1
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Wei L, Huang Q, Qiu Y, Zhao J, Rantakokko P, Gao H, Huang F, Bignert A, Bergman Å. Legacy persistent organic pollutants (POPs) in eggs of night herons and poultries from the upper Yangtze Basin, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93744-93759. [PMID: 37516701 DOI: 10.1007/s11356-023-28974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.
Collapse
Affiliation(s)
- Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Hongwen Gao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
- Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Åke Bergman
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
- Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
3
|
Wu JY, Zhu T, Chen ZM, Guo JS, Hou XY, Wang DR, Zhang LX, Gao JM. Occurrence, seasonal variation, potential sources, and risks of organophosphate esters in a cold rural area in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155361. [PMID: 35460793 DOI: 10.1016/j.scitotenv.2022.155361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Tong Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhu-Man Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xian-Yu Hou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - De-Rui Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Li-Xia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Stuart KC, Sherwin WB, Austin JJ, Bateson M, Eens M, Brandley MC, Rollins LA. Historical museum samples enable the examination of divergent and parallel evolution during invasion. Mol Ecol 2022; 31:1836-1852. [PMID: 35038768 PMCID: PMC9305591 DOI: 10.1111/mec.16353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
During the Anthropocene, Earth has experienced unprecedented habitat loss, native species decline and global climate change. Concurrently, greater globalization is facilitating species movement, increasing the likelihood of alien species establishment and propagation. There is a great need to understand what influences a species' ability to persist or perish within a new or changing environment. Examining genes that may be associated with a species' invasion success or persistence informs invasive species management, assists with native species preservation and sheds light on important evolutionary mechanisms that occur in novel environments. This approach can be aided by coupling spatial and temporal investigations of evolutionary processes. Here we use the common starling, Sturnus vulgaris, to identify parallel and divergent evolutionary change between contemporary native and invasive range samples and their common ancestral population. To do this, we use reduced-representation sequencing of native samples collected recently in northwestern Europe and invasive samples from Australia, together with museum specimens sampled in the UK during the mid-19th century. We found evidence of parallel selection on both continents, possibly resulting from common global selective forces such as exposure to pollutants. We also identified divergent selection in these populations, which might be related to adaptive changes in response to the novel environment encountered in the introduced Australian range. Interestingly, signatures of selection are equally as common within both invasive and native range contemporary samples. Our results demonstrate the value of including historical samples in genetic studies of invasion and highlight the ongoing and occasionally parallel role of adaptation in both native and invasive ranges.
Collapse
Affiliation(s)
- Katarina C. Stuart
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - William B. Sherwin
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - Jeremy J. Austin
- School of Biological SciencesAustralian Centre for Ancient DNA (ACAD)University of AdelaideAdelaideSouth AustraliaAustralia
| | - Melissa Bateson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology GroupDepartment of BiologyUniversity of AntwerpWilrijkBelgium
| | - Matthew C. Brandley
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPennsylvaniaUSA
| | - Lee A. Rollins
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Anbazhagan V, Partheeban EC, Arumugam G, Selvasekaran V, Rajendran R, Paray BA, Al-Sadoon MK, Al-Mfarij AR. Avian feathers as a biomonitoring tool to assess heavy metal pollution in a wildlife and bird sanctuary from a tropical coastal ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38263-38273. [PMID: 33733413 DOI: 10.1007/s11356-021-13371-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, we have assessed the concentrations of four heavy metals (Cu, Zn, Cd, and Pb) in the feathers of 11 species of birds from the Point Calimere Wildlife and Bird Sanctuary, a protected environment. Concentrations of copper and zinc were detected in all the bird species, cadmium was observed only in two bird species, and lead was below the detection limits for all birds. The order of concentration of metals in the feathers is Zn > Cu > Cd > Pb. Using the multivariate statistical analysis, principal component analysis (PCA), the metal origins were traced to natural, dietary, and manmade sources. In addition, sediment samples were also collected from the sanctuary, to assess the bioaccumulation factor (BAF). The BAF values follow the order Cd < Cu < Zn < Pb. In comparison with worldwide heavy metal reports in bird feathers, lower concentrations of metals are observed in our study area. The tropical marine ecosystem at Point Calimere Wildlife and Bird Sanctuary can be considered as pristine regarding heavy metal pollution. Continuous monitoring of the ecosystem is crucial to sustain the pristine nature of the sanctuary and to attract many more birds.
Collapse
Affiliation(s)
- Vinothkannan Anbazhagan
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Emmanuel Charles Partheeban
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Ganeshkumar Arumugam
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Venugopal Selvasekaran
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Rajaram Rajendran
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Rahman Al-Mfarij
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Tongue ADW, Fernie KJ, Harrad S, Drage DS, McGill RAR, Reynolds SJ. Interspecies comparisons of brominated flame retardants in relation to foraging ecology and behaviour of gulls frequenting a UK landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142890. [PMID: 33131861 DOI: 10.1016/j.scitotenv.2020.142890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
This study quantifies and compares concentrations and profiles of legacy and alternative (alt-) brominated flame retardants (BFRs) in the eggs of three gull (Laridae) species of international/UK conservation concern - great black-backed gulls (Larus marinus; n = 7), European herring gulls (L. argentatus; n = 16) and lesser black-backed gulls (L. fuscus; n = 11) in relation to their foraging ecology and behaviour in order to investigate potential exposure pathways at a remote landfill in western Scotland, UK. Egg concentrations of sum (∑) polybrominated diphenyl ethers (∑8PBDEs) in all three species exceeded those for most reported avian species using landfill, except for those in North America. Despite relatively high detection frequencies of ∑hexabromocyclododecanes (∑3HBCDDs) (94-100%), concentrations of ∑8PBDEs exceeded ∑3HBCDDs and ∑5alt-BFRs, with ∑8PBDE levels similar in all three species. Egg carbon isotopic (δ13C) values highlighted a greater marine dietary input in great black-backed gulls that was consistent with their higher BDE-47 levels; otherwise, dietary tracers were minimally correlated with measured BFRs. ∑3HBCDD egg concentrations of herring gulls markedly exceeded those reported elsewhere in Europe. Decabromodiphenylethane (DBDPE) was the only alt-BFR detected (6-14% detection rate), in a single egg of each species. The great black-backed gull egg contained the highest concentration of DBDPE measured in biota to date globally and provides strong evidence for its emerging environmental presence as a BDE-209 replacement in UK wildlife. Correlations between δ13C (dietary source) and some measured BFRs in eggs suggest multiple routes of BFR exposure for gulls frequenting landfill through their diet, behaviour, preening, dermal exposure and likely inhalation. The frequent use of landfill by herring gulls and their increased egg BFR burdens suggest that this species may be an important bioindicator of BFR emissions from such sites.
Collapse
Affiliation(s)
- Andrew D W Tongue
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Kim J Fernie
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment & Climate Change Canada (ECCC), Burlington, ON L7S 1A1, Canada.
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rona A R McGill
- Scottish Universities Environmental Research Centre, NERC Life Sciences Mass Spectrometry Facility, East Kilbride G75 0QF, UK
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire GU11 1PS, UK
| |
Collapse
|
7
|
Montoya B, Gil D, Valverde M, Rojas E, Pérez-Rodríguez L. DNA Integrity Estimated via the Comet Assay Reflects Oxidative Stress and Competitive Disadvantage in Developing Birds. Physiol Biochem Zool 2021; 93:384-395. [PMID: 32780628 DOI: 10.1086/710703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIncreases in DNA degradation have been detected in numerous situations in which organisms are exposed to pollutants. However, outside of the ecotoxicological literature, few studies have investigated whether there exists important variation in DNA integrity in free-living, healthy animals. Using the alkaline version of the comet assay to estimate DNA integrity in blood samples, we aimed to evaluate whether DNA integrity during early life is associated with nestlings' age, body mass, within-brood status, and oxidative stress using nestlings from a wild population of spotless starlings (Sturnus unicolor) as a model. We found important levels of variation in DNA integrity, suggesting the possibility that DNA integrity may have implications for offspring fitness. DNA integrity was dependent on the developmental stage, being lower at hatching than at the end of the nestling period. DNA integrity was also negatively related to the levels of oxidative damage at hatching and positively associated with wing length at fledging. In addition, position within the size hierarchy of the brood at fledging explained differences in DNA integrity, with higher levels in core than in marginal nestlings. Finally, despite extensive within-individual variation along nestling's age, we found DNA integrity during early life to be moderately repeatable within broods. Hence, DNA integrity in early life appears to be mainly affected by environmental factors, such as natural stressors. Our results suggest that measuring the variation in DNA integrity may be a fruitful approach for the assessment of individual fitness in natural populations and can be applied to studies in developmental biology and ecology.
Collapse
|
8
|
Venugopal D, Subramanian M, Rajamani J, Palaniyappan J, Samidurai J, Arumugam A. Levels and distribution pattern of organochlorine pesticide residues in eggs of 22 terrestrial birds from Tamil Nadu, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39253-39264. [PMID: 32642894 DOI: 10.1007/s11356-020-09978-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Long-term monitoring is essential to assess the patterns and distribution of the residues of organochlorine pesticides (OCPs) in biota. Bird eggs have several advantages than other environmental matrixes, which have been used extensively to portray the accumulation and distribution of OCPs. The present study investigated the organochlorine pesticide (OCP) residues in eggs of 22 species of terrestrial birds collected from Tamil Nadu, India. Eggs found abandoned were collected during nest monitoring between 2001 and 2008 and analyzed for the presence of organochlorine pesticide residues. The results showed that the mean concentrations of total hexachlorohexane (∑HCHs), total dichlorodiphenyltrichloroethane (∑DDTs), heptachlor epoxide, and dieldrin ranged from non-detectable (nd) to 2800 ng/g, nd to1000 ng/g, nd to 700 ng/g, and nd to 240 ng/g on a wet mass (wm) basis, respectively. The variation in magnitude of contamination among the species and feeding guilds were not significantly different (p > 0.05). Among the OCPs analyzed, the residues of β-HCH and p,p'-DDE were found to be the abundant in concentration. Similarly, among various bird species studied, the highest concentrations of ∑OCPs (> 5000 ng/g wm) were recorded in the eggs of gray junglefowl, scaly-breasted munia, and red-whiskered bulbul. This may be due to their widespread occurrence of their habitat at proximity to the agricultural fields, where organochlorines were in use until recently. Among the various contaminants analyzed, concentrations of p,p'-DDE and heptachlor epoxide exceeded the threshold levels of toxicity for wild birds in > 5% of the egg samples. Hence, this study indicates the need for continued monitoring and further systematic ecotoxicological investigation of these compounds not only in eggs but also in other environmental media.
Collapse
Affiliation(s)
- Dhananjayan Venugopal
- ICMR-Regional Occupational Health Centre (Southern), Indian Council of Medical Research, Bangalore, 562110, India.
- Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, 641108, India.
| | | | - Jayakumar Rajamani
- GITAM University, Bangalore Campus, Nagadenahalli, Bangalore, 561203, India
| | - Jayanthi Palaniyappan
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Jayakumar Samidurai
- Department of Zoology & Wildlife Biology, A.V.C. College (Autonomous), Mayiladuthurai, 609305, India
| | - Alaguraj Arumugam
- Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, 641108, India
| |
Collapse
|
9
|
Currier HA, Fremlin KM, Elliott JE, Drouillard KG, Williams TD. Bioaccumulation and biomagnification of PBDEs in a terrestrial food chain at an urban landfill. CHEMOSPHERE 2020; 238:124577. [PMID: 31450111 DOI: 10.1016/j.chemosphere.2019.124577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Biota samples from the Vancouver municipal landfill located in Delta, BC, Canada, have some of the highest polybrominated diphenyl ether (PBDE) levels reported from North America. We followed a population of European starlings (Sturnus vulgaris) breeding in a remediated area in the landfill to identify exposure routes and bioaccumulation of PBDEs in a simple terrestrial food chain. This population was compared to a reference farm site located 40 km east in Glen Valley. We analyzed samples of European starling eggs and nestling livers as well as invertebrate prey species consumed by starlings for PBDE concentrations. We also collected soil samples from starling foraging areas. All samples from the Delta landfill had higher PBDE congener concentrations compared to the Glen Valley reference site and were dominated by BDE-99 and BDE-47. Stable nitrogen (δ N15) and carbon (δ C13) isotope analysis of starling blood samples and provisioned invertebrates revealed that stable δC13 signatures differed between the sites indicating that the diet of starlings in the Delta landfill included a component of human refuse. Biota-soil accumulation factors (BSAFs) > 1 demonstrated that PBDEs were bioaccumulating in soil invertebrates, particularly earthworms, which were readily accessible to foraging starlings in the landfill. Biomagnification factors (BMFs) calculated from foraged food items and starling egg and liver samples were >1, indicating that a diet of soil invertebrates and refuse contributed substantially to the PBDE exposure of local starlings.
Collapse
Affiliation(s)
- Heidi A Currier
- Simon Fraser University, Dept. of Biological Sciences, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Kate M Fremlin
- Simon Fraser University, Dept. of Biological Sciences, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - John E Elliott
- Environment Canada, Pacific Wildlife Research Center, 5421 Robertson Road, Delta, British Columbia, V4K 3N2, Canada; Simon Fraser University, Dept. of Biological Sciences, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Ken G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Drive West, Windsor, Ontario, N9B 3P4, Canada.
| | - Tony D Williams
- Simon Fraser University, Dept. of Biological Sciences, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
10
|
Mo L, Zheng X, Zhu C, Sun Y, Yu L, Luo X, Mai B. Persistent organic pollutants (POPs) in oriental magpie-robins from e-waste, urban, and rural sites: Site-specific biomagnification of POPs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109758. [PMID: 31600649 DOI: 10.1016/j.ecoenv.2019.109758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Plenty of banned and emerging persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and decabromodiphenyl ethane (DBDPE), were measured in oriental magpie-robins from an e-waste recycling site, an urban site (Guangzhou City), and a rural site in South China. Median concentrations of DDTs, PCBs, PBDEs, DP, and DBDPE ranged from 1,000-1,313, 800-59,368, 244-5,740, 24.1-127, and 14.7-36.0 ng/g lipid weight, respectively. Birds from the e-waste site had significantly higher concentrations of PCBs and PBDEs than those from urban and rural sites (p < 0.05), implying contamination of PCBs and PBDEs brought by e-waste recycling activities. DDTs were the predominant POPs in birds from urban and rural sites. The values of δ15N were significantly and positively correlated with concentrations of p,p'-DDE and low-halogenated chemicals in samples from the e-waste site (p < 0.05), indicating the trophic magnification of these chemicals in birds. However, concentrations of most POPs were not significantly correlated with the δ15N values in birds from urban and rural sites. PCBs and PBDEs in birds from urban and rural sites were not likely from local sources, and the biomagnification of POPs in different sites needed to be further investigated with caution.
Collapse
Affiliation(s)
- Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou, 510100, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Chunyou Zhu
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Lehuan Yu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
11
|
Eng ML, Williams TD, Fernie KJ, Karouna Renier NK, Henry PFP, Letcher RJ, Elliott JE. In ovo exposure to brominated flame retardants Part I: Assessment of effects of TBBPA-BDBPE on survival, morphometric and physiological endpoints in zebra finches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:104-110. [PMID: 31026748 DOI: 10.1016/j.ecoenv.2019.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 05/27/2023]
Abstract
Tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) is an additive flame retardant used in polyolefins and polymers. It has been detected in biota, including in avian eggs, yet little is known of its effects. We assessed the pattern of TBBPA-BDBPE concentrations in songbird eggs over the incubation period, and the effects of embryonic exposure to TBBPA-BDBPE in a model songbird species, the zebra finch (Taeniopygia guttata). To assess concentrations during embryo development, eggs were injected on the day they were laid with the vehicle control (safflower oil) or 100 ng TBBPA-BDBPE/g egg, and whole egg contents were collected throughout embryonic development on day 0 (unincubated), 5, 10 and 13. To evaluate effects of embryonic exposure to TBBPA-BDBPE, eggs were injected at Hamburger-Hamilton stage 18 (∼80 h after initiation of incubation) with safflower oil only, 10, 50 or 100 ng TBBPA-BDBPE/g egg (albumin injection volume 1 μl/g). Eggs were monitored for hatching success, and nestlings were monitored for growth and survival. At 15 days post-hatch, tissues were collected to assess physiological effects. TBBPA-BDBPE was incorporated into the egg as the embryo developed, and concentrations started declining in late incubation, suggesting biotransformation by the embryo. There were no effects on hatching success, nestling survival, growth, organ somatic indices, or thyroid hormone homeostasis; however, there was evidence that body condition declined in a dose-dependent manner towards the end of the rapid nestling growth phase. This decreased body condition could be a delayed effect of early developmental exposure, or it may be the result of increased exposure to biotransformation products of TBBPA-BDBPE produced over the nestling period, which are predicted to be more bioaccumulative and toxic than the parent compound.
Collapse
Affiliation(s)
- Margaret L Eng
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | | | - Paula F P Henry
- U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - John E Elliott
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
12
|
Tongue ADW, Reynolds SJ, Fernie KJ, Harrad S. Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:646-658. [PMID: 30844700 DOI: 10.1016/j.envpol.2019.01.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/26/2023]
Abstract
Given factors such as their persistence and toxicity, legacy brominated flame retardants (BFRs) like polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), are designated as persistent organic pollutants (POPs) and are subject to regulation. Waste streams likely represent a substantial reservoir of legacy BFRs given that they were once widely applied to goods which are increasingly likely to be obsolete. Waste streams are also increasingly likely to be a source of emerging flame retardants, in particular, novel BFRs (NBFRs), the halogenated norbornene flame retardant Dechlorane Plus (DDC-CO) and the brominated, chlorinated or non-halogenated organophosphate triester flame retardants (PFRs). Many bird populations rely on landfill and its surrounding land-use for inter alia the opportunities it provides for activities such as foraging and resting. However, studies on captive and wild (free-living) birds have demonstrated deleterious effects of several FRs. Globally, approximately 250 bird species, including many of conservation concern, are reported to use landfill and surrounding habitat (including wastewater treatment operations), thus putting birds potentially at risk of exposure to such chemicals. We synthesise and critically evaluate a total of 18 studies covering eight avian species published between 2008 and 2018 (inclusive) across four continents that report flame retardant (FR) burdens in birds utilising landfill. Several such studies found FRs at among the highest concentrations detected in wild biota to date. We recommend that ongoing research be focused on landfill-associated birds, given that landfill is an important source of FRs and other anthropogenic chemicals, and particularly at sites where species are of conservation concern. We suggest ways in which the comparative power of studies could be enhanced in the future, the reporting of a minimum common suite of key chemicals, and where feasible, standardisation of the tissue compartments (i.e., eggs) to be studied. We conclude by identifying future research directions.
Collapse
Affiliation(s)
- Andrew D W Tongue
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, GU11 1PS, UK
| | - Kim J Fernie
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment & Climate Change Canada (ECCC), Burlington, ON, L7S 1A1, Canada
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Malik A, Dharaiya N, Espín S. Is current information on organochlorine exposure sufficient to conserve birds in India? ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1137-1149. [PMID: 30083996 DOI: 10.1007/s10646-018-1969-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Organochlorine compounds (OCs) pose a serious threat towards the wildlife due to their well-known adverse effects. India is the second largest producer of pesticides in Asia, with DDT production still ongoing, and is ranked amongst the leading countries of pesticide consumption. However, a significant data gap in avian biomonitoring studies has been identified in Asia. The objective of this review is to compile and discuss the available literature on concentrations of organochlorine pesticides and PCBs in Indian birds. The review of 18 articles showed that DDTs were the OCs most frequently analysed, followed by HCHs and PCBs (highest hepatic mean values: 11.6, 1.8 and 1.03 µg/g ww, respectively). The most frequently analysed matrix was whole body homogenates, followed by internal tissues. Plasma, eggs, feathers and guano were poorly sampled. The range of sampling years was 1980-2007. In general, hepatic OC concentrations were below the level known to cause adverse effects, although p,p'-DDE in eggs was found in concentrations associated with eggshell thinning. Most of the studies were carried out in Southern India (Tamil Nadu). Out of 106 species studied, house crow (Corvus splendens) was the most frequently monitored. However, the number of individuals sampled per species is generally low and different sample types are used, thus, huge limitations to compare OC exposure exist. This review shows that there is a clear deficit of data on OC concentrations and sublethal effects that needs to be addressed to understand the status of OC exposure, spatio-temporal trends and potential impacts in Indian avifauna.
Collapse
Affiliation(s)
- Arzoo Malik
- Wildlife and Conservation Biology Lab, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| | - Nishith Dharaiya
- Wildlife and Conservation Biology Lab, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Silvia Espín
- Department of Health Sciences, Faculty of Veterinary, Area of Toxicology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
- Department of Biology, Section of Ecology, University of Turku, Turku, 20014, Finland
| |
Collapse
|
14
|
Mo L, Zheng X, Sun Y, Yu L, Luo X, Xu X, Qin X, Gao Y, Mai B. Selection of passerine birds as bio-sentinel of persistent organic pollutants in terrestrial environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1237-1244. [PMID: 29758876 DOI: 10.1016/j.scitotenv.2018.03.311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
A broad suite of persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane (DDT) and its metabolites, were analyzed in pectoral muscle of eight terrestrial passerine bird species from an extensive e-waste recycling site in South China. Concentrations of PCBs, PBDEs, and DDTs in bird samples ranged from 1260-279,000, 121-14,200, and 31-7910ng/g lipid weight, respectively. Insectivorous birds had significantly higher levels of PCBs, PBDEs, and DDTs than those in granivorous birds. Concentrations of POPs in resident insectivorous birds were significantly greater than those in migrant insectivorous birds. PCBs were the predominant pollutants in all bird species from the e-waste site, followed by PBDEs and DDTs, indicating that PCBs were mainly derived from e-wastes. The granivorous birds had higher proportions of hepta-CBs in total PCBs and higher proportions of octa- to deca-BDEs in total PBDEs compared with the insectivorous birds. The various dietary sources, migration behavior, and possible biotransformation were suspected as reasons of the distinct profiles of POPs in different bird species. The δ15N values were significantly and positively correlated with concentrations of POPs in resident insectivorous birds, but not in other passerine bird species, suggesting the influence of trophic levels on bioaccumulation of POPs in resident insectivorous birds. The resident insectivorous birds seem to be promising bio-sentinel of POPs in terrestrial environment around the e-waste sites.
Collapse
Affiliation(s)
- Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 510100, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Lehuan Yu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoquan Qin
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongli Gao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Equipment Public Service Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
15
|
Eng ML, Winter V, Elliott JE, MacDougall-Shackleton SA, Williams TD. Embryonic exposure to environmentally relevant concentrations of a brominated flame retardant reduces the size of song-control nuclei in a songbird. Dev Neurobiol 2018; 78:799-806. [PMID: 29786974 DOI: 10.1002/dneu.22604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 02/28/2024]
Abstract
Environmental contaminants have the potential to act as developmental stressors and impair development of song and the brain of songbirds, but they have been largely unstudied in this context. 2,2',4,4',5-Pentabromodiphenyl ether (BDE-99) is a brominated flame retardant congener that has demonstrated endocrine disrupting effects, and has pervaded the global environment. We assessed the effects of in ovo exposure to environmentally relevant levels of BDE-99 on the neuroanatomy of the song-control system in a model songbird species, the zebra finch (Taeniopygia guttata). Embryos were exposed via egg injection to a vehicle control (DMSO), 10, 100, or 1000 ng BDE-99/g egg on the day the egg was laid. Chicks were raised to sexual maturity to investigate long-term effects of BDE-99 on the adult male brain. Three key song-control nuclei (Area X, HVC, RA) all showed a dose-dependent trend toward decreasing volume as BDE-99 concentration increased, and birds exposed to 1000 ng/g in ovo BDE-99 had significantly smaller song-control nuclei volume compared to control birds. High environmental concentrations of BDE-99 in avian tissues can be within that range and thus could affect development of the song-control system in birds, and potentially other processes. We previously found that BDE-99 exposure during the nestling period had no effect of on the song-control system, although it did have significant effects on some behaviural endpoints. Taken together, these results suggest that exposure to polybrominated diphenyl ether (PBDEs) during critical developmental windows can significantly alter neurological development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Viktoria Winter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, V4K 3N2, Canada
| | - Scott A MacDougall-Shackleton
- Department of Psychology and Advanced Facility for Avian Research, Western University, London, Ontario, N6A 5C2, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
16
|
Gewurtz SB, Martin PA, Letcher RJ, Burgess NM, Champoux L, Elliott JE, Idrissi A. Perfluoroalkyl Acids in European Starling Eggs Indicate Landfill and Urban Influences in Canadian Terrestrial Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5571-5580. [PMID: 29660979 DOI: 10.1021/acs.est.7b06623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Perfluoroalkyl acids (PFAAs) were determined in European starling ( Sturnus vulgaris) eggs collected between 2009 and 2014 from industrial, rural/agricultural, and landfill locations within five urban centers across Canada. Within each urban center, perfluoroalkyl sulfonic acid (PFSA) concentrations were generally greater in starling eggs collected from urban/industrial locations and PFSAs and perfluoroalkyl carboxylic acids (PFCAs) were generally greater at landfills compared to rural and remote locations. However, the relative importance of urban/industrial versus landfill locations as potential sources was chemical- and location-specific. PFSA concentrations in eggs collected from nonlandfills were positively correlated with human population. Despite the 2000 to 2002 phase-out of perfluorooctanesulfonic acid (PFOS) and its C8 precursors, leaching from consumer products during use likely continues to be a major source to the environment. In comparison, the concentrations of most PFCAs in eggs were not related to population, which supports the hypothesis that atmospheric transport and degradation of precursor chemicals are influencing their spatial trends. PFAA concentrations in eggs from landfills were not correlated with the quantity of waste received by a given landfill. The variability in PFAAs between landfills may be due to the specific composition of waste items.
Collapse
Affiliation(s)
| | - Pamela A Martin
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Burlington , Ontario L7S 1A1 , Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa , Ontario K1A 0H3 , Canada
| | - Neil M Burgess
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Mount Pearl , Newfoundland A1N 4T3 , Canada
| | - Louise Champoux
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Québec City Québec G1J 0C3 , Canada
| | - John E Elliott
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta , British Columbia V4K 3N2 , Canada
| | - Abde Idrissi
- Laboratory Services, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Ottawa , Ontario K1A 0H3 , Canada
| |
Collapse
|
17
|
Lu Z, Martin PA, Burgess NM, Champoux L, Elliott JE, Baressi E, De Silva AO, de Solla SR, Letcher RJ. Volatile Methylsiloxanes and Organophosphate Esters in the Eggs of European Starlings (Sturnus vulgaris) and Congeneric Gull Species from Locations across Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9836-9845. [PMID: 28771368 DOI: 10.1021/acs.est.7b03192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Volatile methylsiloxanes (VMSs) and organophosphate esters (OPEs) are two suites of chemicals that are of environmental concern as organic contaminants, but little is known about the exposure of wildlife to these contaminants, particularly in birds, in terrestrial and aquatic ecosystems. The present study investigates the spatial distributions of nine cyclic and linear VMSs and 17 OPEs in the eggs of European starlings (Sturnus vulgaris) and three congeneric gull species (i.e., herring gull (Larus argentatus), glaucous-winged gull (L. glaucescens), and California gull (L. californicus)) from nesting sites across Canada. ∑VMS concentrations for all bird eggs were dominated by decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and octamethylcyclotetrasiloxane (D4). With European starlings, birds breeding adjacent to landfill sites had eggs containing significantly greater ∑VMS concentrations (median: 178 ng g-1 wet weight (ww)) compared with those from the urban industrial (20 ng g-1 ww) and rural sites (1.3 ng g-1 ww), indicating that the landfills are important sources of VMSs to Canadian terrestrial environments. In gull eggs, the median ∑VMS concentrations were up to 254 ng g-1 ww and suggested greater detection frequencies and levels of VMSs in aquatic- versus terrestrial-feeding birds in Canada. In contrast, the detection frequency of OPEs in all European starling and gull eggs was lower than 16%. This suggested that low dietary exposure or rapid metabolism of accumulated OPEs occurs in aquatic feeding birds and may warrant further investigation for the elucidation of the reasons for these differences.
Collapse
Affiliation(s)
| | | | - Neil M Burgess
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada , Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Louise Champoux
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada , Québec City, Québec G1J 0C3, Canada
| | - John E Elliott
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Pacific Wildlife Research Centre , Delta, British Columbia V4K 3Y3, Canada
| | - Enzo Baressi
- National Laboratory of Environmental Testing, Environment and Climate Change Canada , Burlington, Ontario L7S 1A1, Canada
| | | | | | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
18
|
Guigueno MF, Fernie KJ. Birds and flame retardants: A review of the toxic effects on birds of historical and novel flame retardants. ENVIRONMENTAL RESEARCH 2017; 154:398-424. [PMID: 28193557 DOI: 10.1016/j.envres.2016.12.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 05/28/2023]
Abstract
Flame retardants (FRs) are a diverse group of chemicals, many of which persist in the environment and bioaccumulate in biota. Although some FRs have been withdrawn from manufacturing and commerce (e.g., legacy FRs), many continue to be detected in the environment; moreover, their replacements and/or other novel FRs are also detected in biota. Here, we review and summarize the literature on the toxic effects of various FRs on birds. Birds integrate chemical information (exposure, effects) across space and time, making them ideal sentinels of environmental contamination. Following an adverse outcome pathway (AOP) approach, we synthesized information on 8 of the most commonly reported endpoints in avian FR toxicity research: molecular measures, thyroid-related measures, steroids, retinol, brain anatomy, behaviour, growth and development, and reproduction. We then identified which of these endpoints appear more/most sensitive to FR exposure, as determined by the frequency of significant effects across avian studies. The avian thyroid system, largely characterized by inconsistent changes in circulating thyroid hormones that were the only measure in many such studies, appears to be moderately sensitive to FR exposure relative to the other endpoints; circulating thyroid hormones, after reproductive measures, being the most frequently examined endpoint. A more comprehensive examination with concurrent measurements of multiple thyroid endpoints (e.g., thyroid gland, deiodinase enzymes) is recommended for future studies to more fully understand potential avian thyroid toxicity of FRs. More research is required to determine the effects of various FRs on avian retinol concentrations, inconsistently sensitive across species, and to concurrently assess multiple steroid hormones. Behaviour related to courtship and reproduction was the most sensitive of all selected endpoints, with significant effects recorded in every study. Among domesticated species (Galliformes), raptors (Accipitriformes and Falconiformes), songbirds (Passeriformes), and other species of birds (e.g. gulls), raptors seem to be the most sensitive to FR exposure across these measurements. We recommend that future avian research connect biochemical disruptions and changes in the brain to ecologically relevant endpoints, such as behaviour and reproduction. Moreover, connecting in vivo endpoints with molecular endpoints for non-domesticated avian species is also highly important, and essential to linking FR exposure with reduced fitness and population-level effects.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1; Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada H9X 3V9
| | - Kim J Fernie
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1.
| |
Collapse
|
19
|
Kim M, Li LY, Gorgy T, Grace JR. Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:753-765. [PMID: 27814985 DOI: 10.1016/j.envpol.2016.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/02/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are still present in sewage sludge and sludge-amended soil, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. In this study, levels and compositional profiles of seven major PBDE congeners in sludge are assessed in relation to their usage patterns in commercial products, and years of being banned and phased out in North America, Europe, and Asia. Annual accumulations and future long-term changes of PBDE in sludge-amended soil are estimated. BDE-209 has the highest concentration, followed by BDE-99 and BDE-47. The highest concentrations, up to 23,500 ng g-1, of PBDEs in sludge were found in North America until 2004-2007, whereas since then sludge PBDE concentrations, up to 6600 ng g-1 have been higher in Asia than on the other two continents. The amount of sludge applied and the soil organic matter content play important roles in determining PBDE concentrations in sludge-amended soil. The estimated concentrations of BDE-47, -99, and -209 in soils receiving sludge applications during the past 15 years are 40-300 times higher than in soils after the initial sludge application. The accumulated concentrations of BDE-47 and BDE-99 are expected to decrease by 99% between 2016 and 2100, whereas the decrease in the BDE-209 concentration is predicted to be approximately 87%.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Tamer Gorgy
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; WorleyParsons, 4321 Still Creek Dr, Burnaby, BC, V5C 6S7, Canada
| | - John R Grace
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
20
|
Nossen I, Ciesielski TM, Dimmen MV, Jensen H, Ringsby TH, Polder A, Rønning B, Jenssen BM, Styrishave B. Steroids in house sparrows (Passer domesticus): Effects of POPs and male quality signalling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:295-304. [PMID: 26789367 DOI: 10.1016/j.scitotenv.2015.12.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
At high trophic levels, environmental contaminants have been found to affect endocrinological processes. Less attention has been paid to species at lower trophic levels. The house sparrow (Passer domesticus) may be a useful model for investigating effects of POPs in mid-range trophic level species. In male house sparrows, ornamental traits involved in male quality signalling are important for female selection. These traits are governed by endocrinological systems, and POPs may therefore interfere with male quality signalling. The aim of the present study was to use the house sparrow as a mid-range trophic level model species to study the effects of environmental contaminants on endocrinology and male quality signalling. We analysed the levels of selected PCBs, PBDEs and OCPs and investigated the possible effects of these contaminants on circulating levels of steroid hormones (4 progestagens, 4 androgens and 3 estrogens) in male and female adult house sparrows from a population on the island Leka, Norway. Plasma samples were analysed for steroid hormones by GC-MS and liver samples were analysed for environmental contaminants by GC-ECD and GC-MS. In males, we also quantified ornament traits. It was hypothesised that POPs may have endocrine disrupting effects on the local house sparrow population and can thus interfere with the steroid hormone homeostasis. Among female house sparrows, bivariate correlations revealed negative relationships between POPs and estrogens. Among male sparrows, positive relationships between dihydrotestosterone levels and PCBs were observed. In males, positive relationships were also found between steroids and beak length, and between steroids and ornamental traits such as total badge size. This was confirmed by a significant OPLS model between beak length and steroids. Although sparrows are in the mid-range trophic levels, the present study indicates that POPs may affect steroid homeostasis in house sparrows, in particular for females. For males, circulating steroid levels appears to be more associated with biometric parameters related to ornamental traits.
Collapse
Affiliation(s)
- Ida Nossen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Malene V Dimmen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anuschka Polder
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Bernt Rønning
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Matache ML, Hura C, David IG. Non-invasive Monitoring of Organohalogen Compounds in Eggshells and Feathers of Birds from the Lower Prut Floodplain Natural Park in Romania. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proenv.2016.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
van den Brink NW, Arblaster JA, Bowman SR, Conder JM, Elliott JE, Johnson MS, Muir DCG, Natal-da-Luz T, Rattner BA, Sample BE, Shore RF. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:135-145. [PMID: 26436822 DOI: 10.1002/ieam.1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/13/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.
Collapse
Affiliation(s)
| | | | - Sarah R Bowman
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Jason M Conder
- Geosyntec Consultants, Huntington Beach, California, USA
| | | | - Mark S Johnson
- US Army Public Health Center, Aberdeen Proving Ground, Aberdeen, Maryland
| | | | - Tiago Natal-da-Luz
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland
| | | | - Richard F Shore
- NERC Centre for Ecology and Hydrology, Lancaster, United Kingdom
| |
Collapse
|
23
|
Fernández-Rodríguez M, Arrebola JP, Artacho-Cordón F, Amaya E, Aragones N, Llorca J, Perez-Gomez B, Ardanaz E, Kogevinas M, Castano-Vinyals G, Pollan M, Olea N. Levels and predictors of persistent organic pollutants in an adult population from four Spanish regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:152-61. [PMID: 26298258 DOI: 10.1016/j.scitotenv.2015.07.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 05/26/2023]
Abstract
This research aimed to assess serum concentrations of a group of persistent organic pollutants (POPs) in a sample of adults recruited in four different regions from Spain and to assess socio-demographic, dietary, and lifestyle predictors of the exposure. The study population comprised 312 healthy adults selected from among controls recruited in the MCC-Spain multicase-control study. Study variables were collected using standardized questionnaires, and pollutants were analyzed by means of gas chromatography with electron capture detection. Multivariable analyses were performed to identify predictors of log-transformed pollutant concentrations, using combined backward and forward stepwise multiple linear regression models. Detection rates ranged from 89.1% (hexachlorobenzene, HCB) to 93.6% (Polychlorinated biphenyl-153 [PCB-153]); p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) showed the highest median concentrations (1.04ng/ml), while HCB showed the lowest (0.24ng/ml). In the multivariable models, age was positively associated with HCB, p,p'-DDE, and PCB-180. BMI was associated positively with p,p'-DDE but negatively with PCB-138. Total accumulated time residing in an urban area was positively associated with PCB-153 concentrations. The women showed higher HCB and lower p,p'-DDE concentrations versus the men. Notably, POP exposure in our study population was inversely associated with the breastfeeding received by participants and with the number of pregnancies of their mothers but was not related to the participants' history of breastfeeding their children or parity. Smoking was negatively associated with HCB and PCB-153 concentrations. Consumption of fatty foods, including blue fish, was in general positively associated with POP levels. Although POP environmental levels are declining worldwide, there is a need for the continuous monitoring of human exposure in the general population. The results of the present study confirm previous findings and point to novel predictors of long-term exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- M Fernández-Rodríguez
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain.
| | - J P Arrebola
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Oncology Unit, Virgen de las Nieves University Hospital, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - E Amaya
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - N Aragones
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - J Llorca
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universidad de Cantabria-IDIVAL, Santander, Spain
| | - B Perez-Gomez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - E Ardanaz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA) Pamplona, Spain
| | - M Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - G Castano-Vinyals
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - M Pollan
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Flux JEC, Flux M. The fertility clinic: a bird's-eye view of our future. NEW ZEALAND JOURNAL OF ZOOLOGY 2015. [DOI: 10.1080/03014223.2015.1099549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Meg Flux
- Hill Road, Belmont, Lower Hutt, New Zealand
| |
Collapse
|
25
|
Zahara ARD, Michel NL, Flahr LM, Ejack LE, Morrissey CA. Latent cognitive effects from low-level polychlorinated biphenyl exposure in juvenile European starlings (Sturnus vulgaris). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2513-2522. [PMID: 26033510 DOI: 10.1002/etc.3084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/15/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Ecotoxicology research on polychlorinated biphenyl (PCB) mixtures has focused principally on short-term effects on reproduction, growth, and other physiological endpoints. Latent cognitive effects from early life exposure to low-level PCBs were examined in an avian model, the European starling (Sturnus vulgaris). Thirty-six birds, divided equally among 4 treatment groups (control = 0 µg, low = 0.35 µg, intermediate = 0.70 µg, and high = 1.05 µg Aroclor 1254/g body weight), were dosed 1 d through 18 d posthatch, then tested 8 mo to 9 mo later in captivity in an analog to an open radial arm maze. Birds were subject to 4 sequential experiments: habituation, learning, cue selection, and memory. One-half of the birds did not habituate to the test cage; however, this was not linked to a treatment group. Although 11 of the remaining 18 birds successfully learned, only 1 was from the high-dosed group. Control and low-dosed birds were among the only treatment groups to improve trial times throughout the learning experiment. High-dosed birds were slower and more error-prone than controls. Cue selection (spatial or color cues) and memory retention were not affected by prior PCB exposure. The results indicate that a reduction in spatial learning ability persists among birds exposed to Aroclor 1254 during development. This may have implications for migration ability, resource acquisition, and other behaviors relevant for fitness.
Collapse
Affiliation(s)
- Alexander R D Zahara
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole L Michel
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leanne M Flahr
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leanne E Ejack
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Erratico C, Currier H, Szeitz A, Bandiera S, Covaci A, Elliott J. Levels of PBDEs in plasma of juvenile starlings (Sturnus vulgaris) from British Columbia, Canada and assessment of PBDE metabolism by avian liver microsomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:31-37. [PMID: 25747361 DOI: 10.1016/j.scitotenv.2014.12.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
In this study, the levels of polybrominated diphenyl ethers (PBDEs), HO-PBDEs, and bromophenols were monitored in starling chick plasma samples collected in Delta (British Columbia, Canada) close to the Vancouver municipal landfill and in Glen Valley, a rural area in British Columbia. The in vitro formation of hydroxylated metabolites of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) was also investigated using starling chick liver microsomes. Total PBDE plasma levels were approximately 60 times higher in starling chicks from Delta than from Glen Valley, suggesting that the Delta site is a major source of PBDEs for the local population of starlings and that PBDEs previously measured in starling eggs are bioavailable to chicks. In both locations, BDE-47 and BDE-99 were the two major congeners present at similar concentrations, suggesting contamination with the Penta-BDE mixture. Among the several possible hydroxylated metabolites of PBDEs monitored in starling plasma, only 2,4,5-tribromophenol was detected and its levels did not exceed 18±7 pg/mL. Also, several hydroxylated metabolites of BDE-47 and BDE-99 were formed by starling chick liver microsomes, but in low amounts. Therefore, our data consistently suggest that oxidative metabolism of PBDEs in starling chicks proceeds at low rate in vivo and in vitro. In conclusion, the landfill located in Delta is a relevant source of bioavailable PBDEs for the local starling population. Because of the limited ability of starling chicks to metabolize PBDEs, these compounds are likely to bioaccumulate in starlings over time. The possible toxicological implications of PBDEs bioaccumulation in starlings are currently unknown and require further research.
Collapse
Affiliation(s)
- Claudio Erratico
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Heidi Currier
- Simon Fraser University, Department of Biological Sciences, 8888 University Dr., Burnaby, British Columbia, Canada
| | - András Szeitz
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - Stelvio Bandiera
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - John Elliott
- Environment Canada, 5421 Robertson Road, Delta, British Columbia, Canada.
| |
Collapse
|
27
|
Tang WB, Huang K, Zhao JH, Zhang Z, Liang S, Liu L, Zhang W, Lin KF. Polybrominated diphenyl ethers in resident Eurasian Tree Sparrow from Shanghai: geographical distribution and implication for potential sources. CHEMOSPHERE 2015; 126:25-31. [PMID: 25665899 DOI: 10.1016/j.chemosphere.2014.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
An investigation of polybrominated diphenyl ethers (PBDEs) in Eurasian Tree Sparrow (Passer montanus) samples (n=37) collected from different land use areas in Shanghai provided information about the levels, compositional patterns, geographical distribution, potential sources of PBDEs and the evaluation of contamination status in Shanghai. The concentrations of BDE 209 and Sum-PBDEs were within the range of 8.20-292.0 ng g(-1) lw (median: 47.0 ng g(-1) lw) and 33.16-375.63 ng g(-1) lw (median: 78.7 ng g(-1) lw), respectively. As the predominant individual congener, BDE 209 was detected in all samples with a mean percentage of 62.8%, followed by BDE 47, 99 and 100 sequentially. The geographical distribution of PBDEs in ETS muscles followed the order below: landfill>urban>industrial parks>suburban>rural>remote, indicating that Shanghai Laogang Municipal Landfill was an important emission source of PBDEs in Shanghai, and also the PBDE levels were in association with urbanization and industrialization. Compared with other regions, contamination status in Shanghai was relatively good with the exception of these high concentration areas. There was significant correlation (r(2)=0.89, P<0.01) between PBDEs concentrations in soil and ETS, indicating ETS could be used as a useful biomonitoring tool for PBDEs in Shanghai.
Collapse
Affiliation(s)
- Wei-biao Tang
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Kai Huang
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Jian-hua Zhao
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Zheng Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Si Liang
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Lili Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Wei Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Kuang-fei Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China.
| |
Collapse
|
28
|
Luo XJ, Sun YX, Wu JP, Chen SJ, Mai BX. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 198:41-46. [PMID: 25553345 DOI: 10.1016/j.envpol.2014.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area.
Collapse
Affiliation(s)
- Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yu-Xin Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiang-Ping Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
29
|
Currier HA, Letcher RJ, Williams TD, Elliott JE. Effects of the bioaccumulative polybrominated diphenyl ether flame retardant congener BDE-47 on growth, development, and reproductive success in zebra finches. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 94:140-145. [PMID: 25283367 DOI: 10.1007/s00128-014-1393-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the effects of the polybrominated diphenyl ether congener, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on the growth and development, and subsequent breeding success of exposed zebra finches (Taeniopygia guttata). Using oral dosing procedures and treatments adjusted by weight, we treated newly hatched chicks daily for the first 20-days-post-hatch (dph) with varying treatments of BDE-47 (0, 5, 50, and 500 ng/g bw/day). Weight and tarsal measurements were monitored from hatch to 90 dph, but no differences were observed between treatment groups at any age. Treated females that reached sexual maturity were mated with untreated males; however, again no treatment effects were observed on breeding success. Analysis of tissue samples at 21 dph did indicate that debromination of BDE-47 had occurred resulting in BDE-28 and BDE-17 metabolites.
Collapse
Affiliation(s)
- Heidi A Currier
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada,
| | | | | | | |
Collapse
|
30
|
Abbasi NA, Jaspers VLB, Chaudhry MJI, Ali S, Malik RN. Influence of taxa, trophic level, and location on bioaccumulation of toxic metals in bird's feathers: a preliminary biomonitoring study using multiple bird species from Pakistan. CHEMOSPHERE 2015; 120:527-537. [PMID: 25303737 DOI: 10.1016/j.chemosphere.2014.08.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 06/04/2023]
Abstract
Increasing concentrations of heavy metals in the environment and their effects on ecosystems and biota is still an imminent threat, particularly in developing parts of the globe. The aim of the present study was to screen the heavy metal concentrations in multiple bird species across Pakistan and to preliminary evaluate the influence of taxa, trophic level, and geographical location on heavy metal accumulation in various bird species. For this purpose, we measured the concentration of 9 heavy metals (Pb, Cd, Cr, Ni, Co, Cu, Fe, Zn and Mn) in feathers of 48 bird species from different localities in Pakistan. Species exhibited heterogeneous levels of heavy metals in feathers with marked inter and intra specific variations. Mean concentrations of studied metals in feathers followed the trend Fe>Zn>Cu>Pb>Mn>Cr>Ni>Co>Cd. Species belonging to closely related taxa (families) showed comparable metal concentrations in their feathers, inferring potential phylogenetic similarities in metal exposure or accumulation. In general, concentrations of metals were greatest in carnivorous species followed by omnivorous and insectivorous birds, and granivores showing minimal levels (p<0.000). Furthermore, concentrations of metals varied significantly between locations (p<0.000) exhibiting highest concentrations in Punjab province and Baluchistan, probably due to higher industrial and agricultural activity and runoff, respectively. With certain limitation, influence of trophic level, taxonomic affiliation and sampling location of birds on toxic metal accumulation was also statistically corroborated through principal component analysis (PCA). This study highlights that despite restricted emissions, heavy metals persist in the local environment and may pose elevated risks for the studied bird species in Pakistan.
Collapse
Affiliation(s)
- Naeem Akhtar Abbasi
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Jamshed Iqbal Chaudhry
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, 45320, Pakistan; WWF - Pakistan, Ferozpur Road, P O Box 5180, Lahore 54600, Pakistan
| | - Sakhawat Ali
- Department of Wildlife Management, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
31
|
Nelson C, Drouillard K, Cheng K, Elliott J, Ismail N. Accumulation of PBDEs in an urban river otter population and an unusual finding of BDE-209. CHEMOSPHERE 2015; 118:322-328. [PMID: 25463257 DOI: 10.1016/j.chemosphere.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
River otter scat samples (n = 77) and blood samples (n = 16) collected through non-invasive field collections and live-capture activities (November 2009 to October 2010) along the coastline of Southern Vancouver Island, near Victoria, British Columbia (BC) were analyzed for polybrominated diphenyl ethers (PBDEs). ∑PBDEs were highest in urbanized regions of Victoria Harbour for blood (1.12 μg/g lipid weight) and scat (0.35 μg/g lipid weight). A location effect between zones was confirmed statistically for blood but not for scat. Specific congeners with the highest concentrations overall were BDE-47 in blood samples (0.37 μg/g lipid weight) and BDE-206 (0.18 μg/g lipid weight) and BDE-47 (0.16 μg/g lipid weight) in scat samples. There was also an unusual finding of extremely high levels of BDE-209 in 2 scat samples (163 and 956 μg/g lipid weight). The patterns of select congeners (BDE 47, 99, 100, 153, 154) measured in blood and scat were found not to be significantly different (Chi-square Test, X2 = 21.08, DF = 4, p = 0003). The most prominent congeners within Victoria Harbour were BDE-47 for both blood (0.82 mg/kg lipid weight) and scat (0.26 mg/kg lipid weight) followed by BDE-206 (0.18 μg/g lipid weight) and BDE-207 (0.10 μg/g lipid weight) for scat only. Comparable levels of BDE-47 were reported across the study area whereas BDE 206 and 207 were only observed in Victoria Harbour (scat). Toxicological effects of PBDEs in rivers otters from Victoria, BC are still unknown however the predominance of BDE-47 could have negative implication as an endocrine disruptor.
Collapse
|
32
|
Megson D, Brown TA, Johnson GW, O'Sullivan G, Bicknell AWJ, Votier SC, Lohan MC, Comber S, Kalin R, Worsfold PJ. Identifying the provenance of Leach's storm petrels in the North Atlantic using polychlorinated biphenyl signatures derived from comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. CHEMOSPHERE 2014; 114:195-202. [PMID: 25113202 DOI: 10.1016/j.chemosphere.2014.04.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
PCB signatures can be used for source identification, exposure studies, age dating and bio-monitoring. This study uses comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS) to produce a PCB signature comprised of over 80 PCBs for individual Leach's storm petrels (Oceanodroma leucorhoa). The Leach's storm petrel is a relatively small, elusive, understudied pelagic bird, which only returns to remote islands under darkness during the breeding season. Samples were obtained from 25 Leach's storm petrels found dead in Canada and the UK following storm events in 2006 and 2009. Tissue samples were extracted and analysed by GCxGC-ToFMS and results showed that 83 PCB congeners were present in >60% of samples. An assessment of the PCB signature in four different tissue types showed that it did not vary greatly in samples obtained from the gut, heart, liver and stomach. Multivariate statistical analysis identified a distinctive PCB signature in birds from Canada and Europe which was used to identify the regional provenance and transatlantic movement of individual birds. The findings showcase the ability of GCxGC-ToFMS to provide the high quality congener specific analysis that is necessary for PCB fingerprinting, as well as highlighting the potential of PCB signatures for use in ecological studies of movement, foraging and behaviour.
Collapse
Affiliation(s)
- David Megson
- Biogeochemistry Research Centre, SoGEES, Plymouth University, Plymouth, Devon PL4 8AA, UK.
| | - Thomas A Brown
- Biogeochemistry Research Centre, SoGEES, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | - Glenn W Johnson
- Energy & Geoscience Institute, 423 Wakara Way Suite 300, Salt Lake City, UT 84108, USA
| | - Gwen O'Sullivan
- Department of Environmental Science, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| | - Anthony W J Bicknell
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Stephen C Votier
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Maeve C Lohan
- Biogeochemistry Research Centre, SoGEES, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | - Sean Comber
- Biogeochemistry Research Centre, SoGEES, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | - Robert Kalin
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Paul J Worsfold
- Biogeochemistry Research Centre, SoGEES, Plymouth University, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
33
|
Eng ML, Elliott JE, Williams TD. An assessment of the developmental toxicity of BDE-99 in the European starling using an integrated laboratory and field approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1505-1516. [PMID: 25081382 DOI: 10.1007/s10646-014-1292-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Developmental exposure of wildlife to anthropogenic contaminants can have long-term effects that are difficult to assess in field monitoring studies, and may not be evident in laboratory studies that lack ecological components. The objective of this study was to assess the long-term effects of early exposure to contaminants under ecological conditions in a model passerine species, the European starling (Sturnus vulgaris). We selected 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) as a representative contaminant, as it is one of the major constituents of the commercial penta-BDE flame retardant mixture, and has been reported in avian egg and tissue samples worldwide. We developed a novel approach to assess the developmental toxicity of BDE-99 in starlings by combining aspects of laboratory and field studies. We dosed free-living nestlings living in natural broods in the field with environmentally relevant concentrations of BDE-99 (0-173.8 ng/g bw/day) for the duration of the nesting cycle. To simulate monitoring of long-term effects we brought birds into captivity just prior to fledging and used photoperiod manipulations to induce reproductive development. We assessed a range of physiological and development measures such as hematocrit, oxidative stress, thyroid hormones, neuroanatomy, growth, molt rate, bill color, and testes development. We found some evidence of thyroid hormone disruption, but there were no effects on any other measures of physiology or development. The European starling could serve as a valuable model species for assessing early exposure and long-term effects of anthropogenic contaminants in terrestrial wildlife using this combined field/laboratory approach.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada,
| | | | | |
Collapse
|
34
|
Sun YX, Hao Q, Zheng XB, Luo XJ, Zhang ZW, Zhang Q, Xu XR, Zou FS, Mai BX. PCBs and DDTs in light-vented bulbuls from Guangdong Province, South China: levels, geographical pattern and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:815-821. [PMID: 24907616 DOI: 10.1016/j.scitotenv.2014.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Thirty-two light-vented bulbuls (Pycnonotus sinensis) were collected from six sampling sites in Guangdong Province, South China to investigate the geographical variation on the occurrence of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs). Concentrations of PCBs and DDTs in the pectoral muscle of light-vented bulbul ranged from 140 to 73,000 ng/g lipid weight (lw) and 12 to 4600 ng/g lw, respectively. PCB concentrations were significantly higher in birds from e-waste site compared to other sampling sites (mean, 18,000 vs 290 ng/g lw, p<0.0001), implying that PCBs mainly came from e-waste recycling activities. No significant differences for DDT levels were observed among the sampling sites (p=0.092). Differences in PCB homologue profiles among the sampling sites were found and can be probably ascribed to different local contamination sources. p,p'-DDE (>80%) was the most abundant component of DDTs in birds. Compositional pattern of DDTs suggested that historical residue was the main source of DDT. The toxic equivalent (TEQ) concentrations had significant positive correlations with PCB concentrations, indicating that elevated PCB levels may have adverse effects on light-vented bulbuls.
Collapse
Affiliation(s)
- Yu-Xin Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qing Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Zheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zai-Wang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Fa-Sheng Zou
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
35
|
Orłowski G, Kasprzykowski Z, Dobicki W, Pokorny P, Wuczyński A, Polechoński R, Mazgajski TD. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:1057-64. [PMID: 24914534 DOI: 10.1016/j.scitotenv.2014.05.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 05/16/2023]
Abstract
We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural<urban), and that Cd levels are probably regulated physiologically, even though these were relatively high, which could be treated as an overall proxy of a heavy Cd load in the soil environment.
Collapse
Affiliation(s)
- Grzegorz Orłowski
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland.
| | - Zbigniew Kasprzykowski
- Department of Ecology and Nature Protection, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
| | - Wojciech Dobicki
- Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Przemysław Pokorny
- Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Andrzej Wuczyński
- Institute of Nature Conservation, Polish Academy of Sciences, Lower-Silesian Field Station, Podwale 75, 50-449 Wrocław, Poland
| | - Ryszard Polechoński
- Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Tomasz D Mazgajski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
| |
Collapse
|
36
|
Yu LH, Luo XJ, Liu HY, Zeng YH, Zheng XB, Wu JP, Yu YJ, Mai BX. Organohalogen contamination in passerine birds from three metropolises in China: geographical variation and its implication for anthropogenic effects on urban environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:118-23. [PMID: 24583391 DOI: 10.1016/j.envpol.2014.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 05/04/2023]
Abstract
Contamination of organohalogen pollutants (OHPs), including dichlorodiphenyl trichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenylethane (DBDPE), hexabromocyclododecanes (HBCDs), and dechlorane plus (DP) in three metropolises of China, Beijing, Wuhan, and Guangzhou, and a reference rural site were determined using terrestrial residential passerine species as bioindicator. DDTs dominated in Wuhan whereas flame retardants dominated in Guangzhou and Beijing. No geographical variation was found for PCB levels but it exhibited different homologue profiles among different sites which could be attributed to different dietary sources of birds. Industry characteristics of the sampling location contributed to the geographical differences in the occurrence and contamination profile of OHPs. The transformation of traditional agriculture characterized contamination profiles to industry characterized profiles in Beijing and Guangzhou implicates significantly environmental concern on the flame retardants contamination in non-hot-spot regions of China.
Collapse
Affiliation(s)
- Le-Huan Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Hong-Ying Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 200433, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Bo Zheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jiang-Ping Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yun-Jiang Yu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
37
|
Ruuskanen S, Laaksonen T, Morales J, Moreno J, Mateo R, Belskii E, Bushuev A, Järvinen A, Kerimov A, Krams I, Morosinotto C, Mänd R, Orell M, Qvarnström A, Slate F, Tilgar V, Visser ME, Winkel W, Zang H, Eeva T. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3304-17. [PMID: 24234761 DOI: 10.1007/s11356-013-2299-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/28/2013] [Indexed: 05/22/2023]
Abstract
Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.
Collapse
|
38
|
Eng ML, Williams TD, Letcher RJ, Elliott JE. Assessment of concentrations and effects of organohalogen contaminants in a terrestrial passerine, the European starling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:589-96. [PMID: 24394368 DOI: 10.1016/j.scitotenv.2013.12.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 05/15/2023]
Abstract
European starlings (Sturnus vulgaris) are a valuable model species for the assessment of concentrations and effects of environmental contaminants in terrestrial birds. Polybrominated diphenyl ethers (PBDEs) are found in birds throughout the world, but relatively little is known of their concentrations or effects in free-living terrestrial passerines. We used a nest box population of European starlings to 1) measure the variation in egg concentrations of persistent organohalogen contaminants at an agricultural site, and 2) assess whether individual variation in PBDE concentrations in eggs was related to reproductive parameters, as well as maternal or nestling characteristics including body condition, thyroid hormones, oxidative stress, and hematocrit. As PBDEs were the main contaminant class of interest, we only assessed a subset of eggs for other organohalogen contaminants to establish background concentrations. Exposure to organohalogen contaminants was extremely variable over this relatively small study area. Geometric mean wet weight concentrations (range in brackets) of the major contaminants were 36.5 (12-174) ng/g ΣDDT (n=6 eggs) and 10.9 (2-307) ng/g ΣPBDEs (n=14). ΣPCBs at 3.58 (1.5-6.4) ng/g (n=6) were lower and less variable. There were low levels of other organochlorine (OC) pesticides such as dieldrin (2.02 ng/g), chlordanes (1.11 ng/g) and chlorobenzenes (0.23 ng/g). The only form of DDT detected was p,p'-DDE. The congener profiles of PBDEs and PCBs reflect those of industrial mixtures (i.e. DE-71, Aroclors 1254, 1260 and 1262). For all of the contaminant classes, concentrations detected in eggs at our study site were below levels previously reported to cause effects. Due to small sample sizes, we did not assess the relationship between ΣPCBs or ΣOCs and adult or chick condition. We observed no correlative relationships between individual variation in PBDE concentrations in starling eggs and reproductive success, maternal condition, or nestling condition in the corresponding nests.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - John E Elliott
- Science and Technology Branch, Environment Canada, Pacific Wildlife Research Centre, Delta, BC V4K 3N2, Canada.
| |
Collapse
|
39
|
Currier HA, Letcher RJ, Williams TD, Elliott JE. An assessment of in ovo toxicity of the flame retardant 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (TBECH) in the zebra finch. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:455-459. [PMID: 23903759 DOI: 10.1007/s00128-013-1070-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Embryonic toxicity of a brominated flame retardant, TBECH (1,2-dibromo-4-(1, 2-dibromoethyl) cyclohexane) was investigated using the zebra finch (Taeniopygia guttata) as our model. Using in ovo dosing procedures, we injected the technical TBECH compound, consisting of 50:50 α-/β-isomers, directly into the yolk of freshly laid eggs at concentrations of 2.3-94 ng/g egg. No significant effects were observed in terms of growth or survival for either pre-hatch embryos or post-hatch chicks. Analysis of tissue samples at various developmental stages suggests that α-/β-TBECH was metabolized rapidly, and thus is unlikely to cause any direct, long-term effects on the development of zebra finch embryos or offspring.
Collapse
Affiliation(s)
- Heidi A Currier
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada,
| | | | | | | |
Collapse
|
40
|
Morrissey CA, Stanton DWG, Pereira MG, Newton J, Durance I, Tyler CR, Ormerod SJ. Eurasian dipper eggs indicate elevated organohalogenated contaminants in urban rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8931-8939. [PMID: 23819781 DOI: 10.1021/es402124z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many urban European streams are recovering from industrial, mining, and sewage pollution during the 20th century. However, associated recolonization by clean water organisms can potentially result in exposure to legacy or novel toxic pollutants that persist in the environment. Between 2008 and 2010, we sampled eggs of a river passerine, the Eurasian dipper (Cinclus cinclus), from 33 rivers in South Wales and the English borders (UK) which varied in catchment land use from rural to highly urbanized. Dipper egg δ(15)N and δ(13)C stable isotopes were enriched from urban rivers while δ(34)S was strongly depleted, effectively discriminating their urban or rural origins at thresholds of 10% urban land cover or 1000 people/km(2). Concentrations of total polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) were positively related to urban land cover and human population density while legacy organochlorine pesticides such as p,p'-DDE, lindane, and hexachlorobenzene were found in higher concentrations at rural sites. Levels of PBDEs in urban dipper eggs (range of 136-9299 ng/g lw) were among the highest ever reported in passerines, and some egg contaminants were at or approaching levels sufficient for adverse effects on avian development. With the exception of dieldrin, our data shows PCBs and other organochlorine pesticides have remained stable or increased in the past 20 years in dipper eggs, despite discontinued use.
Collapse
Affiliation(s)
- Christy A Morrissey
- Department of Biology and School of Environment and Sustainability, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen D, Martin P, Burgess NM, Champoux L, Elliott JE, Forsyth DJ, Idrissi A, Letcher RJ. European starlings ( Sturnus vulgaris ) suggest that landfills are an important source of bioaccumulative flame retardants to Canadian terrestrial ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12238-47. [PMID: 24059974 DOI: 10.1021/es403383e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Landfills are used as the primary means for the disposal of municipal solid waste in Canada. In the present study, polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) were determined in fresh European starling ( Sturnus vulgaris ) eggs collected in 2009, 2010, and 2011 from nest boxes established within, adjacent to, and 10 and 40 km distant to five major urban centers across Canada, i.e., Vancouver, British Columbia (BC); Calgary, Alberta (AB); Hamilton, Ontario (ON); Montréal, Québec (QC); and Halifax, Nova Scotia (NS). Nest boxes were located in several land use types: urban industrial areas (districts of industrial activity within city limits), landfill sites (adjacent to cities), and rural (agricultural) sites located 10 and 40 km distant from the major urban centers, as well as a national reference site. Of the 14 PBDE congeners and 16 non-PBDE FR substances determined in the starling eggs, BDE-17, -28, -47, -49, -66, -85, -99, -100, -138, -153, -154, -183, and -209, Dechlorane Plus isomers (anti and syn), and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEHTBP) were most frequently quantifiable. The data revealed orders of magnitude greater PBDE concentrations in eggs from starlings nesting in landfill sites (median: 28-280 ng/g wet weight) relative to those from urban industrial and rural environments. However, the percent fractional composition of the PBDE congener patterns did not vary significantly between the types of land uses or between years. Additionally, the median ∑PBDE concentration in eggs from landfill sites and the human population density of the metropolitan region that the landfill serves were highly correlated (r(2) = 0.998, p < 0.001). As the first transcontinental effort in assessing FR contamination in Canadian terrestrial ecosystems, the present study strongly suggest that landfills are an important FR source to starlings nesting nearby and that other terrestrial organisms could also be similarly exposed.
Collapse
Affiliation(s)
- Da Chen
- Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | | | | | | | | | | | | | | |
Collapse
|