1
|
Feng YF, Zhang Y, Yang RJ, Li SQ, Liu XJ, Han C, Xing YF, Yang JX. Ecotoxicological assessment, oxidative response, and enzyme activity disorder of the rotifer Brachionus asplanchnoidis exposed to a toxic cocktail of spent lithium-ion battery leachate. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135050. [PMID: 38954852 DOI: 10.1016/j.jhazmat.2024.135050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Spent lithium-ion batteries (LIBs) have emerged as a major source of waste due to their low recovery rate. The physical disposal of spent LIBs can lead to the leaching of their contents into the surrounding environment. While it is widely agreed that hazardous substances such as nickel and cobalt in the leachate can pose a threat to the environment and human health, the overall composition and toxicity of LIB leachate remain unclear. In this study, a chemical analysis of leachate from spent LIBs was conducted to identify its primary constituents. The ecotoxicological parameters of the model organism, rotifer Brachionus asplanchnoidis, were assessed to elucidate the toxicity of the LIB leachate. Subsequent experiments elucidated the impacts of the LIB leachate and its representative components on the malondialdehyde (MDA) level, antioxidant capacity, and enzyme activity of B. asplanchnoidis. The results indicate that both the LIB leachate and its components are harmful to individual rotifers due to the adverse effects of stress-induced disturbances in biochemical indicators, posing a threat to population development. The intensified poisoning phenomenon under combined stress suggests the presence of complex synergistic effects among the components of LIB leachate. Due to the likely environmental and biological hazards, LIBs should be strictly managed after disposal. Additionally, more economical and eco-friendly recycling and treatment technologies need to be developed and commercialized.
Collapse
Affiliation(s)
- Yi-Fan Feng
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Run-Jia Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Si-Qi Li
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Xiao-Jie Liu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Yi-Fu Xing
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Jia-Xin Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
2
|
Yang S, Zheng X, Hou J, Geng B, Luo L, Zhu C, Liu L, Zhu J. Rural revival: Navigating environmental engineering and technology. ENVIRONMENTAL RESEARCH 2024; 254:119164. [PMID: 38762005 DOI: 10.1016/j.envres.2024.119164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The necessity for global engineering and technological solutions to address rural environmental challenges is paramount, particularly in improving rural waste treatment and infrastructure. This study presents a comprehensive quantitative analysis of 3901 SCI/SSCI and 3818 Chinese CSCD papers, spanning from 1989 to 2021, using tools like Derwent Data Analyzer and VOSviewer. Our key findings reveal a significant evolution in research focus, including a 716.67% increase in global publications from 1995 to 2008 and a 154.76% surge from 2015 to 2021, highlighting a growing research interest with technological hotspots in rural revitalization engineering and agricultural waste recycling. China and the USA are pivotal, contributing 784 and 714 publications respectively. Prominent institutions such as the Chinese Academy of Sciences play a crucial role, particularly in fecal waste treatment technology. These insights advocate for enhanced policy development and practical implementations to foster inclusive and sustainable rural environments globally.
Collapse
Affiliation(s)
- Siyuan Yang
- Beijing Institute of Metrology, Beijing, 100012, China
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyuan Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Jorfi S, Feizi R, Saeedi R, Sabaghan M, Barzegar G, Dehghani SL, Baboli Z. Health risk assessment of workers exposed to lead dust in informal e-waste recycling workshops. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2790-2800. [PMID: 37929743 DOI: 10.1080/09603123.2023.2274380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Informal recycling of electronic waste (e-waste) has attracted significant attention due to its economic benefits and rapid growth rate in many parts of the world. Unfortunately, unsafe conditions of recycling workshops possess chronic exposure to workers and lead to elevated blood lead concentrations (BLCs). Upon measuring the lead concentration in the dust of recycling workshops and the e-wastes in southwestern region of Iran, the related health risks were assessed in 30 exposed workers and 30 non-exposed habitants cases based on the determination of BLC. The average BLCs in exposed workers and non-exposed habitants cases were 24 μg/dL and 7 μg/dL, respectively. The geo-accumulation index (Igeo) revealed heavy contamination of dust in informal e-waste recycling workshops (IERWs) (5023 μg/kg) and significantly lower levels in unexposed areas (49 μg/kg). Health risk assessment indicated that lead exposure from IERWs appears to be a potential threat to workers and indirectly to their families.
Collapse
Affiliation(s)
- Sahand Jorfi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rozhan Feizi
- School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Reza Saeedi
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Sabaghan
- School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Gelavizh Barzegar
- School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | - Zeynab Baboli
- School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
4
|
Poudel K, Ikeda A, Fukunaga H, Brune Drisse MN, Onyon LJ, Gorman J, Laborde A, Kishi R. How does formal and informal industry contribute to lead exposure? A narrative review from Vietnam, Uruguay, and Malaysia. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:371-388. [PMID: 36735953 DOI: 10.1515/reveh-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Lead industries are one of the major sources of environmental pollution and can affect human through different activities, including industrial processes, metal plating, mining, battery recycling, etc. Although different studies have documented the various sources of lead exposure, studies highlighting different types of industries as sources of environmental contamination are limited. Therefore, this narrative review aims to focus mainly on lead industries as significant sources of environmental and human contamination. CONTENT Based on the keywords searched in bibliographic databases we found 44 relevant articles that provided information on lead present in soil, water, and blood or all components among participants living near high-risk areas. We presented three case scenarios to highlight how lead industries have affected the health of citizens in Vietnam, Uruguay, and Malaysia. SUMMARY AND OUTLOOK Factories conducting mining, e-waste processing, used lead-acid battery recycling, electronic repair, and toxic waste sites were the primary industries for lead exposure. Our study has shown lead exposure due to industrial activities in Vietnam, Uruguay, Malaysia and calls for attention to the gaps in strategic and epidemiologic efforts to understand sources of environmental exposure to lead fully. Developing strategies and guidelines to regulate industrial activities, finding alternatives to reduce lead toxicity and exposure, and empowering the public through various community awareness programs can play a crucial role in controlling exposure to lead.
Collapse
Affiliation(s)
- Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Centre for Health Equity, University of Melbourne, Melbourne, Australia
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Marie-Noel Brune Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Lesley Jayne Onyon
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Julia Gorman
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Amalia Laborde
- Department of Toxicology, Faculty of Medicine, Republic University of Montevideo, Montevideo, Uruguay
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| |
Collapse
|
5
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Li J, Jiang H, Qin J, Qin Y, Zhou X, Shi S, Shu Z, Gao Y, Tan J. Unexpectedly high levels and health risks of atmospheric polychlorinated biphenyls in modern mechanical dismantling of obsolete electrical equipment: Investigations in a large integrated e-waste dismantling industrial estate. ENVIRONMENT INTERNATIONAL 2023; 182:108333. [PMID: 37995389 DOI: 10.1016/j.envint.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Large industrial estates for electrical and electronic waste (e-waste) mechanical dismantling and recycling are gradually replacing outmoded small factories and intensive domestic workshops for e-waste manual and chemical dismantling. However, the air pollution and health risks of persistent organic pollutants during the modern mechanical processing of e-waste, especially obsolete electrical equipment, still remain unclear. Here, unexpectedly high levels (409.3 ng/m3) and health risks of airborne polychlorinated biphenyls (PCBs) were found during the mechanical processing of obsolete electric equipment or parts in a large integrated dismantling industrial estate, which is comparable to or a dozen times higher than those reported during chemical processing. In contrast, the levels (936.0 pg/m3) and health risks of particulate polybrominated diphenyl ethers (PBDEs) were all lower than those of previous studies. PCB emissions (44.9-3300.5 ng/m3) varied significantly across six mechanical dismantling places specifically treating waste motors, electrical appliances, hardware, transformers, and metals, respectively. The high PCB content and mass processing number of obsolete electrical equipment probably result in the highest PCB emissions from the mechanical dismantling of obsolete motors, followed by waste electrical appliances and metals. The PCB non-cancer and cancer risks associated with inhalation and dermal exposure in different mechanical dismantling places were all above the given potential risk limits. In particular, the health risks of dismantling obsolete motor exceeded the definite risk levels. Little difference in PCB emissions and health risks between working and non-working time suggested the importance of PCB volatilization from most e-waste. Such high PCB emissions and health risks of PCBs undoubtedly posed a severe threat to frontline workers, but fortunately, they decreased significantly with the increasing distance from the industrial estate. We highlight that PCB emissions and associated health risks from obsolete electrical equipment with high PCB content during mechanical dismantling activities should be of great concern.
Collapse
Affiliation(s)
- Jingnan Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Juanjuan Qin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yuanyuan Qin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoxuan Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Shu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Gao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ghadrshenas A, Tabatabaie T, Amiri F, Pazira AR. Spatial distribution, sources identification, and health risk assessment polycyclic aromatic hydrocarbon compounds and polychlorinated biphenyl compounds in total suspended particulates (TSP) in the air of South Pars Industrial region-Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1635-1653. [PMID: 35567675 DOI: 10.1007/s10653-022-01286-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
South Pars Industrial Energy Zone, located in the southwest of Iran along the Persian Gulf coast, encompasses many industrial units in the vicinity of urban areas. This research study investigated the effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on human health and the environment. Suspended particulate matters (SPM) in the air sampled, in summer and winter 2019, from ten stations next to industrial units and residential areas. The samples were analyzed by gas chromatography-mass spectrometry (GC-MS). Spatial distribution maps of pollutants in the region were prepared using GIS software. The highest carcinogenic risk due to PAHs and PCBs measured as ([Formula: see text]) and ([Formula: see text], respectively. According to the US Environmental Protection Agency limit ([Formula: see text]), the cancer risks from PAH compounds were significant and need further investigation. The PCB cancer risks were within acceptable ranges. The highest adsorption ratios for PAHs were obtained through skin and PCBs by ingestion. The maximum measured non-carcinogenic hazard indexes (HI) turned out to be 0.037 and 0.023 for PAH and PCB, respectively, and were reported as acceptable risks. The predominant source of PAH in industrial areas was liquid fossil combustion, and in urban areas replaced by coal-wood-sugarcane combustion. Petrochemical complexes, flares, power plants (69%), electric waste disposal sites, and commercial pigments (31%) were reported as PCB sources. Industries activities were the most effective factors in producing the highest level of carcinogenic compounds in the region, and it is necessary to include essential measures in the reform programs.
Collapse
Affiliation(s)
- Alireza Ghadrshenas
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Abdul Rahim Pazira
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
8
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Spatial characteristics, sources and exposure risk of polychlorinated biphenyls in dusts and soils from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163513. [PMID: 37061053 DOI: 10.1016/j.scitotenv.2023.163513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated organic compounds, such as polychlorinated biphenyls (PCBs), are a threat to both humans and the environment because of their toxicity, persistence, and capacity for long-range atmospheric transport. The concentrations of 28 PCB congeners, including 12 dioxin-like and seven indicator PCBs, were investigated in soils, and indoor and outdoor dusts from Port Harcourt city, Nigeria, in order to evaluate the characteristic distribution patterns in these media, their sources, and possible risk. The PCB concentrations varied from 4.59 to 116 ng g-1 for soils, and from 1.80 to 23.0 ng g-1 and 2.73 to 57.4 ng g-1 for indoor and outdoor dusts respectively. The sequence of PCB concentrations in these matrices was soil > outdoor dust > indoor dust. The composition of PCBs in these matrices indicated the prevalence of lower chlorinated PCBs in indoor and outdoor dusts, while the higher chlorinated congeners were dominant in soils. Di-PCBs were the predominant homologues in indoor dusts, while deca-PCBs were the most prevalent homologues in outdoor dusts and soils. The TEQ values of dioxin-like PCBs in 60 % of the soils, 100 % of the indoor dust, and 30 % of the outdoor dust were above the indicative value of 4 pg TEQ g-1 established by the Canadian authority. The hazard index (HI) values for exposure of adults and children to PCBs in these media were mostly greater than one, while the total cancer risk (TCR) values exceeded the acceptable risk value of 10-6, which indicate probable non-carcinogenic and carcinogenic risks resulting from exposure to PCBs in these media. Source analysis for PCBs in these matrices shows that they originated from diverse sources.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | | | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
9
|
Wu Y, Gao S, Zeng X, Liang Y, Liu Z, He L, Yuan J, Yu Z. Levels and diverse composition profiles of chlorinated paraffins in indoor dust: possible sources and potential human health related concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01524-9. [PMID: 36881246 DOI: 10.1007/s10653-023-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs), a group of mixtures with different carbon chain lengths and chlorine contents, are widely used as plasticizers and flame retardants in various indoor materials. CPs could be released from CP-containing materials into the ambient environment and then enter the human body via inhalation, dust ingestion and dermal absorption, resulting in potential effects on human health. In this study, we collected residential indoor dust in Wuhan, the largest city in central China, and focused on the co-occurrence and composition profiles of CPs as well as the resultant human risk via dust ingestion and dermal absorption. The results indicated that CPs with C9-40 were ubiquity in indoor dust with medium-chain CPs (MCCPs, C14-17) as the main components (6.70-495 μg g-1), followed by short-chain CPs (SCCPs, C10-13) (4.23-304 μg g-1) and long-chain (LCCPs, C≥18) CPs (3.68-331 μg g-1). Low levels (not detected-0.469 μg g-1) of very short-chain CPs (vSCCPs, C9) were also found in partial indoor dust. The dominant homolog groups were C9 and Cl6-7 groups for vSCCPs, C13 and Cl6-8 groups for SCCPs, C14 and Cl6-8 groups for MCCPs, and C18 and Cl8-9 groups for LCCPs. Based on the measured concentrations, vSCCPs, SCCPs, MCCPs, and LCCPs posed limited human health risks to local residents via dust ingestion and dermal absorption.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lixiong He
- Fujian Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
10
|
Hållén J, Malmaeus JM, Johansson N, Karlsson OM. Using a dynamic mass balance model to predict fate and transport of PCBs in a polluted boreal lake in Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158522. [PMID: 36063918 DOI: 10.1016/j.scitotenv.2022.158522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In 2013, a screening survey including fish (European perch, Perca fluviatilis) from 20 locations in the Stockholm region of Sweden indicated exceptionally high levels of PCBs (>450 ng ΣPCB7/g ww) in Lake Oxundasjön. An extensive sampling program was launched to define the magnitude and area of impact of PCBs. Moreover, a dynamic mass balance model approach was applied to identify and quantify key transport processes and predict the long-term turnover of PCBs given various remediation scenarios. Based on the dating of sediment profiles, primary emissions of PCBs to Lake Oxundasjön have likely occurred from the end of the 1940s until 1980, reaching the lake via one of its tributaries. Presently, the main source of PCBs is diffusion from the lake sediments. From the lake outlet, >400 g ΣPCB7/yr are transported to Lake Mälaren (the third largest lake in Sweden), supplying drinking water for parts of the Stockholm area. Remediation actions are necessary to reduce the PCB levels in fish below today's marketing limits and environmental quality standards. With natural recovery, our results indicate that the PCB levels in non-migratory fish from Lake Oxundasjön will be elevated for decades to come. The mass of PCBs stored in the lake sediments was estimated, and to our knowledge, Lake Oxundasjön is the most heavily PCB contaminated lake in Sweden. The system constitutes a unique opportunity to test and develop a mathematical mass balance model for PCBs, with substantial data acquired from different aquatic matrices. The model presented in the paper is applicable for risk assessments of PCBs, and the results contribute to the general understanding of the transport and turnover dynamics of PCBs in aquatic ecosystems.
Collapse
Affiliation(s)
- J Hållén
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden.
| | - J M Malmaeus
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden
| | - N Johansson
- Melica Biologkonsult, Vinkelv. 19, SE-194 44 Upplands Väsby, Sweden
| | - O M Karlsson
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden
| |
Collapse
|
11
|
Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13923. [PMID: 36360801 PMCID: PMC9657815 DOI: 10.3390/ijerph192113923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion. Inhalational exposure to these contaminants is often overlooked. This review discusses the occurrence and distribution of PCBs in environmental matrices and their associated health impacts. Severe PCB contamination levels have been reported in e-waste recycling areas. The occurrence of high PCB levels, notably in urban and industrial areas, might result from extensive PCB use and intensive human activity. Furthermore, PCB contamination in the indoor environment is ten-fold higher than outdoors, which may present expose risk for humans through the inhalation of contaminated air or through the ingestion of dust. In such settings, the inhalation route may contribute significantly to PCB exposure. The data on human health effects due to PCB inhalation are scarce. More epidemiological studies should be performed to investigate the inhalation dose and response mechanism and to evaluate the health risks. Further studies should also evaluate the health impact of prolonged low-concentration PCB exposure.
Collapse
Affiliation(s)
- Naffisah Othman
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Mohamad Ikhsan Selamat
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Nur Amirah Shibraumalisi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
12
|
Li S, Zhou B, Tong Y, Guo J, Jiang L, Yang R, Liu H, Zhang Y, Niu J, Huang S, Yuan S, Zhou Q. Magnetic solid phase extraction and determination of polychlorinated biphenyls in beverages utilizing C 60 modified magnetic polyamido-amine dendrimers in combination with gas chromatography-tandem mass spectrometry. Food Chem 2022; 396:133683. [PMID: 35843001 DOI: 10.1016/j.foodchem.2022.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants which are widely present in environment and harmful to human health. In this study, an efficient and convenient magnetic solid phase extraction method with C60 modified magnetic polyamido-amine (PAMAM) dendrimers as sorbents was established for enriching trace amounts of PCBs in beverage samples. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was utilized for analysis of PCBs. Parameters affecting extraction efficiency were optimized. Under optimal parameters, good linearity can be achieved in concentration range of 0.001-20 μg L-1 and 0.002-20 μg L-1 for nine selected PCBs. The limits of detection for PCBs were in the range of 0.1-0.2 ng L-1. The spiked recoveries were in the range of 87.0 %-115.1 % (n = 3). The results proved that this established method was reliable for monitoring trace PCBs in beverage samples.
Collapse
Affiliation(s)
- Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ruochen Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Huanhuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
13
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
14
|
Lee LC, Zhang L, Chen X, Gui S, Zhou S. An overview study on management and implementation of WEEE in China. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 25:1-16. [PMID: 35789746 PMCID: PMC9243786 DOI: 10.1007/s10668-022-02489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Waste electrical and electronic equipment (WEEE) which contains various valuable and harmful materials is an inevitable waste in modern society. In order to resolve the pollution problems associated with WEEE treatment, a WEEE management system has been established in China. The main role of importers and manufacturers of electrical and electronic equipment (EEE) is to pay the treatment fees to facilitate the WEEE recycling in China. The announced treatment and subsidy fee is given by set, not by the weight of WEEE. There is no lesser green treatment fee for the producers which can produce environmentally friendly EEE in China. Also, the recovery of refrigerants from the foaming agent of refrigerators is not required in China. In total, 45 million sets of recycled WEEE were certified in 2020, a year that contains the most updated data. Among them, 48%, 14%, 20%, 10% and 8% are for TV, refrigerator, washing machine, computer and air conditioners, respectively. The spatial analysis indicates that the WEEE recycling activities are mainly concentrated on the mid-east and east regions of China. It also can be concluded that the certified amount of each province has higher positive correlation with provincial population than provincial GDP per capita and green recovery rate. It also clearly notes that the amount of recycled air conditioner is the lowest for each province. Thus, more effort should be conducted to increase the recycling of scrapped air conditioner in China.
Collapse
Affiliation(s)
- Lien-Chieh Lee
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003 China
| | - Lili Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003 China
| | - Xi Chen
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003 China
| | - Shusheng Gui
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003 China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, LU1 3JU UK
| |
Collapse
|
15
|
Folarin BT, Abdallah M, Oluseyi TO, Harrad S, Olayinka KO. Concentrations and Toxic Implications of Dioxin-Like Polychlorinated Biphenyls in Soil Samples from Electrical Power Stations in Lagos, Nigeria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:800-809. [PMID: 34918382 DOI: 10.1002/etc.5277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Dioxin-like polychlorinated biphenyls (dl-PCBs) are ubiquitous chemicals which mediate toxicity in a way similar to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. In silico modeling was used to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of eight dioxin-like PCBs in soil samples of 12 power stations in Lagos, Nigeria. Concentrations of Σdl-PCB8 in soil samples ranged from 490 to 61,000 pg g-1 , with mean concentrations of 17,000 pg g-1 . The corresponding toxic equivalent (TEQ) concentrations of Ʃdl-PCB8 ranged from 0.01 to 450 pg TEQ g-1 , with a mean value of 42 pg TEQ g-1 . Mean TEQ concentrations for Ʃdl-PCB8 in soil samples from all but one of the sites exceeded the Canadian guideline value of 4 pg TEQ g-1 and the US and German guideline values of 5-10 pg TEQ g-1 . However, the TEQ concentrations obtained were all below the US action level of 1000 pg TEQ g-1 . The ADMET predictions revealed that all studied dl-PCBs are inhibitors of three major isoforms (1A2, 2C9, and 2C19) of cytochrome P450 enzyme. Acute oral toxicity (median lethal dose) predictions revealed that all target dl-PCBs were class III compounds. Hepatotoxicity and carcinogenicity were positive, signifying that the studied compounds all have a tendency to elicit these effects. Occupational daily TEQ exposure via soil ingestion was estimated for an average adult worker weighing 70 kg. The maximum exposure obtained was 0.14 pg TEQ kg-1 body weight day-1 , which is half of the European Food Safety Authority (EFSA) tolerable daily intake (TDI) for dioxin-like compounds. This raises concern over the possible exceedance of the EFSA TDI for these workers if other dietary and nondietary exposure pathways and dioxin-like compounds are considered. Environ Toxicol Chem 2022;41:800-809. © 2021 SETAC.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Department of Chemistry, University of Lagos, Lagos, Nigeria
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Chemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Nigeria
| | - Mohamed Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
16
|
Hashmi MZ, Chen K, Khalid F, Yu C, Tang X, Li A, Shen C. Forty years studies on polychlorinated biphenyls pollution, food safety, health risk, and human health in an e-waste recycling area from Taizhou city, China: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4991-5005. [PMID: 34807384 DOI: 10.1007/s11356-021-17516-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
E-waste generation has become a serious environmental challenge worldwide. Taizhou of Zhejiang Province, situated on the southeast coastline of China, has been one of the major e-waste dismantling areas in China for the last 40 years. In this review, we focused on the polychlorinated biphenyl (PCB) trends in environmental compartments, burden and impact to humans, food safety, and health risk assessment from Taizhou, China. The review suggested that PCBs showed dynamic trends in air, soil, water, biodiversity, and sediments. Soils and fish samples indicated higher levels of PCBs than sediments, air, water, and food items. PCB levels decreased in soils with the passage of time. Agriculture soils near the e-waste recycling sites showed more levels of total PCBs than industrial soils and urban soils. Dioxin-like PCB levels were higher in humans near Taizhou, suggesting that e-waste pollution could influence humans. Compared with large-scale plants, simple household workshops contributed more pollution of PCBs to the environment. Pollution index, hazard quotient, and daily intake were higher for PCBs, suggesting Taizhou should be given priority to manage the e-waste pollution. The elevated body burden may have health implications for the next generation. The areas with stricter control measures, strengthened laws and regulations, and more environmentally friendly techniques indicated reduced levels of PCBs. For environment protection and health safety, proper e-waste dismantling techniques, environmentally sound management, awareness, and regular monitoring are very important.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Kezhen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Foqia Khalid
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xianjin Tang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Li F, Cui Y, Li Y, Guo L, Ke X, Liu J, Luo X, Zheng Y, Leckman JF. Prevalence of mental disorders in school children and adolescents in China: diagnostic data from detailed clinical assessments of 17,524 individuals. J Child Psychol Psychiatry 2022; 63:34-46. [PMID: 34019305 DOI: 10.1111/jcpp.13445] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, no national-scale psychiatric epidemiological survey for children and adolescents has been conducted in China. In order to inform government officials and policymakers and to develop a comprehensive plan for service providers, there was a clear need to conduct an up-to-date systematic nationwide psychiatric epidemiological survey. METHODS We conducted a two-stage large-scale psychiatric point prevalence survey. Multistage cluster stratified random sampling was used as the sampling strategy. Five provinces were selected by comprehensively considering geographical partition, economic development, and rural/urban factors. In Stage 1, the Child Behavior Checklist was used as the screening tool. In Stage 2, Mini-International Neuropsychiatric Interview for Children and Adolescents and a diagnostic process based on the Diagnostic and Statistical Manual were used to make the diagnoses. Sampling weights and poststratification weights were employed to match the population distributions. Exploratory analyses were also performed using socio-demographic factors. Prevalence in socio-demographic factor subgroups and overall were estimated. Rao-Scott adjusted chi-square tests were utilized to determine if between-group differences were present. Factor interactions were checked by logistic regression analyses. RESULTS A total of 73,992 participants aged 6-16 years of age were selected in Stage 1. In Stage 2, 17,524 individuals were screened and diagnosed. The weighted prevalence of any disorder was 17.5% (95% CI: 17.2-18.0). Statistically significant differences in prevalence of any psychiatric disorder were observed between sexes [χ2 (1, N = 71,929) = 223.0, p < .001], age groups [χ2 (1, N = 71,929) = 18.6, p < .001] and developed vs. developing areas [χ2 (1, N = 71,929) = 2,129.6, p < .001], while no difference was found between rural and urban areas [χ2 (1, N = 71,929) = 1.4, p = .239]. Male, younger individuals, children, and adolescents from developed areas had higher prevalence of any psychiatric disorder. The prevalence of any psychiatric disorder was found to decrease with the age in the male group, while the female group increased with the age. Individuals diagnosed with attention-deficit hyperactivity disorder, oppositional defiant disorder, a tic disorder, conduct disorder, and major depression disorder had the highest rates of comorbidity. CONCLUSIONS The prevalence of any psychiatric disorder we found is the highest ever reported in China. These results urgently need to be addressed by public mental health service providers and policymakers in order to provide access to the necessary treatments and to reduce the long-term negative impact of these conditions on families and the society as a whole.
Collapse
Affiliation(s)
- Fenghua Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yonghua Cui
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | | | - Jing Liu
- Sixth hospital, Peking University, Beijing, China
| | - Xuerong Luo
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zheng
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Zhao C, Li JFT, Li XH, Dong MQ, Li YY, Qin ZF. Measurement of polychlorinated biphenyls with hand wipes and matched serum collected from Chinese E-waste dismantling workers: Exposure estimates and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149444. [PMID: 34365263 DOI: 10.1016/j.scitotenv.2021.149444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
To date, dermal/hand-to-mouth exposure to chemicals in the e-waste recycling environment has not been sufficiently understood, and the importance of dermal absorption of chemicals in e-waste dismantling workers remains controversial. In this study, we utilized hand wipes and matched sera to characterize dermal/hand-to-mouth exposure to PCBs for e-waste dismantling workers, and potential effects on thyroid hormones were also assessed. PCB loadings in hand wipes varied from 0.829-265 ng wipe-1 (11.3-2850 ng m-2 wipe-1), with 37.2 ng wipe-1 (432 ng m-2 wipe-1) as the median value. Serum concentrations of PCBs ranged from 32.3-3410 ng g-1 lipid weight (lw) with 364 ng g-1 lw as the median value. Between wipes and sera, lower-chlorinated congeners (e.g. CB-28, -66, -74, -99,-105 and -118) showed significant associations (p < 0.01), but higher-chlorinated congeners (e.g. CB-138, -153, -156, -170, and -180) did not. These lower-chlorinated CBs were the major contributors to estimated dermal/hand-to-mouth average daily doses (ADDs) and the hazard index (HI). Correspondingly, their estimated contributions to serum levels by dermal absorption were also significant, with the contribution of CB-28 being as high as 21.4%. As a consequence, dermal absorption of some low-chlorinated congeners was a non-negligible route for e-waste dismantling workers. Although insignificant association was shown between serum PCBs and thyroid hormones, the potential health risk should be of concern due to the high levels of PCBs observed in workers' sera.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; College of Earth Sciences, Guilin University of Technology, Guilin 541006, PR China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.
| | - Meng-Qi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| |
Collapse
|
19
|
Wang J, Yan Z, Zheng X, Wang S, Fan J, Sun Q, Xu J, Men S. Health risk assessment and development of human health ambient water quality criteria for PBDEs in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149353. [PMID: 34364281 DOI: 10.1016/j.scitotenv.2021.149353] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are not only a class of highly efficient brominated flame retardants (BFRs) but also a class of typical persistent organic pollutants (POPs) that are persistent and widely distributed in various environmental media. This study examined the concentrations of PBDEs in five environmental media (water, soil, air, dust, and food) and two human body media (human milk and blood) in China from 2010 to 2020. In addition, this study conducted multi-pathway exposure health risk assessments of populations of different ages in urban, rural, key regions, and industrial factories using the Monte-Carlo simulation. Finally, the human health ambient water quality criteria (AWQC) of eight PBDEs were derived using Chinese exposure parameters and bioaccumulation factors (BAFs). The results showed that the eastern and southeastern coastal regions of China were heavily polluted by PBDEs, and the variation trends of the ΣPBDEs concentrations in the different exposure media were not consistent. PBDEs did not pose a risk to urban and rural residents in ordinary regions, but the hazard indexes (HIs) for residents in key regions and occupational workers exceeded the safety threshold. Dust exposure was the primary exposure pathway for urban and rural residents in ordinary regions, but for residents in key regions and occupational workers, dietary exposure was the primary exposure pathway. BDE-209 was found to be the most serious individual PBDE congener in China. The following human health AWQC values of the PBDEs were derived: drinking water exposure: 0.233-65.2 μg·L-1; and drinking water and aquatic products exposure: 8.51 × 10-4-1.10 μg·L-1.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuhui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
20
|
Aslam I, Baqar M, Qadir A, Mumtaz M, Li J, Zhang G. Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. INDOOR AIR 2021; 31:1417-1426. [PMID: 33459414 DOI: 10.1111/ina.12788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study is the pioneer assessment of the PCBs in indoor dust particles (from air conditioners) of an urbanized megacity from South Asian. The ∑35 PCB concentration ranged from 0.27 to 152.9 ng/g (mean: 24.84 ± 22.10 ng/g). The tri- and tetra-PCBs were dominant homologues, contributing 57.36% of the total PCB concentrations. The mean levels of Σ8 -dioxin-like (DL), Σ6 -indicator PCBs and WHO2005 -TEQ for DL-PCBs were 2.22 ± 2.55 ng/g, 9.49 ± 8.04 ng/g and 4.77 ± 4.89 pg/g, respectively. The multiple linear regression indicated a significant correlation of dusting frequency (p = 1.06 × 10-04) and age of the house (p = 1.02 × 10-06) with PCB concentrations in indoor environment. The spatial variation of PCB profile revealed relatively higher concentrations from sites near to illegal waste burning spots, electrical locomotive workshops, and grid stations. Human health risk assessment of PCBs for adults and toddlers through all three exposure routes (ie, inhalation, ingestion, and dermal contact) demonstrated that toddlers were vulnerable to high cancer risk (4.32 × 10-04 ), while adults were susceptible from low to moderate levels of risk (3.16 × 10-05 ). Therefore, comprehensive investigations for PCBs in the indoor settings, focusing particularly on the sensitive populations with relationship to the electronic devices, transformers, and illegal waste burning sites, are recommended.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
21
|
Chakraborty P, Gadhavi H, Prithiviraj B, Mukhopadhyay M, Khuman SN, Nakamura M, Spak SN. Passive Air Sampling of PCDD/Fs, PCBs, PAEs, DEHA, and PAHs from Informal Electronic Waste Recycling and Allied Sectors in Indian Megacities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9469-9478. [PMID: 34029059 PMCID: PMC8476098 DOI: 10.1021/acs.est.1c01460] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xenobiotic chemical emissions from the informal electronic waste recycling (EW) sector are emerging problem for developing countries, with scale and impacts that are yet to be evaluated. We report an intensive polyurethane foam disk passive air sampling study in four megacities in India to investigate atmospheric organic pollutants along five transects viz., EW, information technology (IT), industrial, residential, and dumpsites. Intraurban emission sources were estimated and attributed by trajectory modeling and positive matrix factorization (PMF). ∑17PCDD/Fs, ∑25PCBs, ∑7plasticizers, and ∑15PAHs concentrations ranged from 3.1 to 26 pg/m3 (14 ± 7; Avg ± SD), 0.5-52 ng/m3 (9 ± 12); 7.5-520 ng/m3, (63 ± 107) and 6-33 ng/m3 (17 ± 6), respectively. EW contributed 45% of total PCB concentrations in this study and was evidenced as a major factor by PMF. The dominance of dioxin-like PCBs (dl-PCBs), particularly PCB-126, reflects combustion as the possible primary emission source. PCDD/Fs, PCBs and plasticizers were consistently highest at EW transect, while PAHs were maximum in industrial transect followed by EW. Concentrations of marker plasticizers (DnBP and DEHP) released during EW activities were significantly higher (p < 0.05) in Bangalore than in other cities. Toxic equivalents (TEQs) due to dl-PCBs was maximum in the EW transect and PCB-126 was the major contributor. For both youth and adult, the highest estimated inhalation risks for dl-PCBs and plasticizers were seen at the EW transect in Bangalore, followed by Chennai and New Delhi.
Collapse
Affiliation(s)
- Paromita Chakraborty
- SRM Research Institute and Department of Civil Engineering SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu 603203, India4
| | - Harish Gadhavi
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Balasubramanian Prithiviraj
- SRM Research Institute and Department of Civil Engineering SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu 603203, India4
| | - Moitraiyee Mukhopadhyay
- SRM Research Institute and Department of Civil Engineering SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu 603203, India4
| | - Sanjenbam Nirmala Khuman
- SRM Research Institute and Department of Civil Engineering SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu 603203, India4
| | - Masafumi Nakamura
- Hiyoshi Corporation, Kitanosho 908, Omihachiman, Shiga 523-0806, Japan
| | - Scott N Spak
- School of Planning and Public Affairs, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
22
|
Sun N, Yang F. Impacts of internal migration experience on health among middle-aged and older adults-Evidence from China. Soc Sci Med 2021; 284:114236. [PMID: 34293677 DOI: 10.1016/j.socscimed.2021.114236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
As a life course factor, internal migration plays a role in shaping health condition in middle age and later life. Using data from the 2014 and 2015 China Health and Retirement Longitudinal Study (CHARLS), the present study examined the impacts and mechanism of internal migration experience on the health of middle-aged and older adults in China. Internal migration experience had significant negative impacts on health, whether in relation to self-reported health or number of chronic diseases. The impact increased with the frequency of internal migration. Compared to individuals that had not migrated, those who first migrated between age 18-35 had a worse overall health status. Initial internal migration occurring below age 18 significantly increased the number of chronic diseases. Medical service was found to be an important mechanism in the impact of internal migration experience on health. Given the insufficient protections related to internal migration, enhanced formal social support, especially healthcare services, should be implemented to mitigate the health disparities associated with internal migration.
Collapse
Affiliation(s)
- Nan Sun
- School of Social Development and Public Policy, Fudan University, Shanghai, China
| | - Fan Yang
- Research Institute of Social Development, Southwestern University of Finance and Economics, Chengdu, China.
| |
Collapse
|
23
|
Weitekamp CA, Phillips LJ, Carlson LM, DeLuca NM, Cohen Hubal EA, Lehmann GM. A state-of-the-science review of polychlorinated biphenyl exposures at background levels: relative contributions of exposure routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145912. [PMID: 36590071 PMCID: PMC9802026 DOI: 10.1016/j.scitotenv.2021.145912] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) can occur through multiple routes and sources, including dietary intake, inhalation, dermal contact, and ingestion of dust and soils. Dietary exposure to PCBs is often considered the primary exposure route for the general population; however, recent studies suggest an increasing contribution from indoor inhalation exposure. Here, we aim to estimate the relative contribution of different PCB exposure pathways for the general population, as well as for select age groups. We conducted a targeted literature review of PCB concentrations in environmental media, including indoor and outdoor air, indoor dust, and soils, as well as of total dietary intake. Using the average concentrations from the studies identified, we estimated PCB exposure through different routes for the general population. In addition, we assessed exposure via environmental media for select age groups. We identified a total of 70 studies, 64 that provided background PCB concentrations for one or more of the environmental media of interest and 6 studies that provided estimates of dietary intake. Using estimates from studies conducted worldwide, for the general population, dietary intake of PCBs was the major exposure pathway. In general, our review identifies important limitations in the data available to assess population exposures, highlighting the need for more current and population-based estimates of PCB exposure, particularly for indoor air and dietary intake.
Collapse
Affiliation(s)
| | - Linda J. Phillips
- Office of Research and Development, U.S. EPA, Washington, DC, USA; Retired
| | - Laura M. Carlson
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Nicole M. DeLuca
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Elaine A. Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
- Address post-publication correspondence: Elaine A. Cohen Hubal, , 109 TW Alexander Dr., Durham, NC 27711
| | - Geniece M. Lehmann
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Debela SA, Sheriff I, Debela EA, Sesay MT, Tolcha A, Tengbe MS. Assessment of Perceptions and Cancer Risks of Workers at a Polychlorinated Biphenyl-Contaminated Hotspot in Ethiopia. J Health Pollut 2021; 11:210609. [PMID: 34267996 PMCID: PMC8276727 DOI: 10.5696/2156-9614-11.30.210609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are synthetic and persistent toxic chemicals with a high potential to bioaccumulate in human tissue. There is no existing literature on workers' perceptions and occupational cancer risk due to exposure to PCBs in Ethiopia. OBJECTIVES The aim of the present study was to assess workers' perceptions of occupational health and safety measures of PCB management and to evaluate the cancer risk posed by PCBs to workers handling these chemicals in Ethiopia. METHODS A total of 264 questionnaires were administered to workers at the study area to obtain information about PCB management. A mathematical model adopted from the United States Environmental Protection Agency (USEPA) was used to assess the potential cancer risk of people working in PCB-contaminated areas. RESULTS The results showed that the majority of the workers had little knowledge of safe PCB management practices. Furthermore, 82.6% had not received training on chemical management and occupational health and safety protocols. The association between respondents' responses on the impact of PCBs to the use of personal protective equipment was statistically significant (p <0.005). Accidental ingestion, dermal contact and inhalation exposure pathways were considered in assessing the cancer risk of people working in these areas. The estimated cancer risk for PCBs via dermal contact was higher than for the accidental ingestion and inhalation pathways. The health risk associated with dermal contact was 73.8-times higher than the inhalation exposure route. Workers at the oil tanker and oil barrel area and swampy site are at higher risk of cancer via dermal contact at the 95th centile (879 and 2316 workers per million due to PCB exposure, respectively). However, there is very low cancer risk at the staff residence and garden area via the inhalation route. CONCLUSIONS Training programs would help improve the knowledge of workers in the area of occupational health and safety of chemical handling. Further studies on PCBs in the exposed workers will provide information on their blood sera PCB levels and consequently identify potential health impacts. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL Ethics approval was obtained from the Research Ethics Review Committee of Adama Hospital Medical College, Adama, Ethiopia. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Sisay Abebe Debela
- Department of Public Health, College of Health Science, Selale University, Fiche, Ethiopia
| | - Ishmail Sheriff
- Department of Public Health, College of Human Resource Development, 8 Black Street Drive, off Alusine Kala Drive, Magbenteh, Makeni; Sierra Leone
| | - Endashaw Abebe Debela
- Department of Internal Medicine, School of Medicine, Adama Hospital Medical College, Adama, Ethiopia
| | - Musa Titus Sesay
- Department of Environmental Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province; People's Republic of China
| | - Alemu Tolcha
- Department of Environmental Health, College of Medicine and Health Science, Hawassa University, Hawassa Ethiopia
| | - Michaela Sia Tengbe
- Department of Environmental Science and Engineering, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province; People's Republic of China
| |
Collapse
|
25
|
Electronic Waste, an Environmental Problem Exported to Developing Countries: The GOOD, the BAD and the UGLY. SUSTAINABILITY 2021. [DOI: 10.3390/su13095302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electronic waste (e-waste) is a rapidly developing environmental problem particularly for the most developed countries. There are technological solutions for processing it, but these are costly, and the cheaper option for most developed countries has been to export most of the waste to less developed countries. There are various laws and policies for regulating the processing of e-waste at different governance scales such as the international Basel Convention, the regional Bamoko Convention, and various national laws. However, many of the regulations are not fully implemented and there is substantial financial pressure to maintain the jobs created for processing e-waste. Mexico, Brazil, Ghana Nigeria, India, and China have been selected for a more detailed study of the transboundary movements of e-waste. This includes a systematic review of existing literature, the application of the Driver, Pressure, State, Impact, Response (DPSIR) framework for analysing complex problems associated with social ecological systems, and the application of the Life Cycle Assessment (LCA) for evaluating the environmental impact of electronic devices from their manufacture through to their final disposal. Japan, Italy, Switzerland, and Norway have been selected for the LCA to show how e-waste is diverted to developing countries, as there is not sufficient data available for the assessment from the selected developing countries. GOOD, BAD and UGLY outcomes have been identified from this study: the GOOD is the creation of jobs and the use of e-waste as a source of raw materials; the BAD is the exacerbation of the already poor environmental conditions in developing countries; the UGLY is the negative impact on the health of workers processing e-waste due to a wide range of toxic components in this waste. There are a number of management options that are available to reduce the impact of the BAD and the UGLY, such as adopting the concept of a circular economy, urban mining, reducing loopholes and improving existing policies and regulations, as well as reducing the disparity in income between the top and bottom of the management hierarchy for e-waste disposal. The overarching message is a request for developed countries to help developing countries in the fight against e-waste, rather than exporting their environmental problems to these poorer regions.
Collapse
|
26
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
27
|
Jiang Y, Luo H, Yang F. Influences of Migrant Construction Workers' Environmental Risk Perception on their Physical and Mental Health: Evidence from China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7424. [PMID: 33053832 PMCID: PMC7601608 DOI: 10.3390/ijerph17207424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Employing Chinese General Social Survey 2013 data (N = 678), this study examines the influences of migrant construction workers' environmental risk perception (ERP) on their physical and mental health. The ERP of migrant construction workers is characterized by six dimensions: perceptions of air pollution, industrial waste pollution and noise pollution at working sites, and perceptions of domestic waste pollution, water pollution and food pollution at living sites. The results indicate that migrant construction workers with stronger ERP have better physical and mental health. The results also suggest the influences of ERP on the physical and mental health of migrant construction workers with different gender and age (<50 and ≥50 years) are heterogeneous. Perceptions of industrial waste pollution, noise pollution and domestic waste pollution significantly affect female workers' physical health, but not that of male workers. The six dimensions of ERP all significantly influence male workers' mental health, while except for domestic waste pollution perception, the other perceptions do not influence that of female workers. Perceptions of air pollution, domestic waste pollution, and water pollution significantly influence physical health of workers aged 50 and above, while those of ERP do not work on that of workers younger than 50. Perception of food pollution significantly influences mental health of workers younger than 50, but not that of workers aged 50 and above. The seemingly unrelated regression shows the results in this paper are robust.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Accounting, School of Management, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huawei Luo
- Department of Accounting, School of Management, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fan Yang
- Department of Labor and Social Security, School of Public Administration, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Hameed HB, Ali Y, Petrillo A. Environmental risk assessment of E-waste in developing countries by using the modified-SIRA method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138525. [PMID: 32442873 DOI: 10.1016/j.scitotenv.2020.138525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Electronic waste (E-Waste) is a progressively increasing problem for all developing nations. Developing nations like Pakistan, India and China are well renowned for the business of e-waste recycling. With the current rudimentary techniques of recycling used in Pakistan, e-waste presents different risks to the environment and the society with nominal financial gain. The study looks to answer how the e-waste makes its way to Pakistan, what are the risks of the industry and how they affect the population of Pakistan. For this purpose, a method called Modified-Safety Improve Risk Assessment (Modified-SIRA) was used. Modified-SIRA has identified six risks which are a severe hazard to a developing nation such as Pakistan. Each individual risk has been quantified by assigning it with an individually calculated Total Risk Priority Number (TRPN). Furthermore, the risks have been prioritized by the use of Fuzzy-VIseKriterijumska Optimizacija I Kompromisno Resenje (FVIKOR) to assess their impact on the sustainability of the e-waste recycling industry. This study provides evidence that among various risks air pollution from the e-waste recycling process is a severe hazard to the population of a developing country like Pakistan. It further helps to highlight the fact that the population of a developing country tend to ignore e-waste emanating from their expanded use of electronics. Additionally, the present use of rudimentary and non-standardized techniques of material extraction does not possess the capability of sustainably financing the industry. The study further concludes as to which practices and methods can be applied to reduce the impacts and improve the overall sustainability of the industry.
Collapse
Affiliation(s)
- Hameem Bin Hameed
- Department of Management Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences & Technology, Topi, Swabi, KPK, Pakistan.
| | - Yousaf Ali
- Department of Management Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences & Technology, Topi, Swabi, KPK, Pakistan.
| | - Antonella Petrillo
- University of Naples "Parthenope", Department of Engineering, Isola C4, Centro Direzionale, Napoli, Italy.
| |
Collapse
|
29
|
Prithiviraj B, Chakraborty P. Atmospheric polychlorinated biphenyls from an urban site near informal electronic waste recycling area and a suburban site of Chennai city, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135526. [PMID: 31784153 DOI: 10.1016/j.scitotenv.2019.135526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Recent studies evidenced informal electronic waste (e-waste) recycling as a potential source of polychlorinated biphenyls (PCBs) in the metropolitan environment of India. Given the recent evidences on the release of hazardous organic compounds from the informal e-waste recycling workshops in the Chennai city, we have conducted high volume air sampling in an urban site close to the informal e-waste recycling corridor and in a suburban site located about 35 km away from the urban center. Weekly diurnal gaseous and particulate phase samples were collected from both urban and suburban sites during summer and winter samples were collected only from suburban site. Mean atmospheric PCB levels in the urban site (Avg ± Stdev, 46 ± 16 ng/m3) is several orders of magnitude higher than suburban summer (10 ± 12 ng/m3) and winter (4 ± 3 ng/m3). Back trajectories originating from the land seems to have impacted the samples recorded with maximum PCB concentration. No significant difference was seen between summer and winter atmospheric PCBs in the suburban site. In urban site, PCB-52 and dioxin like PCBs (dl-PCBs) have increased from the past observations with maximum PCB-52 concentration in night time samples. Positive matrix factorization source-receptor model outputs suggest that in the urban centers, open burning in municipal dumpsites is a major source for PCB-52, while dl-PCBs were related to e-waste recycling by the informal sector. Exponential increment in most toxic non-ortho dl-PCBs proclaims the severity of on-going sources which contributed to the high toxic equivalency (TEQs) upto 105 pg TEQ/m3.
Collapse
Affiliation(s)
- Balasubramanian Prithiviraj
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
30
|
Kalweit A, Herrick RF, Flynn MA, Spengler JD, Berko JK, Levy JI, Ceballos DM. Eliminating Take-Home Exposures: Recognizing the Role of Occupational Health and Safety in Broader Community Health. Ann Work Expo Health 2020; 64:236-249. [PMID: 31993629 PMCID: PMC7064272 DOI: 10.1093/annweh/wxaa006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023] Open
Abstract
Toxic contaminants inadvertently brought from the workplace to the home, known as take-home or paraoccupational exposures, have often been framed as a problem that arises due to unsanitary worker behavior. This review article conceptualizes take-home exposures as a public health hazard by (i) investigating the history of take-home contaminants and how they have been studied, (ii) arguing that an ecosocial view of the problem is essential for effective prevention, (iii) summarizing key structural vulnerabilities that lead populations to be at risk, and (iv) discussing future research and prevention effort needs. This article reframes take-home exposures as one of many chronic pathways that contributes to persistent health disparities among workers, their families, and communities. Including the role of work in community health will increase the comprehensiveness of prevention efforts for contaminants such as lead and pesticides that contribute to environmental disparities.
Collapse
Affiliation(s)
- Andrew Kalweit
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert F Herrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael A Flynn
- National Institute for Occupational Safety and Health, Division of Science Integration, Cincinnati, OH, USA
| | - John D Spengler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - J Kofi Berko
- US Department of Housing and Urban Development, Policy & Standard Division, Washington, DC, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Diana M Ceballos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
31
|
Hu Z, Li J, Li B, Zhang Z. Annual changes in concentrations and health risks of PCDD/Fs, DL-PCBs and organochlorine pesticides in ambient air based on the Global Monitoring Plan in São Paulo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113310. [PMID: 31600699 DOI: 10.1016/j.envpol.2019.113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Ambient air contains a number of persistent organic pollutants (POPs), to which inhalation exposure has drawn worldwide concern. However, information regarding annual changes in the concentrations and health risks of POPs in the ambient air of São Paulo, Brazil, are limited. This study provides comprehensive information on annual changes in polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), and 10 groups of organochlorine pesticides (OCPs) in the ambient air of São Paulo between 2010 and 2015 based on the Global Monitoring Plan. The mass concentrations of the studied POPs (PCDD/Fs, DL-PCBs, and OCPs) showed declining trends from 2010 to 2015 (from 2.65 × 10-2 to 1.33 × 10-2 pg m-3, from 9.89 × 10-2 to 3.12 × 10-2 pg m-3, and from 0.313 to 0.100 ng m-3, respectively), which might be due to the decrease of non-intentional emissions. The carcinogenic risk (CR) and non-carcinogenic risk (Non-CR) of the studied POPs were 1.48 × 10-11 to 6.08 × 10-7 and 3.44 × 10-8 to 3.34 × 10-3, respectively, which are lower than the generally accepted threshold values (10-6/10-5 and 1 for CR and Non-CR, respectively), suggesting that the health risks posed by the studied POPs were acceptable. PCDD/Fs had the highest CR (6.08 × 10-8-4.81 × 10-7), whereas the 95th percentile CR of DL-PCBs and nine of the OCPs were lower than 10-7, suggesting that among the studied POPs, PCDD/Fs in the ambient air warrant special attention. The 95th percentile CRs of dichlorodiphenyltrichloroethane (2.30 × 10-8), dieldrin (1.30 × 10-8), hexachlorocyclohexanes (1.05 × 10-8), heptachlor (8.97 × 10-9), hexachlorobenzene (6.47 × 10-9), chlordane (5.89 × 10-9), heptachlor epoxide (1.42 × 10-9), aldrin (1.33 × 10-9), and mirex (2.71 × 10-10) in ambient air were relatively low, suggesting that their threats to human health were negligible. In general, PCDD/Fs, DL-PCBs, and OCPs in the ambient air of São Paulo did not pose serious threats to human health during 2010-2015.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China; Center of Disease Control and Prevention, Lishui, China
| | - Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bingyan Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China.
| |
Collapse
|
32
|
Okeme J, Arrandale VH. Electronic Waste Recycling: Occupational Exposures and Work-Related Health Effects. Curr Environ Health Rep 2019; 6:256-268. [DOI: 10.1007/s40572-019-00255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Ceballos D, Guerrero M, Kalweit A, Rabin R, Spengler J, Herrick R. One-Hour Pilot Training to Prevent Workers From Taking Home Workplace Contaminants. New Solut 2019; 29:519-529. [PMID: 31698992 DOI: 10.1177/1048291119887188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Workers can accidentally transport chemical hazards from the workplace to the home, known as “take-home exposures.” Recent take-home lead-poisoning cases highlight the need for effective prevention training. A one-hour take-home prevention training was developed in partnership with a nonprofit. The training was administered and evaluated during two training sessions with twenty-one trainees. The training was composed of a lecture and interactive activities. An illustrated poster was used with different prevention actions within a story line to reduce take-home exposures under three categories: facilities with formal health and safety programs, small businesses, and outdoor work. The effectiveness and acceptability of the training was measured by a survey and pre- and posttraining exams. The second training exam responses showed a 14 percent (84 percent to 98 percent) increase in take-home prevention knowledge. Community-based prevention training could reduce the burden of chemical exposures on vulnerable workers and their families.
Collapse
Affiliation(s)
- Diana Ceballos
- Boston University School of Public Health, Boston, MA USA
| | | | - Andrew Kalweit
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Richard Rabin
- Massachusetts Coalition for Occupational Safety and Health (MassCOSH), Boston, MA USA
| | - John Spengler
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Robert Herrick
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
34
|
Impacts of migration on health and well-being in later life in China: Evidence from the China Health and Retirement Longitudinal Study (CHARLS). Health Place 2019; 58:102073. [DOI: 10.1016/j.healthplace.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
|
35
|
Inflammatory and tumorigenic effects of environmental pollutants found in particulate matter on lung epithelial cells. Toxicol In Vitro 2019; 59:300-311. [PMID: 31154059 DOI: 10.1016/j.tiv.2019.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Exposure to environmental pollutants is a major public health concern. This study investigated the inflammatory and tumorigenic effects of environmental pollutants (benzene, benzo[a]pyrene, cadmium, and diisononyl phthalate) on transformed A549 and H292 lung alveolar epithelial cells and non-transformed BEAS-2B lung bronchial epithelial cells. The cytotoxic effects of the pollutants were analyzed by the methyl thiazolyl tetrazolium assay. The anchorage-independent soft agar assay demonstrated that treatment with benzene, cadmium, and diisononyl phthalate for 4 weeks induced malignant transformation of BEAS-2B cells and tumorigenesis of A549 and H292 cells. mRNA expression of the inflammation-related genes tenascin-C, matrix metalloproteinase (MMP)-9, and MMP-2, as well as inhibitors of MMPs (TIMP-1 and TIMP-2), was analyzed by RT-PCR. The pollutants largely upregulated expression of MMP-9 and MMP-2, but suppressed expression of their inhibitors TIMP-1 and TIMP-2. Measurement of transepithelial electrical resistance revealed that cadmium and diisononyl phthalate significantly increased cell permeability. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a transcription factor of inflammatory genes, including MMP-9 and MMP-2, while signal transducer and activator of transcription (STAT) 3 is a key regulator of malignant transformation. All the pollutants activated the NF-κB promoter, while only cadmium induced activation of the STAT3 promoter in HEK293T cells. Moreover, all the pollutants increased the phospho-NF-κB level, but only cadmium and diisononyl phthalate increased the phospho-STAT3 level in A549 and BEAS-2B cells. These findings suggest that specific environmental pollutants enhance inflammation, cell permeability, and malignant transformation in lung epithelial cells by activating the oncogenic transcription factors STAT3 and NF-κB.
Collapse
|
36
|
Liu R, Ma S, Li G, Yu Y, An T. Comparing pollution patterns and human exposure to atmospheric PBDEs and PCBs emitted from different e-waste dismantling processes. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:142-149. [PMID: 30776597 DOI: 10.1016/j.jhazmat.2019.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 05/22/2023]
Abstract
Waste electrical and electronic equipment (E-waste) recycling provides post-consumption economic opportunities, can also exert stress on environment and human health. This study investigated emissions, compositional profiles, and health risks associated with polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) at five workshops (electric blowers to treat mobile phones (EBMP), electric heating furnaces to treat televisions (EHFTV) and routers (EHFR), and rotatory incinerators to treat televisions (RITV) and hard disks (RIHD)) within an e-waste dismantling industrial park. Total suspended particulate (TSP), PBDE, and PCB concentrations were 490-1530 μg m-3, 26.6-11,800 ng m-3 and 6.4-19.8 ng m-3 in different workshops, respectively. Tetra-BDEs were dominant in TV recycling workshops, whereas deca-BDEs were in other workshops. BDE-47, -99, and -209 were the most abundant PBDEs during e-waste recycling activities (expect in RIHD workshop). Penta-CBs were present at high levels in TV workshops, as were tetra-CBs in RIHD workshop. Low brominated BDEs contributed a large portion during working and non-working time. The percentages of octa-BDEs and nona-BDEs were higher during non-working than working time. PBDEs posed a higher non-cancer risk; PCBs posed cancer risk to workers through inhalation in TV workshops. This study provides insights into environmental characterization of PBDEs and PCBs during e-waste recycling processes.
Collapse
Affiliation(s)
- Ranran Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
37
|
Liao R, Li W, Kang Z, Tang L, Yang B, Wang L. Distribution characteristics and ecological evaluation of chlorobenzene compounds in surface sediment of the Maowei Sea, Guangxi, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:309. [PMID: 31028555 DOI: 10.1007/s10661-019-7397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
To enhance our understanding on environmental conditions of the Maowei Sea in Guangxi province, China, the concentration and distribution of 22 chlorobenzene compounds (CBs) in the surface sediment were determined by gas chromatography-mass spectrometry (GC-MS). The relationship of the sediment between CBs and total organic carbon (TOC) was also investigated. The results showed that a total of eight kinds of CBs compounds were detected in the sediment samples which were collected from the coastal environment of the Maowei Sea, with an average concentration of 15.3 ng·g-1 (the concentration range, 2.5-61.5 ng·g-1). The rank of their average concentrations was as follows: 2,3,4,5,6-pentachlorotoluene > hexachlorobenzene, 2-chlorotoluene, 3-chlorotoluene and 2,3-dichlorotoluene > 2,4-dichlorotoluene > 4-chlorotoluene > pentachlorobenzene. Most CBs were distributed in sediments along the east coast of the Maowei Sea. For total TOC content in sediments, the concentration in the sampling locations was similar, with a mean concentration of 8.83 g·kg-1 (the concentration range, 4.87-20.13 g·kg-1). However, there was no significant correlation between the concentration of TOC and total CBs. Compared to the corresponding CBs in the sediment of other coastal areas in mainland China and other countries, the value of CBs in the Maowei Sea was low.
Collapse
Affiliation(s)
- Riquan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, Guangxi, People's Republic of China
| | - Weitao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, Guangxi, People's Republic of China
| | - Liang Tang
- Shanghai Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bin Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, Guangxi, People's Republic of China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
38
|
Yu Y, Zhu X, Li L, Lin B, Xiang M, Zhang X, Chen X, Yu Z, Wang Z, Wan Y. Health implication of heavy metals exposure via multiple pathways for residents living near a former e-waste recycling area in China: A comparative study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:178-184. [PMID: 30448700 DOI: 10.1016/j.ecoenv.2018.10.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Herein, crop (vegetables and rice, n = 30), soil (n = 14), dust (n = 12), and PM10 (n = 25) samples were collected to assess the environmental quality of a former e-waste recycling area and evaluate the related health risks. In dust and PM10, the concentrations of heavy metals (Cd, Cu, Ni, Pb, and Zn) were lower than previously reported values, although the numbers for soil, vegetables, and rice remained high. The average accumulation factors of heavy metals in crops decreased in the order of Zn > Cd > Ni > Cu > Pb, and soil was identified as the largest contributor to crop pollution. Heavy metal ingestion largely occurred via rice consumption, which accounted for a significant fraction of the total average daily dose (ADD; 75.2-86.7% in children and 78.0-91.7% in adults), especially for Cd, Cu, Ni, and Zn. However, in the case of Pb, soil ingestion accounted for 48.9% of the ADD in adults, while in children, vegetable, rice, and dust ingestion accounted for 44.7%, 28.6%, and 23.7% of the ADD, respectively. The combined exposure hazard indices at the fifth, median, and 95th percentiles for all heavy metals were determined as 2.54, 9.40, and 40.1 for adults and as 3.75, 13.7, and 58.4 for children, respectively. In terms of health risk, crop consumption was identified as the major exposure pathway for both children and adults, featuring a contribution of 99.9%. In addition, the 95th percentile carcinogenic risks for Pb exceeded the acceptable level. Thus, this work shows that to reduce the health risk for local residents in the former e-waste area, more attention should be paid to soil repair.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bigui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaohua Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yue Wan
- Ministry of Ecological Environment of the People's Republic of China, Beijing 100035, China.
| |
Collapse
|
39
|
Qin Q, Xu X, Dai Q, Ye K, Wang C, Huo X. Air pollution and body burden of persistent organic pollutants at an electronic waste recycling area of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:93-123. [PMID: 30171476 DOI: 10.1007/s10653-018-0176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/15/2018] [Indexed: 02/05/2023]
Abstract
This paper reviews the concentrations of persistent organic pollutants (POPs) in atmosphere of an electronic waste (e-waste) recycling town, Guiyu, in Southeast China, focusing on polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). We assess the evidence for the association between air pollution and human body burden, to provide an indication of the severity of respiratory exposure. Compared with standards and available existing data for other areas, it clearly shows that four typical POPs, derived from recycling processes, lead to serious atmospheric pollution and heavy body burden. From published data, the estimated respiratory exposure doses of Guiyu adults and children, varied between 2.48-10.37 and 3.25-13.6 ng kg-1 body weight (bw) day-1 for PBDEs, 2.31-7.6 and 4.09-13.58 pg World Health Organization-Toxic Equivalent Quantity (WHO-TEQ) kg-1 bw day-1 for PCDD/Fs, 5.57 and 20.52 ng kg-1 bw day-1 for PCBs, and 8.59-50.01 and 31.64-184.14 ng kg-1 bw day-1 for PAHs, respectively. These results show that air pollution is more harmful to children. Furthermore, except for PBDEs, the hazard quotient (HQ) of the other three pollutants was rated more than 1 by respiratory exposure only, and all of them are at risk of carcinogenesis. So we speculate these pollutants enter the body mainly through air inhalation, making respiratory exposure may be more important than dietary exposure in the Guiyu e-waste recycling area. Effective management policies and remediation techniques are urgently needed to prevent the deterioration of ambient air quality in the e-waste recycling area.
Collapse
Affiliation(s)
- Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Chenyang Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China.
| |
Collapse
|
40
|
Cao D, Gao W, Wu J, Lv K, Xin S, Wang Y, Jiang G. Occurrence and Human Exposure Assessment of Short- and Medium-Chain Chlorinated Paraffins in Dusts from Plastic Sports Courts and Synthetic Turf in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:443-451. [PMID: 30521330 DOI: 10.1021/acs.est.8b04323] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study presents the first investigation of concentrations and congener group patterns of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in 159 dust samples from plastic sports courts and synthetic turf in Beijing, China. The geometric mean concentration of SCCPs and MCCPs in dusts from plastic tracks (5429 and 15157 μg g-1) and basketball courts (5139 and 11878 μg g-1) were significantly higher than those from plastic tennis courts, badminton courts, and synthetic turf; meanwhile, they were 1-3 orders of magnitude higher than in dusts from other indoor environments. The friction between sneaker soles and plastic track materials may lead to the wear and decomposition of rubber, which may be an important source of chlorinated paraffins (CPs) in the dust from plastic tracks. The mean estimated daily intakes of CPs from plastic tracks and basketball courts are generally higher than those estimated from dietary, breast milk, or other indoor dust sources. The margin of exposure for adults and children was greater than 1000 both at mean and high-exposure scenarios, indicating that no significant health risks were posed by CPs in the dust from plastic sports courts and synthetic turf.
Collapse
Affiliation(s)
- Dandan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Shandong University , Jinan 250100 , China
| | - Shanzhi Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
41
|
Cao Z, Chen Q, Li X, Zhang Y, Ren M, Sun L, Wang M, Liu X, Yu G. The non-negligible environmental risk of recycling halogenated flame retardants associated with plastic regeneration in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1090-1096. [PMID: 30235595 DOI: 10.1016/j.scitotenv.2018.07.373] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
To investigate halogenated flame retardant (HFR) contents in recycled plastic materials, 23 recycled plastic samples manufactured in five Chinese provinces were randomly purchased online, and the ∑12HFR concentrations of these samples (including 8 polybrominated diphenyl ethers (PBDEs, BDE 28, 47, 99, 100, 154, 153, 183 and 209), decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and 2 dechlorane plus isomers (DP, syn-DP and anti-DP)) varied from ND to 169,000 ng g-1 (mean ± SD, 46,900 ± 44,700 ng g-1). BDE 209 and DBDPE were the dominant components and their concentration ranges were from ND to 106,000 ng g-1 and ND to 81,900 ng g-1, respectively. Generally, the HFR content and plastic variety closely correlate, and the ∑HFR concentrations in the polyvinyl chloride (PVC, N = 5), polypropylene (PP, N = 9), acrylonitrile butadiene styrene (ABS, N = 5), polystyrene (PS, N = 1) and polyethylene (PE, N = 3) samples were 65,300 ± 42,400, 36,700 ± 56,000, 30,000 ± 25,200, 24,300 and 4330 ± 7500 ng g-1, respectively. The HFR abundance in plastic from Guangdong (76,000 ± 56,400 ng g-1, N = 7) and Hebei (37,500 ± 11,500 ng g-1, N = 4) was much higher than that for other provinces/cities.
Collapse
Affiliation(s)
- Zhiguo Cao
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qiaoying Chen
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoxiao Li
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yacai Zhang
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meihui Ren
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lifang Sun
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengmeng Wang
- Ministry of Education Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaotu Liu
- Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China; School of Environment, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Gang Yu
- Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Awasthi AK, Wang M, Awasthi MK, Wang Z, Li J. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1310-1316. [PMID: 30268981 DOI: 10.1016/j.envpol.2018.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 05/07/2023]
Abstract
BRIEF BACKGROUND E-waste generation has become a serious environmental challenge worldwide. The global quantity of e-waste was estimated 44.7 million metric tons (Mt) in 2016. The improper recycling of e-waste is still a challenging issue in developing countries. OBJECTIVE The objectives of this a review article to present comprehensive information of recent studied on environment pollution and effect on human health in China. METHOD The search engines consulted, period of publications reviewed 2015-2018. For search study, we used different key words: 'improper recycling', 'primitive recycling,' 'backyard recycling,' 'e-waste,' 'WEEE', and the studies related to improper recycling of e-waste. RESULTS According to reports, the e-waste recycled by unorganized sectors in China. These unorganized sector workers daily go for work, such as e-waste collection from consumer house and manual dismantling of e-waste by using simple method, at unauthorized workshop. These backyard workshop are reported in small clusters in or around city e.g., Qingyuan village; Taizhou, Longtang Town, Guiyu, nearby Nanyang River and Beigang River in China. DISCUSSION The earlier reported studies directed the heavy metals effect (causing effects both acute and chronic effects; respiratory irritation, reproductive problem, cardiovascular and urinary infection/disease) on human health. According the reports, the improper recycling of e-waste which need to be address for the environment protection and prevention of public health risk. However, if e-waste exposure is not avoided very well, the associated contamination will be continuing, and simultaneously needful to increase the awareness for proper e-waste management in China. CONCLUSIONS In order to solve the e-waste problem in China, more detail research is needed. Furthermore, for environment protection and health safety, the proper e-waste dismantling techniques, environmentally sound management, and the regular monitoring are very important.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | - Mengmeng Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | | | - Zhishi Wang
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Wang P, Zhao N, Cui Y, Jiang W, Wang L, Wang Z, Chen X, Jiang L, Ding L. Short-chain chlorinated paraffin (SCCP) pollution from a CP production plant in China: Dispersion, congener patterns and health risk assessment. CHEMOSPHERE 2018; 211:456-464. [PMID: 30077940 DOI: 10.1016/j.chemosphere.2018.07.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 05/22/2023]
Abstract
China is the largest chlorinated paraffin (CP) producer in the world. Given that CP production is a major source of short-chain CP (SCCP) pollution in China, the effects of CP production on the environment inside and outside of CP production plants are worth revealing. The concentrations and specific congener group patterns of SCCPs in various environmental matrices, such as air, soil and dust, inside and outside of a chosen CP production plant surrounded by farmlands and villages were analyzed to explore SCCP pollution and transportation behaviors. SCCP concentrations in air (129-1442 ng/m3) and soil (28-554 μg/g) samples inside the CP production plant were dramatically higher than those in air (91-333 ng/m3) and soil (102-441 ng/g) samples outside the CP production plant. Based on the congener abundance patterns among these samples, lighter groups (C10-11 and Cl5-6) were dominant in atmospheric environment, with greater long-range transport potential, whereas heavier groups (C12-13 and Cl7-10) were inclined toward deposition. It was clear that substantial amounts of SCCPs were released from the CP production plant, which contaminated the environment inside and outside of the plant. The daily occupational SCCP exposure of employees in the production hall (21.8 μg/day-kg) exceeded the tolerable daily intake (TDI, 10 μg/day-kg) given by Canadian Environmental Protection Act, suggesting that production employees were confronted with high health risk from SCCP exposure; while daily SCCP exposure of employees in office areas (0.57 μg/day-kg) and residents near the CP plant (1.22-25.5 × 10-2 μg/day-kg) were significantly lower, representing low health risk.
Collapse
Affiliation(s)
- Peiwen Wang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Nan Zhao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yang Cui
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wei Jiang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiangfeng Chen
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Jiang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
44
|
Chen H, Lam JCW, Zhu M, Wang F, Zhou W, Du B, Zeng L, Zeng EY. Combined Effects of Dust and Dietary Exposure of Occupational Workers and Local Residents to Short- and Medium-Chain Chlorinated Paraffins in a Mega E-Waste Recycling Industrial Park in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11510-11519. [PMID: 30203967 DOI: 10.1021/acs.est.8b02625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Four types of dust samples and nine categories of locally produced staple foods were collected from a mega e-waste recycling industrial park and its surrounding regions, and simultaneously analyzed for short-chain and medium-chain chlorinated paraffins (CPs) to estimate dust and dietary exposure and their combined effects on occupational workers and local residents. All samples related to e-waste activities contained considerably high concentrations of CPs. The highest dust concentration was found in e-waste workshops. CPs were highly accumulated in local plant and animal origin foods, most markedly in fish, vegetables, and rice. The main contribution to CP intake under a median exposure scenario was from the diet, and vegetables, fish, and rice were the three largest dietary intake sources. Only the combined dust and food exposure from the present study has approached or even exceeded the highest tolerable daily intake (TDI) set up by the International Program on Chemical Safety (IPCS). However, due to lack of official threshold values for CP exposure on adverse human health, there are limitations on accurate risk assessment. Considering the presence of other exposure pathways, CPs' endocrine disrupter properties, as well as the multicomponent chemical "cocktails" effects, potential high risks from CP exposure may be posed to e-waste workers and local residents.
Collapse
Affiliation(s)
- Hui Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Mingshan Zhu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Fei Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Wei Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Bibai Du
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Lixi Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Eddy Y Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
45
|
Cong X, Xu X, Xu L, Li M, Xu C, Qin Q, Huo X. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. ENVIRONMENT INTERNATIONAL 2018; 115:117-126. [PMID: 29558634 DOI: 10.1016/j.envint.2018.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM2.5, PM10, SO2, NO2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM2.5, PM10, SO2 and NO2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM2.5, PM10, SO2, NO2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure impairs the SAM system in children.
Collapse
Affiliation(s)
- Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
46
|
Wang Y, Sun H, Zhu H, Yao Y, Chen H, Ren C, Wu F, Kannan K. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1056-1064. [PMID: 29996402 DOI: 10.1016/j.scitotenv.2018.01.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Distribution of 12 organophosphate flame retardants (OPFRs) was determined in soil and outdoor settled dust samples collected from a multi-waste (electronic, plastic, and rubber wastes and abandoned household-appliances and vehicles) recycling area, that encompassed different modes of operation i.e. open (ORS) and semi-closed recycling (SCRS). Among the twelve OPFRs analyzed, eleven were detected at a frequency of 75%-100% in all soil and dust samples. In soil samples, ΣOPFR concentrations were significantly higher at ORS (122-2100ng/g) than at SCRS (58.5-316ng/g) and nearby farmlands (37.7-156ng/g). The ΣOPFR concentrations in dust samples were higher than those in soil samples with spatial distribution similar to that observed for soil, decreasing from ORS (1390-42,700ng/g) to SCRS (914-7940ng/g). Tris(2-chloroisopropyl) phosphate (TCIPP) was the major OPFRs in both soil (<MDL-1370ng/g) and dust (39.9-16,300ng/g) samples. Chlorinated OPFRs [TCIPP, tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP)] and aryl-OPFRs [triphenyl phosphate (TPHP), tris(methylphenyl) phosphate (TMPP)] exhibited spatial difference between ORS and SCRS. Principle component analysis (PCA) of OPFR concentrations revealed that TCIPP, TDCIPP, TPHP, TMPP originated from similar sources. TMPP was assessed to pose eco-toxicological risk (risk quotient values: RQs) in the soil ecosystem. The median estimated daily intake (EDI) of OPFRs via soil and outdoor settled dust ingestion (based on average ingestion rate) was 3.14×10-1ng/kgbw/day for adults at ORS. Our results suggest that waste recycling is an important source of chlorinated- and aryl-OPFRs in the environment.
Collapse
Affiliation(s)
- Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States
| |
Collapse
|
47
|
de Lima e Silva MR, Correa RC, Sakamoto IK, Varesche MBA. Microbial Characterization of Methanogenic and Iron-reducing Consortium in Reactors with Polychlorinated Biphenyls. Curr Microbiol 2018; 75:666-676. [DOI: 10.1007/s00284-018-1431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
48
|
Gao W, Cao D, Wang Y, Wu J, Wang Y, Wang Y, Jiang G. External Exposure to Short- and Medium-Chain Chlorinated Paraffins for the General Population in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:32-39. [PMID: 29190090 DOI: 10.1021/acs.est.7b04657] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are a class of compounds that are currently produced and used in large amounts in commercial products worldwide. In this study, food, indoor air, indoor dust, and drinking water samples were collected to evaluate the external exposure levels of CPs and possible pathway for the general population in Beijing, China. Short chain CPs (SCCPs) and medium chain CPs (MCCPs) in 199 samples were analyzed using a gas chromatography tandem time-of-flight high-resolution mass spectrometry (GC-TOF-HR-MS) method. High levels of CPs were observed in the indoor environment from residential houses, offices, and student dormitories. The geometric mean concentrations (GM) of ∑SCCPs and ∑MCCPs in indoor dust were 92 μg g-1 and 82 μg g-1, respectively, while in indoor air, the concentrations were 80 ng m-3 and 3.4 ng m-3, respectively. The GM of ∑SCCPs and ∑MCCPs in the diet were 83 ng g-1 dry weight (dw) and 56 ng g-1 dw, respectively. The most important external exposure routes to CPs to the general populations in Beijing were food intake and indoor dust ingestion. Indoor dust and indoor air posed higher risks for toddlers and infants than for adults.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dandan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yingjun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
49
|
Bakhiyi B, Gravel S, Ceballos D, Flynn MA, Zayed J. Has the question of e-waste opened a Pandora's box? An overview of unpredictable issues and challenges. ENVIRONMENT INTERNATIONAL 2018; 110:173-192. [PMID: 29122313 DOI: 10.1016/j.envint.2017.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Despite regulatory efforts and position papers, electrical and electronic waste (e-waste) remains ill-managed as evidenced by the extremely low rates of proper e-waste recycling (e-recycling) worldwide, ongoing illegal shipments to developing countries and constantly reported human health issues and environmental pollution. The objectives of this review are, first, to expose the complexity of e-waste problems, and then to suggest possible upstream and downstream solutions. Exploring e-waste issues is akin to opening a Pandora's box. Thus, a review of prevailing e-waste management practices reveals complex and often intertwined gaps, issues and challenges. These include the absence of any consistent definition of e-waste to date, a prevalent toxic potential still involving already banned or restricted hazardous components such as heavy metals and persistent and bioaccumulative organic compounds, a relentless growth in e-waste volume fueled by planned obsolescence and unsustainable consumption, problematic e-recycling processes, a fragile formal e-recycling sector, sustained and more harmful informal e-recycling practices, and more convoluted and unpredictable patterns of illegal e-waste trade. A close examination of the e-waste legacy contamination reveals critical human health concerns, including significant occupational exposure during both formal and informal e-recycling, and persistent environmental contamination, particularly in some developing countries. However, newly detected e-waste contaminants as well as unexpected sources and environmental fates of contaminants are among the emerging issues that raise concerns. Moreover, scientific knowledge gaps remain regarding the complexity and magnitude of the e-waste legacy contamination, specifically, a comprehensive characterization of e-waste contaminants, information on the scale of legacy contamination in developing countries and on the potential environmental damage in developed countries, and a stronger body of evidence of adverse health effects specifically ascribed to e-waste contaminants. However, the knowledge accumulated to date is sufficient to raise awareness and concern among all stakeholders. Potential solutions to curb e-waste issues should be addressed comprehensively, by focusing on two fronts: upstream and downstream. Potential upstream solutions should focus on more rational and eco-oriented consumer habits in order to decrease e-waste quantities while fostering ethical and sustained commitments from manufacturers, which include a limited usage of hazardous compounds and an optimal increase in e-waste recyclability. At the downstream level, solutions should include suitable and pragmatic actions to progressively reduce the illegal e-waste trade particularly through international cooperation and coordination, better enforcement of domestic laws, and monitoring in both exporting and receiving countries, along with the supervised integration of the informal sector into the recycling system of developing countries and global expansion of formal e-waste collection and recycling activities. Downstream solutions should also introduce stronger reverse logistics, together with upgraded, more affordable, and eco-friendly and worker-friendly e-recycling technologies to ensure that benefits are derived fully and safely from the great economic potential of e-waste.
Collapse
Affiliation(s)
- Bouchra Bakhiyi
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Sabrina Gravel
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montreal, Quebec, Canada
| | - Diana Ceballos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael A Flynn
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Joseph Zayed
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Gu F, Ma B, Guo J, Summers PA, Hall P. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:434-448. [PMID: 28757222 DOI: 10.1016/j.wasman.2017.07.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data.
Collapse
Affiliation(s)
- Fu Gu
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Buqing Ma
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianfeng Guo
- Center of Energy and Environmental Policy Research, Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China.
| | - Peter A Summers
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, Nottingham University, Ningbo 315100, China
| |
Collapse
|