1
|
Liu J, Gao F, Fu M, Wang L, Shen H, Hu J. Occurrence of legacy and emerging organophosphate flame retardants (OPFRs) on silicone wristbands: Comparison within couples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177154. [PMID: 39447892 DOI: 10.1016/j.scitotenv.2024.177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Novel organophosphate flame retardants (OPFRs) are recently identified and highly detected in indoor dusts, but their personal exposure was not clear. Here, wristband was used to estimate non-dietary exposure to emerging OPFRs in comparison with legacy OPFRs in 93 adults in Beijing, China. Comparison of studies in wristband monitoring data showed a clear difference in profiles of legacy OPFRs between China and United States, where tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was usually the dominant OPFR in the United States, but triphenyl phosphate has the highest contribution to total OPFRs in China. Five emerging OPFRs, including diethylene glycol bis(bis(2-chloroisopropyl) phosphate) (DEGBBCPP) and bis(2-ethylhexyl) phenyl phosphate (BEHPP), were detected in above 45 % of wristbands. The median concentration of DEGBBCPP (2.2 ng/g) was about three times higher than TDCIPP (0.76 ng/g), a legacy chloro-OPFR. Both emerging and legacy OPFRs were significantly correlated within 40 pairs of couples, suggesting major exposure in their homes. Wristbands from husbands had significantly higher tris(2-butoxyethyl) phosphate (TBOEP) and DEGBBCPP, while 2-ethylhexyl diphenyl phosphate (EHDPP) was significantly higher in wives' bands, suggesting gender-related exposure sources for these OPFRs.
Collapse
Affiliation(s)
- Jiaying Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Wu K, Chen R, Qiu Y, Zhang H, Zhu Z, Yin D. Organophosphate esters in vehicle interior dust from Chinese urban areas: What are the influencing factors of the occurrence? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177272. [PMID: 39477099 DOI: 10.1016/j.scitotenv.2024.177272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Organophosphate esters (OPEs) are a class of semi-volatile organic compounds frequently used to various products as flame retardants and plasticizers. As emerging pollutants, OPEs have attracted significant attention due to their potential impacts on human health and ecosystems. This study investigated the occurrence of OPEs in vehicle interior dust across 36 cities in China. The primary aims were to explore the correlations among OPE pollutants, identify potential emission sources, and examine the key factors influencing their distribution. The OPE concentrations ranged from 5450 ng/g to 63,700 ng/g, with the content of three categories of OPEs as follows: ΣChlorinated-OPEs (median: 17420 ng/g) > ΣAlkyl-OPEs (median: 3880 ng/g) > ΣAryl-OPEs (median: 1490 ng/g). In northern China, the aggregate concentration of OPEs in vehicle interior dust demonstrated higher levels compared to those in the western and mid-southeastern region, with the later two appeared to be comparable to each other. Coastal and inland cities displayed variations in OPE levels, with different representative OPEs. The occurrence of OPEs in vehicle interior dust was closely associated with regional economic development levels, motor vehicle parc, and road density. In contrast to other urban areas, first-tier cities showed the highest aggregate levels of OPEs in vehicle interior dust, with a significant increase observed specifically in the concentrations of Alkyl-OPEs and Aryl-OPEs.
Collapse
Affiliation(s)
- Kaixuan Wu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rui Chen
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanling Qiu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hua Zhang
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiliang Zhu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Baker BH, Day DB, Hazlehurst MF, Herkert NJ, Stapleton HM, Sathyanarayana S. Associations of environmental chemical exposures measured in personal silicone wristbands with sociodemographic factors, COVID-19 restrictions, and child respiratory health. ENVIRONMENTAL RESEARCH 2024; 262:119776. [PMID: 39142453 DOI: 10.1016/j.envres.2024.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Although human biomonitoring of environmental chemicals has been considered a gold standard, these methods can be costly, burdensome, and prone to unwanted sources of variability that may cause confounding. Silicone wristbands have recently emerged as innovative passive samplers for measuring personal exposures. METHODS In a pilot study from 2019 to 2021 involving 55 children aged 5-9 years in Seattle and Yakima, Washington, we utilized silicone wristbands to explore associations of sociodemographic variables and COVID-19-related restrictions, including school closures, with exposures to numerous chemicals including brominated and organophosphate ester (OPE) flame retardants, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and pesticides. We additionally conducted the first analysis testing silicone wristband chemicals as predictors of child wheeze, individually and in mixtures via logistic weighted quantile sum regression (WQS). RESULTS Among 109 semi-volatile organic compounds measured, we detected 40 in >60% of wristbands worn by children continuously for an average of 5 days. Chemicals were generally positively correlated, especially within the same class. Male sex and increasing age were linked with higher exposures across several chemical classes; Hispanic/Latino ethnicity was linked with higher exposures to some phthalates and OPEs. COVID-19 restrictions were associated with lower wristband concentrations of brominated and triaryl OPE flame retardants. Each one-decile higher WQS exposure index was suggestively associated with 2.11-fold [95% CI: 0.93-4.80] higher odds of child wheeze. Risk of child wheeze was higher per 10-fold increase in the PAH chrysene (RR = 1.93[1.07-3.49]), the pesticide cis-permethrin (3.31[1.23-8.91]), and di-isononyl phthalate (DINP) (5.40[1.22-24.0]) CONCLUSIONS: Our identification of demographic factors including sex, age, and ethnicity associated with chemical exposures may aid efforts to mitigate exposure disparities. Lower exposures to flame retardants during pandemic restrictions corroborates prior evidence of higher levels of these chemicals in school versus home environments. Future research in larger cohorts is needed to validate these findings.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Reddam A, Herkert N, Stapleton HM, Volz DC. Silicone wristbands reveal ubiquitous human exposure to ortho-phthalates and non-ortho-phthalate plasticizers in Southern California. ENVIRONMENTAL RESEARCH 2024; 258:119465. [PMID: 38908658 PMCID: PMC11323145 DOI: 10.1016/j.envres.2024.119465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
In the United States and abroad, ortho-phthalates and non-ortho-phthalate plasticizers continue to be used within a diverse array of consumer products. Prior California-specific biomonitoring programs for ortho-phthalates have focused on rural, agricultural communities and, to our knowledge, these programs have not measured the potential for exposure to non-ortho-phthalate plasticizers. Therefore, the potential for human exposure to ortho-phthalates and non-ortho-phthalate plasticizers have not been adequately addressed in regions of California that have higher population density. Since there are numerous sources of ortho-phthalates and non-ortho-phthalate plasticizers in population-dense, urban regions, the objective of this study was to leverage silicone wristbands to quantify aggregate ortho-phthalate and non-ortho-phthalate plasticizer exposure over a 5-day period across two different cohorts (2019 and 2020) of undergraduate students at the University of California, Riverside (UCR) that commute from all over Southern California. Based on 5 d of aggregate exposure across two different cohorts, total ortho-phthalate plus non-ortho-phthalate plasticizer concentrations ranged, on average, from ∼100,000-1,000,000 ng/g. Based on the distribution of individual ortho-phthalate and non-ortho-phthalate plasticizer concentrations, the concentrations of di-isononyl phthalate (DiNP, a high molecular weight ortho-phthalate), di (2-ethylhexyl) phthalate (DEHP, a high molecular weight ortho-phthalate), and di-2-ethylhexyl terephthalate (DEHT, a non-ortho-phthalate plasticizer) detected within wristbands were higher than the remaining seven ortho-phthalates and non-ortho-phthalate plasticizers measured, accounting for approximately 94-97% of the total mass depending on the cohort. Overall, our findings raise concerns about chronic DiNP, DEHP, and DEHT exposure in urban, population-dense regions throughout California.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Gordon J Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jessica L Levasseur
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
Hoehn R, Jahl LG, Herkert NJ, Hoffman K, Soehl A, Diamond ML, Blum A, Stapleton HM. Flame Retardant Exposure in Vehicles Is Influenced by Use in Seat Foam and Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8825-8834. [PMID: 38712863 PMCID: PMC11112730 DOI: 10.1021/acs.est.3c10440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.
Collapse
Affiliation(s)
- Rebecca
M. Hoehn
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Lydia G. Jahl
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Nicholas J. Herkert
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Anna Soehl
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Miriam L. Diamond
- Department
of Earth Sciences and School of the Environment, University of Toronto, Toronto, ON M5S 3B1, Canada
| | - Arlene Blum
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Heather M. Stapleton
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Samon SM, Hoffman K, Herkert N, Stapleton HM. Chemical uptake into silicone wristbands over a five day period. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123877. [PMID: 38574945 PMCID: PMC11080408 DOI: 10.1016/j.envpol.2024.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.
Collapse
Affiliation(s)
- Samantha M Samon
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Xu F, He Y, Xu A, Ren L, Xu J, Shao Y, Wang M, Zhao W, Zhang Y, Lu P, Zhang L. Triphenyl phosphate induces cardiotoxicity through myocardial fibrosis mediated by apoptosis and mitophagy of cardiomyocyte in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123651. [PMID: 38408505 DOI: 10.1016/j.envpol.2024.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Triphenyl phosphate (TPHP) is an organophosphorus flame retardant, but its cardiac toxicity has not been adequately investigated. Therefore, in the current study, the effect of TPHP on the heart and the underlying mechanism involved was evaluated. C57BL/6 J mice were administered TPHP (0, 5, and 50 mg/kg/day) for 30 days. In addition, H9c2 cells were treated with three various concentrations (0, 50, and 150 μM) of TPHP, with and without the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine or the mitochondrial fusion promoter M1. TPHP caused cardiac fibrosis and increased the levels of CK-MB and LDH in the serum. TPHP increased the levels of ROS, malondialdehyde (MDA), and decreased the level of superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px). Furthermore, TPHP caused mitochondrial damage, and induced fusion and fission disorders that contributed to mitophagy in both the heart of C57BL/6 J mice and H9c2 cells. Transcriptome analysis showed that TPHP induced up- or down-regulated expression of various genes in myocardial tissue and revealed enriched apoptosis pathways. It was also found that TPHP could remarkably increase the expression levels of Bax, cleaved Caspase-9, cleaved Caspase-3, and decreased Bcl-2, thereby causing apoptosis in H9c2 cells. Taken together, the results suggested that TPHP promoted mitophagy through mitochondria fusion dysfunction resulting from oxidative stress, leading to fibrosis by inducing myocardial apoptosis.
Collapse
Affiliation(s)
- Feibo Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yu He
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Aili Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jinyu Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yali Shao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Minxin Wang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Peng Lu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Bramer LM, Dixon HM, Rohlman D, Scott RP, Miller RL, Kincl L, Herbstman JB, Waters KM, Anderson KA. PM 2.5 Is Insufficient to Explain Personal PAH Exposure. GEOHEALTH 2024; 8:e2023GH000937. [PMID: 38344245 PMCID: PMC10858395 DOI: 10.1029/2023gh000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 10/28/2024]
Abstract
To understand how chemical exposure can impact health, researchers need tools that capture the complexities of personal chemical exposure. In practice, fine particulate matter (PM2.5) air quality index (AQI) data from outdoor stationary monitors and Hazard Mapping System (HMS) smoke density data from satellites are often used as proxies for personal chemical exposure, but do not capture total chemical exposure. Silicone wristbands can quantify more individualized exposure data than stationary air monitors or smoke satellites. However, it is not understood how these proxy measurements compare to chemical data measured from wristbands. In this study, participants wore daily wristbands, carried a phone that recorded locations, and answered daily questionnaires for a 7-day period in multiple seasons. We gathered publicly available daily PM2.5 AQI data and HMS data. We analyzed wristbands for 94 organic chemicals, including 53 polycyclic aromatic hydrocarbons. Wristband chemical detections and concentrations, behavioral variables (e.g., time spent indoors), and environmental conditions (e.g., PM2.5 AQI) significantly differed between seasons. Machine learning models were fit to predict personal chemical exposure using PM2.5 AQI only, HMS only, and a multivariate feature set including PM2.5 AQI, HMS, and other environmental and behavioral information. On average, the multivariate models increased predictive accuracy by approximately 70% compared to either the AQI model or the HMS model for all chemicals modeled. This study provides evidence that PM2.5 AQI data alone or HMS data alone is insufficient to explain personal chemical exposures. Our results identify additional key predictors of personal chemical exposure.
Collapse
Affiliation(s)
- Lisa M. Bramer
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Holly M. Dixon
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Diana Rohlman
- College of HealthOregon State UniversityCorvallisORUSA
| | - Richard P. Scott
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Rachel L. Miller
- Division of Clinical ImmunologyIcahn School of Medicine at Mount SinaiNew York CityNYUSA
| | - Laurel Kincl
- College of HealthOregon State UniversityCorvallisORUSA
| | - Julie B. Herbstman
- Department of Environmental Health SciencesColumbia Center for Children's Environmental HealthMailman School of Public HealthColumbia UniversityNew York CityNYUSA
| | - Katrina M. Waters
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Kim A. Anderson
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| |
Collapse
|
10
|
Chen X, Birnbaum LS, Babich MA, de Boer J, White KW, Barone S, Fehrenbacher C, Stapleton HM. Opportunities in Assessing and Regulating Organohalogen Flame Retardants (OFRs) as a Class in Consumer Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:15001. [PMID: 38175186 PMCID: PMC10766010 DOI: 10.1289/ehp12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In 2015, the U.S. Consumer Product Safety Commission (CPSC) received and then, in 2017, granted a petition under the Federal Hazardous Substances Act to declare certain groups of consumer products as banned hazardous substances if they contain nonpolymeric, additive organohalogen flame retardants (OFRs). The petitioners asked the CPSC to regulate OFRs as a single chemical class with similar health effects. The CPSC later sponsored a National Academy of Sciences, Engineering, and Medicine (NASEM) report in 2019, which ultimately identified 161 OFRs and grouped them into 14 subclasses based on chemical structural similarity. In 2021, a follow-up discussion was held among a group of scientists from both inside and outside of the CPSC for current research on OFRs and to promote collaboration that could increase public awareness of CPSC work and support the class-based approach for the CPSC's required risk assessment of OFRs. OBJECTIVES Given the extensive data collected to date, there is a need to synthesize what is known about OFR and how class-based regulations have previously managed this information. This commentary discusses both OFR exposure and OFR toxicity and fills some gaps for OFR exposure that were not within the scope of the NASEM report. The objective of this commentary is therefore to provide an overview of the OFR research presented at SOT 2021, explore opportunities and challenges associated with OFR risk assessment, and inform CPSC's work on an OFR class-based approach. DISCUSSION A class-based approach for regulating OFRs can be successful. Expanding the use of read-across and the use of New Approach Methodologies (NAMs) in assessing and regulating existing chemicals was considered as a necessary part of the class-based process. Recommendations for OFR class-based risk assessment include the need to balance fire and chemical safety and to protect vulnerable populations, including children and pregnant women. The authors also suggest the CPSC should consider global, federal, and state OFR regulations. The lack of data or lack of concordance in toxicity data could present significant hurdles for some OFR subclasses. The potential for cumulative risks within or between subclasses, OFR mixtures, and metabolites common to more than one OFR all add extra complexity for class-based risk assessment. This commentary discusses scientific and regulatory challenges for a class-based approach suggested by NASEM. This commentary is offered as a resource for anyone performing class-based assessments and to provide potential collaboration opportunities for OFR stakeholders. https://doi.org/10.1289/EHP12725.
Collapse
Affiliation(s)
- Xinrong Chen
- U.S. Consumer Product Safety Commission, Rockville, Maryland, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Jacob de Boer
- Department of Environment and Health, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Stanley Barone
- U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| | | | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Bramer LM, Dixon HM, Degnan DJ, Rohlman D, Herbstman JB, Anderson KA, Waters KM. Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:170-186. [PMID: 38160278 PMCID: PMC10766083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.
Collapse
Affiliation(s)
- Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States,
| | | | | | | | | | | | | |
Collapse
|
12
|
Guo Y, Chen M, Liao M, Su S, Sun W, Gan Z. Organophosphorus flame retardants and their metabolites in paired human blood and urine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115696. [PMID: 37979363 DOI: 10.1016/j.ecoenv.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been shown to be carcinogenic, neurotoxic, and endocrine disruptive, so it is important to understand the levels of OPFRs in human body as well as the modes of external exposure. In this study, we investigated the levels of 13 OPFRs and 7 phosphodiester metabolites in paired human blood and urine, as well as the influencing factors (region, age and gender), and studied the relationship between OPFRs and oxidative stress by urinary metabolites. We found that the concentrations of triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP) in the blood of urban populations were higher than those of rural populations, and that younger populations suffered higher TPhP and 2-ethylhexyl diphenyl phosphate (EHDPP) exposures than older populations. In addition, we found that tris-(2-chloroethyl) phosphate (TCEP), tributyl phosphate (TnBP), TPhP and EHDPP exposure induced oxidative stress. The results of the internal load principal component analysis indicated that dust ingestion, skin exposure, respiration and dietary intake may be the most important sources of TCEP, tris(2-butoxyethyl) phosphate (TBOEP), tri(2-chloroisopropyl) phosphate (TCIPP) and TEHP, respectively, and dust ingestion and skin exposure may be the main sources of TPhP for humans.
Collapse
Affiliation(s)
- Yantao Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengqin Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China.
| | - Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Bramer LM, Dixon HM, Degnan DJ, Rohlman D, Herbstman JB, Anderson KA, Waters KM. Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560217. [PMID: 37873084 PMCID: PMC10592864 DOI: 10.1101/2023.09.29.560217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.
Collapse
Affiliation(s)
- Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
| | - Holly M Dixon
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
| | - Diana Rohlman
- College of Health, Oregon State University, 103 SW Memorial Place, Corvallis, OR 97331, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York City, NY 10032, United States
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| |
Collapse
|
14
|
Qin Z, Bian R, Liu LY, Stubbings WA, Zhao X, Li F, Wu F, Wang S. Determination of polyoxymethylene-water partition coefficients for diverse organophosphate esters (OPEs) and prediction of the free-dissolved OPEs in OPE-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162528. [PMID: 36894077 DOI: 10.1016/j.scitotenv.2023.162528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Increasing attention on the estimation of bioavailability of organophosphate esters (OPEs) in soil or sediment has urged the development of techniques to measure soil-/sediment-associated porewater concentrations of OPEs. In this study, we investigated the sorption dynamics of 8 OPEs to polyoxymethylene (POM) spanning one order of magnitude of aqueous OPE concentrations and proposed POM-water partitioning coefficients (Kpom/w) for OPEs. The results showed that the Kpom/w values were mainly affected by the hydrophobicity of OPEs. OPEs with high solubility preferentially partitioned into the aqueous phase indicated by the low log Kpom/w values; while lipophilic OPEs were observed to be taken up by POM. The concentration of lipophilic OPEs in the aqueous phase had a strong impact on their sorption dynamics on POM, with higher aqueous concentrations accelerating the sorption dynamics and shortening the time for equilibration. We proposed that the required time to reach equilibration for targeted OPEs should be 42 d. The proposed equilibration time and Kpom/w values were further validated by applying POM to soil artificially contaminated with OPEs to measure OPEs soil-water partitioning coefficients (Ks). The variations of Ks among soil types implied the need to elucidate the effects of soil properties and chemical properties of OPEs on their distribution between soil and water in the future.
Collapse
Affiliation(s)
- Zifei Qin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Renjie Bian
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fengchang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
Rojo-Nieto E, Jahnke A. Chemometers: an integrative tool for chemical assessment in multimedia environments. Chem Commun (Camb) 2023; 59:3193-3205. [PMID: 36826793 PMCID: PMC10013656 DOI: 10.1039/d2cc06882f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
We propose novel chemometers - passive equilibrium samplers of, e.g., silicone - as an integrative tool for the assessment of hydrophobic organic compounds in multimedia environments. The traditional way of assessing levels of organic pollutants across different environmental compartments is to compare the chemical concentration normalized to the major sorptive phase in two or more media. These sorptive phases for hydrophobic organic compounds differ between compartments, e.g., lipids in biota and organic carbon in sediments. Hence, comparability across media can suffer due to differences in sorptive capacities, but also extraction protocols and bioavailability. Chemometers overcome these drawbacks; they are a common, universal and well-defined polymer reference phase for sampling of a large range of nonpolar organic pollutants in different matrices like biota, sediment and water. When bringing the chemometer into direct contact with the sample, the chemicals partition between the sample and the polymer until thermodynamic equilibrium partitioning is established. At equilibrium, the chemical concentrations in the chemometers can be determined and directly compared between media, e.g., between organisms of different trophic levels or inhabiting different areas, between organs within an organism or between biotic and abiotic compartments, amongst others. Chemometers hence allow expressing the data on a common basis, as the equilibrium partitioning concentrations in the polymer, circumventing normalizations. The approach is based on chemical activity rather than total concentrations, and as such, gives a measure of the "effective concentration" of a compound or a mixture. Furthermore, chemical activity is the main driver for partitioning, biouptake and toxicity. As an additional benefit, the extracts of the chemometers only require limited cleanup efforts, avoiding introduction of a bias between chemicals of different persistence, and can be submitted to both chemical analysis and/or bioanalytical profiling.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
16
|
Okeme JO, Koelmel JP, Johnson E, Lin EZ, Gao D, Pollitt KJG. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Curr Environ Health Rep 2023:10.1007/s40572-023-00392-w. [PMID: 36821032 DOI: 10.1007/s40572-023-00392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
Collapse
Affiliation(s)
- Joseph O Okeme
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Emily Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Dong Gao
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA.
| |
Collapse
|
17
|
Young AS, Herkert N, Stapleton HM, Coull BA, Hauser R, Zoeller T, Behnisch PA, Felzel E, Brouwer A, Allen JG. Hormone receptor activities of complex mixtures of known and suspect chemicals in personal silicone wristband samplers worn in office buildings. CHEMOSPHERE 2023; 315:137705. [PMID: 36592838 PMCID: PMC9937064 DOI: 10.1016/j.chemosphere.2022.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Humans are exposed to increasingly complex mixtures of hormone-disrupting chemicals from a variety of sources, yet, traditional research methods only evaluate a small number of chemicals at a time. We aimed to advance novel methods to investigate exposures to complex chemical mixtures. Silicone wristbands were worn by 243 office workers in the USA, UK, China, and India during four work shifts. We analyzed extracts of the wristbands for: 1) 99 known (targeted) chemicals; 2) 1000+ unknown chemical features, tentatively identified through suspect screening; and 3) total hormonal activities towards estrogen (ER), androgen (AR), and thyroid hormone (TR) receptors in human cell assays. We evaluated associations of chemicals with hormonal activities using Bayesian kernel machine regression models, separately for targeted versus suspect chemicals (with detection ≥50%). Every wristband exhibited hormonal activity towards at least one receptor: 99% antagonized TR, 96% antagonized AR, and 58% agonized ER. Compared to men, women were exposed to mixtures that were more estrogenic (180% higher, adjusted for country, age, and skin oil abundance in wristband), anti-androgenic (110% higher), and complex (median 836 detected chemical features versus 780). Adjusted models showed strong associations of jointly increasing chemical concentrations with higher hormonal activities. Several targeted and suspect chemicals were important co-drivers of overall mixture effects, including chemicals used as plasticizers, fragrance, sunscreen, pesticides, and from other or unknown sources. This study highlights the role of personal care products and building microenvironments in hormone-disrupting exposures, and the substantial contribution of chemicals not often identifiable or well-understood to those exposures.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Morrill Science Center, Amherst 01003, USA
| | - Peter A Behnisch
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Emiel Felzel
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
18
|
van der Schyff V, Kalina J, Govarts E, Gilles L, Schoeters G, Castaño A, Esteban-López M, Kohoutek J, Kukučka P, Covaci A, Koppen G, Andrýsková L, Piler P, Klánová J, Jensen TK, Rambaud L, Riou M, Lamoree M, Kolossa-Gehring M, Vogel N, Weber T, Göen T, Gabriel C, Sarigiannis DA, Sakhi AK, Haug LS, Murinova LP, Fabelova L, Tratnik JS, Mazej D, Melymuk L. Exposure to flame retardants in European children - Results from the HBM4EU aligned studies. Int J Hyg Environ Health 2023; 247:114070. [PMID: 36442457 PMCID: PMC9758617 DOI: 10.1016/j.ijheh.2022.114070] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels ∼5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions.
Collapse
Affiliation(s)
| | - Jiři Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium,Department of Biomedical Sciences, University of Antwerp, 2020, Antwerp, Belgium
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, 5000, Denmark
| | - Loic Rambaud
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Margaux Riou
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Marja Lamoree
- Vrije Universiteit, Amsterdam Institute for Life and Environment, Section Chemistry for Environment & Health, De Boelelaan 1108, 1081 HZ, Amsterdam, Netherlands
| | | | - Nina Vogel
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Till Weber
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Thomas Göen
- IPASUM - Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestrasse 9-11, 91054, Erlangen, Germany
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece,Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amrit Kaur Sakhi
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lucia Fabelova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic,Corresponding author.
| |
Collapse
|
19
|
Wu X, Zhang D, Chen Y, Shen J, Li X, Zheng Q, Ma J, Xu J, Rao M, Liu X, Lu S. Organophosphate ester exposure among Chinese waste incinerator workers: Urinary levels, risk assessment and associations with oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158808. [PMID: 36115409 DOI: 10.1016/j.scitotenv.2022.158808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs), which are frequently used as flame retardants and plasticizers in versatile products, are readily released to the external environment. Although workers at municipal waste incineration plants may be extensively exposed to OPEs, only scarce health monitoring and risk assessments have been conducted in this population. In this study, we investigated the levels of eight metabolites of organophosphate esters (mOPEs) and the oxidative stress marker 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine samples from 73 waste incinerator workers and 97 general residents from Shenzhen, China between September 2016 and June 2017. The overall detection rate of mOPEs was 82.2 %-100 %, and higher concentrations of di-p-cresyl phosphate and chlorinated mOPEs [bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2propyl) phosphate (BCIPP), bis(1,3-dichloro-2-propyl) phosphate) (BDCIPP)] were found among incinerator workers than among general residents. The incinerator workers also showed significantly higher levels of 8-OHdG than general residents, but the measured levels of most mOPEs were not significantly correlated with the level of 8-OHdG; this may be because co-exposure to multiple toxic compounds can lead to oxidative stress. Risk assessment using Monte Carlo simulations revealed that 95 % of the incinerator workers were free from non-carcinogenic effects due to OPEs exposure (hazard index = 0.27, 95 % CI: 0.09, 0.77). However, the carcinogenic risk of tris(2-chloroethyl) phosphate (TCEP) for incinerator workers was between 10-6 and 10-4. These results indicate that incinerator workers are extensively exposed to OPEs, and better protective measures need to be implemented.
Collapse
Affiliation(s)
- Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China.
| |
Collapse
|
20
|
DeLay K, Lin EZ, Koelmel JP, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Personal air pollutant exposure monitoring in South African children in the VHEMBE birth cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107524. [PMID: 36260950 PMCID: PMC9982749 DOI: 10.1016/j.envint.2022.107524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.
Collapse
Affiliation(s)
- Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. ENVIRONMENT INTERNATIONAL 2022; 169:107339. [PMID: 36116363 PMCID: PMC9713950 DOI: 10.1016/j.envint.2022.107339] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Personal chemical exposure assessment is necessary to determine the frequency and magnitude of individual chemical exposures, especially since chemicals present in everyday environments may lead to adverse health outcomes. In the last decade, silicone wristbands have emerged as a new chemical exposure assessment tool and have since been utilized for assessing personal exposure to a wide range of chemicals in a variety of populations. Silicone wristbands can be powerful tools for quantifying personal exposure to chemical mixtures in a single sample, associating exposure with health outcomes, and potentially overcoming some of the challenges associated with quantifying the chemical exposome. However, as their popularity grows, it is crucial that they are used in the appropriate context and within the limits of the technology. This review serves as a guide for researchers interested in utilizing silicone wristbands as a personal exposure assessment tool. Along with briefly discussing the passive sampling theory behind silicone wristbands, this review performs an in-depth comparison of wristbands to other common exposure assessment tools, including biomarkers of exposure measured in biospecimens, and evaluates their utility in exposure assessments and epidemiological studies. Finally, this review includes recommendations for utilizing silicone wristbands to evaluate personal chemical exposure and provides suggestions on what research is needed to recognize silicone wristbands as a premier chemical exposure assessment tool.
Collapse
Affiliation(s)
- Samantha M Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stephanie C Hammel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Kim A Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
22
|
Louis LM, Quirós-Alcalá L, Kuiper JR, Diette G, Hansel NN, McCormack MC, Meeker JD, Buckley JP. Variability and predictors of urinary organophosphate ester concentrations among school-aged children. ENVIRONMENTAL RESEARCH 2022; 212:113192. [PMID: 35346652 PMCID: PMC9232954 DOI: 10.1016/j.envres.2022.113192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPE) are flame retardants and plasticizers used in a wide range of consumer products. Despite their widespread use, few studies have characterized pediatric exposures. We assessed variability and predictors of OPE exposures in a cohort panel study of 179 predominantly Black school-aged children with asthma in Baltimore City, MD. The study design included up to four seasonal week-long in-home study visits with urine sample collection on days 4 and 7 of each visit (nsamples = 618). We quantified concentrations of 9 urinary OPE biomarkers: bis(2-chloroethyl) phosphate (BCEtp), bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-benzyl phosphate (DBuP), di-benzyl phosphate, di-o-cresylphosphate, di-p-cresylphosphate (DPCP), di-(2-propylheptyl) phthalate (DPHP), 2,3,4,5-tetrabromo benzoic acid. We assessed potential predictors of exposure, including demographic factors, household characteristics, and cleaning behaviors. We calculated Spearman/tetrachoric correlations and intraclass correlation coefficients (ICCs) to examine within-week and seasonal intra-individual variability, respectively. We assessed OPE predictors using linear models for continuous log2 concentrations (BDCPP and DPHP) and logistic models for odds of detection (BCEtP, DBuP, DPCP), with generalized estimating equations to account for repeated measures. For all OPEs, we observed moderate within-week correlations (rs: 0.31-0.63) and weak to moderate seasonal reliability (ICC: 0.18-0.38). BDCPP and DPHP concentrations were higher in the summer compared to other seasons. DPHP concentrations were lower among males than females (%diff: -53.5%; 95% CI: -62.7, -42.0) and among participants spending >12 h/day indoors compared to ≤12 h (%diff: -20.7%; 95% CI: -32.2, -7.3). BDCPP concentrations were lower among children aged 8-10 years compared to 5-7 years (%diff: -39.1%; 95% CI: -55.9, -15.9) and higher among children riding in a vehicle on the day of sample collection compared to those who had not (%diff: 28.5%; 95% CI: 3.4, 59.8). This study is the first to characterize within-week and seasonal variability and identify predictors of OPE biomarkers among Black school-aged children, a historically understudied population.
Collapse
Affiliation(s)
- Lydia M Louis
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Diette
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
23
|
Levasseur JL, Hoffman K, Herkert NJ, Cooper E, Hay D, Stapleton HM. Characterizing firefighter's exposure to over 130 SVOCs using silicone wristbands: A pilot study comparing on-duty and off-duty exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155237. [PMID: 35447169 PMCID: PMC9728008 DOI: 10.1016/j.scitotenv.2022.155237] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 05/26/2023]
Abstract
Firefighters are occupationally exposed to an array of hazardous chemicals, and these exposures have been linked to the higher rates of some cancer in firefighters. However, additional research that characterizes firefighters' exposure is needed to fully elucidate the impacts on health risks. In this pilot study, we used silicone wristbands to quantify off-duty and on-duty chemical exposures experienced by 20 firefighters in Durham, North Carolina. By using each firefighter's off-duty wristband to represent individual baseline exposures, we assessed occupation-related exposures (i.e. on-duty exposures). We also investigated the influence of responding to a fire event while on-duty. In total, 134 chemicals were quantified using both GC-MS and LC-MS/MS targeted methods. Seventy-one chemicals were detected in at least 50% of all silicone wristbands, including 7 PFAS, which to our knowledge, have not been reported in wristbands previously. Of these, phthalates were generally measured at the highest concentrations, followed by brominated flame retardants (BFRs) and organophosphate esters (OPEs). PFAS were measured at lower concentrations overall, but firefighter PFOS exposures while on-duty and responding to fires were 2.5 times higher than off-duty exposures. Exposure to polycyclic aromatic hydrocarbons (PAH), BFRs, and some OPEs were occupationally associated, with firefighters experiencing 0.5 to 8.5 times higher exposure while on-duty as compared to off-duty. PAH exposures were also higher for firefighters who respond to a fire than those who did not while on-duty. Additional research with a larger population of firefighters that builds upon this pilot investigation may further pinpoint exposure sources that may contribute to firefighters' risk for cancer, such as those from firefighter gear or directly from fires. This research demonstrates the utility of using silicone wristbands to quantify occupational exposure in firefighters and the ability to disentangle exposures that may be specific to fire events as opposed to other sources that firefighters might experience.
Collapse
Affiliation(s)
| | - Kate Hoffman
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Nicholas J Herkert
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Ellen Cooper
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Duncan Hay
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | | |
Collapse
|
24
|
Avila-Barnard S, Dasgupta S, Cheng V, Reddam A, Wiegand JL, Volz DC. Tris(1,3-dichloro-2-propyl) phosphate disrupts the trajectory of cytosine methylation within developing zebrafish embryos. ENVIRONMENTAL RESEARCH 2022; 211:113078. [PMID: 35248566 PMCID: PMC9177764 DOI: 10.1016/j.envres.2022.113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate ester-based flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) reliably disrupts cytosine methylation from cleavage (2 hpf) through early-gastrulation (6 hpf). Therefore, the objective of this study was to determine whether TDCIPP-induced effects on cytosine methylation persist beyond 6 hpf. First, we exposed embryos to vehicle or TDCIPP from 0.75 hpf to 6, 24, or 48 hpf, and then conducted bisulfite amplicon sequencing of a target locus (lmo7b) using genomic DNA derived from whole embryos. Within both vehicle- and TDCIPP-treated embryos, CpG methylation was similar at 6 hpf and CHG/CHH methylation were similar at 24 and 48 hpf (relative to 6 hpf). However, relative to 6 hpf within the same treatment, CpG methylation was lower within vehicle-treated embryos at 48 hpf and TDCIPP-treated embryos at 24 and 48 hpf - an effect that was driven by acceleration of CpG hypomethylation. Similar to our previous findings with DNA methyltransferase, we found that, even at high μM concentrations, TDCIPP had no effect on zebrafish and human thymine DNA glycosylase activity (a key enzyme that decreases CpG methylation), suggesting that TDCIPP-induced effects on CpG methylation are not driven by direct interaction with thymine DNA glycosylase. Finally, using 5-methylcytosine (5-mC)-specific whole-mount immunochemistry and automated imaging, we found that exposure to TDCIPP increased 5-mC abundance within the yolk of blastula-stage embryos, suggesting that TDCIPP may impact cytosine methylation of maternally loaded mRNAs during the maternal-to-zygotic transition. Overall, our findings suggest that TDCIPP disrupts the trajectory of cytosine methylation during zebrafish embryogenesis, effects which do not appear to be driven by direct interaction of TDCIPP with key enzymes that regulate cytosine methylation.
Collapse
Affiliation(s)
- Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jenna L Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
25
|
Lu Q, Lin N, Cheng X, Yuan T, Zhang Y, Gao Y, Xia Y, Ma Y, Tian Y. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. CHEMOSPHERE 2022; 300:134585. [PMID: 35427657 DOI: 10.1016/j.chemosphere.2022.134585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) and organophosphate pesticides (OPPs), pertaining to organophosphate esters, are ubiquitous in environment and have been verified to pose noticeable risks to human health. To evaluate human exposures to OPFRs and OPPs, a fast and sensitive approach based on a solid phase extraction (SPE) followed by the ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the simultaneous analysis of multiple organophosphorus metabolites in urine. The method allows the identification and quantification of ten metabolites of the most common OPFRs and all six dialkylphosphates (DAPs) of OPPs concerning the population exposure characteristics. The method provided good linearities (R2 = 0.998-0.999), satisfactory method detection limits (MDLs) (0.030-1.129 ng/mL) and only needed a small volume (200 μL) of urine. Recovery rates ranged 73.4-127.1% at three spiking levels (2, 10 and 25 ng/mL urine), with both intra- and inter-day precision less than 14%. The good correlations for DAPs in a cross-validation test with a previous gas chromatography-mass spectrometry (GC-MS) method and a good inter-laboratory agreement for several OPFR metabolites in a standard reference material (SRM 3673) re-enforced the precision and validity of our method. Finally, the established method was successfully applied to analyze 16 organophosphorus metabolites in 35 Chinese children's urine samples. Overall, by validating the method's sensitivity, accuracy, precision, reproducibility, etc., data reliability and robustness were ensured; and the satisfactory pilot application on real urine samples demonstrated feasibility and acceptability of this method for being implemented in large population-based studies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuning Ma
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Dixon HM, Bramer LM, Scott RP, Calero L, Holmes D, Gibson EA, Cavalier HM, Rohlman D, Miller RL, Calafat AM, Kincl L, Waters KM, Herbstman JB, Anderson KA. Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure. ENVIRONMENT INTERNATIONAL 2022; 163:107226. [PMID: 35405507 PMCID: PMC8978533 DOI: 10.1016/j.envint.2022.107226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
During events like the COVID-19 pandemic or a disaster, researchers may need to switch from collecting biological samples to personal exposure samplers that are easy and safe to transport and wear, such as silicone wristbands. Previous studies have demonstrated significant correlations between urine biomarker concentrations and chemical levels in wristbands. We build upon those studies and use a novel combination of descriptive statistics and supervised statistical learning to evaluate the relationship between polycyclic aromatic hydrocarbon (PAH) concentrations in silicone wristbands and hydroxy-PAH (OH-PAH) concentrations in urine. In New York City, 109 participants in a longitudinal birth cohort wore one wristband for 48 h and provided a spot urine sample at the end of the 48-hour period during their third trimester of pregnancy. We compared four PAHs with the corresponding seven OH-PAHs using descriptive statistics, a linear regression model, and a linear discriminant analysis model. Five of the seven PAH and OH-PAH pairs had significant correlations (Pearson's r = 0.35-0.64, p ≤ 0.003) and significant chi-square tests of independence for exposure categories (p ≤ 0.009). For these five comparisons, the observed PAH or OH-PAH concentration could predict the other concentration within a factor of 1.47 for 50-80% of the measurements (depending on the pair). Prediction accuracies for high exposure categories were at least 1.5 times higher compared to accuracies based on random chance. These results demonstrate that wristbands and urine provide similar PAH exposure assessment information, which is critical for environmental health researchers looking for the flexibility to switch between biological sample and wristband collection.
Collapse
Affiliation(s)
- Holly M Dixon
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lisa M Bramer
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Richard P Scott
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lehyla Calero
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Darrell Holmes
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Elizabeth A Gibson
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Haleigh M Cavalier
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Diana Rohlman
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Rachel L Miller
- Icahn School of Medicine at Mount Sinai, Division of Clinical Immunology, New York City, NY, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Laurel Kincl
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Katrina M Waters
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA; Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Julie B Herbstman
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Kim A Anderson
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA.
| |
Collapse
|
27
|
Reddam A, Herkert N, Stapleton HM, Volz DC. Partial dust removal in vehicles does not mitigate human exposure to organophosphate esters. ENVIRONMENTAL RESEARCH 2022; 205:112525. [PMID: 34896084 PMCID: PMC8760154 DOI: 10.1016/j.envres.2021.112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) have been detected within car interior dust, suggesting that the indoor microenvironment of vehicles may represent a potential route of human exposure to OPEs. We recently showed that people with longer commutes are exposed to higher concentrations of tris(1,3-dichloro-2-isopropyl)phosphate (TDCIPP) - a widely used OPE - and other studies have suggested that dust removal may lead to lower exposure to chemicals. Therefore, the overall objective of this study was to determine if a decrease in interior car dust results in mitigation of personal OPE exposure. Participants (N = 49) were asked to wear silicone wristbands, and a subset of them wiped interior parts at the front of their vehicles prior to one study week (N = 25) or both study weeks (N = 11). There were no significant differences in total OPE concentrations (77.79-13,660 ng/g) nor individual OPE concentrations (0.04-4852.81 ng/g) across the different wiping groups nor in relation to participant residence ZIP codes and AC/Heater usage. These findings suggest that higher exposure to TDCIPP for participants with longer commutes may be independent of dust located on interior parts at the front of the vehicle. Therefore, our study demonstrates that there is a need for research on the potential contribution of other sources of TDCIPP exposure within car interiors.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
28
|
Hamzai L, Lopez Galvez N, Hoh E, Dodder NG, Matt GE, Quintana PJ. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:244-258. [PMID: 34302044 DOI: 10.1038/s41370-021-00359-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure assessment is critical for connecting environmental pollutants to health outcomes and evaluating impacts of interventions or environmental policies. Silicone wristbands (SWBs) show promise for multi-pollutant exposure assessment, including polycyclic aromatic hydrocarbons (PAHs), a ubiquitous class of toxic environmental pollutants. OBJECTIVE To review published studies where SWBs were worn on the wrist for human environmental exposure assessments and evaluate the ability of SWBs to capture personal exposures, identify gaps which need to be addressed to implement this tool, and make recommendations for future studies to advance the field of exposure science through utilization of SWBs. METHODS We performed a systematic search and a cited reference search in Scopus and extracted key study descriptions. RESULTS Thirty-nine unique studies were identified, with analytes including PAHs, pesticides, flame retardants, and tobacco products. SWBs were shipped under ambient conditions without apparent analyte loss, indicating utility for global exposure and health studies. Nineteen articles detected a total of 60 PAHs in at least one SWB. Correlations with other concurrent biological and air measurements indicate the SWB captures exposure to flame retardants, tobacco products, and PAHs. SIGNIFICANCE SWBs show promise as a simple-to-deploy tool to estimate environmental and occupational exposures to chemical mixtures, including PAHs.
Collapse
Affiliation(s)
- Laila Hamzai
- School of Public Health, San Diego State University, San Diego, CA, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, CA, USA
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
29
|
Wacławik M, Rodzaj W, Wielgomas B. Silicone Wristbands in Exposure Assessment: Analytical Considerations and Comparison with Other Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041935. [PMID: 35206121 PMCID: PMC8872583 DOI: 10.3390/ijerph19041935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Humans are exposed to numerous potentially harmful chemicals throughout their lifetime. Although many studies have addressed this issue, the data on chronic exposure is still lacking. Hence, there is a growing interest in methods and tools allowing to longitudinally track personal exposure to multiple chemicals via different routes. Since the seminal work, silicone wristbands (WBs) have been increasingly used to facilitate human exposure assessment, as using WBs as a wearable sampler offers new insights into measuring chemical risks involved in many ambient and occupational scenarios. However, the literature lacks a detailed overview regarding methodologies being used; a comprehensive comparison with other approaches of personal exposure assessment is needed as well. Therefore, the aim of this review is fourfold. First, we summarize hitherto conducted research that employed silicone WBs as personal passive samplers. Second, all pre-analytical and analytical steps used to obtain exposure data are discussed. Third, we compare main characteristics of WBs with key features of selected matrices used in exposure assessment, namely urine, blood, hand wipes, active air sampling, and settled dust. Finally, we discuss future needs of research employing silicone WBs. Our work shows a variety of possibilities, advantages, and caveats associated with employment of silicone WBs as personal passive samplers. Although further research is necessary, silicone WBs have already been proven valuable as a tool for longitudinal assessment of personal exposure.
Collapse
|
30
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
31
|
Poutasse CM, Haddock CK, Poston WSC, Jahnke SA, Tidwell LG, Bonner EM, Hoffman PD, Anderson KA. Firefighter exposures to potential endocrine disrupting chemicals measured by military-style silicone dog tags. ENVIRONMENT INTERNATIONAL 2022; 158:106914. [PMID: 34649051 PMCID: PMC8757287 DOI: 10.1016/j.envint.2021.106914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 05/04/2023]
Abstract
Studies suggest that exposure to potential endocrine disrupting chemicals (pEDCs) may contribute to adverse health outcomes, but pEDC exposures among firefighters have not been fully characterized. Previously, we demonstrated the military-style silicone dog tag as a personal passive sampling device for assessing polycyclic aromatic hydrocarbon exposures among structural firefighters. This follow-up analysis examined the pEDC exposures based on department call volume, duty shift, and questionnaire variables. Structural firefighters (n = 56) were from one high and one low fire call volume department (Kansas City, MO metropolitan area) and wore separate dog tags while on- and off-duty (ndogtags = 110). The targeted 1530 analyte semi-quantitative screening method was conducted using gas chromatography mass spectrometry (npEDCs = 433). A total of 47 pEDCs were detected, and several less-frequently-detected pEDCs (<75%) were more commonly detected in off- compared to on-duty dog tags (conditional logistic regression). Of the 11 phthalates and fragrances detected most frequently (>75%), off-duty pEDC concentrations were strongly correlated (r = 0.31-0.82, p < 0.05), suggesting co-applications of phthalates and fragrances in consumer products. Questionnaire variables of "regular use of conventional cleaning products" and "fireplace in the home" were associated with select elevated pEDC concentrations by duty shift (paired t-test). This suggested researchers should include detailed questions about consumer product use and home environment when examining personal pEDC exposures.
Collapse
Affiliation(s)
- Carolyn M Poutasse
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher K Haddock
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Walker S C Poston
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Sara A Jahnke
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Emily M Bonner
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Peter D Hoffman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
32
|
Lexén J, Bernander M, Cotgreave I, Andersson PL. Assessing exposure of semi-volatile organic compounds (SVOCs) in car cabins: Current understanding and future challenges in developing a standardized methodology. ENVIRONMENT INTERNATIONAL 2021; 157:106847. [PMID: 34479137 DOI: 10.1016/j.envint.2021.106847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-volatile organic compounds (SVOCs) can be found in air, dust and on surfaces in car cabins, leading to exposure to humans via dust ingestion, inhalation, and dermal contact. This review aims at describing current understanding concerning sampling, levels, and human exposure of SVOCs from car cabin environments. To date, several different methods are used to sample SVOCs in car cabin air and dust and there are no standard operating procedures for sampling SVOCs in cars detailed in the literature. The meta-analysis of SVOCs in car cabin air and dust shows that brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) have been most frequently studied, primarily focusing on concentrations in dust. In dust, detected concentrations span over three to seven orders of magnitude, with highest median concentrations for OPFRs, followed by BFRs and, thereafter, polychlorinated biphenyls (PCBs). In air, the variation is smaller, spanning over one to three orders of magnitude, with phthalates and siloxanes having the highest median concentrations, followed by OPFRs, fluorotelomer alcohols (FTOHs) and BFRs. Assessments of human exposures to SVOCs in cars have, so far, mainly focused on external exposure, most often only studying one exposure route, primarily via dust ingestion. In order to perform relevant and complete assessments of human exposure to SVOCs in cars, we suggest broadening the scope to which SVOCs should be studied, promoting more comprehensive external exposure assessments that consider exposure via all relevant exposure routes and making comparisons of external and internal exposure, in order to understand the importance of in-car exposure as a source of SVOC exposure. We also suggest a new sampling approach that includes sampling of SVOCs in both car cabin air and dust, aiming to reduce variability in data due to differences in sampling techniques and protocols.
Collapse
Affiliation(s)
- Jenny Lexén
- Department of Chemistry, Umeå University, Umeå, Sweden; Sustainability Centre, Volvo Cars, Gothenburg, Sweden.
| | | | - Ian Cotgreave
- Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Unit Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | | |
Collapse
|
33
|
Young AS, Herkert N, Stapleton HM, Cedeño Laurent JG, Jones ER, MacNaughton P, Coull BA, James-Todd T, Hauser R, Luna ML, Chung YS, Allen JG. Chemical contaminant exposures assessed using silicone wristbands among occupants in office buildings in the USA, UK, China, and India. ENVIRONMENT INTERNATIONAL 2021; 156:106727. [PMID: 34425641 PMCID: PMC8409466 DOI: 10.1016/j.envint.2021.106727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Little is known about chemical contaminant exposures of office workers in buildings globally. Complex mixtures of harmful chemicals accumulate indoors from building materials, building maintenance, personal products, and outdoor pollution. We evaluated exposures to 99 chemicals in urban office buildings in the USA, UK, China, and India using silicone wristbands worn by 251 participants while they were at work. Here, we report concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and other brominated flame retardants (BFRs), organophosphate esters (OPEs), phthalates and phthalate alternatives, pesticides, and polycyclic aromatic hydrocarbons (PAHs). First, we found major differences in office worker chemical exposures by country, some of which can be explained by regulations and use patterns. For example, exposures to several pesticides were substantially higher in India where there were fewer restrictions and unique malaria challenges, and exposures to flame retardants tended to be higher in the USA and UK where there were historic, stringent furniture flammability standards. Higher exposures to PAHs in China and India could be due to high levels of outdoor air pollution that penetrates indoors. Second, some office workers were still exposed to legacy PCBs, PBDEs, and pesticides, even decades after bans or phase-outs. Third, we identified exposure to a contemporary PCB that is not covered under legacy PCB bans due to its presence as an unintentional byproduct in materials. Fourth, exposures to novel BFRs, OPEs, and other chemicals commonly used as substitutes to previously phased-out chemicals were ubiquitous. Fifth, some exposures were influenced by individual factors, not just countries and buildings. Phthalate exposures, for example, were related to personal care product use, country restrictions, and building materials. Overall, we found substantial country differences in chemical exposures and continued exposures to legacy phased-out chemicals and their substitutes in buildings. These findings warrant further research on the role of chemicals in office buildings on worker health.
Collapse
Affiliation(s)
- Anna S Young
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA.
| | | | | | | | - Emily R Jones
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | | | - Brent A Coull
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianne Lahaie Luna
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; University of Toronto Dalla Lana School of Public Health, Toronto, Canada
| | - Yu Shan Chung
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph G Allen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
34
|
Wang X, Zhu Q, Liao C, Jiang G. Human internal exposure to organophosphate esters: A short review of urinary monitoring on the basis of biological metabolism research. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126279. [PMID: 34329041 DOI: 10.1016/j.jhazmat.2021.126279] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
As alternatives to traditional brominated flame retardants, organophosphate flame retardants (OPFRs), especially for organophosphate esters (OPEs) -- the most widely used and investigated OPFRs, have raised people's concern on their environmental and health-related risks over the years. Considering their extensive environmental occurrence and potential adverse effects, precise estimation on the human body burden of OPEs will be conducive to the restrictions on the usage of these compounds scientifically. Biomonitoring research can provide precise information on human exposure to OPEs as it reveals the degree of external exposure from all exposure routes. Knowledge on biotransformation and metabolism of OPEs in the biosystems is of great significance for our understanding of the internal exposure to these compounds. In this study, the biological metabolic processes of nine OPEs prevalent in the environment, involving tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tripropyl phosphate (TPrP), tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tricresyl phosphate (TCrP), are comprehensively reviewed. Specifically, the metabolic pathway, kinetics and mechanism of OPEs are depicted in detail. Under this context, the advances and limitations on biomonitoring of OPE metabolites in human urine are summarized. The requirements of specificity, quantitative stability, high detection frequency/concentration are needed for OPE metabolites to be considered and validated as biomarkers. Thus far, deeper elucidations on the metabolic processes and identification of biomarkers of OPEs are urgently required, given that some OPEs have no suitable biomarkers in human biomonitoring. For better assessment of the body burden of OPEs in humans, reliable and effective methodologies for urine sampling and estimation on internal exposure to OPEs need to be further developed in the future.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Yanagisawa R, Koike E, Win-Shwe TT, Kawaguchi M, Takano H. Impact of dietary exposure to low-dose tris(1,3-dichloro-2-propyl)phosphate in allergic asthmatic mice. Immunopharmacol Immunotoxicol 2021; 43:599-610. [PMID: 34388063 DOI: 10.1080/08923973.2021.1959609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is an organophosphorus flame retardant that is an alternative to brominated flame retardants. Although TDCIPP can adversely affect human health, information about its effects on immune and allergic responses is scarce. We aimed to investigate the effects of dietary exposure to TDCIPP using less than the human tolerable daily intake (TDI) in allergic asthmatic mice. METHODS Male C3H/HeJSlc mice were fed a chow diet containing TDCIPP equivalent to 0.02 μg/kg/day (low; L), 0.2 μg/kg/day (medium; M), or 2 μg/kg/day (high; H) and were intratracheally administered ovalbumin (OVA, 1 μg/animal) every 2 weeks from 5 to 11 weeks of age. RESULTS In OVA-treated mice, TDCIPP-H exposure tended to enhance pulmonary inflammation compared with vehicle exposure. TDCIPP dose-dependently decreased mRNA level of G protein-coupled estrogen receptor (GPER) in the lungs with or without OVA. OVA + TDCIPP-H treatment tended to increase the total cell number and promoted CD4+ cell activation compared with OVA alone treatment in mediastinal lymph nodes. In splenocytes, an increase in the fraction of Breg cells, but not of total B and T cells, and an increase in IL-5 in cell culture supernatants following OVA re-stimulation in OVA + TDCIPP-H-treated mice was observed compared with OVA-alone-treated mice. Moreover, OVA + TDCIPP-H exposure decreased Gr-1 expression in bone marrow (BM) cells. DISCUSSION These results suggested that dietary exposure to TDCIPP at TDI level slightly enhances allergic diseases, such as allergic asthma, via GPER regulation at inflamed sites and secondary lymphoid tissue and BM cell alternations.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Maiko Kawaguchi
- Graduate School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Travis SC, Kordas K, Aga DS. Optimized workflow for unknown screening using gas chromatography high-resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9048. [PMID: 33444483 DOI: 10.1002/rcm.9048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field of exposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high-resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures. METHODS Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in-house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds. RESULTS The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds. CONCLUSIONS This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| |
Collapse
|
37
|
Dasgupta S, Dunham CL, Truong L, Simonich MT, Sullivan CM, Tanguay RL. Phenotypically Anchored mRNA and miRNA Expression Profiling in Zebrafish Reveals Flame Retardant Chemical Toxicity Networks. Front Cell Dev Biol 2021; 9:663032. [PMID: 33898466 PMCID: PMC8063052 DOI: 10.3389/fcell.2021.663032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 01/24/2023] Open
Abstract
The ubiquitous use of flame retardant chemicals (FRCs) in the manufacture of many consumer products leads to inevitable environmental releases and human exposures. Studying toxic effects of FRCs as a group is challenging since they widely differ in physicochemical properties. We previously used zebrafish as a model to screen 61 representative FRCs and showed that many induced behavioral and teratogenic effects, with aryl phosphates identified as the most active. In this study, we selected 10 FRCs belonging to diverse physicochemical classes and zebrafish toxicity profiles to identify the gene expression responses following exposures. For each FRC, we executed paired mRNA-micro-RNA (miR) sequencing, which enabled us to study mRNA expression patterns and investigate the role of miRs as posttranscriptional regulators of gene expression. We found widespread disruption of mRNA and miR expression across several FRCs. Neurodevelopment was a key disrupted biological process across multiple FRCs and was corroborated by behavioral deficits. Several mRNAs (e.g., osbpl2a) and miRs (e.g., mir-125b-5p), showed differential expression common to multiple FRCs (10 and 7 respectively). These common miRs were also predicted to regulate a network of differentially expressed genes with diverse functions, including apoptosis, neurodevelopment, lipid regulation and inflammation. Commonly disrupted transcription factors (TFs) such as retinoic acid receptor, retinoid X receptor, and vitamin D regulator were predicted to regulate a wide network of differentially expressed mRNAs across a majority of the FRCs. Many of the differential mRNA-TF and mRNA-miR pairs were predicted to play important roles in development as well as cancer signaling. Specific comparisons between TBBPA and its derivative TBBPA-DBPE showed contrasting gene expression patterns that corroborated with their phenotypic profiles. The newer generation FRCs such as IPP and TCEP produced distinct gene expression changes compared to the legacy FRC BDE-47. Our study is the first to establish a mRNA-miR-TF regulatory network across a large group of structurally diverse FRCs and diverse phenotypic responses. The purpose was to discover common and unique biological targets that will help us understand mechanisms of action for these important chemicals and establish this approach as an important tool for better understanding toxic effects of environmental contaminants.
Collapse
Affiliation(s)
- Subham Dasgupta
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Cheryl L. Dunham
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Michael T. Simonich
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Christopher M. Sullivan
- Center for Genome Research and Computing, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
38
|
Reddam A, Volz DC. Inhalation of two Prop 65-listed chemicals within vehicles may be associated with increased cancer risk. ENVIRONMENT INTERNATIONAL 2021; 149:106402. [PMID: 33524670 PMCID: PMC7897270 DOI: 10.1016/j.envint.2021.106402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 05/17/2023]
Abstract
Chemicals are listed on California's Proposition 65 (Prop 65) for their potential to cause cancer, birth defects or other reproductive harm, and certain chemicals from this list are often detected within interior vehicle dust and air. Therefore, this study examined the potential risk associated with five Prop 65-listed chemicals detected within vehicle interiors: benzene, formaldehyde, di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and tris(1,3-dichloro-2-propyl)phosphate (TDCIPP). Exposure estimates based on time spent within a vehicle were derived from a meta-analysis of estimated concentrations from the literature. Regulatory levels established by the California Office of Environmental Health Hazard Assessment (OEHHA) were then used to generate percent reference doses (%RfDs) for chemical-specific daily doses as well as determine the probability of risk (exceedance probability) as a function of %RfD for each chemical-specific daily dose. Based on our meta-analysis, benzene and formaldehyde were detected in vehicle interior air whereas DEHP, DBP and TDCIPP were detected in vehicle interior dust. Benzene and formaldehyde were the only two chemicals with an estimated %RfD > 100 across any of the commute times. For commute times of 20 min or longer, the %RfD was > 100 for maximum exposures based on the "maximum allowable daily level" for benzene, and for 95th-percentile exposures based on the "no significant risk level" for benzene and formaldehyde. Furthermore, the probability of exceeding 100% RfD was highest for cancer risks associated with benzene, followed by cancer risks associated with formaldehyde and the risk of reproductive and developmental toxicity associated with benzene. Lastly, within the entire state of California, the percent of commuters with a 10% probability of exceeding cancer risk associated with benzene or formaldehyde exposure was 78% and 63%, respectively. Overall, our study raises concerns about the potential risk associated with inhalation of benzene and formaldehyde for people who spend a significant amount of time in their vehicles, an issue that is especially pertinent to traffic-congested areas where people have longer commutes.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
39
|
Quintana PJE, Lopez-Galvez N, Dodder NG, Hoh E, Matt GE, Zakarian JM, Vyas M, Chu L, Akins B, Padilla S, Anderson KA, Hovell MF. Nicotine, Cotinine, and Tobacco-Specific Nitrosamines Measured in Children's Silicone Wristbands in Relation to Secondhand Smoke and E-cigarette Vapor Exposure. Nicotine Tob Res 2021; 23:592-599. [PMID: 33009807 PMCID: PMC8248526 DOI: 10.1093/ntr/ntaa140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Simple silicone wristbands (WB) hold promise for exposure assessment in children. We previously reported strong correlations between nicotine in WB worn by children and urinary cotinine (UC). Here, we investigated differences in WB chemical concentrations among children exposed to secondhand smoke from conventional cigarettes (CC) or secondhand vapor from electronic cigarettes (EC), and children living with nonusers of either product (NS). METHODS Children (n = 53) wore three WB and a passive nicotine air sampler for 7 days and one WB for 2 days, and gave a urine sample on day 7. Caregivers reported daily exposures during the 7-day period. We determined nicotine, cotinine, and tobacco-specific nitrosamines (TSNAs) concentrations in WB, nicotine in air samplers, and UC through isotope-dilution liquid chromatography with triple-quadrupole mass spectrometry. RESULTS Nicotine and cotinine levels in WB in children differentiated between groups of children recruited into NS, EC exposed, and CC exposed groups in a similar manner to UC. WB levels were significantly higher in the CC group (WB nicotine median 233.8 ng/g silicone, UC median 3.6 ng/mL, n = 15) than the EC group (WB nicotine median: 28.9 ng/g, UC 0.5 ng/mL, n = 19), and both CC and EC group levels were higher than the NS group (WB nicotine median: 3.7 ng/g, UC 0.1 ng/mL, n = 19). TSNAs, including the known carcinogen NNK, were detected in 39% of WB. CONCLUSIONS Silicone WB show promise for sensitive detection of exposure to tobacco-related contaminants from traditional and electronic cigarettes and have potential for tobacco control efforts. IMPLICATIONS Silicone WB worn by children can absorb nicotine, cotinine, and tobacco-specific nitrosamines, and amounts of these compounds are closely related to the child's urinary cotinine. Levels of tobacco-specific compounds in the silicone WB can distinguish patterns of children's exposure to secondhand smoke and e-cigarette vapor. Silicone WB are simple to use and acceptable to children and, therefore, may be useful for tobacco control activities such as parental awareness and behavior change, and effects of smoke-free policy implementation.
Collapse
Affiliation(s)
| | - Nicolas Lopez-Galvez
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego,
CA
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego,
CA
| | - Joy M Zakarian
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Mansi Vyas
- School of Public Health, San Diego State University, San Diego,
CA
| | - Linda Chu
- School of Public Health, San Diego State University, San Diego,
CA
| | - Brittany Akins
- School of Public Health, San Diego State University, San Diego,
CA
| | - Samuel Padilla
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Oregon State University College of
Agricultural Sciences, Corvallis, OR
| | | |
Collapse
|
40
|
Hou M, Shi Y, Na G, Cai Y. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106261. [PMID: 33395927 DOI: 10.1016/j.envint.2020.106261] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/14/2023]
Abstract
The ubiquity of organophosphate esters (OPEs) in various environmental matrices inevitably pose human exposure risks. Numerous studies have investigated human exposure pathways to OPEs, including air inhalation, dust ingestion, dermal contact, and dietary and drinking water intake, and have indicated that indoor dust and indoor air routes are frequently the two main human exposure pathways. This article reviews the literature on OPE contamination in indoor air and dust from various microenvironments and on OPE particle size distributions and bioavailability in dust conducted over the past 10 years. Ways in which sampling strategies are related to the uncertainty of exposure assessment results and comparability among different studies in terms of sampling tools, sampling sites, and sample types are addressed. Also, the associations of OPEs in indoor dust/air with human biological samples were summarized. Studies on two emerging matrices, hand wipes and silicone wristbands, are demonstrated to be more comprehensive and accurate in reflecting personal human exposure to OPEs in microenvironments and are summarized. Given the direct application of some diester OPEs (di-OPEs) in numerous products, research on their existence in indoor dust and food and on their effects on human urine are also discussed. Finally, related research trends and avenues for future research are prospected.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Kassotis CD, Herkert NJ, Hammel SC, Hoffman K, Xia Q, Kullman SW, Sosa JA, Stapleton HM. Thyroid Receptor Antagonism of Chemicals Extracted from Personal Silicone Wristbands within a Papillary Thyroid Cancer Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15296-15312. [PMID: 33185092 PMCID: PMC7819617 DOI: 10.1021/acs.est.0c05972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Research suggests that thyroid cancer incidence rates are increasing, and environmental exposures have been postulated to be playing a role. To explore this possibility, we conducted a pilot study to investigate the thyroid disrupting bioactivity of chemical mixtures isolated from personal silicone wristband samplers within a thyroid cancer cohort. Specifically, we evaluated TRβ antagonism of chemical mixtures extracted from wristbands (n = 72) worn by adults in central North Carolina participating in a case-control study on papillary thyroid cancer. Sections of wristbands were solvent-extracted and analyzed via mass spectrometry to quantify a suite of semivolatile chemicals. A second extract from each wristband was used in a bioassay to quantify TRβ antagonism in human embryonic kidney cells (HEK293/17) at concentrations ranging from 0.1 to 10% of the original extract (by volume). Approximately 70% of the sample extracts tested at a 1% extract concentration exhibited significant TRβ antagonism, with a mean of 30% and a range of 0-100%. Inhibited cell viability was noted in >20% of samples that were tested at 5 and 10% concentrations. Antagonism was positively associated with wristband concentrations of several phthalates, organophosphate esters, and brominated flame retardants. These results suggest that personal passive samplers may be useful in evaluating the bioactivities of mixtures that people contact on a daily basis. We also report tentative associations between thyroid receptor antagonism, chemical concentrations, and papillary thyroid cancer case status. Future research utilizing larger sample sizes, prospective data collection, and measurement of serum thyroid hormone levels (which were not possible in this study) should be utilized to more comprehensively evaluate these associations.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Qianyi Xia
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Seth W Kullman
- Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Julie Ann Sosa
- Department of Surgery, University of California at San Francisco, San Francisco, California 94143, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Wang S, Romanak KA, Tarallo S, Francavilla A, Viviani M, Vineis P, Rothwell JA, Mancini FR, Cordero F, Naccarati A, Severi G, Venier M. The use of silicone wristbands to evaluate personal exposure to semi-volatile organic chemicals (SVOCs) in France and Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115490. [PMID: 33254690 DOI: 10.1016/j.envpol.2020.115490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 05/07/2023]
Abstract
In this exploratory study, we measured for the first-time human exposure to about 90 semi-volatile organic chemicals (SVOCs) in France and Italy using silicone wristbands. Participants in France (n = 40) and in Italy (n = 31) wore a silicone wristband for five days during 2018 and 2019. Samples were analyzed for 39 polybrominated diphenyl ethers (PBDEs), 10 novel brominated flame retardants (nBFRs), 25 organophosphate esters (OPEs), and 18 polycyclic aromatic hydrocarbons (PAHs). In both groups, the most commonly detected chemicals were BDE-209, BEHTBP, tris[(2R)-1-chloro-2-propyl] phosphate (TCIPP), and phenanthrene among PBDEs, nBFRs, OPEs, and PAHs, respectively. The concentrations of ∑39 PBDEs, ∑10 nBFRs, ∑25 OPEs, ∑18 PAHs, and of most individual chemicals were generally significantly higher in samples from France than in those from Italy, except for BDE-209 and TCIPP. On a broader scale, the chemical concentrations were generally significantly lower in this study than those measured in the United States in previous studies using the same type of wristbands. Efforts to standardize the protocols for the use of silicone wristbands are still needed but this study shows that wristbands are capable of capturing regional differences in human exposure to a large variety of SVOCs and, therefore, can be used as personal exposure monitor for studies with global coverage.
Collapse
Affiliation(s)
- Shaorui Wang
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States
| | - Kevin A Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marco Viviani
- Department of Computer Science, University of Turin, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; MRC Centre for Environment and Health, School of Public Health, Imperial College, London, United Kingdom
| | - Joseph A Rothwell
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France
| | - Francesca Romana Mancini
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France
| | - Francesca Cordero
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Gianluca Severi
- CESP (U1018), Faculté de Médecine, Université Paris-Saclay, INSERM, 94805, Villejuif, France; Gustave Roussy, 94805, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
43
|
Travis SC, Aga DS, Queirolo EI, Olson JR, Daleiro M, Kordas K. Catching flame retardants and pesticides in silicone wristbands: Evidence of exposure to current and legacy pollutants in Uruguayan children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140136. [PMID: 32927574 PMCID: PMC10989841 DOI: 10.1016/j.scitotenv.2020.140136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Children are exposed to many potentially toxic compounds in their daily lives and are vulnerable to the harmful effects. To date, very few non-invasive methods are available to quantify children's exposure to environmental chemicals. Due to their ease of implementation, silicone wristbands have emerged as passive samplers to study personal environmental exposures and have the potential to greatly increase our knowledge of chemical exposures in vulnerable population groups. Nevertheless, there is a limited number of studies monitoring children's exposures via silicone wristbands. In this study, we implemented this sampling technique in ongoing research activities in Montevideo, Uruguay which aim to monitor chemical exposures in a cohort of elementary school children. The silicone wristbands were worn by 24 children for 7 days; they were quantitatively analyzed using gas chromatography with tandem mass spectrometry for 45 chemical pollutants, including polychlorinated biphenyls (PCBs), pesticides, polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), and novel halogenated flame-retardant chemicals (NHFRs). All classes of chemicals, except NHFRs, were identified in the passive samplers. The average number of analytes detected in each wristband was 13 ±3. OPFRs were consistently the most abundant class of analytes detected. Median concentrations of ΣOPFRs, ΣPBDEs, ΣPCBs, and dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) were 1020, 3.00, 0.52 and 3.79 ng/g wristband, respectively. Two major findings result from this research; differences in trends of two OPFRs (TCPP and TDCPP) are observed between studies in Uruguay and the United States, and the detection of DDT, a chemical banned in several countries, suggests that children's exposure profiles in these settings may differ from other parts of the world. This was the first study to examine children's exposome in South America using silicone wristbands and clearly points to a need for further studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - James R Olson
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Mónica Daleiro
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States.
| |
Collapse
|