1
|
Linghu D, Zhu Z, Zhang D, Luo Y, Ma J, Li T, Sun Z, Xie Z, Sun J, Cao C. Diethylhexyl phthalate induces immune dysregulation and is an environmental immune disruptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136244. [PMID: 39442302 DOI: 10.1016/j.jhazmat.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Diethylhexyl phthalate (DEHP) is the most abundant phthalate compound in the environment, and has been linked with multiple human diseases. The immune system is closely associated with the occurrence and progression of various diseases. However, minimal research has addressed the impact of DEHP on the immune system. In this study, single-cell RNA sequencing was performed using spleen tissue of mice to comprehensively determine alterations of the immune system in response to DEHP. The results showed that DEHP exposure reduced the absolute number of peripheral white blood cells (WBCs), including lymphocytes, monocytes, eosinophils, basophils, and neutrophils in mice. In addition, scRNA-seq analyses showed that inflammatory signaling and the expression of heat shock proteins (HSPs) were reduced in all peripheral immune cell populations. Furthermore, we established a mice cecal ligation and puncture (CLP) model, and showed that DEHP exacerbated sepsis-induced immunosuppression and organ damage. These results suggest that DEHP is an environmental immune disruptor that undermines the immune system, exacerbating acute infections and organ damage. Our findings offer a novel perspective on the hazards of DEHP to human health.
Collapse
Affiliation(s)
- Dongli Linghu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhenru Zhu
- Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, PR China
| | - Dongyan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yongyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Ma
- Information Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Tao Li
- Medical Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhichao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zheng Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Oh Y, Hong SJ, Park YJ, Baek IH. Association between phthalate exposure and risk of allergic rhinitis in children: A systematic review and meta-analysis. Pediatr Allergy Immunol 2024; 35:e14230. [PMID: 39229646 DOI: 10.1111/pai.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Phthalates are ubiquitous in diverse environments and have been linked to a myriad of detrimental health outcomes. However, the association between phthalate exposure and allergic rhinitis (AR) remains unclear. To address this knowledge gap, we conducted a systematic review and meta-analysis to comprehensively evaluate the relationship between phthalate exposure and childhood AR risk. We searched the Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica Database, and PubMed to collect relevant studies and estimated pooled odds ratios (OR) and 95% confidence intervals (CI) for risk estimation. Ultimately, 18 articles, including seven cross-sectional, seven case-control, and four prospective cohort studies, were selected for our systematic review and meta-analysis. Our pooled data revealed a significant association between di-2-ethylhexyl phthalate (DEHP) exposure in children's urine and AR risk (OR = 1.188; 95% CI = 1.016-1.389). Additionally, prenatal exposure to combined phthalates and their metabolites in maternal urine was significantly associated with the risk of childhood AR (OR = 1.041; 95% CI = 1.003-1.081), although specific types of phthalates and their metabolites were not significant. Furthermore, we examined environmental phthalate exposure in household dust and found no significant association with AR risk (OR = 1.021; 95% CI = 0.980-1.065). Our findings underscore the potential hazardous effects of phthalates on childhood AR and offer valuable insights into its pathogenesis and prevention.
Collapse
Affiliation(s)
- Yeonghun Oh
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Korea
- Functional Food & Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, Busan, Korea
| |
Collapse
|
3
|
Fossa AJ, Manz KE, Papandonatos GD, Chen A, La Guardia MJ, Lanphear BP, C Hale R, Pagano A, Pennell KD, Yolton K, Braun JM. A randomized controlled trial of a housing intervention to reduce endocrine disrupting chemical exposures in children. ENVIRONMENT INTERNATIONAL 2024; 191:108994. [PMID: 39226767 PMCID: PMC11500672 DOI: 10.1016/j.envint.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Few studies have considered household interventions for reducing endocrine disrupting chemical (EDC) exposures. We conducted a secondary analysis of a randomized controlled trial, originally designed to reduce lead exposure, to evaluate if the intervention lowered EDC exposures in young children. Study participants were children from the Cincinnati, Ohio area (n = 250, HOME Study). Prenatally, families received a housing intervention that included paint stabilization and dust mitigation, or as a control, injury prevention measures. At 24-months, we measured organophosphate esters (OPEs) and phthalates or their metabolites in dust and urine. We measured perfluoroalkyl substances (PFAS) in dust and serum at 24- and 36-months, respectively. We assessed associations between dust and biomarker EDCs using Spearman correlations, characterized EDC mixtures via principal components analysis, and investigated treatment effects using linear regression. To mitigate selection bias, we fit statistical models using inverse probability of retention weights. Correlations between dust EDCs and analogous biomarkers were weak-to-moderate (ρ's ≤ 0.3). The intervention was associated with 23 % (95 % CI: -38, -3) lower urinary DEHP metabolites and, in a per-protocol analysis, 34 % lower (95 % CI: -55, -2) urinary MBZP. Additionally, among Black or African American children, the intervention was associated with lower serum concentrations of several PFAS (e.g., -42 %; 95 % CI: -63, -8 for PFNA). Household interventions that include paint stabilization and dust mitigation may reduce childhood exposures to some phthalates and PFAS in Blacks/African Americans. These findings highlight the need for larger studies with tailored and sustained housing interventions.
Collapse
Affiliation(s)
- Alan J Fossa
- Brown University School of Public Health, Department of Epidemiology, Providence, Rhode Island, United States of America.
| | - Katherine E Manz
- University of Michigan School of Public Health, Department of Environmental Health, Ann Arbor, MI, United States of America
| | - George D Papandonatos
- Brown University School of Public Health, Department of Biostatistics, Providence, Rhode Island, United States of America
| | - Aimin Chen
- University of Pennsylvania Perelman School of Medicine, Department of Biostatistics, Epidemiology & Informatics, Philadelphia, PA, United States of America
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States of America
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Robert C Hale
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States of America
| | - Alexandra Pagano
- Brown University School of Engineering, Providence, Rhode Island, United States of America
| | - Kurt D Pennell
- Brown University School of Engineering, Providence, Rhode Island, United States of America
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Joseph M Braun
- Brown University School of Public Health, Department of Epidemiology, Providence, Rhode Island, United States of America
| |
Collapse
|
4
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
5
|
Yesildagli B, Göktaş RK, Ayaz T, Olgun B, Dokumacı EN, Özkaleli M, Erdem A, Yurtsever M, Doğan G, Yurdakul S, Yılmaz Civan M. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133710. [PMID: 38364582 DOI: 10.1016/j.jhazmat.2024.133710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Soil samples collected from 50 greenhouses (GHs) cultivated with tomatoes (plastic-covered:24, glass-covered:26), 5 open-area tomato growing farmlands, and 5 non-agricultural areas were analyzed in summer and winter seasons for 13 PAEs. The total concentrations (Σ13PAEs) in the GHs ranged from 212 to 2484 ng/g, wheeas the concentrations in open-area farm soils were between 240 and 1248 ng/g. Σ13PAE in non-agricultural areas was lower (35.0 - 585 ng/g). PAE exposure through the ingestion of tomatoes cultivated in GH soils and associated risks were estimated with Monte Carlo simulations after calculating the PAE concentrations in tomatoes using a partition-limited model. DEHP was estimated to have the highest concentrations in the tomatoes grown in both types of GHs. The mean carcinogenic risk caused by DEHP for tomato grown in plastic-covered GHs, glass-covered GHs, and open-area soils were 2.4 × 10-5, 1.7 × 10-5 and 1.1 × 10-5, respectively. Based on Positive Matrix Factorization results, plastic material usage in GHs (including plastic cover material source for plastic-GHs) was found to be the highest contributing source in both types of GHs. Microplastic analysis indicated that the ropes and irrigation pipes inside the GHs are important sources of PAE pollution. Pesticide application is the second highest contributing source.
Collapse
Affiliation(s)
- Berkay Yesildagli
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Recep Kaya Göktaş
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey.
| | - Tuğba Ayaz
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Bihter Olgun
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ebru Nur Dokumacı
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Merve Özkaleli
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ayça Erdem
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Meral Yurtsever
- Department of Environmental Engineering, Sakarya University, 54187, Sakarya, Turkey
| | - Güray Doğan
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Sema Yurdakul
- Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| |
Collapse
|
6
|
Lin RR, Lin DA, Maderal AD. Toxic Ingredients in Personal Care Products: A Dermatological Perspective. Dermatitis 2024; 35:121-131. [PMID: 38109205 DOI: 10.1089/derm.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.
Collapse
Affiliation(s)
- Rachel R Lin
- From the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Deborah A Lin
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
8
|
Zhou X, Kang L, Wang X, Meng H. A novel method for assessing indoor di 2-ethylhexyl phthalate (DEHP) contamination and exposure based on dust-phase concentration. CHEMOSPHERE 2024; 349:140994. [PMID: 38141675 DOI: 10.1016/j.chemosphere.2023.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Phthalates (PAEs) are a group of typical semivolatile organic compounds that are widely present in indoor environments with multiple phases. Indoor air, airborne particle and settled dust are considered to be typical indicators of PAE contamination as well as media of human exposure, and the interactions between them are complex. Among various phthalate compounds, di 2-ethylhexyl phthalate (DEHP) was identified as the predominant individual phthalate in settled dust. The existing DEHP contamination assessment requires multiphase sampling or solving the dynamic mass transfer models with multiple partial differential equations, which are both complicated and time-consuming. This study investigated the influence of the indoor source loading rate, surface type, particle size and cleaning frequency on the partitioning between the settled dust-phase, airborne particle-phase and gas-phase. The concentration correlations of DEHP between multiphases were consequently derived, which balance accuracy and complexity well. By comparison with field sampling data in the literatures, the rationality and accuracy of the concentration correlations were validated. Based on the concentration correlations, a new method of directly using dust-phase concentration to estimate the non-dietary exposure to DEHP was proposed. The results indicated that ingestion of settled dust contributes the most to non-dietary exposure. Special attention should be given to infants and toddlers, who suffer the highest daily exposure to DEHP among all age groups. This study provides a new and efficient solution for estimating indoor DEHP pollution loads conveniently and rapidly, offering valuable insights for future research in this field.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lingyi Kang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hui Meng
- Higher Engineering Education Museum, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
9
|
Li X, Zheng N, Yu Y, Zhang W, Sun S, An Q, Li Z, Ji Y, Wang S, Shi Y, Li W. Individual and combined effects of phthalate metabolites on eczema in the United States population. ENVIRONMENTAL RESEARCH 2024; 240:117459. [PMID: 37914015 DOI: 10.1016/j.envres.2023.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Phthalates might trigger immune dysregulation. The relationship between a phthalate mixture exposure and eczema remains unclear. To address this research gap, four statistical models were used to investigate the individual, combined, and interaction relationships between monoesters of phthalates (MPAEs) and eczema, including the logistic regression, weighted quantile sum regression (WQS), quantile g computation (qg-computation), and bayesian kernel machine regression (BKMR). Moreover, subgroup analyses were performed by sex and age. After adjusting for all covariates, the logistic regression model suggested a positive correlation between mono-(3-carboxypropyl) phthalate (MCPP) and eczema. Subgroup analysis suggested that the effect of the MPAEs on eczema was predominantly present in men and children. In the WQS model, the joint effect of 11 MPAEs on eczema was marginally significant [odds ratio = 1.36, 95% confidence interval: 0.97-1.90]. Moreover, a positive association was observed between the combined exposure to 11 MPAEs and eczema in the BKMR model. MCPP and mono-(carboxynonyl) phthalate were the most substantial risk factors based on the results of WQS and qg-computation models. The exposure to a mixture of MPAEs may lead to an elevated prevalence of eczema in the United States population, with men and children being particularly vulnerable to their effects.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China.
| | - Yan Yu
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Ying Shi
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wanlei Li
- Department of Dermatology, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
10
|
Chen HK, Chang YH, Sun CW, Wu MT, Chen ML, Wang SL, Hsieh CJ. Associations of urinary phthalate metabolites with household environments among mothers and their preschool-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115162. [PMID: 37352583 DOI: 10.1016/j.ecoenv.2023.115162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Phthalates have become a matter of public health concern due to their extensive use worldwide and negative health effects. The evaluation of potential sources of phthalate exposure is crucial to design prevention strategies, especially for vulnerable populations. This study included 528 mother-child pairs in the Taiwan Mother Infant Cohort Study who were followed up at ages 3-6 years between 2016 and 2020. Each mother was interviewed by using a structured questionnaire containing questions on demographic characteristics and household environment factors, such as the use of plastic food packaging, residential visible mold, insecticide sprays, and electric mosquito repellents. Eleven phthalate metabolites were analyzed in urine samples simultaneously collected from the mother-child pairs. The phthalate metabolite urinary concentrations were higher among the children than among their mothers, except those of mono-ethyl phthalate (MEP) and mono-2-ethylhexyl phthalate (MEHP). Multiple linear regression analyses showed that urine samples collected during the summer showed higher concentrations of phthalate metabolites than those collected during the winter. Family income levels had negative associations with the concentrations of MnBP and metabolites of di-2-ethylhexyl phthalate (DEHP) in children. The use of plastic food packaging was positively associated with mono-n-butyl phthalate (MnBP) and metabolites of DEHP in mothers. Residential visible mold or mold stains were significantly associated with higher MnBP and DEHP metabolite concentrations in children. The use of insecticide sprays was positively associated with MnBP concentrations in children. Significant associations between household environmental factors and phthalate exposure were mostly found in children, potentially indicating different exposure pathways between mothers and their children. Findings from this study provide additional information for the design of prevention strategies to protect the health of children and women.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan, ROC
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC; Department of Pediatrics, National Taiwan University Hospital, Taiwan, ROC
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC; Department of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan, ROC.
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Public Health, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
11
|
Hong Y, Ning X, Liang YY, Li XL, Cui Y, Wu W, Cai Y, Zhao S, Zhu M, Zhong TX, Wang H, Xu DX, Xu T, Zhao LL. Colonic mechanism of serum NAD + depletion induced by DEHP during pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162188. [PMID: 36781136 DOI: 10.1016/j.scitotenv.2023.162188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.
Collapse
Affiliation(s)
- Yun Hong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yue-Yue Liang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xiao-Lu Li
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Ya Cui
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Wei Wu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yang Cai
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Shuai Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Meng Zhu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tian-Xiao Zhong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Tao Xu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
12
|
Zhang H, Chen S, Chen X, Zhang Y, Han Y, Li J, Chen X. Exposure to phthalate increases the risk of eczema in children: Findings from a systematic review and meta-analysis. CHEMOSPHERE 2023; 321:138139. [PMID: 36791818 DOI: 10.1016/j.chemosphere.2023.138139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence indicated phthalate exposure might raise the risk of eczema in children. However, these findings were inconsistent. The relation between phthalate exposure and childhood eczema remained debated. Therefore, we performed this meta-analysis to assess their association. PubMed, Web of Science, and Embase were searched for eligible studies. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated for risk estimate. Thirty studies involving 12,615 participants were included in this meta-analysis. For prenatal phthalate exposure assessed with maternal samples, the pooled results showed gestational exposure to monobenzyl phthalate (MBzP) (OR: 1.17, 95% CI: 1.00-1.36), but not the other phthalates, was correlated with increased risk of eczema in children. For childhood exposure assessed using children's urine sample, our pooled results indicated that postnatal exposure to MBzP (OR: 1.10, 95% CI: 1.02-1.19), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (OR: 1.32, 95% CI: 1.08-1.61), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (OR: 1.24, 95% CI: 1.06-1.44), and molar summation of di-2-ethylhexyl phthalate (DEHP) (OR: 1.23, 95% CI: 1.06-1.42) were associated with higher risk of eczema. While for studies using household dust to estimate environmental phthalate exposure and eczema risk, the pooled results showed no significant association. Subgroup analyses indicated study country, diagnostic mode, and children's age contributed to the heterogeneity. The results of our meta-analysis demonstrated that phthalate exposure during both prenatal and postnatal periods was associated with elevated risk of eczema in children. However, such association was not strong as the pooled ORs were relatively small. Further studies are warranted to verify these findings and explore the underlying mechanism.
Collapse
Affiliation(s)
- Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Siyu Chen
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xinwang Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yonghe Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
13
|
Han Y, Yu X, Lu Y, Shen Y, Wang X, Wei H, Ni K, Qu J, Chen G. Di-(2-ethylhexyl) phthalate aggravates fine particulate matter-induced asthma in weanling mice due to T follicular helper cell-dependent response. Toxicology 2023; 484:153406. [PMID: 36549504 DOI: 10.1016/j.tox.2022.153406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Environmental pollutants fine particulate matter and di-(2-ethylhexyl) phthalate (DEHP) are believed to be the risk factors for childhood asthma. Allergic asthma is basically an immediate hypersensitivity mediated by IgE, the product of humoral immune response. T follicular helper cells (Tfh) have been newly identified as the crucial T helper cells for supporting B cells to produce immunoglobulins in humoral immunity. Tfh cells are therefore potentially to serve as the diagnostic marker and therapeutic target of immune diseases. In this study, we examined the joint effects of fine particulate matter and DEHP on the initiation and progression of asthma and explored the fundamental role of Tfh cells during the process. Weanling C57BL/6 mice (both sexes) were concurrently exposed to DEHP (intragastric administration at 300 μg/kg) and fine atmospheric particulate matter (mean particle diameter < 4 µm, PM4) (oropharyngeal instillation at 2 mg/kg) once every three days for 30 days (10 times). We found that DEHP displayed adjuvant effects to potentiate PM4 allergen-induced expansion of Tfh and plasma cells, production of serum IgE and IgG1, and occurrence of airway hyper-responsiveness and inflammation. Then PM4 and DEHP co-exposure was performed to Cd4 knock-out mice reconstituted with normal wild-type adoptive Tfh cells or non-Tfh cells. The results of immune adoptive transfusion indicated that the joint immunotoxic effects of PM4 and DEHP were dependent on Tfh cells. We further proved that DEHP could adjuvantly boost PM4-induced expression of BCL-6 and c-MAF and secretion of IL-13 and IL-4 in Tfh cells. In conclusion, these data suggest that DEHP metabolites act in an adjuvant-like manner to aggravate PM4 allergen-induced asthma based on anaphylactic IgE response, resulting from excessive IL-13 and IL-4 synthesized by abnormally differentiated Tfh cells.
Collapse
Affiliation(s)
- Yu Han
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China.
| | - Xiangjun Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Ying Lu
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Yi Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Xiaoying Wang
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Kaihua Ni
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China.
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, College of Public Health, Nantong University, Nantong 226019, Jiangsu, PR China.
| |
Collapse
|
14
|
Xie Z, Zhang X, Xie Y, Wu J, Wu Y. Occurrences and potential lipid-disrupting effects of phthalate metabolites in humpback dolphins from the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129939. [PMID: 36096058 DOI: 10.1016/j.jhazmat.2022.129939] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are ubiquitous environmental contaminants, arising growing public concern. Nevertheless, information on the exposure and risks of PAEs in wildlife remains limited. Here, we conducted the first investigation of the occurrences, spatiotemporal trends, and potential risks of twelve metabolites of PAEs (mPAEs) in 74 humpback dolphins from the northern South China Sea during 2005-2020. All twelve mPAEs (∑12mPAEs: 9.6-810.7 ng g-1 wet weight) were detected in the dolphin liver, and seven major mPAEs showed increasing trends during the study period, indicating high PAE contamination in the coastal environment of South China. Monoethylhexyl phthalate accounted for over half of the ∑12mPAE concentrations. The accumulation of mPAEs in the dolphins was neither age-dependent nor sex-specific. Compared to parent PAEs, mPAEs generally induced higher agonistic effects on the dolphin peroxisome proliferator-activated receptor alpha/gamma (PPARA/G) as master regulators of lipid homeostasis. Although short-term in vitro assays revealed no significant activation of dolphin PPARA/G by tissue-relevant doses of mPAEs, long-term in vivo evidence (i.e., correlations between hepatic mPAEs and blubber fatty acids) suggested that chronic exposure to mPAEs might have impacted lipid metabolism in the dolphin. This study highlighted the potential health risks of PAE exposure on marine mammals.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
15
|
Liu P, Quan X, Zhang Q, Chen Y, Wang X, Xu C, Li N. Multi-omics reveals the mechanisms of DEHP driven pulmonary toxicity in ovalbumin-sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114355. [PMID: 36508822 DOI: 10.1016/j.ecoenv.2022.114355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The plasticizer di- (2-ethylhexyl) phthalate (DEHP) is considered a risk factor for allergic diseases and has attracted public attention for its adverse effects on health. However, respiratory adverse effects after DEHP exposure in food allergies have rarely been reported. MiRNAs are considered to be key regulators in the complex interrelationships between the host and microbiome and may be a potential factor involved in DEHP-induced pulmonary toxicity. To investigate the adverse effects of DEHP on the lung during sensitization, we established an ovalbumin (OVA)-sensitized mouse model exposed to DEHP and performed 16S rDNA gene sequencing, miRNA sequencing, and correlation analysis. Our results showed that DEHP aggravated the immune disorder in OVA-sensitized mice, which was mainly characterized by an increase in the proportion of Th2 lymphocytes, and further enhanced OVA-induced airway inflammation without promoting pulmonary fibrosis. Compared with the OVA group, DEHP interfered with the lung microbial community, making Proteobacteria the dominant phylum, while Bacteroidetes were significantly reduced. Differentially expressed miRNAs were enriched in the PI3K/AKT pathway, which was closely related to immune function and airway inflammation. The expression of miR-146b-5p was elevated in the DEHP group, which was positively correlated with the proportion of Th2 cells and significantly negatively correlated with the abundance of Bacteroidetes. The results indicate that DEHP may interfere with the expression of miR-146b-5p, affect the composition of the lung microbiota, induce an imbalance in T cells, and lead to immune disorders and airway inflammation. The current study uses multi-omics to reveal the potential link between the plasticizer DEHP and allergic diseases and provides new insights into the ecotoxicology of environmental exposures to DEHP.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Quan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Na Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Zhao Y, Sun Y, Zhu C, Zhang Y, Hou J, Zhang Q, Ataei Y. Phthalate Metabolites in Urine of Chinese Children and Their Association with Asthma and Allergic Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14083. [PMID: 36360961 PMCID: PMC9654528 DOI: 10.3390/ijerph192114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 μg/L, 26.24 μg/L and 46.12 μg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yeganeh Ataei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Fandiño-Del-Rio M, Matsui EC, Peng RD, Meeker JD, Quirós-Alcalá L. Phthalate biomarkers and associations with respiratory symptoms and healthcare utilization among low-income urban children with asthma. ENVIRONMENTAL RESEARCH 2022; 212:113239. [PMID: 35405131 DOI: 10.1016/j.envres.2022.113239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phthalates are synthetic chemicals present in building materials, personal care products and other consumer goods. Limited studies link phthalates to pediatric asthma incidence; however, their effects on respiratory-related outcomes among those with pre-existing asthma remains unclear. OBJECTIVE We examined associations between phthalates and asthma symptoms, healthcare use, lung function, and lung inflammation among children with asthma. METHODS We collected repeated measures of urinary biomarkers for select phthalates and phthalate replacements (MBzP, MCINP, MCIOP, MCPP, MECPTP, MEHHTP, molar sum of DEHP biomarkers [MECPP, MEHHP, MEHP, MEOHP], MEP, MiBP, MnBP) and asthma symptoms, healthcare utilization, lung function, and inflammation among 148 predominantly low-income Black children (5-17 years) with persistent asthma every 3 months for one year. We used generalized estimating equations to assess associations between biomarker concentrations and asthma-related measures adjusting for age, sex, race/ethnicity, caregiver's education level, presence of smokers in the home, and season. We also considered co-exposures to other contaminants previously associated with asthma morbidity. RESULTS We observed consistent positive associations with individual DEHP biomarkers, the molar sum of DEHP, and BBzP with increased odds of asthma symptoms and with healthcare utilization (adjusted Odds Ratio for general asthma symptoms: ΣDEHP:1.49,95% Confidence Interval, CI:1.08-2.07; BBzP:1.34, CI:1.04-1.73). We observed similar associations between the DEHP phthalate replacement biomarker MEHHTP and most asthma symptoms evaluated; and with select low molecular weight phthalates (DiBP, DBP) and healthcare utilization. Results were similar when controlling for other environmental exposures (e.g., PM2.5, BPA). No associations were observed with lung function or inflammation, and overall, we did not observe consistent evidence of sexually dimorphic effects. CONCLUSION In the present study, we found evidence to suggest that exposure to select phthalates may be associated with asthma symptoms and healthcare utilization. These findings warrant confirmation given the high asthma burden and widespread and disparate phthalate exposures reported among select populations of color.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| | | | - Roger D Peng
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Lesliam Quirós-Alcalá
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| |
Collapse
|
18
|
Li Y, He L, Xie D, Zhao A, Wang L, Kreisberg NM, Jayne J, Liu Y. Strong temperature influence and indiscernible ventilation effect on dynamics of some semivolatile organic compounds in the indoor air of an office. ENVIRONMENT INTERNATIONAL 2022; 165:107305. [PMID: 35635961 DOI: 10.1016/j.envint.2022.107305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Many manmade organic air pollutants are semivolatile and primarily used and exposed indoors. It remains unclear how indoor environmental parameters affect indoor air dynamics of semivolatile organic compounds (SVOCs) in real-world indoor conditions, which directly relates to human exposure. By making time-resolved SVOC measurements over multiple weeks in an office, we characterized the indoor air dynamics of six representative SVOCs which were mainly present in the gas phase and of indoor origins, and investigated the effects of the temperature and ventilation rate. The six species include di-isobutyl phthalate and di-n-butyl phthalate, as well as two n-alkanes and two siloxanes. Airborne concentrations of all six SVOCs responded strongly and quickly to changes in the indoor temperature. The temperature dependence of individual species can be well fitted in the form of the van't Hoff equation, and explained 65-86% of the observed variation in the logarithm-transformed concentrations. In contrast, increasing the ventilation rate by a factor of 3-5 for hours at a constant temperature had no discernible influence on the SVOC concentrations. Further kinetic modeling analysis suggests that the observed fast temperature response and indiscernible ventilation effect are both associated with SVOC sorption onto indoor surfaces, which dramatically slows the response of SVOC concentration to changes in the ventilation rate and speeds up the response to changes in the temperature. These results highlight the importance of sorption reservoirs on regulating indoor SVOC dynamics and also have important implications for controlling and assessing indoor air exposure to SVOCs.
Collapse
Affiliation(s)
- Yatai Li
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Longkun He
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Di Xie
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Anqi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | | | - John Jayne
- Aerodyne Research Inc., Billerica, MA 01821, United States
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Wang J, Xu Z, Yao J, Hu M, Sun Y, Dong C, Bu Z. Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children's Exposure Assessments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138011. [PMID: 35805676 PMCID: PMC9265414 DOI: 10.3390/ijerph19138011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Phthalates are typical chemical pollutants in kindergarten classrooms since numerous artificial products (e.g., polyvinyl chloride (PVC) floorings, soft polymers and plastic toys) that might contain phthalates are widely distributed in kindergarten classrooms. Although Chinese preschool children spend a considerable amount of their waking hours (>8 h/day) in kindergartens, phthalate exposure in such indoor environment has not been given much attention. In this study, the mass fractions of six phthalates in twenty-six artificial products (fifteen flat decoration materials and eleven plastic toys) commonly found in Chinese kindergarten classrooms were measured. Di-2-ethylhexyl phthalate (DEHP) was the most predominant compound in all materials. The emission characteristics of the DEHP from these materials were further investigated. The measured emission characteristics were used for predicting multi-phase DEHP concentrations in kindergarten classrooms by applying a mass transfer model. The modeled concentrations were comparable with those measured in the real environment, indicating that these products might be the major sources of DEHP in Chinese kindergarten classrooms. Preschool children’s exposure to DEHP was found to be 0.42 μg/kg/day in kindergartens under baseline conditions, accounting for 18% of the total exposure to DEHP in Chinese indoor environments.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China;
| | - Zefei Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Jingyu Yao
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Yuewen Sun
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- Correspondence:
| |
Collapse
|
20
|
Zhang L, Ruan Z, Jing J, Yang Y, Li Z, Zhang S, Yang J, Ai S, Luo N, Peng Y, Fang P, Lin H, Zou Y. High-Temperature Soup Foods in Plastic Packaging Are Associated with Phthalate Body Burden and Expression of Inflammatory mRNAs: A Dietary Intervention Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8416-8427. [PMID: 35584204 DOI: 10.1021/acs.est.1c08522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plastic packaging material is widely used to package high-temperature soup food in China, but this combination might lead to increased exposure to phthalates. The health effects and potential biological mechanisms have not been well studied. This study aimed to examine urinary phthalate metabolites and the expression of inflammatory cytokines in the blood before, during, and after a "plastic-packaged high-temperature soup food" dietary intervention in healthy adults. The results showed that compared with those in the preintervention period, urinary creatinine-adjusted levels of monomethyl phthalate (MMP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MIBP), and total phthalate metabolites in the intervention period were significantly higher, with increases of 71.6, 41.8, 38.8, and 29.8% for MMP, MBP, MIBP, and the total phthalate metabolites, respectively. After intervention, the mean levels of IL-1β, IL-4, and TNF-α mRNA increased by 19.0, 21.5, and 25.0%, respectively, while IL-6 and IFN-γ mRNA decreased by 24.2 and 32.9%, respectively, when compared with the preintervention period. We also observed that several phthalates were associated with the mRNA or protein expression of IL-8, TNF-α, and IL-10. Therefore, consumption of plastic-packaged high-temperature soup food was linked to increased phthalate exposure and might result in significant changes in mRNA expression of several inflammatory cytokines.
Collapse
Affiliation(s)
- Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yang Peng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Peiyu Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
21
|
Quoc QL, Thi Bich TC, Kim SH, Ryu MS, Park HS, Shin YS. Mono-n-butyl phthalate regulates nuclear factor erythroid 2-related factor 2 and nuclear factor kappa B pathway in an ovalbumin-induced asthma mouse model. Food Chem Toxicol 2022; 166:113171. [PMID: 35609737 DOI: 10.1016/j.fct.2022.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Recent studies have emphasized the role of endocrine-disrupting chemicals in asthma development, especially in eosinophilic asthma. However, the exact mechanism was unknown. Among all the endocrine-disrupting chemicals, mono-n-butyl phthalate (MnBP) was a chemical that was most frequently detected in human urine. Our study was performed with the aim of investigating the harmful effects of MnBP on airway epithelial cells (AECs), T cells, and eosinophils by using eosinophilic asthma mouse models. Mice that received OVA with MnBP had higher levels of airway hyperresponsiveness, total and eosinophil cell counts, as well as T cell proliferation and T helper 2 cytokine release than those which only received OVA. Moreover, MnBP contributed to directly enhancing the eosinophilic activation which was shown in. Long-term exposure MnBP activated AECs through the nuclear factor kappa B (NF-kB) pathway, decreased nuclear factor erythroid 2-related factor 2 (Nrf2) expression, and increased interleukin-33 expression. Additionally, MnBP can induce human eosinophil activation to release eosinophil extracellular traps (EETs). Taken together, our study suggested the roles of MnBP exposure increase the risk of asthma development and severity. Furthermore, vitamin E treatment (anti-inflammatory and antioxidant effects) can reduce MnBP-induced harmful effects through inhibiting EETs, restoring Nrf2, and suppressing the NF-kB pathway.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
22
|
Hwang M, Choi K, Park C. Urinary levels of phthalate, bisphenol, and paraben and allergic outcomes in children: Korean National Environmental Health Survey 2015-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151703. [PMID: 34798094 DOI: 10.1016/j.scitotenv.2021.151703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phthalates, bisphenols and parabens have been widely used in household and personal-care products. Their endocrine disrupting, sensitizing and antimicrobial properties might play a role in the occurrence of allergic diseases. However, the effects of these chemicals, particularly on humans, are relatively underexplored. OBJECTIVES This study aimed to report the concentrations of phthalate, bisphenol and paraben in urine of Korean children, and assess their relationship with allergic outcomes. METHODS Data obtained from nationally representative Korean children, a total of 1458 children between 3 and 11 years of age recruited in the Korean National Environmental Health Survey (3 rd round of KoNEHS 2015-2017), were analyzed. Associations of urinary phthalate metabolites, bisphenols, and parabens levels with atopic dermatitis and allergic rhinitis was examined by grouped into preschool (aged 3-5 years) and school children (aged 6-11 years). Allergic outcomes were obtained through questionnaires answered by their caregivers. RESULTS Atopic dermatitis was associated with urinary metabolites of DEHP, BzBP, DINP, and DIDP, and MeP and PrP in preschool children, BPA and PrP in school children. Allergic rhinitis was associated with MeP and PrP in preschool children, and metabolites of DEHP, MeP and PrP in school children. The association of urinary chemicals with atopic dermatitis and allergic rhinitis were different by gender, especially in preschool children. CONCLUSION Urinary phthalates, BPA and parabens levels in the Korean children were related with atopic dermatitis and allergic rhinitis. Considering the importance of allergic diseases in children, the public health implications of exposure to these chemicals warrant further studies. Given the cross-sectional design and confounding variables, the results of this study should be interpreted with caution.
Collapse
Affiliation(s)
- Moonyoung Hwang
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Choonghee Park
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea.
| |
Collapse
|
23
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Association of childhood rhinitis with phthalate acid esters in household dust in Shanghai residences. Int Arch Occup Environ Health 2022; 95:629-643. [PMID: 35192054 DOI: 10.1007/s00420-021-01797-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Phthalate acid esters (PAEs) have been identified to be associated with children's health. Present study was conducted to assess associations between PAEs in household dust and childhood rhinitis. METHODS Based on phase II of CCHH study (China, Children, Home, Health) conducted in Shanghai, China, 266 indoor dust samples were collected from participants' families. Concentrations of PAEs in dust samples were measured by chemical treatment and gas chromatograph-mass spectrometer. Information about individuals and residences was surveyed by questionnaires. Logistic regression models were applied to obtain the associations between PAEs and childhood rhinitis. RESULTS Higher concentrations of benzyl butyl phthalate (BBP) were found in those families with children who had diagnosed rhinitis. Significantly higher concentrations of bis(2-ethylhexyl) phthalate (DEHP) and PAEs with high molecular weight (HMW-PAEs) were found in the positive group of lifetime rhinitis. Using the multiple and ordinal logistic regression models adjusted by covariates, dibutyl phthalate (DBP), DEHP, and HMW-PAEs were found to be significantly associated with diagnosed rhinitis. Boys who exposure to higher concentrations of DBP, DEHP, HMW-PAEs, and total PAEs have significant associations with diagnosed rhinitis compared with girls who exposure to lower concentration of PAEs. CONCLUSIONS Present observational study indicated that exposure to high concentrations of DBP, DEHP, and HMW-PAEs in house settled dust was a risk factor for rhinitis for children, especially for boys.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Geng M, Tang Y, Liu K, Huang K, Yan S, Ding P, Zhang J, Wang B, Wang S, Li S, Wu X, Cao Y, Tao F. Prenatal low-dose antibiotic exposure and children allergic diseases at 4 years of age: A prospective birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112736. [PMID: 34481356 DOI: 10.1016/j.ecoenv.2021.112736] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Based on a medical record or questionnaire survey approach, previous epidemiological studies have investigated associations between maternal antibiotic exposure during pregnancy and childhood allergic diseases. However, biomonitoring studies on the prenatal low-dose antibiotic exposure, mainly from the environment and contaminated food, and in relation to children allergic diseases, are missing. OBJECTIVES This research aimed to examine the associations between prenatal low-dose antibiotic exposure measured at multiple time points and children current allergic diseases at 4 years of age. METHODS The current study including 2453 mother-child pairs was based on the Ma'anshan Birth Cohort study. Selected 41 antibiotics and their two metabolites, which including human antibiotics (HAs), preferred as human antibiotics (PHAs), veterinary antibiotics (VAs) and preferred as veterinary antibiotics (PVAs), in urine samples from 2453 pregnant women were biomonitored through liquid chromatography-triple quadrupole tandem mass spectrometry. Information on children current allergic diseases were collected via validated questionnaires. Generalized estimating equation were used to explore the associations between the repeated measurements of maternal urinary antibiotic over three trimesters and current allergic diseases in children. RESULTS The detection rates of nine individual antibiotics in the three trimester during pregnancy are greater than 10%, and the 90th percentile concentration of the detected antibiotics ranges from 0.07 to 22.34 µg/g, and the 95th percentile concentration ranges from 0.17 to 59.57 µg/g. Among the participants, each one-unit concentration increment of sulfamethazine (adjusted OR=1.28, 95% CI: 1.10, 1.49, P-FDR=0.014) in the first trimester and ciprofloxacin (adjusted OR=1.17, 95% CI: 1.07, 1.28, P-FDR=0.008) in the second trimester were associated with an increased risk of current eczema in children. In the third trimester, each one-unit concentration increment of oxytetracycline (adjusted OR=1.90, 95% CI: 1.30, 2.78, P-FDR=0.014) was associated with an increased risk of current asthma in children. Gender-stratified analyses demonstrated that no gender differences were observed in the associations between prenatal antibiotic exposure and current allergic diseases in children. CONCLUSIONS Maternal exposure to certain specific VAs or PVAs (sulfamethazine, ciprofloxacin and oxytetracycline) in different trimesters was associated with an increased risk of current asthma and current eczema in 4-year-old children. No gender differences were found in these associations. Further studies are warranted to confirm our findings and explore the potential mechanisms.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Tang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jingjing Zhang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shulong Li
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
25
|
Bu Z, Hu M, Yuan F, Xu Y, Dong C, Zhang N, Mmereki D, Cao J, Zheng Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. INDOOR AIR 2021; 31:2118-2129. [PMID: 34288145 DOI: 10.1111/ina.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are typical air pollutants in vehicular environment since numerous synthetic materials that might contain phthalates are widely used to fabricate vehicle interiors (e.g., seat cushions, floor mats and dashboards). Hitherto, the importance of phthalate pollution in vehicular environment is not well-recognized because people spend only a small portion (around 8%) of their time in vehicles. In this study, the mass fractions of six phthalates in nine materials commonly used in Chinese vehicles (floor mats and seat cushions) were measured. Two phthalates, di-n-butyl phthalate (DnBP) and di-2-ethylhexyl phthalate (DEHP), were identified in most materials (the other phthalates were not detected). The emission characteristics of DnBP and DEHP from these materials were further investigated. The measured emission parameters were used as input for a mass-transfer model to estimate DnBP and DEHP concentrations in cabin air. Finally, the ratios between human exposures (via inhalation and dermal absorption from the gas phase) in vehicular environment and the total exposures in typical indoor environments (e.g., residences and offices) were estimated to be up to 110% and 20% for DnBP and DEHP, respectively. Based on these results, the vehicular environment might be a considerable site for human exposure to airborne phthalates.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fangzhou Yuan
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yousheng Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Daniel Mmereki
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Youqu Zheng
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
26
|
Lee JY, Lee J, Huh DA, Moon KW. Association between environmental exposure to phthalates and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Int J Hyg Environ Health 2021; 238:113857. [PMID: 34644676 DOI: 10.1016/j.ijheh.2021.113857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phthalates are common industrial chemicals that are used as plasticizers in plastics, personal care products, and building materials. Although these chemicals have been suspected as risk factors for allergic outcomes among children, inconsistent associations between environmental exposure to phthalates and allergic disorders have been found across different populations. Therefore, this study aimed to assess whether environmental phthalate exposure was associated with parent-reported current allergic symptoms (atopic dermatitis, AD; asthma; and allergic rhinitis, AR) and the index of allergic response (levels of serum total immunoglobulin E, IgE) in a nationally representative sample of children. METHODS In this study, children aged 3-17 years (n = 2208) were recruited from the Korean National Environmental Health Survey (KoNEHS) 2015-2017 to conduct an analysis of their current allergic symptoms. Among this number of children, the total IgE analysis included 806 participants because total IgE levels were only measured in children aged 12-17 years. RESULTS After adjusting for all covariates, mono-benzyl phthalate (MBzP) [OR (95% CI) = 1.15 (1.01, 1.30)], mono-(carboxyoctyl) phthalate (MCOP) [OR (95% CI) = 1.35 (1.02, 1.78)], and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) [OR (95% CI) = 1.39 (1.09, 1.79)] were associated with increased odds of current AD. MCOP [OR (95% CI) = 1.19 (1.01, 1.40)], mono-(carboxynonyl) phthalate (MCNP) [OR (95% CI) = 1.24 (1.05, 1.45)], and ∑DEHP [OR (95% CI) = 1.22 (1.02, 1.44)] were also associated with increased odds of current AR. Individual DEHP metabolites showed similar associations with current AD and AR. In addition, MCNP was positively related to IgE levels [β (95% CI) = 0.26 (0.12, 0.40)]. MBzP [OR (95% CI) = 1.17 (1.01, 1.35)], MCOP [OR (95% CI) = 1.62 (1.12, 2.32)], and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) [OR (95% CI) = 1.36 (1.06, 1.76)] showed positive relationships with allergic multimorbidity. Moreover, higher concentrations of MCNP were related to increased odds of experiencing both current AR and total IgE levels [OR (95% CI) = 1.98 (1.29, 3.04)], and children with elevated IgE levels (>100IU/mL) were more likely to have current AR associated with MCNP than those without elevated IgE levels (p = 0.007). Specifically, the relationship between MCNP and current AR was significantly mediated through alterations in IgE levels (14.7%), and MCNP also showed the positive association with current AR, independent of IgE (85.3%). CONCLUSION These results suggest that environmental exposure to phthalates may affect the immune system and increase the occurrence of allergic symptoms in children.
Collapse
Affiliation(s)
- Ju-Yeon Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea; Department of Health and Environmental Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China. ENVIRONMENTAL RESEARCH 2021; 200:111760. [PMID: 34324846 DOI: 10.1016/j.envres.2021.111760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) have a negative impact on human health and are widely distributed in China. As part of the China, Children, Home, Health (CCHH) study, we investigated the associations between childhood asthmatic symptoms and PAEs in settled house dust in Shanghai, China. We found that di-2-ethylhexyl phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DiBP) were abundant in the indoor environment. A total of 27 % of children suffered from diagnosed asthma. The Mann-Whitney U test and multiple logistic regression were used to obtain the associations between PAEs and childhood asthmatic symptoms. Stratification analysis was performed to reveal the influence of gender on the associations between PAE exposure and target symptoms. Compared with low concentrations of PAEs, high concentrations of high molecular weight PAEs (HMW-PAEs) were significantly associated with childhood diagnosed asthma (adjusted odds ratios (AORs) > 1, P < 0.05). Moreover, significantly negative associations were found between high concentrations of DiBP and current cough (AORs<1, P < 0.05). All significantly positive associations were observed among girls, and most of the associations of dimethyl phthalate (DMP) and diethyl phthalate (DEP) exposure with the studied symptoms among girls were higher than those among boys. Exposure to PAEs may be a risk factor for asthmatic symptoms in children, especially in girls.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, PR China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
28
|
Raley E, Quirós-Alcalá L, Matsui EC. Chemical Exposures via Personal Care Products and the Disproportionate Asthma Burden Among the U.S. Black Population. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3290-3292. [PMID: 33975033 DOI: 10.1016/j.jaip.2021.04.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
An evolving body of literature links chemicals commonly found in personal care products (PCPs) to an increased risk of both developing asthma and worsening existing asthma. Phthalates, parabens, environmental phenols, such as triclosan and bisphenol A, and other endocrine-disrupting compounds have been implicated in asthma and related allergic conditions in epidemiological studies. Because Black individuals have increased exposure to these chemicals through hair care products and feminine hygiene products, disproportionate exposure to these chemicals through PCPs could contribute, in part, to the disproportionate asthma prevalence and morbidity among the U.S. Black population. Increased exposure to these chemicals among Black individuals is explained, in part, by more frequent use of hair care products that can contain higher concentrations of these chemicals and greater use of feminine hygiene products, which are also sources of exposure to these chemicals. Epidemiological evidence using urinary biomarkers of exposure demonstrates associations between PCPs and exposure to these chemicals and that the U.S. Black population has greater exposure to these chemicals than the non-Black population. Should chemical exposures through PCPs contribute to the excess burden of asthma among the U.S. Black population, reducing these exposures would reduce this disparity.
Collapse
Affiliation(s)
- Erika Raley
- Department of Internal Medicine, Dell Medical School at University of Texas at Austin, Austin, Texas
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Elizabeth C Matsui
- Departments of Population Health and Pediatrics, Dell Medical School at University of Texas at Austin, Austin, Texas.
| |
Collapse
|
29
|
Arpna Kumari, Rajinder Kaur. Chromatographic Methods for the Determination of Phthalic Acid Esters in Different Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Segovia-Mendoza M, Nava-Castro KE, Palacios-Arreola MI, Garay-Canales C, Morales-Montor J. How microplastic components influence the immune system and impact on children health: Focus on cancer. Birth Defects Res 2020; 112:1341-1361. [PMID: 32767490 DOI: 10.1002/bdr2.1779] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND As a result of human socioeconomic activity, industrial wastes have increased distressingly. Plastic pollution is globally distributed across the world due to its properties of buoyancy and durability. A big health hazard is the sorption of toxicants to plastic while traveling through the environment. Two broad classes of plastic-related chemicals are of critical concern for human health-bisphenols and phthalates. Bisphenol A (BPA) is an endocrine-disruptor compound (EDC) with estrogenic activity. It is used in the production of materials that are used daily. The endocrine modulating activity of BPA and its effects on reproductive health has been widely studied. BPA also has effects on the immune system; however, they are poorly investigated and the available data are inconclusive. Phthalates are also EDCs used as plasticizers in a wide array of daily-use products. Since these compounds are not covalently bound to the plastic matrix, they easily leach out from it, leading to high human exposure. These compounds exert several cell effects through modulating different endocrine pathways, such as estrogen, androgen, peroxisome proliferator-activated receptor gamma, and arylhydrocarbon receptor pathways. The exposure to both classes of plastic derivatives during critical periods has detrimental effects on human health. METHODS In this review, we have compiled the most important of their perinatal effects on the function of the immune system and their relationship to the development of different types of cancer. RESULTS/CONCLUSION The administration of bisphenols and phthalates during critical stages of development affects important immune system components, and the immune function; which might be related to the development of different diseases including cancer.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen E Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margarita I Palacios-Arreola
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
31
|
Bølling AK, Sripada K, Becher R, Bekö G. Phthalate exposure and allergic diseases: Review of epidemiological and experimental evidence. ENVIRONMENT INTERNATIONAL 2020; 139:105706. [PMID: 32371302 DOI: 10.1016/j.envint.2020.105706] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are among the most ubiquitous environmental contaminants and endocrine-disrupting chemicals. Exposure to phthalates and related health effects have been extensively studied over the past four decades. An association between phthalate exposure and allergic diseases has been suggested, although the literature is far from conclusive. This article reviews and evaluates epidemiological (n = 43), animal (n = 49), and cell culture studies (n = 42), published until the end of 2019, on phthalates and allergic diseases, such as asthma, rhinoconjunctivitis, and eczema. In contrast to earlier reviews, emphasis is placed on experimental studies that use concentrations with relevance for human exposure. Epidemiological studies provide support for associations between phthalate exposures and airway, nasal, ocular, and dermal allergic disease outcomes, although the reported significant associations tend to be weak and demonstrate inconsistencies for any given phthalate. Rodent studies support that phthalates may act as adjuvants at levels likely to be relevant for environmental exposures, inducing respiratory and inflammatory effects in the presence of an allergen. Cell culture studies demonstrate that phthalates may alter the functionality of innate and adaptive immune cells. However, due to limitations of the applied exposure methods and models in experimental studies, including the diversity of phthalates, exposure routes, and allergic diseases considered, the support provided to the epidemiological findings is fragmented. Nevertheless, the current evidence points in the direction of concern. Further research is warranted to identify the most critical windows of exposure, the importance of exposure pathways, interactions with social factors, and the effects of co-exposure to phthalates and other environmental contaminants.
Collapse
Affiliation(s)
| | - Kam Sripada
- Centre for Global Health Inequalities Research, Department of Sociology and Political Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Rune Becher
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
32
|
Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5719-5728. [PMID: 32255618 DOI: 10.1021/acs.est.0c00628] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Maria Persico
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
33
|
Katsikantami I, Tzatzarakis MN, Alegakis AK, Karzi V, Hatzidaki E, Stavroulaki A, Vakonaki E, Xezonaki P, Sifakis S, Rizos AK, Tsatsakis AM. Phthalate metabolites concentrations in amniotic fluid and maternal urine: Cumulative exposure and risk assessment. Toxicol Rep 2020; 7:529-538. [PMID: 32368503 PMCID: PMC7186561 DOI: 10.1016/j.toxrep.2020.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
Phthalates are used in industry as plasticizers or additives in everyday products and they have been considered as endocrine disrupting chemicals. Maternal exposure during pregnancy has been associated with neonatal exposure, preterm birth and impacts in the reproductive and respiratory systems. The aim of this study is to determine six phthalate metabolites (mono isobutyl phthalate, miBP, mono n-butyl phthalate, mnBP, mono benzyl phthalate, mBzP, mono ethylhexyl phthalate, mEHP, mono 2-ethyl-5-hydroxyhexyl phthalate, mEHHP, mono 2-ethyl-5-oxohexyl-phthalate, mEOHP) in amniotic fluid and urine from 100 pregnant women. Participants answered questionnaires for the use of plastics and cosmetics, dietary habits, health effects, pregnancy problems, health and infant development. Positive amniotic fluid samples ranged from 1% to 21% and urine from 27% to 54%. The median levels for amniotic fluid were 2.3 μg/L - 10.7 μg/L and for urine 4.9 μg/L - 46.7 μg/L. The major results include significant correlations between urinary phthalates indicating their common sources of exposure, the frequent use of deodorant was significantly associated with higher urinary miBP (p = 0.050) and mnBP (p = 0.028) and a weak inverse association was found for the use of make-up products with mBzP (p = 0.053). The frequent use of plastic food containers was significantly associated with urinary mEHP (p = 0.026), and a positive trend was noticed for mEHP in amniotic fluid (p = 0.093). An association although weak was found between urinary mEHP and lower birth length (rs = 0.396, p = 0.062). No other associations were found for infant health problems or development. The daily intake of the total phthalates was calculated 5.4 μg/kg body weight/day which corresponds to hazard index 0.10 and exposure follows the declining trend that has been observed the last decades.
Collapse
Key Words
- 2cx-mMHP, mono 2-carboxymethyl-hexyl phthalate
- Amniotic fluid
- BBzP, benzyl butyl phthalate
- DEHP, di 2-ethylhexyl phthalate
- Daily intake
- DiBP, di iso-butyl phthalate
- DiNP, di isononyl phthalate
- DnBP, di n-butyl phthalate
- EDCs, endocrine disrupting chemicals
- EDI, estimated daily intake HQ, hazard quotient
- HI, hazard index
- LC-APCI-MS, liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry
- Phthalate metabolites
- Risk assessment
- Urine
- mBzP, mono benzyl phthalate
- mECPP or 5cx-mEPP, mono 2-ethyl-5-carboxypentyl phthalate
- mEHHP or 5OH-mEHP, mono 2-ethyl-5-hydroxyhexyl phthalate
- mEHP, mono ethylhexyl phthalate
- mEOHP or 5oxo-mEHP, mono 2-ethyl-5-oxohexyl-phthalate
- mEP, mono ethyl phthalate
- miBP, mono iso-butyl phthalate
- mmP, mono methyl phthalate
- mnBP, mono n-butyl phthalate
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Athanasios K. Alegakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Vasiliki Karzi
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology & NICU, University Hospital of Heraklion, Crete, Greece
| | - Athina Stavroulaki
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | | | | | - Apostolos K. Rizos
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| |
Collapse
|
34
|
Tang Z, Chai M, Wang Y, Cheng J. Phthalates in preschool children's clothing manufactured in seven Asian countries: Occurrence, profiles and potential health risks. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121681. [PMID: 31757725 DOI: 10.1016/j.jhazmat.2019.121681] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Phthalates could be introduced into clothing as chemical additives or impurities, becoming a potential source of human exposure. We measured the concentrations of 15 phthalates in new preschool children's clothing manufactured in seven Asian countries. Phthalates were prevalent in all samples, and total concentrations were 2.92-223 μg/g, indicating a moderate contamination level. Bis(2-ethylhexyl) phthalate, di(isobutyl) phthalate and di-n-butyl phthalate were the most abundant phthalates measured, representing a median of 48.5 %, 13.6 % and 13.4 % of the total concentrations, respectively. Total concentrations did not differ significantly by country of manufacture, while the concentrations of individual phthalates and their composition profiles varied widely. We also found differing phthalate levels by item type, fabric composition, and color. Under the assumed two exposure scenarios, the median of summed dermal exposure doses of six phthalate were 539 and 950 ng/kg of body weight per day, respectively. When children wore trousers, long-sleeved shirts, briefs and socks at the same time, the reproductive risks exceeded acceptable level, although the carcinogenic risk of DEHP was low. Our results suggested that new clothing is an important route of phthalate exposure to preschool children. More research is required to investigate the contaminations and associated with risks in child clothing.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Miao Chai
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuwen Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiali Cheng
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
35
|
Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy Asthma Immunol 2020; 125:84-89. [PMID: 32244034 DOI: 10.1016/j.anai.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Environmental chemicals, such as phthalates, phenols, and parabens, may affect children's immune development and contribute to the risk of atopic diseases and asthma. OBJECTIVE To evaluate the associations between prenatal and childhood phthalate exposure and atopic diseases in children at the age of 9 years. METHODS This analysis is restricted to 145 mother-child pairs from the prospective Polish Mother and Child Cohort Study. Phthalate metabolite levels were assessed in the urine samples collected from mothers during the third trimester of pregnancy and from children at age of 2 and 9 years. For the appropriate recognition of children's health status, a questionnaire was administered to the mothers and completed with information from the medical record of each child. The clinical examination was performed by a pediatrician/allergist in the presence of the mother or a relative. RESULTS A higher urine concentration of mono-2-ethyl-5-oxohexyl phthalate increased the risk of food allergy in children at the age of 9 years (odds ratio [OR], 1.75; 95% CI, 1.19-2.57; P = .004) and decreased the risk of atopic dermatitis (OR, 0.49; 95% CI, 0.27-0.87; P = .02). For mono-2-ethyl-5-hydroxyhexyl phthalate, an increased risk of atopic dermatitis was observed (OR, 1.90; 95% CI, 1.18-3.05; P = .008). A higher urine concentration of mono-benzyl phthalate increased the risk of asthma in children (OR, 1.67; 95% CI, 1.08-2.58; P = .02), but the risk of asthma decreased when the concentration of mono-2-ethylhexyl phthalate was higher (OR, 0.64; 95% CI, 10.43-0.97; P = .04). CONCLUSION Our study has not provided clear evidence of the negative effect of phthalate exposure during pregnancy and within the 9 years after birth on allergic diseases in children.
Collapse
Affiliation(s)
- Daniela Podlecka
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Jolanta Gromadzińska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Karolina Mikołajewska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Fijałkowska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Iwona Stelmach
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Jerzynska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland.
| |
Collapse
|
36
|
Jøhnk C, Høst A, Husby S, Schoeters G, Timmermann CAG, Kyhl HB, Beck IH, Andersson AM, Frederiksen H, Jensen TK. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ Health 2020; 19:32. [PMID: 32169083 PMCID: PMC7069194 DOI: 10.1186/s12940-020-00586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been suggested to alter immune responses and increase the risk of asthma, eczema and rhinitis. However, few studies have examined the effects in prospective cohorts and only one examined rhinitis. We therefore studied associations between maternal urinary concentrations of phthalate metabolites and asthma, eczema and rhinitis in offspring aged 5 years. METHODS From 552 pregnant women in the Odense Child Cohort, we quantified urinary concentrations of 12 phthalate metabolites in third trimester. We assessed asthma, rhinitis and eczema in their offspring at age 5 years with a questionnaire based on the International Study of Asthma and Allergies in Childhood (ISAAC), and conducted logistic regression adjusting for relevant confounders. RESULTS 7.4% of the children had asthma, 11.7% eczema and 9.2% rhinitis. Phthalate exposure was low compared to previous cohorts. No significant associations between prenatal phthalate exposure and asthma were found. Odds ratios (ORs) of child rhinitis with a doubling in ΣDiNPm and di-2-ethylhexyl phthalate metabolite (ΣDEHPm) concentrations were, respectively, 1.15 (95% confidence interval (CI) 0.97,1.36) and 1.21 (CI 0.93,1.58). The OR of eczema when doubling ΣDiNPm was 1.24 (CI 1.00,1.55), whereas the OR of using medicine against eczema when doubling a di-ethyl phthalate (DEP) metabolite was 0.81 (CI 0.68,0.96). CONCLUSION The lack of association between maternal phthalate exposure and asthma in the offspring may be due to low exposure and difficulties in determining asthma in 5-year-olds. The higher odds of rhinitis may raise public concern but further research in larger cohorts of older children is warranted.
Collapse
Affiliation(s)
- Camilla Jøhnk
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Arne Høst
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Clara Amalie Gade Timmermann
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| | - Iben Have Beck
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
37
|
He Y, Wang Q, He W, Xu F. Phthalate esters (PAEs) in atmospheric particles around a large shallow natural lake (Lake Chaohu, China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:297-308. [PMID: 31207519 DOI: 10.1016/j.scitotenv.2019.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The pollution of phthalate esters (PAEs) remains an important issue in the world. Current studies mainly focused on atmospheric PAEs in urban area with strong anthropogenic activities, but there were no studies on PAEs in the ambient air around large natural lake. This paper focused on two sites around Lake Chaohu to investigate the monthly occurrence, composition and source of PAEs in the atmospheric particles around large shallow natural lake. New insights into atmospheric PAEs in large shallow natural lake and the overall fate of PAEs in lake ecosystem were given. The concentrations of the Σ13PAEs in atmospheric particles were at a significantly low level ranging from 2740 to 11,890 pg·m-3 and 2622 to 15,331 pg·m-3 in ZM (the lakeshore site) and HB (the downtown site), respectively. There were no statistically significant differences of PAEs between ZM and HB. The highest atmospheric PAE concentrations in August were likely related to the long-range transport from Guangdong Province. Di(2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP) were the main PAE congeners. Temporally, DIBP and DBP had the highest fractions in winter and the lowest fractions in summer. It might be justified by the condensation of DIBP and DBP from gas phase to particulate phase at low temperature. Multimedia comparison of PAE profiles in Lake Choahu revealed that low molecular weight (LMW) congeners were transported mainly through water while high molecular weight (HMW) congeners were transported mainly through atmosphere.
Collapse
Affiliation(s)
- Yong He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qingmei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Non-point Source Pollution Control, Ministry of Agriculture, Beijing 100081, China; School of Agriculture and Food, The University of Melbourne, Victoria 3010, Australia
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
38
|
Distribution and Dietary Predictors of Urinary Phthalate Metabolites among Pregnant Women in Shanghai, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081366. [PMID: 30995748 PMCID: PMC6518169 DOI: 10.3390/ijerph16081366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
The exposure of pregnant women to phthalates is a major concern due to their adverse effect on developmental outcomes. Diet is an important pathway for exposure to phthalate compounds. Nevertheless, studies on dietary exposure of pregnant women to phthalates in China are limited. We aimed to assess the distribution and dietary predictors of phthalate exposure among pregnant women in China. We measured the levels of 10 urinary phthalate metabolites using high-performance liquid chromatography coupled with tandem mass spectrometry in 210 pregnant women as part of the 2015 China National Chronic Disease and Nutrition Survey in Shanghai. We assessed the urinary specific gravity-adjusted phthalate metabolite levels along with potential demographic and dietary predictors. Multivariable linear regression analysis was used to examine the relationship between each potential demographic variable and dietary predictor and urinary phthalate metabolites. Seven urinary phthalate metabolites were detected in >95% of pregnant women. The geometric mean (GM) of urinary phthalate biomarker values were highest for monobutyl phthalate (GM: 25.29 ng/mL) and monoisobutyl phthalate (GM:11.18 ng/mL). Multivariate regression analysis indicated that a lower educational level was associated with elevated urinary phthalate metabolite levels. Edible seaweed consumption had a positive correlation with urinary monoethyl phthalate and monoisobutyl phthalate levels, and the total molar sum of Di-(2-ethylhexyl) phthalate metabolites. These findings offer important data on the dietary exposure to phthalates in pregnant Chinese women and suggest interventions to improve food safety.
Collapse
|
39
|
Bu Z, Mmereki D, Wang J, Dong C. Exposure to commonly-used phthalates and the associated health risks in indoor environment of urban China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:843-853. [PMID: 30583180 DOI: 10.1016/j.scitotenv.2018.12.260] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Rapid urbanization and modernization have increased exposures to phthalates from synthetic materials used indoors in China. However, exposure to phthalates from indoor environment and the associated health risks to the urban population have not been adequately characterized and documented. In this study, we summarized the recent measurements of five commonly-used phthalates in indoor environment in urban China and documented their distributions. Based on the activity patterns and exposure factors of Chinese population, Monte-Carlo simulation was used to derive their exposures. On average, the daily intake of all the targeted phthalates was 3.6 μg/kg/day for adults; and for children it ranged from 4.4 μg/kg/day to 8.1 μg/kg/day. For children, the total risk from exposures inside residences and offices was 32%-90% and 4%-19%, respectively. From commuting environments and other indoor environments, it was 5%-31%, and 3%-26%, respectively. For adults, the total risk from residences and offices was 26%-78% and 9%-35%. Additionally, from commuting environments and other indoor environments, it was 8%-35% and 5%-11%, respectively. The non-carcinogenic risk assessment was based on a cumulative Tolerable Daily Intake (TDIcum), with means ranging from 0.18 to 0.41, which was mainly as a result of exposure to DiBP and DnBP. The means for lifetime cancer risk resulting from DEHP exposure ranged from 0.4 × 10-6 to 2.0 × 10-6 for urban population groups. For 80% of working adults and 40%-75%% of children, their cancer risks exceeded the EPA's benchmark (1.0 × 10-6). The present study could provide important information for decision makers to reduce indoor phthalate exposures as well as the associated health risks for larger population groups in Chinese cities.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Daniel Mmereki
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Jiahui Wang
- Institute of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
40
|
Ibrahim AA, Qamar B, Fituri S, Akbar ZA, Al-Abdi T, Shi Z. Association between Soft Drink Consumption and Asthma among Qatari Adults. Nutrients 2019; 11:nu11030606. [PMID: 30871131 PMCID: PMC6471171 DOI: 10.3390/nu11030606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 01/19/2023] Open
Abstract
We aimed to examine the association between soft drink consumption and asthma and lung function among Qatari adults. In the cross-sectional study, we used data from 986 Qatari participants aged 20 years and above attending the Qatar Biobank Study. Usual consumption of soft drink was assessed using a food frequency questionnaire. Lung function was measured by spirometry and asthma was based on self-report. The associations between soft drink consumption and asthma and lung function were assessed using multivariable logistic and linear regression, respectively. In total, 65 participants out of 986 (6.6%) reported having asthma. A clear dose-response relationship between soft drink consumption and asthma was found. High soft drink consumers (≥7 times/week) were 2.60 (95% CI 1.20–5.63) times more likely to have asthma as compared to non-consumers. The association was partly mediated by BMI and inflammation. Diet soft drink consumption was positively associated with asthma (OR 1.12 (95% CI 1.02–1.23)) but not with lung function. Regular soft drink consumption was inversely associated with FEV1, but not with FVC. In conclusion, soft drink consumption is positively associated with asthma in Qatari adults. The association is partly mediated by obesity and inflammation. Limiting soft drink consumption should be taken into consideration for asthma prevention.
Collapse
Affiliation(s)
- Amna Al Ibrahim
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Bushra Qamar
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Sundus Fituri
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Zoha Ali Akbar
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Tamara Al-Abdi
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Zumin Shi
- Human Nutrition Department, Qatar University, P.O. Box 2713 Doha, Qatar.
| |
Collapse
|