
- Alan Nguyen
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - George du Toit
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
- Children's Allergies, Evelina London, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - Gideon Lack
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
| | - Tom Marrs
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
- Children's Allergies, Evelina London, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| |
Collapse
|
10
|
Gravina A, Olivero F, Brindisi G, Comerci AF, Ranucci C, Fiorentini C, Sculco E, Figliozzi E, Tudini L, Matys V, De Canditiis D, Piccioni MG, Zicari AM, Anania C. Dietary Intervention during Weaning and Development of Food Allergy: What Is the State of the Art? Int J Mol Sci 2024; 25:2769. [PMID: 38474015 DOI: 10.3390/ijms25052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Food allergy (FA) affects approximately 6-8% of children worldwide causing a significant impact on the quality of life of children and their families. In past years, the possible role of weaning in the development of FA has been studied. According to recent studies, this is still controversial and influenced by several factors, such as the type of food, the age at food introduction and family history. In this narrative review, we aimed to collect the most recent evidence about weaning and its role in FA development, organizing the gathered data based on both the type of study and the food. As shown in most of the studies included in this review, early food introduction did not show a potential protective role against FA development, and we conclude that further evidence is needed from future clinical trials.
Collapse
Affiliation(s)
- Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonia Fortunata Comerci
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Ranucci
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Fiorentini
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Eleonora Sculco
- Department of Translation and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ethel Figliozzi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Tudini
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Matys
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Xing L, Li T, Zhang Y, Bao J, Wei H, Li J. Intermittent and Mild Cold Stimulation Maintains Immune Function Stability through Increasing the Levels of Intestinal Barrier Genes of Broilers. Animals (Basel) 2023; 13:2138. [PMID: 37443936 DOI: 10.3390/ani13132138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In order to improve the adaptability of broilers to low-temperature environments and their ability to resist acute cold stress (ACS), 240 one-day-old broilers were selected and randomly divided into three groups. The control treatment (CC) group was raised at the conventional feeding temperature from 1-43 days (d), the cold stimulation treatment (CS) group was kept at 3 °C below the temperature of CC at 1 d intervals for 3 and 6 h from 15 to 35 d, namely, CS3 and CS6, respectively. Then, all broilers were kept at 20 °C from 36 to 43 d. ACS was then carried out at 44 d, and the ambient temperature was dropped to 10 °C for 6 h. The study investigated the production performance, as well as levels of intestinal barrier genes (including Claudin-1, E-cadherin, Occludin, ZO-1, ZO-2 and Mucin2), secretory IgA in duodenum and jejunum, and immunoglobulins (IgA and IgG) in serum. The results showed that IMCS could increase the daily weight gain and decrease the feed conversion ratio. During IMCS, the expression levels of intestinal barrier genes were up-regulated and the content of secretory IgA was increased. When IMCS ceased for one week, the level of immunoglobulins in serum stabilized, and the expression levels of Occludin, ZO-2 and Mucin2 still maintained high levels. After ACS, broilers that received IMCS training maintained high levels of intestinal barrier genes and secretory IgA.
Collapse
Affiliation(s)
- Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
12
|
Zou YF, Li CY, Fu YP, JiZe XP, Zhao YZ, Peng X, Wang JY, Yin ZQ, Li YP, Song X, Li LX, Zhao XH, Feng B, Huang C, Ye G, Tang HQ, Chen J, Li R, Chen XF, Tian ML. Angelica sinensis aboveground part polysaccharide and its metabolite 5-MT ameliorate colitis via modulating gut microbiota and TLR4/MyD88/NF-κB pathway. Int J Biol Macromol 2023; 242:124689. [PMID: 37148926 DOI: 10.1016/j.ijbiomac.2023.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu-Zhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jing-Yi Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, China College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
13
|
Raj V, Venkataraman B, Ojha SK, Almarzooqi S, Subramanian VS, Al-Ramadi BK, Adrian TE, Subramanya SB. Cis-Nerolidol Inhibits MAP Kinase and NF-κB Signaling Pathways and Prevents Epithelial Tight Junction Dysfunction in Colon Inflammation: In Vivo and In Vitro Studies. Molecules 2023; 28:molecules28072982. [PMID: 37049744 PMCID: PMC10096091 DOI: 10.3390/molecules28072982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn’s disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability. Nerolidol (NED), a naturally occurring sesquiterpene alcohol, has potent anti-inflammatory properties in preclinical models of colon inflammation. In this study, we investigated the effect of NED on MAPKs, NF-κB signaling pathways, and intestine epithelial tight junction physiology using in vivo and in vitro models. The effect of NED on proinflammatory cytokine release and MAPK and NF-κB signaling pathways were evaluated using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. Subsequently, the role of NED on MAPKs, NF-κB signaling, and the intestine tight junction integrity were assessed using DSS-induced colitis and LPS-stimulated Caco-2 cell culture models. Our result indicates that NED pre-treatment significantly inhibited proinflammatory cytokine release, expression of proteins involved in MAP kinase, and NF-κB signaling pathways in LPS-stimulated RAW macrophages and DSS-induced colitis. Furthermore, NED treatment significantly decreased FITC-dextran permeability in DSS-induced colitis. NED treatment enhanced tight junction protein expression (claudin-1, 3, 7, and occludin). Time-dependent increases in transepithelial electrical resistance (TEER) measurements reflect the formation of healthy tight junctions in the Caco-2 monolayer. LPS-stimulated Caco-2 showed a significant decrease in TEER. However, NED pre-treatment significantly prevented the fall in TEER measurements, indicating its protective role. In conclusion, NED significantly decreased MAPK and NF-κB signaling pathways and decreased tight junction permeability by enhancing epithelial tight junction protein expression.
Collapse
Affiliation(s)
- Vishnu Raj
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Saeeda Almarzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | | | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. BOX 15551, United Arab Emirates
| | - Thomas E. Adrian
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
14
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Mo W, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. STIM1 promotes IPEC-J2 porcine epithelial cell restitution by TRPC1 signaling. Anim Biotechnol 2022; 33:1492-1503. [PMID: 33866928 DOI: 10.1080/10495398.2021.1910044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal epithelial restitution is partly dependent on cell migration, which reseals superficial wounding after injury. Here, we tested the hypothesis that stromal interaction molecule 1(STIM1) regulates porcine intestinal epithelial cell migration by activating transient receptor potential canonical 1 (TRPC1) signaling. Results showed that the knockdown of STIM1 repressed cell migration after wounding, reduced the protein concentration of STIM1 and TRPC1, and decreased the inositol trisphosphate (IP3) content in IPEC-J2 cells (p < 0.05). However, overexpression of STIM1 obtained opposite results (p < 0.05). The inhibition of TRPC1 activity by treatment with SKF96365 in cells overexpressing wild-type and mutant STIM1 attenuated the STIM1 overexpression-induced increase of cell migration, STIM1, TRPC1 and IP3 (p < 0.05). In addition, polyamine depletion caused by α-difluoromethylornithine (DFMO) resulted in the decrease of above-mentioned parameters, and exogenous polyamine could attenuate the negative effects of DFMO on IPEC-J2 cells (p < 0.05). Moreover, the overexpression of STIM1 could rescue cell migration, the protein level of STIM1 and TRPC1, and IP3 content in polyamine-deficient IPEC-J2 cells (p < 0.05). These results indicated that STIM1 could enhance porcine intestinal epithelial cell migration via the TRPC1 signaling pathway. Inhibition of cell migration by polyamine depletion resulted from the reduction of STIM1 activity.
Collapse
Affiliation(s)
- Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Niewiem M, Grzybowska-Chlebowczyk U. Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients 2022; 14:nu14204385. [PMID: 36297068 PMCID: PMC9608842 DOI: 10.3390/nu14204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Food allergy (FA) has a broad range of symptoms, and clinical manifestations may concern several reactions from one system or organ. Aim: The aim of the study was to assess intestinal permeability (IP) based on the analysis of serum zonulin and bacterial lipopolysaccharides (LPS) levels in children with FA, taking into account the pathomechanism of immune reaction, clinical symptoms of FA and their severity. Material and methods: The study comprised 103 patients aged 7–60 months (median 34); 49 children with IgE-mediated allergy and 25 children with non-IgE-mediated allergy; the reference group comprised 29 children with functional gastrointestinal disorders. IP markers were determined using ELISA. Results: There was no correlation between the severity of clinical symptoms and the level of IP markers in children with FA. Zonulin and LPS levels were significantly higher in children with FA and gastrointestinal symptoms. Zonulin levels in the subgroup of children with non-IgE-mediated FA and gastrointestinal symptoms were significantly higher than in the subgroup of children with IgE-mediated FA and these symptoms. The level of LPS was significantly higher in the subgroup with IgE-mediated FA and atopic dermatitis. Conclusions: Zonulin and LPS levels were significantly higher in children with FA compared to children from the reference group. Zonulin levels were significantly higher in children with non-IgE-mediated FA than in children with IgE-mediated FA.
Collapse
|
17
|
Sanchez-Russo L, Rajasekaran A, Bin S, Faith J, Cravedi P. The Gut and Kidney Crosstalk in Immunoglobulin A Nephropathy. KIDNEY360 2022; 3:1630-1639. [PMID: 36245664 PMCID: PMC9528376 DOI: 10.34067/kid.0002382022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Immunoglobulin A nephropathy(IgAN) is the most common primary glomerulonephritis worldwide. The working model for the pathogenesis of IgAN involves a multistep process starting from the production of galactose-deficient and polymeric immunoglobulin A-1 (gd-IgA1) that enters systemic circulation from gut-associated lymphoid tissue (GALT). Galactose-deficient IgA are targeted by endogenous IgG, leading to the formation of circulating immune complexes that deposit in the mesangium and resulting in glomerular inflammation. Disease onset and relapses are often associated with gut infections, supporting the hypothesis that the gut plays an important pathogenic role. In the presence of microbial pathogens or food antigens, activated dendritic cells in the gut mucosa induce T cell dependent and independent B cell differentiation into IgA secreting plasma cells. In IgAN patients, this promotes the systemic release of mucosal gd-IgA1. Not all bacterial strains have the same capacity to elicit IgA production, and little is known about the antigen specificity of the pathogenic gd-IgA1. However, efficacy of treatments targeting gut inflammation support a pathogenic link between the bowel immune system and IgAN. Herein, we review the evidence supporting the role of gut inflammation in IgAN pathogenesis.
Collapse
Affiliation(s)
- Luis Sanchez-Russo
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arun Rajasekaran
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sofia Bin
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Jeremiah Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
18
|
Zou YF, Li CY, Fu YP, Jiang QX, Peng X, Li LX, Song X, Zhao XH, Li YP, Chen XF, Feng B, Huang C, Jia RY, Ye G, Tang HQ, Yin ZQ. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115446. [PMID: 35675860 DOI: 10.1016/j.jep.2022.115446] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bing Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
19
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
20
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Galacto-oligosaccharides directly attenuate lipopolysaccharides-induced inflammatory response, oxidative stress and barrier impairment in intestinal epithelium. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
Bao M, Liang M, Sun X, Mohyuddin SG, Chen S, Wen J, Yong Y, Ma X, Yu Z, Ju X, Liu X. Baicalin Alleviates LPS-Induced Oxidative Stress via NF-κB and Nrf2–HO1 Signaling Pathways in IPEC-J2 Cells. Front Vet Sci 2022; 8:808233. [PMID: 35146015 PMCID: PMC8822581 DOI: 10.3389/fvets.2021.808233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Baicalin is a natural plant extract with anti-inflammatory and anti-oxidant activities. However, the molecular mechanism of baicalin on oxidative stress in IPEC-J2 cells exposed to LPS remains to be unclear. In this study, LPS stimulation significantly increased Toll-like receptor 4, tumor necrosis factor-α, and interleukins (IL-6 and IL-1β) expression in IPEC-J2 cells, and it activated the nuclear factor (NF-κB) expression. While, baicalin exerted anti-inflammatory effects by inhibiting NF-κB signaling pathway. LPS stimulation significantly increased the levels of the oxidative stress marker MDA, inhibited the anti-oxidant enzymes catalase and superoxide dismutase, which were all reversed by baicalin pre-treatment. It was found that baicalin treatment activated the nuclear import of nuclear factor-erythroid 2 related factor 2 (Nrf2) protein, and significantly increased the mRNA and protein expression of its downstream anti-oxidant factors such as heme oxygenase-1 and quinone oxidoreductase-1, which suggested that baicalin exerted anti-oxidant effects by activating the Nrf2-HO1 signaling pathway. Thus, pretreatment with baicalin inhibited LPS - induced oxidative stress and protected the normal physiological function of IPEC-J2 cells via NF-κB and Nrf2–HO1 signaling pathways.
Collapse
|
22
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
23
|
Le T, Aguilar B, Mangal JL, Acharya AP. Oral drug delivery for immunoengineering. Bioeng Transl Med 2022; 7:e10243. [PMID: 35111945 PMCID: PMC8780903 DOI: 10.1002/btm2.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022] Open
Abstract
The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials, in adjunct to current progress in immunoengineering, is providing an exciting area of interest for oral drug delivery for systemic targeting. Oral immunotherapeutic delivery is a highly preferred route of administration due to its ease of administration, higher patient compliance, and increased ability to generate specialized immune responses. However, the harsh environment and slow systemic absorption, due to various biological barriers, reduces the immunotherapeutic bioavailability, and in turn prevents widespread use of oral delivery. Nonetheless, cutting edge biomaterials are being synthesized to combat these biological barriers within the gastrointestinal (GI) tract for the enhancement of drug bioavailability and targeting the immune system. For example, advancements in biomaterials and synthesized drug agents have provided distinctive methods to promote localized drug absorption for the modulation of local or systemic immune responses. Additionally, novel breakthroughs in the immunoengineering field show promise in the development of vaccine delivery systems for disease prevention as well as combating autoimmune diseases, inflammatory diseases, and cancer. This review will discuss current progress made within the field of biomaterials and drug delivery systems to enhance oral immunotherapeutic availability, and how these new delivery platforms can be utilized to deliver immunotherapeutics for resolution of immune-related diseases.
Collapse
Affiliation(s)
- Tien Le
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Brian Aguilar
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Joslyn L. Mangal
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and energyArizona State UniversityTempeArizonaUSA
- Biodesign Center for Immunotherapy, Vaccines and VirotherapyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
24
|
Tao H, Bao Z, Fu Z, Jin Y. Chlorothalonil induces the intestinal epithelial barrier dysfunction in Caco-2 cell-based in vitro monolayer model by activating MAPK pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1459-1468. [PMID: 34549778 DOI: 10.1093/abbs/gmab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread use of chlorothalonil (CTL) has caused environmental residues and food contamination. Although the intestinal epithelial barrier (IEB) is directly involved in the metabolism and transportation of various exogenous compounds, there are few studies on the toxic effects of these compounds on the structure and function of IEB. The disassembly of tight junction (TJ) is a major cause of intestinal barrier dysfunction under exogenous compounds intake, but the precise mechanisms are not well understood. Here, we used Caco-2 cell monolayers as an in vitro model of human IEB to evaluate the toxicity of CTL exposure on the structure and function of IEB. Results showed that CTL exposure increased the paracellular permeability of the monolayers and downregulated mRNA levels of the TJ genes (ZO-1, OCLN, and CLDN1), polarity marker gene (SI), and anti-apoptosis gene (BCL-2) but upregulated the mRNA levels of apoptosis-related genes, including BAD, BAX, CASP3, and CASP8. Western blot analysis and immunofluorescence assay results showed the decreased levels and disrupted distribution of TJ protein network, including ZO-1 and CLDN1 in CTL-exposed IEB. In addition, the accumulation of intracellular reactive oxygen species, decreased mitochondrial membrane potential, and increased active CASP3 expression were observed in treated IEB. The result of TUNEL assay further confirmed the occurrence of cell apoptosis after CTL exposure. In addition, the phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38, was increased in CTL-exposed IEB. In summary, our results demonstrated that CTL exposure induced IEB dysfunction in Caco-2 cell monolayers by activating the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
25
|
Di Cristanziano V, Farowski F, Berrilli F, Santoro M, Di Cave D, Glé C, Daeumer M, Thielen A, Wirtz M, Kaiser R, Eberhardt KA, Vehreschild MJGT, D’Alfonso R. Analysis of Human Gut Microbiota Composition Associated to the Presence of Commensal and Pathogen Microorganisms in Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9081763. [PMID: 34442844 PMCID: PMC8400437 DOI: 10.3390/microorganisms9081763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The human gut microbiota is a microbial ecosystem contributing to the maintenance of host health with functions related to immune and metabolic aspects. Relations between microbiota and enteric pathogens in sub-Saharan Africa are scarcely investigated. The present study explored gut microbiota composition associated to the presence of common enteric pathogens and commensal microorganisms, e.g., Blastocystis and Entamoeba species, in children and adults from semi-urban and non-urban localities in Côte d’Ivoire. Methods: Seventy-six stool samples were analyzed for microbiota composition by 16S rRDNA sequencing. The presence of adeno-, entero-, parechoviruses, bacterial and protozoal pathogens, Blastocystis, and commensal Entamoeba species, was analyzed by different molecular assays. Results: Twelve individuals resulted negative for any tested microorganisms, 64 subjects were positive for one or more microorganisms. Adenovirus, enterovirus, enterotoxigenic Escherichia coli (ETEC), and Blastocystis were frequently detected. Conclusions: The bacterial composition driven by Prevotellaceae and Ruminococcaceae confirmed the biotype related to the traditional dietary and cooking practices in low-income countries. Clear separation in UniFrac distance in subjects co-harboring Entamoeba hartmanni and Blastocystis was evidenced. Alpha diversity variation in negative control group versus only Blastocystis positive suggested its possible regulatory contribution on intestinal microbiota. Pathogenic bacteria and virus did not affect the positive outcome of co-harbored Blastocystis.
Collapse
Affiliation(s)
- Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
- Correspondence: ; Tel.: +49-221-478-85828
| | - Fedja Farowski
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (F.F.); (M.J.G.T.V.)
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - Maristella Santoro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - David Di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (M.S.); (D.D.C.)
| | - Christophe Glé
- Centre Don Orione Pour Handicapés Physiques, Bonoua BP 21, Côte d’Ivoire; (C.G.); (R.D.)
| | - Martin Daeumer
- Seq-IT GmbH & Co KG, 67655 Kaiserslautern, Germany; (M.D.); (A.T.)
| | | | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.W.); (R.K.)
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany;
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Maria J. G. T. Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (F.F.); (M.J.G.T.V.)
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn, 50937 Cologne, Germany
| | - Rossella D’Alfonso
- Centre Don Orione Pour Handicapés Physiques, Bonoua BP 21, Côte d’Ivoire; (C.G.); (R.D.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
26
|
Shi J, Zhao XH, Fu Y, Lametsch R. Transglutaminase-Mediated Caseinate Oligochitosan Glycation Enhances the Effect of Caseinate Hydrolysate to Ameliorate the LPS-Induced Damage on the Intestinal Barrier Function in IEC-6 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8787-8796. [PMID: 34323484 DOI: 10.1021/acs.jafc.1c02858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Some food components can regulate the intestinal barrier function. Herein, the effect of transglutaminase-type oligochitosan glycation on caseinate hydrolysate for its ability to maintain intestinal epithelial integrity and the tight junction (TJ) structure was investigated by assessing and comparing the bioactivities of glycated caseinate hydrolysate and caseinate hydrolysate against the lipopolysaccharide-induced barrier damage in the model cells (rat intestinal epithelial IEC-6 cells). The results from liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that oligochitosan glycation occurred at the Gln residues of α-S1-casein and α-S2-casein. The two hydrolysates retarded the lipopolysaccharide cytotoxicity toward IEC-6 cells and enhanced the barrier integrity by increasing the transepithelial electrical resistance or decreasing the paracellular permeability. In addition, these two hydrolysates could upregulate both mRNA and protein expression of three TJ proteins in IEC-6 cells. More importantly, the glycated caseinate hydrolysate had higher potential than caseinate hydrolysate to protect IEC-6 cells against the lipopolysaccharide-induced barrier damage, suggesting that the transglutaminase-mediated oligochitosan glycation of proteins is a useful approach to enforce protein biofunctions in the intestine.
Collapse
Affiliation(s)
- Jia Shi
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, P. R. China
- College of Food Science, Northeast Agricultural University, 150030 Harbin, P. R. China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, P. R. China
- College of Food Science, Northeast Agricultural University, 150030 Harbin, P. R. China
| | - Yu Fu
- College of Food Science, Southwest University, 400715 Chongqing, P. R. China
| | - Rene Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| |
Collapse
|
27
|
An Update on the Current State of Management and Clinical Trials for IgA Nephropathy. J Clin Med 2021; 10:jcm10112493. [PMID: 34200024 PMCID: PMC8200196 DOI: 10.3390/jcm10112493] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
IgA nephropathy remains the most common primary glomerular disease worldwide. It affects children and adults of all ages, and is a leading cause of end-stage kidney disease, making it a considerable public health issue in many countries. Despite being initially described over 50 years ago, there are still no disease specific treatments, with current management for most patients being focused on lifestyle measures and renin-angiotensin-aldosterone system blockade. However, significant advances in the understanding of its pathogenesis have been made particularly over the past decade, leading to great interest in developing new therapeutic strategies, and a significant rise in the number of interventional clinical trials being performed. In this review, we will summarise the current state of management of IgAN, and then describe major areas of interest where new therapies are at their most advanced stages of development, that include the gut mucosal immune system, B cell signalling, the complement system and non-immune modulators. Finally, we describe clinical trials that are taking place in each area and explore future directions for translational research.
Collapse
|
28
|
Bona MD, Torres CHDM, Lima SCVC, Lima AAM, Maciel BLL. Intestinal barrier function in obesity with or without metabolic syndrome: a systematic review protocol. BMJ Open 2021; 11:e043959. [PMID: 34020973 PMCID: PMC8144043 DOI: 10.1136/bmjopen-2020-043959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Intestinal barrier function is dependent on the structure and function of intestinal epithelial cells and paracellular pathway. The derangement of the intestinal barrier function can originate from conditions involving local and systemic chronic inflammation and metabolic diseases such as obesity and metabolic disorders. This study aims to describe a systematic review protocol investigating if obesity with or without metabolic syndrome is associated with an altered intestinal barrier function. METHODS AND ANALYSIS This protocol is guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. The databases to be searched are PubMed, Embase, Scopus, Science Direct and Web of Science. The systematic review will include original articles with adults and the elderly, who present obesity with or without metabolic syndrome, that address the intestinal barrier function. Two independent reviewers will perform study selection, data extraction and methodological quality assessment. Key information will be tabulated and a narrative synthesis will be conducted. The Grading of Recommendation, Assessment, Development and Evaluation framework will be used to assess the quality of evidence concerning the associations between intestinal barrier function and obesity with or without metabolic syndrome. The present protocol will assist in producing a systematic review that addresses if obesity with or without metabolic syndrome alters intestinal barrier function. ETHICS AND DISSEMINATION No ethical statement will be required. The results will be disseminated through a peer-reviewed publication and conference presentations. PROSPERO REGISTRATION NUMBER CRD42020178658.
Collapse
Affiliation(s)
- Mariana Duarte Bona
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Severina Carla Vieira Cunha Lima
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aldo Angelo Moreira Lima
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Quitadamo PA, Comegna L, Cristalli P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front Public Health 2021; 8:589736. [PMID: 33738273 PMCID: PMC7960784 DOI: 10.3389/fpubh.2020.589736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic since the end of 2019 spreads worldwide, counting millions of victims. The viral invasion, systemic inflammation, and consequent organ failure are the gravest features of coronavirus disease 2019 (COVID-19), and they are associated with a high mortality rate. The aim of this study is to evaluate the role of breast milk in the COVID-19 pandemic, analyzing its antiviral, anti-inflammatory, and immunoregulatory effects due to its bioactive components, so numerous and important for the protection of infants. The study tried to demonstrate that all the components of human milk are capable of performing functions on all the pathogenic events recognized and described in COVID-19 disease. Those human milk factors are well-tolerated and practically free of side effects, so breast milk should become a research topic to discover therapies even in this epidemic. In the first part, the mechanisms of protection and defense of the breast milk elements will be delineated; in the second section, it will describe the human milk effects in viral infections and it will be hypothesized how the known mechanisms could act in COVID infection.
Collapse
Affiliation(s)
- Pasqua Anna Quitadamo
- NICU “Casa Sollievo della Sofferenza” Foundation, Scientific Research and Care Institute, San Giovanni Rotondo, Italy
| | | | | |
Collapse
|
30
|
Longhitano Y, Zanza C, Thangathurai D, Taurone S, Kozel D, Racca F, Audo A, Ravera E, Migneco A, Piccioni A, Franceschi F. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev Recent Clin Trials 2021; 15:289-297. [PMID: 32781963 DOI: 10.2174/1574887115666200811105251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction with high mortality and morbidity rate and with the disease progression many alterations are observed in different organs. The gastrointestinal tract is often damaged during sepsis and septic shock and main symptoms are related to increased permeability, bacterial translocation and malabsorption. These intestinal alterations can be both cause and effect of sepsis. OBJECTIVE The aim of this review is to analyze different pathways that lead to intestinal alteration in sepsis and to explore the most common methods for intestinal permeability measurement and, at the same time to evaluate if their use permit to identify patients at high risk of sepsis and eventually to estimate the prognosis. MATERIAL AND METHODS The peer-reviewed articles analyzed were selected from PubMed databases using the keywords "sepsis" "gut alteration", "bowel permeability", "gut alteration", "bacterial translocation", "gut permeability tests", "gut inflammation". Among the 321 papers identified, 190 articles were selected, after title - abstract examination and removing the duplicates and studies on pediatric population,only 105 articles relating to sepsis and gut alterations were analyzed. RESULTS Integrity of the intestinal barrier plays a key role in the preventing of bacterial translocation and gut alteration related to sepsis. It is obvious that this dysfunction of the small intestine can have serious consequences and the early identification of patients at risk - to develop malabsorption or already malnourished - is very recommended to increase the survivor rate. Until now, in critical patients, the dosage of citrullinemia is easily applied test in clinical setting, in fact, it is relatively easy to administer and allows to accurately assess the functionality of enterocytes. CONCLUSION The sepsis can have an important impact on the gastrointestinal function. In addition, the alteration of the permeability can become a source of systemic infection. At the moment, biological damage markers are not specific, but the dosage of LPS, citrulline, lactulose/mannitol test, FABP and fecal calprotectin are becoming an excellent alternative with high specificity and sensitivity.
Collapse
Affiliation(s)
- Yaroslava Longhitano
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Christian Zanza
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Duraiyah Thangathurai
- Department of Anesthesiology, Keck Medical School of University of Southern California, Los Angeles, United States
| | - Samanta Taurone
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Daniela Kozel
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Andrea Audo
- Department of Anesthesia and Critical Care Medicine, St. Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Enrico Ravera
- Department of Emergency, Anesthesia and Critical Care, Michele and Pietro Ferrero Hospital, Verduno, Italy
| | - Alessio Migneco
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| | - Andrea Piccioni
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| | - Francesco Franceschi
- Department of Anesthesiology and Emergency Sciences,, Policlinico Gemelli/IRCCS - Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
31
|
Xiong B, Liu M, Zhang C, Hao Y, Zhang P, Chen L, Tang X, Zhang H, Zhao Y. Alginate oligosaccharides enhance small intestine cell integrity and migration ability. Life Sci 2020; 258:118085. [DOI: 10.1016/j.lfs.2020.118085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023]
|
32
|
Ji C, Deng Y, Yang A, Lu Z, Chen Y, Liu X, Han L, Zou C. Rhubarb Enema Improved Colon Mucosal Barrier Injury in 5/6 Nephrectomy Rats May Associate With Gut Microbiota Modification. Front Pharmacol 2020; 11:1092. [PMID: 32848732 PMCID: PMC7403201 DOI: 10.3389/fphar.2020.01092] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied with colon mucosal barrier damage and gut microbiota disturbance, which strongly associate with up-regulated inflammation and kidney tubulointerstitial fibrosis. However, few interventions could protect the damaged barrier effectively. Rheum palmatum L or rhubarb is a common herbal medicine which is widely used to protect the colon mucosal barrier. In previous studies, we found that rhubarb intervention may reduce renal inflammation and tubulointerstitial fibrosis, via gut microbiota modification. However, whether intestinal barrier function could be improved by rhubarb intervention and the relationship with intestinal flora are still unknown. Therefore, we investigated the effects of rhubarb enema on intestinal barrier, and further analyzed the relationship with gut microbiota in 5/6 nephrectomy rats. Results indicated that rhubarb enema improved the intestinal barrier, regulated gut microbiota dysbiosis, suppressed systemic inflammation, and alleviated renal fibrosis. More specifically, rhubarb enema treatment inhibited the overgrowth of conditional pathogenic gut bacteria, including Akkermansia, Methanosphaera, and Clostridiaceae in CKD. The modification of gut microbiota with rhubarb intervention displayed significant correlation to intestinal barrier markers, TLR4–MyD88–NF-κB inflammatory response, and systemic inflammation. These results revealed that rhubarb enema could restore intestinal barrier by modifying several functional enteric bacteria, which may further explain the renal protection mechanism of the rhubarb enema.
Collapse
Affiliation(s)
- Chunlan Ji
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- Department of Scientific Research, KMHD, Shenzhen, China
| | - Aicheng Yang
- Department of Nephrology, The Affiliated Jiangmen TCM Hospital of Jinan University, Jiangmen, China
| | - Zhaoyu Lu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lijuan Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Microbiota is a kind of ecosystem inhabiting some organs, supporting their proper functioning, but also having a significant impact on the development of the immune system. The largest reservoir of microbiota is the digestive tract, where the largest number of lymphocytes is also present. Literature gradually increases the number of studies assessing the relationship between intestinal dysbiosis and the development of various parenteral diseases. This article presents the latest data from the medical literature regarding intestinal microbiota and barrier in patients with psoriasis. In the cited studies, a quantitative advantage of Firmicutes phylum over Bacteroidetes phylum and a smaller colonization of Actinobacteria phylum has been demonstrated. In terms of the species, colonization of bacteria Faecalibacterium prausnitzii and Akkermansia muciniphilia was reduced, and Escherichia coli increased. Regarding the participation of individual taxonomic units, the results in the cited studies are partly different. However, all revealed significant differences between the intestinal
microbiota of patients with psoriasis and a healthy population, which suggests the importance of
intestinal dysbiosis in the development of this disease. It seems more important that what leads to
disturbances in the metabolic balance is not so much the quantity of individual taxonomic units
as their disproportions. In some studies, the deviations in microbiota correlated with the level
of metabolites and indicators of inflammation. Moreover, some studies revealed a significantly
higher incidence of Candida in the oral cavity as well as in the stool samples of patients with psoriasis.
There are also reports in the literature in which the occurrence of intestinal inflammation
and the impairment of the intestinal barrier in patients with psoriasis have been demonstrated.
These observations indicate interrelations between psoriasis and intestinal disorders as well as the
involvement of dysbiosis in both associations and the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Monika Koper
- Klinika Dermatologii i Wenerologii, Uniwersytecki Szpital Kliniczny im. Wojskowej Akademii Medycznej – Centralny Szpital Weteranów w Łodzi
| | - Anna Woźniacka
- Klinika Dermatologii i Wenerologii, Uniwersytecki Szpital Kliniczny im. Wojskowej Akademii Medycznej – Centralny Szpital Weteranów w Łodzi
| | - Ewa Robak
- Klinika Dermatologii i Wenerologii, Uniwersytecki Szpital Kliniczny im. Wojskowej Akademii Medycznej – Centralny Szpital Weteranów w Łodzi
| |
Collapse
|
34
|
Chen X, Li M, Li D, Luo T, Xie Y, Gao L, Zhang Y, Chen S, Li S, Huang G, Li W, Su J, Lai X. Ethanol extract of Pycnoporus sanguineus relieves the dextran sulfate sodium-induced experimental colitis by suppressing helper T cell-mediated inflammation via apoptosis induction. Biomed Pharmacother 2020; 127:110212. [PMID: 32422567 DOI: 10.1016/j.biopha.2020.110212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammation involving the gut system, and disequilibrium of T helper (Th) cell paradigm has been recognized as critical pathogenesis. Pycnoporus sanguineus (L.) Murrill is a species of the white-rot basidiomycetes listed as food- and cosmetic-grade microorganisms. In this study, anti-inflammatory activity of the ethanol extract from P. sanguineus (PSE) was investigated in dextran sulfate sodium (DSS)-induced experimental colitis model. PSE recovered the DSS-caused weight loss, reversed the colon shortening, and ameliorated the histopathological lesion in colon, resulting in lower disease activity index (DAI). Levels of serumal lipopolysaccharide (LPS), colonic myeloperoxidase (MPO) in the colitis-suffering mice were declined by PSE treatment. PSE also improved the mucosal integrity by enhancing the expression of tight junction and adherens junction proteins in the colon, including ZO-1, occludin, claudin-1, and E-cadherin. Besides, PSE reduced helper T cells (Th) in the colon, together with an evident decrease of several Th cell-related cytokines. Moreover, it was found that in vitro, PSE suppressed T cells and the Th subset upon Concanavalin A (ConA)-stimulation by inducing apoptosis. In summary, PSE displayed a remission on the colitis-related inflammation, which would possibly rely on the epithelial barrier restoration by suppressing Th cells via apoptosis induction, highlighting a promising potential in the treatment for IBD.
Collapse
Affiliation(s)
- Xiaohong Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, PR China
| | - Muxia Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, PR China
| | - Dan Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, PR China
| | - Ting Luo
- Jinan University, Guangzhou, Guangdong, PR China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, PR China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, PR China
| | - Liang Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Yifan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Shaodan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Shunxian Li
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, Guangdong, PR China
| | - Guoxin Huang
- Macau University of Science and Technology, Macau, PR China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou, Guangdong, PR China
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, PR China.
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
35
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
36
|
Bernardi S, Del Bo' C, Marino M, Gargari G, Cherubini A, Andrés-Lacueva C, Hidalgo-Liberona N, Peron G, González-Dominguez R, Kroon P, Kirkup B, Porrini M, Guglielmetti S, Riso P. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1816-1829. [PMID: 31265272 DOI: 10.1021/acs.jafc.9b02283] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing evidence links intestinal permeability (IP), a feature of the intestinal barrier, to several pathological or dysfunctional conditions. Several host and environmental factors, including dietary factors, can affect the maintenance of normal IP. In this regard, food bioactives, such as polyphenols, have been proposed as potential IP modulators, even if the mechanisms involved are not yet fully elucidated. The aim of the present paper is to provide a short overview of the main evidence from in vitro and in vivo studies supporting the role of polyphenols in modulating IP and briefly discuss future perspectives in this research area.
Collapse
Affiliation(s)
- Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-l'Istituto Nazionale Ricovero e Cura Anziani (INRCA) , 60127 Ancona , Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Raúl González-Dominguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Paul Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Benjamin Kirkup
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| |
Collapse
|
37
|
Zhao L, Li M, Sun K, Su S, Geng T, Sun H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol 2019; 155:1202-1215. [PMID: 31730993 DOI: 10.1016/j.ijbiomac.2019.11.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory response caused by early weaning stress in piglets is associated with various diseases. The Hippophae rhamnoides polysaccharide (HRP) exhibits anti-inflammatory activity and immunomodulatory properties. The mechanisms for the protective effects of HRP on barrier function, inflammatory damage and apoptosis in intestinal porcine epithelial cells (IPEC-J2) induced by the lipopolysaccharide (LPS) are unknown. In this study, we first demonstrated the cytotoxicity of HRP-induced IPEC-J2 cells by reducing cell viability. IPEC-J2 cells were treated with 0-800 μg/mL doses of HRP, and 0-600 μg/mL doses were used in further experiments. Upon exposure to LPS, the viability of IPEC-J2 cells, ROS production, immunoglobulin levels (immunoglobulin M (IgM), immunoglobulin A (IgA) and immunoglobulin G (IgG)) and tight junction protein level (zonula occludens-1 (ZO-1), occluding, claudin-1) decreased. Inflammatory factors (interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α)) and apoptosis (Bcl-2, Bax, caspase-3, caspase-8 and caspase-9) were increased. Cell morphology and internal structure were damaged in the LPS treatment. Pre-treating cells with HRP (0-600 μg/mL) reduced inflammatory factors levels, apoptosis rate, increased immunoglobulins, tight junction protein levels and relieved cell surface morphology damage. Pre-treatment with HRP also reduced the levels of the Toll-like receptor 4 (TLR4) and Myeloid differentiation factor 88 (MyD88) and inhibited the phosphorylated NF-κB factor-kappa B (NF-κB) in cells induced by LPS. These results show that pre-treatment with HRP protected against LPS-induced IPEC-J2 cell damage through its anti-inflammatory activity.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Muyang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Kecheng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
38
|
Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, Gu Y, Nie S, Xie M. Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
39
|
Tang L, Zhu Z, Xie M, Cao L, Yu XL, Zhang R, Ou Z, Shan W, Zhang Z. Effects of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin Inclusions on the Degradation of Magnolol by Intestinal Bacteria. AAPS PharmSciTech 2019; 20:244. [PMID: 31286296 DOI: 10.1208/s12249-019-1397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cyclodextrin (CD) inclusions are generally used to increase the solubility of poorly soluble drugs. In this study, magnolol (MAG) was used as a model drug for exploring the effects of CD on the degradation of pharmaceutical drugs by intestinal microflora. MAG/β-cyclodextrin (β-CD) and MAG/hydroxypropyl-β-CD (HP-β-CD) inclusion complexes were successfully prepared by the saturated aqueous solution and freeze-drying methods, respectively. Structural characterisation along with analyses of solubility, residual water content and drug content of the inclusion complexes was performed. The intestinal microflora of male rats was used to study MAG degradation in vitro. At three concentrations, the degradation of both the inclusion complexes was slower than that of the MAG monomer, MAG and CD mixtures and the MAG-poloxamer 188 micelle. There were no statistically significant differences in the degradation of the MAG/β-CD and MAG/HP-β-CD inclusion complexes. A simulation first-order equation of the degradation parameters revealed that the degradation of the inclusion complexes was slower and pronounced, judging by slope. The experimental findings were verified by molecular docking for predicting the stable molecular structure of the inclusion complexes. In conclusion, the inclusion complexes partially protected MAG from degradation by the intestinal bacteria.
Collapse
|
40
|
Shi L, Fang B, Yong Y, Li X, Gong D, Li J, Yu T, Gooneratne R, Gao Z, Li S, Ju X. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr Polym 2019; 219:269-279. [PMID: 31151525 DOI: 10.1016/j.carbpol.2019.05.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/16/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
The protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharides (LPS) -induced inflammatory responses in IPEC-J2 and in mice with DSS dextran sulfate sodium (DSS) -induced colitis is reported. Upon exposure to LPS, the proliferation rate of IPEC-J2 cells markedly decreased, and epithelial cell integrity was compromised. However, COS pretreatment significantly reduced these changes. Low-concentration (200 μg/mL) COS up-regulated Toll-like receptor 4 (TLR4) and nuclear p65 expression, but inhibited LPS-induced expression of nuclear p65, IL-6, and IL-8. Addition of the TLR4 inhibitor reduced nuclear p65, IL-6, and IL-8 expression in IPEC-J2 cells exposed to COS or LPS alone, and a slight up-regulation in nuclear p65 was observed in COS and LPS co-treated cells. Medium-dose COS (600 mg/kg/d) protected against DSS-induced colitis, in which TLR4 and nuclear p65 expression levels were decreased. We postulate that the prevention of both LPS- and DSS -induced inflammatory responses in IPEC-J2 cells and mice by COS are related to the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China
| | - Biao Fang
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xuewen Li
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Junyu Li
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Tianyue Yu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhenhua Gao
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Sidong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China.
| |
Collapse
|
41
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
42
|
Stefanson AL, Bakovic M. Falcarinol Is a Potent Inducer of Heme Oxygenase-1 and Was More Effective than Sulforaphane in Attenuating Intestinal Inflammation at Diet-Achievable Doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3153527. [PMID: 30420908 PMCID: PMC6215554 DOI: 10.1155/2018/3153527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.
Collapse
Affiliation(s)
- Amanda L. Stefanson
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
43
|
Remes S, Kulmala P. The interplay between risk and preventive factors explains why some children develop allergies to certain foods and others show tolerance. Acta Paediatr 2018; 107:1677-1683. [PMID: 29751365 DOI: 10.1111/apa.14391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
AIM A number of studies have clarified the tolerance mechanisms and risk factors for food allergies. Our aim was to explore food allergy symptoms by target organs, together with the risk factors and how to prevent food allergies and induce tolerance. METHODS We carried out a thorough review of studies on paediatric food allergies published in the last decade. RESULTS Food allergy symptoms may affect the skin, nasal and oral mucosa, conjunctivae, gastrointestinal tract or, in severe cases, the respiratory tract and cardiovascular organs. Immunoglobulin E (IgE)-mediated symptoms appear rapidly after exposure to the offending allergen, whereas non-IgE-mediated symptoms are typically delayed. The immunological processes involved in non-IgE-mediated allergic reactions are poorly understood, but T-cell activation is probably involved. There are several factors that influence the food sensitisation process: genetic predisposition, disruption of oral tolerance development, impaired skin barriers in atopic eczema and the influence of microbiomes. CONCLUSION The symptoms and intensity of reactions vary considerably with regard to food allergies, and these depend on the individual's concomitant immunological and regulatory mechanisms. There is strong evidence that dietary diversity is important for children, even when they come from families with high allergy risks.
Collapse
Affiliation(s)
- Sami Remes
- Department of Paediatrics; Kuopio University Hospital; Kuopio Finland
| | - Petri Kulmala
- PEDEGO Research Unit and Medical Research Center (MRC) Oulu; University of Oulu; Oulu University Hospital; Oulu Finland
| |
Collapse
|
44
|
Yrjänä JMS, Koski T, Törölä H, Valkama M, Kulmala P. Very early introduction of semisolid foods in preterm infants does not increase food allergies or atopic dermatitis. Ann Allergy Asthma Immunol 2018; 121:353-359. [PMID: 29981439 DOI: 10.1016/j.anai.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The optimal age for the introduction of solid foods for infants has long been a controversial issue. OBJECTIVE To determine whether the early introduction of semisolid foods influences the incidence of food allergy or atopic dermatitis among preterm infants. METHODS Retrospective data from 464 preterm infants born in Oulu University Hospital between 2008 and 2012 were analyzed. Age- and sex-matched full-term control children from the general population were identified. The primary outcome of the study was the difference in timing of the introduction of complementary feeding between preterm and full-term infants. The secondary outcomes were the incidences of food allergies and atopic dermatitis by the ages of 1 and 2 years. RESULTS Semisolid food was introduced at the median corrected age of 1.4 months for all preterm infants, at 1.9 months for late preterm, at 0.9 months for very preterm, and at 0.1 months for extremely preterm infants. The cumulative incidence, either of food allergies or of atopic dermatitis, did not differ significantly between preterm infants and controls by the ages of 1 and 2 years. CONCLUSION The very early introduction of complementary foods into the diet of preterm babies did not increase the incidence of food allergies or atopic dermatitis even among the most preterm infants. This finding supports the hypothesis that the gut-associated lymphoid tissue of preterm infants is ready to encounter food proteins and to begin the maturation process within 3 to 6 months of birth, regardless of gestational age.
Collapse
Affiliation(s)
- Jaakko M S Yrjänä
- PEDEGO Research Unit and MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - Teppo Koski
- PEDEGO Research Unit and MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Helena Törölä
- PEDEGO Research Unit and MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marita Valkama
- PEDEGO Research Unit and MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri Kulmala
- PEDEGO Research Unit and MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Biomedicine Research Unit, Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
| |
Collapse
|
45
|
Hatton GB, Madla CM, Rabbie SC, Basit AW. All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. Int J Pharm 2018; 548:408-422. [PMID: 29969711 DOI: 10.1016/j.ijpharm.2018.06.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
The term "disease" conjures a plethora of graphic imagery for many, and the use of drugs to combat symptoms and treat underlying pathology is at the core of modern medicine. However, the effects of the various gastrointestinal diseases, infections, co-morbidities and the impact of gastrointestinal surgery on the pharmacokinetic and pharmacodynamic behaviour of drugs have been largely overlooked. The better elucidation of disease pathology and the role of underlying cellular and molecular mechanisms have increased our knowledge as far as diagnoses and prognoses are concerned. In addition, the recent advances in our understanding of the intestinal microbiome have linked the composition and function of gut microbiota to disease predisposition and development. This knowledge, however, applies less so in the context of drug absorption and distribution for orally administered dosage forms. Here, we revisit and re-evaluate the influence of a portfolio of gastrointestinal diseases and surgical effects on the functionality of the gastrointestinal tract, their implications for drug delivery and attempt to uncover significant links for clinical practice.
Collapse
Affiliation(s)
- Grace B Hatton
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Christine M Madla
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sarit C Rabbie
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
46
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
47
|
Rodríguez-Camejo C, Puyol A, Fazio L, Rodríguez A, Villamil E, Andina E, Cordobez V, Díaz H, Lemos M, Siré G, Carroscia L, Castro M, Panizzolo L, Hernández A. Antibody Profile of Colostrum and the Effect of Processing in Human Milk Banks: Implications in Immunoregulatory Properties. J Hum Lact 2018; 34:137-147. [PMID: 28586632 DOI: 10.1177/0890334417706359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND When feeding preterm infants, donor milk is preferred if the mother's own milk is unavailable. Pasteurization may have detrimental effects on bioactivity, but more information is needed about its effects on the immunological compounds. Research aim: This work has two main aims: evaluate the antibody profile of colostrum and study the quantitative variations in the antibodies' level and specific reactivity after undergoing Holder pasteurization. The authors focused on immunoregulatory components of colostrum (antidietary antibodies and TGF-β2) in the neonatal gut. METHODS This is a descriptive cross-sectional study of a convenience sample of 67 donated colostrum samples at different days after delivery, both raw and pasteurized. Antibody profiles were analyzed at different times during breastfeeding, and total and specific antibodies (IgM, IgA, and IgG subclasses) were compared with tetanus toxoid and ovalbumin using enzyme-linked immunosorbent assay. The processing effect on total and specific antibodies, as well as TGF-β2, was evaluated by paired analyses. RESULTS No variations in immunological compounds were observed throughout the colostrum stage. The TGF-β2, antibodies' concentrations, and antibodies' specific reactivity after pasteurization did not vary significantly as days of lactation varied. Changes in antibody levels were dependent on isotype and IgG subclass, and IgG4 showed remarkable resistance to heating. Moreover, the effect of the pasteurization on specific reactivity was antigen dependent. CONCLUSION The supply of relevant immunological components is stable throughout the colostrum stage. The effects of pasteurization on antibodies depend on isotype, subclass, and specificity. This information is relevant to improving the immunological quality of colostrum, especially for preterm newborns.
Collapse
Affiliation(s)
- Claudio Rodríguez-Camejo
- 1 Cátedra de Inmunología, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Arturo Puyol
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Laura Fazio
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Analía Rodríguez
- 3 Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Emilia Villamil
- 1 Cátedra de Inmunología, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eliana Andina
- 3 Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vanira Cordobez
- 3 Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Hernán Díaz
- 3 Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Mary Lemos
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gabriela Siré
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Lilián Carroscia
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Mara Castro
- 2 Banco de Leche "Ruben Panizza," Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Luis Panizzolo
- 3 Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- 1 Cátedra de Inmunología, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
48
|
Kvan OV, Gavrish IA, Lebedev SV, Korotkova AM, Miroshnikova EP, Serdaeva VA, Bykov AV, Davydova NO. Effect of probiotics on the basis of Bacillus subtilis and Bifidobacterium longum on the biochemical parameters of the animal organism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2175-2183. [PMID: 29116533 DOI: 10.1007/s11356-017-0534-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
For the purpose of safe modulation of the intestinal microflora, probiotics have been increasingly used in recent years. In the present work, the effect of the probiotic sporobacterin (Bacillus subtilis 534) (I group) and soybean-bifidum (Bifidobacterium longum) (II group) on male rats of the Wistar line was evaluated. In assessing nonspecific immunity in vitro, there was an increase in the level of baseline level in the first and second groups (by 8.3 and 12.2% more control). The influence of probiotic preparations on the intestinal normoflora was assessed using PCR. Bifidumbacterin increased the normal microflora, in particular, Escherichia coli 1.55 times, Lactobacillus 1.26 times, Enterococcus 1.3 times as much control; the level of conditionally pathogenic microflora, in particular, Proteus spp. decreased by 1.3 times in comparison with the control. Sporobacterin also contributed to an increase in the amount of E. coli (1.55 times) and Lactobacillus (0.9 times). When a culture of Bifidobacterium longum was introduced, a selective reduction in the loss of chemical elements was observed against the background of the diet used. At the end of the experiment, the content of calcium in the body tissues of animals of group II exceeded this indicator in group I by 3.9%, phosphorus by 17.6%, copper by 28.5%, and zinc by 15.2%. The totality of the results obtained by us indicates that inclusion of Bifidumbacterium longum in the diet of animals makes the use of this preparation in the correction of mineral imbalance and improves the microflora of the intestines of animals by reducing the number of representatives of opportunistic microflora against the background of an increase in the number of basic representatives of normal microbiocenosis. Also, the use of probiotic drugs as additives leads to a slight increase in the level of nonspecific immunity, which increases the natural resistance of the organism.
Collapse
Affiliation(s)
| | | | - Svyatoslav Valeryevich Lebedev
- Orenburg State University, 13, Pobedy prospect, Orenburg, Russia, 460018
- Federal State Budget Scientific Institution All-Russian Research Institute of Beef Cattle, 29, 9 Yanvarya street, Orenburg, Russia, 460000
| | - Anastasia Mickhailovna Korotkova
- Orenburg State University, 13, Pobedy prospect, Orenburg, Russia, 460018
- Federal State Budget Scientific Institution All-Russian Research Institute of Beef Cattle, 29, 9 Yanvarya street, Orenburg, Russia, 460000
| | | | - Victoria Alekseevna Serdaeva
- Federal State Budget Scientific Institution All-Russian Research Institute of Beef Cattle, 29, 9 Yanvarya street, Orenburg, Russia, 460000
| | | | | |
Collapse
|
49
|
Henrick BM, Yao XD, Nasser L, Roozrogousheh A, Rosenthal KL. Breastfeeding Behaviors and the Innate Immune System of Human Milk: Working Together to Protect Infants against Inflammation, HIV-1, and Other Infections. Front Immunol 2017; 8:1631. [PMID: 29238342 PMCID: PMC5712557 DOI: 10.3389/fimmu.2017.01631] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
The majority of infants’ breastfeeding from their HIV-infected mothers do not acquire HIV-1 infection despite exposure to cell-free virus and cell-associated virus in HIV-infected breast milk. Paradoxically, exclusive breastfeeding regardless of the HIV status of the mother has led to a significant decrease in mother-to-child transmission (MTCT) compared with non-exclusive breastfeeding. Although it remains unclear how these HIV-exposed infants remain uninfected despite repeated and prolonged exposure to HIV-1, the low rate of transmission is suggestive of a multitude of protective, short-lived bioactive innate immune factors in breast milk. Indeed, recent studies of soluble factors in breast milk shed new light on mechanisms of neonatal HIV-1 protection. This review highlights the role and significance of innate immune factors in HIV-1 susceptibility and infection. Prevention of MTCT of HIV-1 is likely due to multiple factors, including innate immune factors such as lactoferrin and elafin among many others. In pursuing this field, our lab was the first to show that soluble toll-like receptor 2 (sTLR2) directly inhibits HIV infection, integration, and inflammation. More recently, we demonstrated that sTLR2 directly binds to selective HIV-1 proteins, including p17, gp41, and p24, leading to significantly reduced NFκB activation, interleukin-8 production, CCR5 expression, and HIV infection in a dose-dependent manner. Thus, a clearer understanding of soluble milk-derived innate factors with known antiviral functions may provide new therapeutic insights to reduce vertical HIV-1 transmission and will have important implications for protection against HIV-1 infection at other mucosal sites. Furthermore, innate bioactive factors identified in human milk may serve not only in protecting infants against infections and inflammation but also the elderly; thus, opening the door for novel innate immune therapeutics to protect newborns, infants, adults, and the elderly.
Collapse
Affiliation(s)
- Bethany M Henrick
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Xiao-Dan Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Laila Nasser
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Ava Roozrogousheh
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Kenneth L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
López MC. Chronic alcohol consumption regulates the expression of poly immunoglobulin receptor (pIgR) and secretory IgA in the gut. Toxicol Appl Pharmacol 2017; 333:84-91. [PMID: 28843478 DOI: 10.1016/j.taap.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The effect of ethanol (EtOH) on the gut immune system was analyzed using an experimental model previously described, where EtOH was provided ad libitum in the drinking water in a 20% w/v concentration for up to 12weeks. Dendritic cells, T cells and macrophages were analyzed in Peyer's patches and the small intestines using flow cytometry. Cytokine and immunoglobulin levels were analyzed in sera, feces, and homogenates from small and large intestines and lungs. Decreases in the proportion of T cells and alterations in dendritic cells and macrophages were observed after EtOH treatment. Levels of immunoglobulin A (IgA) increased in tissue homogenates but decreased in small intestine fecal contents. Meanwhile poly-immunoglobulin receptor (pIgR) levels decreased in tissue homogenates and fecal contents. Levels of cytokines associated with the regulation of pIgR expression decreased for IL-10 and TGF-β, and increased for IFN-γ and IL-17 in the small intestine. The data indicate that chronic EtOH consumption disrupts the homeostasis of the mucosal immune system by altering the phenotype and functionality of multiple immune cell types, leading to a diminished secretion of SIgA, due to pIgR expression decreased.
Collapse
Affiliation(s)
- María C López
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|